#

A comparison of 1-D, 2-D and 3-D approaches of interpreting electromagnetic data of Silali geothermal area

Skoða venjulega færslu

dc.contributor KenGen is
dc.contributor Geothermal Development Company Ltd. is
dc.contributor Jarðhitaskóli Háskóla Sameinuðu þjóðanna is
dc.contributor United Nations University is
dc.contributor United Nations University, Geothermal Training Programme is
dc.contributor.author Muturia Lichoro, Charles 1973 is
dc.date.accessioned 2017-12-07T11:25:24Z
dc.date.available 2017-12-07T11:25:24Z
dc.date.issued 2016
dc.identifier.issn 1670-794x
dc.identifier.uri http://hdl.handle.net/10802/13939
dc.description Presented at SDG Short Course I on Exploration and Development of Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Nov. 10-31, 2016. is
dc.description.abstract With development of MT interpretation codes and advancement in computer hardware, 3-D electromagnetic data interpretation has become attainable. This study therefore seeks to compare results of Electromagnetic data using different interpretational techniques in order to provide reliable information about the presence, location, and size of geothermal systems in Silali field. Resistivity study of the Silali area in Kenya was carried out by the combined use of TEM and MT soundings. Joint inversion of the EM data was used to correct for static shifts in the MT data, which can be severe due to large near-surface resistivity contrasts. Joint 1-D inversion of 102 TEM/MT sounding pairs and a 3-D inversion of a 97 sounding subset of the MT data were performed. Additionally 2-D inversion of the same data set was done and results are compared with those of 1-D and 3-D inversion models. The resistivity models resulting from the 3-D inversion were elevation corrected and smoothed and are presented as planar maps and cross sections. The inverted model of electrical resistivity reveals the presence of highly resistive near surface layer, identified as unaltered formations, which covers a low resistivity cap corresponding to the smectite-zeolite zone. Beneath this cap a more resistive zone is identified as the epidote-chlorite zone (the resistive core) and interpreted as the host of geothermal reservoir. is
dc.description.abstract Further at depth of about 6 km an electrically conductive feature has been imaged, and has been tentatively interpreted as a heat source for geothermal system in this field. The aim of modelling EM data using all the three interpretational techniques is to compare results and establish which resistivity anomalies stand out irrespective of the dimensional inversion used. In this study results from 1-D, 2-D and 3-D models recover near surface resistivity structure fairly well but differ somewhat at depth. The 3-D inversion however reveals much more consistent details than the 1-D and 2-D inversion confirming that the resistivity structures in the area are highly three dimensional. At depth below 6 km the three approaches give different results implying that the models do not resolve deeper structures. This has been attributed to noise in the data at long periods. is
dc.format.extent 1 rafrænt gagn (12 bls.). is
dc.language.iso en
dc.publisher United Nations University is
dc.relation.ispartof 991008983279706886
dc.relation.ispartofseries United Nations University., UNU Geothermal Training Programme, Iceland. Short Course ; SC-23
dc.relation.uri http://os.is/gogn/unu-gtp-sc/UNU-GTP-SC-23-0404.pdf
dc.subject Jarðhiti is
dc.subject Jarðeðlisfræði is
dc.subject Kenía is
dc.title A comparison of 1-D, 2-D and 3-D approaches of interpreting electromagnetic data of Silali geothermal area en
dc.type Tímaritsgrein is
dc.identifier.gegnir 991008997359706886


Skrár

Skrá Stærð Skráartegund Skoða Lýsing
UNU-GTP-SC-23-0404.pdf 1.157Mb PDF Skoða/Opna Heildartexti

Þetta verk birtist í eftirfarandi flokki:

Skoða venjulega færslu

Leita


Fletta