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Chapter 1

Introduction

The continuing miniaturization of components used in integrated circuits are

pushing devices ever closer to a regime where the expected classical behavior

becomes strongly influenced by quantum effects [1]. From the point of view of

those who would like to squeeze more and more ‘classical’ devices onto a chip

this prospect is quite discouraging. The opposite viewpoint would be to come up

with new devices which take advantage of these quantum effects. The operation

of such devices would require coherent control of the quantum systems with

precision which is quite difficult to achieve. There are both fundamental and

practical obstacles that need to be overcome, if that is at all possible. The most

ambitious of these proposed devices is the quantum bit, or qubit, which would

form the building blocks of quantum computers [2–5].

There are many competing ideas on how to build qubits. The most mature

systems are based on NMR techniques and manipulating trapped ions, but there

are serious problems regarding scalability in those systems. On the contrary,

solid state systems are more promising with respects to scalability but the prob-

lem of decoherence is much greater [6–8]. One proposed realization is based on

localized electron spins in semiconductor quantum dots [9, 10]. The electron spin

is a natural two level system and the electron spin should be less susceptible to

environmental effects, e.g. relaxation and decoherence , than orbital degrees of

freedom. It is also important that the technology to manufacture well controlled

microstructures is well established and great technological advances have been

made in the direction of controlling single spins in quantum dots. The question

still remains what the detailed effects of the environment on the spin are.

1.1 Quantum dots

Quantum dots are micron-size, or smaller, structures which are manufactured

using lithographic techniques or various so-called self-assembly methods. Irre-

1



2 Introduction

spective of the method used to fabricate them, quantum dots are characterized

by their localized wavefunctions and discrete energy spectrum [11]. Here the

focus is on quantum dots in GaAs/AlGaAs heterostructures. This material is

both technologically important and has peculiar material features which are im-

portant. GaAs is a polar semiconductor which is crucial in determining both

the electron-phonon, and the spin-orbit interaction. Both Ga and As nuclei

have nonzero nuclear spin which give rise to properties which are not present,

or quite reduced, in other semiconductors, e.g. silicon.

Usually GaAs quantum dots are fabricated starting from a 2DEG at an

AlGaAs/GaAs interface, or quantum well. The quantum dots are defined by

etching through the 2DEG or by depositing gates on top of the heterostructure.

Applying a negative voltage on these gates will deplete the 2DEG below them.

Assuming a parabolic confinement in the 2DEG plane is in most cases a good

approximation. The quantum dot Hamiltonian for a generic confining potential

V (z) in the z direction is

H0 =
(p + eA(r))2

2m∗
+

1

2
m∗Ω2

0(x
2 + y2) + V (z) + gµBS · B, (1.1)

where A is the gauge dependent vector potential which determines the magnetic

field B = ∇×A. Knowing the potential V (r) of the dot and the applied mag-

netic field B the eigenstates are obtained by solving the stationary Schrödinger

equation

H0〈r|n, s〉 = ~ωn,s〈r|n, s〉. (1.2)

Here the eigenstates are labeled with the orbital index n which represents the

relevant orbital quantum numbers and s indicates the spin state.

GaAs quantum dots come mainly in two flavors, socalled lateral and vertical

quantum dots. Differences in fabrication of the dots is reflected in different

choices of the confining potential V (z). Initially, only the vertical dots allowed

precise control of the number of electrons in the quantum dot, which could be

tuned from 0 to few tens [12]. Recent experiments have also demonstrated this

control in lateral quantum dots [13], and more importantly, the lateral dots

allow greater control over the electron confinement potential in the dot. The

results presented in this thesis apply equally well to vertical and lateral dots,

the only difference being different numerical values due to the slightly different

orbital wave functions.

1.2 Spin admixture

The Hamiltonian in Eq. (1.1) only takes into account the confining potential,

the minimum coupling to the vector field A. As a first approximation this



1.2 Spin admixture 3

is a good starting point but more terms in the Hamiltonian are required for

realistic modeling of the quantum dot. Let us assume for the moment that the

coordinate system is chosen such that [Sz, H0] = 0, thus the eigenstates of H0

are also eigenstates of Sz,

Sz|s〉 = ~s|s〉, s = ±1

2
. (1.3)

Here the orbital indices are suppressed for the moment. When a small perturb-

ing term H ′, which contains spin operators such that [Sz, H ′] 6= 0, is added to

H0 the eigenfunctions become

|′′+′′〉 ≈ |+〉 + α|−〉 (1.4)

|′′−′′〉 ≈ |−〉 − α∗|+〉, (1.5)

where α is the strength of the perturbation. The admixture refers to the small

component of the opposite spin, but the states still retain most of their spin

‘up’ and ‘down’ characteristics as long as α � 1. The admixture terms in Eq.

(1.5) include contributions from different orbitals, so any inter-orbital scattering

mechanism will lead to scattering between spin states. The magnitude of the

spin scattering is determined by α and the orbital scattering mechanism.

There are a number of possible admixture mechanisms in GaAs. The most

important ones are due to hyperfine interaction and spin-orbit interaction. Al-

though one could also include inelastic cotunneling in this list it is not an in-

trinsic mechanism of the dot since the cotunneling can be turned down to an

arbitrarily small value by pinching of the quantum dot. No such ’turning-off’

exists for the hyperfine or spin-orbit interaction although polarizing the nu-

clear system has been proposed as a means for reducing the effectiveness of the

hyperfine scattering [14].

1.2.1 Spin-orbit interaction

The spin-orbit interaction is a relativistic correction to the Hamiltonian in Eq.

(1.2). The textbook method of introducing the SO interaction is by considering

the problem of an electron moving in a frame with a given stationary electric

field E = −∇V (r) but zero magnetic field. In the reference frame moving

with the electron the magnetic field is not zero since the Lorentz transformation

of the electric field results in a small magnetic field [15]. This magnetic field

couples to the electron spin giving rise to a Zeeman-like term. The Hamiltonian

for the spin-orbit (SO) interaction (including the factor 1/2 due to the Thomas

precession) is

HSO =
~

2m2c2
(∇V × p) · S, (1.6)
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where p and S are operators for momentum and spin, respectively. For any time

reversal symmetric (no applied magnetic field) single particle Hamiltonian Hsp,

Kramers theorem tells that all eigenstates of the total Hamiltonian H = Hsp +

HSO are doubly degenerate [16, 17]. Non-zero transition amplitude between

such doublet components is only possible in the presence of a magnetic field.

In bulk matter this Hamiltonian becomes modified due to details of the

structure of the underlying material. Here symmetry of the crystal lattice plays

an important role [18, 19]. The SO interaction Hamiltonian can be written quite

generally as

HSO = ~Ω · S, (1.7)

where Ω is some generalized precession frequency whose detailed form is deter-

mined by the structure of the crystal lattice. In GaAs, which has a zinc blende

structure, the dominant SO coupling in the conduction band is due to the lack

of inversion center in the crystal lattice. The resulting SO coupling, the socalled

Dresselhaus term, may be written as

HD = ~ΩD · S, (1.8)

where the SO precession frequency is defined as [20]

ΩD,x =
η

~m∗
√

2Egm∗
px(p2

y − p2
z), (1.9)

where η is a material dependent parameter (0.07 in GaAs), Eg is the gap energy

and m∗ is the effective electron mass. The other components of ΩD are obtained

by cyclic permutation of the indices.

In addition to the intrinsic lack of an inversion center in GaAs, it is also pos-

sible to break the lattice symmetry at hetero-interfaces, e.g. at AlGaAs/GaAs

interfaces. The spin orbit coupling arising from this effect is usually called the

Rashba term

HR = 2α~
−1(p × nhet) · S, (1.10)

where α ∼ 10−11 eVm in GaAs determines the strength of the coupling and nhet

is a unit vector normal to the interface [21, 22]. In a recent paper the in situ

control of the different SO couplings in a GaAs 2DEG was demonstrated [23].

1.2.2 The hyperfine interaction

Both Ga and As have a nuclear spin I = 3/2. This gives rise to the hyperfine

interaction, i.e. conduction electrons interact with the magnetic moments of the
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nuclei. The Hamiltonian of the hyperfine coupling of an electron spin to a single

nucleus at position R can be written as

HHF = 2µBγn~

(

3(I · n)(S · n) − I · S
|r − R|3 +

8π

3
I · Sδ(r − R)

)

(1.11)

where n = (r − R)/|r − R|, γn is the nucleus magnetic moment. The former

term in Eq. (1.11) is the usual coupling between magnetic dipoles of the electron

and nuclei but the latter term, socalled contact term, is a correction due to the

non-zero electron density at the nucleus [24].

In GaAs, and other materials with s-orbital conduction band, the dipole-

dipole term is strongly suppressed, leaving the contact term as the dominant

contribution. The contact term Hamiltonian become

HHF = A
∑

k

Ŝ · Îkδ(r − Rk), (1.12)

where A is the (band renormalized) hyperfine constant and Ik is the spin oper-

ator of nuclei at Rk. The sum runs over all nuclei in the sample. Although Ga

and As have different hyperfine coupling constants, or A’s in Eq. (1.12), we will

consider only a single effective nuclear species characterized by a single A which

is the weighted sum of the contributions from different isotopes of the Ga and

As nuclei. The energy scales associated with this Hamiltonian can be extracted

from A and the concentration of nuclear spins Cn. Assuming a completely po-

larized (in the z direction) nuclear state one can extract the Zeeman splitting

of the spin doublet

En = AICn, (1.13)

where I is the nuclear spin of the Ga and As nuclei. Note that this result does

not depend on the form of the wavefunction. This spin splitting is a quantity

that has been measured: En = 0.135 meV in GaAs samples [25, 26].

The form of the Hamiltonian is quite suggestive since it can be written on

the form [27]

HHF = Ŝ · K̂ (1.14)

which is formally equivalent to the Zeeman term in Eq. (1.1) but the difference

is that the field is now an operator

K̂ = A
∑

k

Îkδ(r − Rk). (1.15)

By introducing two identity operators I =
∑

n |n〉〈n| in the orbital Hilbert space

the K̂ operator can be written as

K̂ =
∑

n

|n〉〈n|K̂
∑

m

|m〉〈m|

=
∑

n

|n〉〈n|K̂n,n +
∑

n6=m

|n〉〈m|K̂n,m, (1.16)
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where we have defined

K̂n,m = A
∑

k

Îkψ
∗
n(Rk)ψm(Rk). (1.17)

The former term acts as an effective magnetic field within a given orbital but the

latter term gives rise to admixture of the opposite spin component in different

orbital. The size of the admixture is determined by K/~(ωn − ωm) � 1. The

admixture has the same form as for spin-orbit coupling but there is an important

difference that the transition amplitude due to the hyperfine interaction does

not vanish at zero magnetic field, since Kramers theorem no longer applies.

In the same way as the electron spin is affected by the nuclei so are the nuclei

influenced by the electron spin. The hyperfine coupling causes each nuclear spin

to precess around the average electron spin. As long as the number of nuclei

in the dot is much greater than one, this precession frequency is much smaller

than for the electron. In addition to the hyperfine field due to the electron spin

(and external magnetic field) each nuclei precesses in the dipolar field due to

its nearest neighbor spins. Since the dipole-dipole interaction energy between

different nuclei is Edip ≈ 10−9 meV (corresponding to a local magnetic field

Bdip ≈ 10−5T ) disregarding direct nuclear spin interaction is a good approxi-

mation, at least up to times determined by Edip. The complete dynamics of the

electron plus nuclear spin system is quite complicated and not solvable except

for simple cases. However, the very different timescales involved, i.e. electron

spin motion is much faster than for the nuclear spin, help to solve the problem.

1.3 Quantum dynamics and the reduced density

matrix formalism

Solving the dynamics of the isolated quantum dot is a trivial exercise once the

eigenfunctions and eigenvalues of Eq. (1.1) are known. In order to describe

a realistic system the environment of the system has to be taken into account.

The term environment usually means all other degrees of freedom, e.g. phonons,

magnetic and non-magnetic impurities and nuclear spins, to name a few [28–30].

For a bosonic environment (phonons) there exists a powerful method to extract

the equation of motion of the reduced density matrix of the electron [28, 31–33].

The effects of the environment is included into an integral kernel K and the

resulting equations of motion can be written as

d

dt
ρnn′ = −i(ωn −ωn′)ρnn′ +

∫ t−t0

0

dτ
∑

mm′

Knn′,mm′(τ)ρmm′(t− τ) (1.18)

The integral kernel is related to the self-energy of the reduced density matrix

propagator and it is thus quite convenient to include higher order contributions.



1.4 Spin-flip rates 7

In many cases the Markov approximation is valid and the integral term reduces

to
∑

mm′

Γnn′;mm′ρmm′(t) (1.19)

where the transition rate is

Γnn′;mm′ = lim
t0→−∞

∫ t−t0

0

dτKnn′,mm′(τ) (1.20)

The transition rate in Eq. (1.20), using the lowest order self-energy term, are

equal to the Fermi Golden Rule result. Once these transition rates are known

the equations of motion, including all non-diagonal density matrix terms has to

be solved to describe coherent dynamics. Only including the diagonal elements

gives the usual master-equation approach. The timescale of the decay of the

diagonal elements is usually called T1 and of the off-diagonal T2, these term

being borrowed from the NMR community [34].

In most cases the dominant bosonic environment in semiconductors is the

phonon bath, which can be thought of as quantized lattice vibrations. Besides

the usual deformation potential electron phonon coupling the piezoelectric cou-

pling in GaAs needs to be considered. In piezoelectric materials electric fields

are induced if the lattice is distorted. The piezoelectric coupling to acoustic

phonons can be written as [35]

He−p =
∑

ν,q

(

~

2ρV cνq

)

eir·q(bν,q + b†ν,−q), (1.21)

where q is the wavevector, ρ is the mass density, cν is the sound velocity of

branch ν and V is the normalization volume. Due to the different dependence

on q in the coupling constants for the deformation and piezoelectric phonons, the

latter mechanism dominates at low energy. In GaAs it turns out that the piezo-

electric interactions wins over the deformation potential coupling for phonon

energies below ≈0.1 meV. This means that for electron spin dynamics, for which

the natural energy scale is the Zeeman splitting, the piezoelectric phonon cou-

pling should be used.

1.4 Spin-flip rates

In the previous section the general formalism for calculating transition rates was

introduced. Applying it to transitions between states with different spin requires

some mechanism that couples the spin components. Calculating transition rates

between quantum dot states with different spin, socalled spin-flip rates, has

been the subject of quite a few papers recently. The system of choice is GaAs

quantum dots since they are technologically most relevant.
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A very important feature of quantum dots, and other confined systems,

is their discrete energy spectrum. In fact, the same applies to 2DEGs in mag-

netic fields where the spectrum is discrete which strongly suppresses the electron

spin-flip rates. This feature has been studied, both in connection with hyperfine

interaction [36] and spin-orbit interaction [37]. By comparing various spin-orbit

related mechanisms in GaAs quantum dots it was shown that the most impor-

tant mechanism is caused by the lack of inversion symmetry, as reflected in the

Hamiltonian in Eq. (1.8) [38]. These calculations were done for a dot containing

two electrons and the spin-flip transition was from a triplet to singlet so that

the energy of the emitted phonon was in the meV range. Similar calculation

were also done for transitions between doublet components [39]. Besides the

difference in energy scales, i.e. phonon energies corresponding to the Zeeman

splitting as opposed to much larger singlet-triplet splitting, the consequences

of Kramers theorem show up in a vanishing transition amplitude at zero mag-

netic field, which strongly reduces the spin-flip rate. Other spin-orbit related

spin-flip rates have also been proposed, e.g. based on motion of the interface of

AlGaAs/GaAs heterostructures [40].

In the last few years quite ingenious ways of actually measuring singlet-

triplet transition rates in GaAs quantum dot have been devised [41–43]. These

measurement give a transition rate of T1 ≈200µs. The resolving power of these

experiments are limited by cotunneling so the intrinsic spin-flip rates could still

be lower, giving rise to longer relaxation times [43]. Similar measurements for

transitions between Zeeman split doublet levels of a single electron in a dot in

high magnetic fields give a lower bound on the relaxation time T1 & 50µs, the

resolution again being limited by technical issues [44].

1.5 Dynamics of electron spins

The spin-flip rates in quantum dots are usually very small. At timescales much

smaller than the inverse spin-flip rate the phonons should be frozen out. This

has motivated researchers to calculate dynamics without the phonons. The en-

vironment which most strongly interacts with the electron spin in GaAs quan-

tum dots are the nuclear spins, which couple to the electron via the hyperfine

interaction. Calculating the dynamics of the electron spin in the presence of hy-

perfine coupling to many nuclei is quite a challenging task. Before attacking the

whole problem of solving the exact electron spin dynamics some basic features

of the dynamics can be identified. For short timescales the nuclear system is

static and the electron spin experiences a fixed nuclear magnetic field. At times

longer than ∼ 1µs the nuclear system “starts” precessing around the average

electron spin and finally at times & 1 ms the dipole-dipole interaction starts

effecting the nuclear spin dynamics.
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Quite a few papers have been written on the dynamics of the electron spin

in the presence of hyperfine interaction [45–50]. Not all of these papers treat

the nuclear system in the same way and the different approximations used can

give quite different results.

The role of the position dependent hyperfine coupling was stressed in Ref.

[46] where the authors calculated a certain electron spin correlation function

which showed non-exponential decay. The same coupling was considered in

Ref. [45] but there an ensemble of quantum dots was considered, resulting in

very different behavior. An important point made in these two papers, and

others, is the large difference of timescales of the electron and nuclear system,

which can be utilized in solving the dynamic of the electron spin coupled to the

nuclear spin system.

1.6 This thesis

In the second chapter of the thesis the spin-flip rate in a two electron quantum

dot, mediated by hyperfine interaction with the nuclei, is estimated. The tran-

sition involves virtual transitions to higher energy states and the rate shows a

divergence at magnetic field values at which special level crossings occur.

In chapter three a similar spin-flip rate is calculated for a single electron in

a quantum dot. A semiclassical picture of the nuclear system is developed.

The subject of the fourth chapter is an application of the semiclassical de-

scription of the hyperfine interaction to explain intriguing current oscillations

observed in transport through a double dot system [51]. We present a model

for the transport cycle where the interplay of the electron spin and the nuclear

system leads to an oscillating hyperfine coupling, and thus curret.

The last chapter deals with the dynamics of a single electron spin in a quan-

tum dot in the presence of the hyperfine interaction. We extend the semiclassi-

cal description to include non-homogeneous hyperfine coupling which results in

complicated, but not chaotic motion of the electron spin.
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Chapter 2

Nucleus-mediated spin-flip transitions in

GaAs quantum dots

Sigurdur I. Erlingsson, Yuli V. Nazarov, and Vladimir I. Fal’ko

Spin-flip rates in GaAs quantum dots can be quite slow, thus opening up the

possibilities to manipulate spin states in the dots. We present here estimations of

inelastic spin-flip rates, between triplet and singlet states, mediated by hyperfine

interaction with nuclei. Under general assumptions the nucleus-mediated rate

is proportional to the phonon relaxation rate for the corresponding non-spin-

flip transitions. The rate can be accelerated in the vicinity of a singlet-triplet

excited state crossing. The small proportionality coefficient depends inversely

on the number of nuclei in the quantum dot. We compare our results with

known mechanisms of spin-flip in GaAs quantum dot.
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2.1 Introduction

The electron spin states in bulk semiconductor and heterostructures have at-

tracted much attention in recent years. Experiments indicate very long spin de-

coherence times and small transition rates between states of different spin [1–3].

These promising results have motivated proposals for information processing

based on electron spins in quantum dots, which might lead to a realization of a

quantum computer [4, 5].

A quantum dot is a region where electrons are confined. The energy spec-

trum is discrete, due to the small size, and can display atomic-like proper-

ties [6, 7]. Here we will consider quantum dots in GaAs-AlGaAs heterostruc-

tures. The main reasons for studying them are that relevant quantum dots are

fabricated in such structures and GaAs has peculiar electron and phonon prop-

erties which are of interest. There are two main types of gate controlled dots in

these systems, so-called vertical and lateral dots [8]. They are characterized by

different transverse confinement, which is approximately a triangular well and

a square well for the lateral and vertical dots, respectively.

Manipulation of the electron spin in a coherent way requires that it should be

relatively well isolated from the surrounding environment. Coupling a quantum

dot, or any closed quantum system, to its environment can cause decoherence

and dissipation. One measure of the strength of the coupling to the environment

is the transition rates, or inverse lifetimes, of the quantum dot states. Calcu-

lations of transition rates between different spin states due to phonon-assisted

spin-flip process mediated by spin-orbit coupling, which is one possibility for

spin relaxation, have given surprisingly low rates in quantum dots [9–11]. For

these calculations it is very important that the electron states are discrete, and

the result differs strongly from that obtained in application to two dimensional

(2D) extended electron states in GaAs. The same argument applies to the

phonon-scattering mechanisms, since certain phonon processes possible in 2D

and 3D electron systems are not effective in scattering the electron in 0D. An

alternative mechanism of spin relaxation in quantum dots is caused by hyperfine

coupling of nuclear spins to those of electrons. Although the hyperfine inter-

action mediated spin relaxation in donors was considered a long time ago [12],

no analysis has been made yet, to our knowledge, of the hyperfine interaction

mediated spin flip processes in quantum dots.

The present paper offers an estimation of the scale of hyperfine interaction

induced spin relaxation rates in GaAs quantum dots and its magnetic field

dependence. The transition is from a triplet state to a ground state singlet. The

main result is presented by the expression in Eq. (2.12). Since the parameters of

hyperfine interaction between conduction band electrons and underlying nuclei

in GaAs have been extensively investigated [13, 14], including the Overhauser

effect and spin-relaxation in GaAs/AlGaAs heterostructures [15–19], we are able
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now to predict the typical time scale for this process in particular quantum dot

geometries. The rate that we find depends inversely on the number of nuclei

in the dot (which can be manipulated by changing the gate voltage) and is

proportional to the inverse squared exchange splitting in the dot (which can be

varied by application of an external magnetic field with orientation within the

2D plane). The following text is organized in two sections: section 2.2, where

the transition rates in systems with discrete spectra are analyzed and section

2.3 where the obtained result is compared to transition rates provided by the

spin-orbit coupling mechanism.

2.2 Model and assumptions

The ground state of the quantum dot is a many electron singlet |Sg〉, for suf-

ficiently low magnetic fields. This can change at higher magnetic fields. We

assume that the system is in a regime of magnetic field so that the lowest lying

states are ordered as shown in Fig. 2.1. The relevant energy scales used in the

following analysis are given by the energy difference between the triplet state

(we assume small Zeeman splitting) and the ground state ε = ET ′ − Eg, and

exchange splitting δST = ES′ − ET ′ between the first excited singlet and the

triplet. It is possible to inject an electron into an excited state of the dot. If

this excited state is a triplet, the system may get stuck there since a spin-flip is

required to cause transitions to the ground state.

The Γ-point of the conduction band in GaAs is mainly composed of s orbitals,

so that the hyperfine interaction can be described by the contact interaction

Hamiltonian [20]

HHF = A
∑

i,k

Si · Ik δ(ri − Rk) (2.1)

where Si (Ik) and ri (Rk) denote the spin and position the ith electron (kth

nuclei). This coupling flips the electron spin and simultaneously lowers/raises

the z -component of a nuclear spin, which mixes spin states and provides the

possibility for relaxation.

But the hyperfine interaction alone does not guarantee that transitions be-

tween the above-described states occur, since the nuclear spin flip cannot relax

the excessive initial-state energy. (The energy associated with a nuclear spin

is the nuclear Zeeman, ~ωn, energy which is three orders of magnitude smaller

than the electron Zeeman energy and the energies related to the orbital degree

of freedom.) For free electrons, the change in energy accompanying a spin flip

caused by the hyperfine scattering is compensated by an appropriate change in

its kinetic energy. In the case of a quantum dot, or any system with discrete

a energy spectrum, this mechanism is not available and no hyperfine induced
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S’
T’

Sg

Higher energy 
states.

δST

Γph HF -phΓε

E

Figure 2.1: The lowest lying states of the quantum dot. The energy separation of

the ground state singlet and the first triplet is denoted by ε and the exchange splitting

by δST . The two rates indicated are the phonon rate Γph and the combined hyperfine

and phonon rate ΓHF-ph

transitions will occur because the energy released by the quantum dot cannot

be absorbed. Therefore the spin relaxation process in a dot also requires taking

into account the electron coupling to the lattice vibrations. The excess energy

from the quantum dot can be emitted in the form of a phonon. Since the ‘bare’

electron-phonon interaction, Hph does not contain any spin operators and thus

does not couple directly different spin states, one has to employ second-order

perturbation theory which results in transitions via virtual states. The ampli-

tude of such a transition between the triplet state |T ′〉 and the ground state

|Sg〉 is

〈T ′|Sg〉 =
∑

t

〈T ′|Hph|t〉〈t|HHF|Sg〉
ET ′ − (Et + ~ωq)

+
∑

s

〈T ′|HHF|s〉〈s|Hph|Sg〉
ET ′ − (Es + ~ωn)

(2.2)

where ~ωq is the energy of the emitted phonon and ~ωn ≈ 0 is the energy

changed by raising/lowering a nuclear spin.

It is natural to assume that the exchange splitting is smaller than the single-

particle level splitting, so that the dominating contribution to the amplitude

〈T ′|Sg〉 comes from the term describing the virtual state |s〉 = |S ′〉 , due to

a small denominator. All other terms can be ignored and the approximate
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amplitude takes the form

〈T ′|Sg〉 ≈
〈T ′|HHF|S′〉〈S′|Hph|Sg〉

ET ′ − ES′

. (2.3)

The justification for this assumption is that we aim at obtaining estimates of

the rates, and including higher states would not affect the order of magnitude,

even if the exchange splitting is substantial. Note that the phonon and nuclear

state are not explicitly written in Eq. (2.3).

The transition rate from |T ′〉 to |Sg〉 is given by Fermi’s golden rule,

Γ̃HF-ph =
2π

~

∑

N ′

q
,µ′

|〈T ′|Sg〉|2δ(Ei − Ef), (2.4)

where N ′
q and µ′ are the final phonon and nuclear states respectively and Ei

and Ef stand for the initial and final energies. Inserting Eq. (2.3) into Eq. (2.4)

and averaging over initial nuclear states with probability P (µ), we obtain an

approximate equation for the nucleus mediated transition rate

ΓHF-ph =
2π

~

∑

N ′

q

|〈S′;N ′
q|Hph|Sg;Nq〉|2δ(Ei −Ef)

×
∑

µ′,µ

P (µ)|〈T ′;µ′|HHF|S′;µ〉|2
(ET ′ − ES′)2

(2.5)

= Γph(ε)
∑

µ′,µ

P (µ)|〈T ′;µ′|HHF|S′;µ〉|2
(ET ′ − ES′)2

, (2.6)

where Γph is the non-spin-flip phonon rate as a function of the relaxed energy

ε = ET ′ − ESg
.

We will approximate the many-body orbital wave functions by symmetric,

|ΨS〉, and antisymmetric, |ΨT 〉, Slater determinants corresponding to the sin-

glet and triplet states respectively. It is not obvious a priori why this approx-

imation is applicable, since the Coulomb interaction in few electron quantum

dots can be quite strong [21]. The exact energy levels are very different from

those obtained by simply adding the single particle energies. However the wave

function will not drastically change and especially the matrix elements calcu-

lated using Slater determinants are comparable to the ones obtained by using

exact ones. The singlet and triplet wave functions can be decomposed into

orbital and spin parts: |T ′〉 = |ΨT 〉|T 〉 and |S〉 = |ΨS〉|S〉, where

|T 〉 = −νx − iνy√
2

|1,+1〉 +
νx + iνy√

2
|1,−1〉 + νz|1, 0〉, (2.7)
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Using the above discussed wave functions in Eq. (2.6) we obtain the following
∑

µ′µ

P (µ)|〈T ′;µ|HHF|S′;µ′〉|2 =

A2

4
Gcorr

∑

k

(

|Ψ1(Rk)|2 − |Ψ2(Rk)|2
)2
, (2.8)

where Ψ1,2 are the wave functions of the lowest energy states. The factor Gcorr

contains the nuclear correlation functions

Gcorr =
∑

η,γ=x,y,z

νην
∗
γ

(

Ḡηγ +
1

2
i
∑

κ

εγηκ〈Iκ〉
)

. (2.9)

Here we have introduced symmetric part of the nuclear correlation tensor Ḡηγ =

〈δIηδIγ + δIγδIη〉/2, where δIη = Iη − 〈Iη〉. The νη’s are the coefficients in the

triplet state expansion in Eq. (2.7) and εγηκ is the totally anti-symmetric tensor.

We assume that nuclei are identical and non-interacting (thus we can drop the

k subscript), which gives for an isotropic system Gcorr = I(I+1)/3 = 1.25 since

Ga and As both have nuclear spin I = 3/2.

Let us now introduce the length scales ` and z0 which are the spatial extent

of the electron wave function in the lateral direction and the dot thickness

respectively. Let Cn denote concentration of nuclei with non-zero spin. The

effective number of nuclei contained within the quantum dot is

Neff = Cn`
2z0. (2.10)

In GaAs Neff � 1 and the sum over the nuclei in Eq. (2.8) can be replaced by

Cn

∫

d3Rk and we define the dimensionless quantity

γint = `2z0

∫

d3Rk

(

|Ψ1(Rk)|2 − |Ψ2(Rk)|2
)2
. (2.11)

To relate the hyperfine constant A (which has dimension energy× volume) to a

more convenient parameter we note that the splitting of spin up and spin down

states at maximum nuclear polarization is En = ACnI, where I = 3/2 is the

nuclear spin. Thus, the hyperfine mediated transition rate is

ΓHF-ph = Γph(ε)

(

En

δST

)2
Gcorrγint

(2I)2Neff
(2.12)

Note that the rate is inversely proportional to the number of nuclei Neff in

the quantum dot and depends on the inverse square of δST , which are both

possible to vary in experiments [22, 23]. In particular, the singlet-triplet splitting

of excited states of a dot can be brought down to zero value using magnetic

field parallel to the 2D plane of the heterostructure, which would accelerate

the relaxation process. The nuclear correlation functions in Gcorr may also be

manipulated by optical orientation of the nuclear system [13, 14].
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2.3 Comparison and estimates

We now consider Eq. (2.12) for a specific quantum dot structure. It is assumed

that the lateral confinement is parabolic and that the total potential can be split

into a lateral and transverse part. For vertical dots the approximate transverse

wave function is

χver(z) =

(

2

z0

)1/2

sin

(

πz

z0

)

, (2.13)

where z0 is the thickness of the quantum well, i.e. the dot thickness. The wave

functions in the lateral direction are the Darwin-Fock solutions φn,l(x, y) with

radial quantum number n and angular momentum l. The single particle states

corresponding to (n, l) = (0, 0) and (0,±1) are used to construct the Slater

determinant for a two-electron quantum dot. In the case of these states the

factor γint in Eq. (2.11) is then γint = 0.12 for a vertical dot and γint = 0.045

for a lateral one.

One property of the Darwin-Fock solution is the relation `−2 = ~ωm∗/~2

where ω =
√

Ω2
0 + ω2

c/4 is the effective confining frequency and ωc = eB/m∗

the cyclotron frequency. Inserting this and Eq. (2.10) into Eq. (2.12) the rate

for parabolic quantum dots becomes

ΓHF-ph = Γph(ε)~ω

(

En

δST

)2
Gcorrγint

(2I)2

(

m∗

~2Cnz0

)

. (2.14)

Spin relaxation due to spin orbit related mechanisms in GaAs quantum

dots were investigated by Khaetskii and Nazarov in Refs. [10] and [9]. We

will summarize their results here for comparison with our hyperfine-phonon

mechanism. In Ref. [10], it has been found that the dominating scattering

mechanism is due to the absence of inversion symmetry. There are three rates

related to this mechanism,

Γ1 = Γph(ε)
8

3

(

m∗β2

~ω

)3

, (2.15)

Γ2 = Γph(ε)
7

24

(m∗β2)(~ω)

E2
z

, (2.16)

Γ5 = Γph(ε) 6(m∗β2)(g∗µBB)2
~ω

(~Ω0)4
. (2.17)

The Hamiltonian representing the absence of inversion symmetry has two dis-

tinct contribution which behave differently under a certain unitary transforma-

tion [10]. This behavior results in the two different rates in Eqs. (2.15) and

(2.16). The inclusion of Zeeman splitting gives the rate in Eq. (2.17). Here,

m∗β2 is determined by the transverse confinement and band structure param-

eters and Ez = 〈p2
z〉/(2m∗). For vertical dots of thickness z0 = 15 nm, then
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m∗β2 ≈ 4× 10−3 meV, but one should be cautious when considering a different

thickness, since m∗β2 ∝ z−4
0 , so the rates are sensitive to variations in z0 .

The transition rates in Eqs. (2.12), (2.15) and (2.16) are all proportional to the

phonon rate Γph evaluated for the same energy difference ε. It is thus sufficient

to compare the only the proportionality coefficients.

Let us now consider for which confining energies the different rates are com-

parable. At zero magnetic field Γ1 = Γ2 at ~Ω0 ≈ 0.8 meV. The estimated

confining energies of vertical quantum dots used in experiment are in the range

2 − 5.5 meV [7, 23, 24]. For those dots Γ2 � Γ1 due to the very different de-

pendence on the confinement, Γ1 ∝ (~Ω0)
−3 and Γ2 ∝ ~Ω0. Doing the same

for Γ1 and ΓHF-ph we obtain that those rates are equal at ~Ω0 ≈ 4.4 meV.

The numerical values used for the hyperfine rate in Eq. (2.12) are the follow-

ing: En = 0.13 meV [15], δST = 2.3 meV [25] and a z0 = 15 nm. Thus, for

B = 0 T and the previously cited experimental values for the confining energy

the dominant transition rate is Eq. (2.16).

For clarity we will give the values of the rates. The non-spin-flip rate Γph(ε)

is given in Ref. [10] and using the values ~Ω0 = 5.5 meV and B = 0 T we get

Γph ≈ 3.6 × 107 s−1, (2.18)

ΓHF-ph ≈ 2 × 10−2 s−1, (2.19)

Γ2 ≈ 1 × 102 s−1. (2.20)

The values of level separations ε = 2.7 meV and δST = 2.84 meV are taken from

Ref. [23].

An application of a magnetic field to the dot may result in two effects.

The rate Γ5 becomes larger than Γ2 for magnetic fields around B = 1 T (~Ω0 =

3 meV) to B ≈ 5.4 T (~Ω0 = 5.5 meV). More importantly, the exchange splitting

δST can vanish in some cases and the hyperfine rate in Eq. (2.12) will dominate.

It is also worth noting that in this limit the approximation used in obtaining

Eq. (2.3) becomes very good. Since the rates considered here are all linear in

the phonon rate the divergence of Γph at the singlet-triplet transition does not

affect the ratio of the rates. The above estimates were focused on vertical dots.

To obtain the corresponding results for lateral dots the value of γint in Eq. (2.14)

should be used.

In summary, we have calculated the nucleus mediated spin-flip transition

rate in GaAs quantum dots. The comparison of our results to those previously

obtained for the spin-orbit scattering mechanism indicates that the rates we

obtained here are relatively low, due to the discrete spectrum, so we believe

that hyperfine interaction would not cause problems for spin-coherent manip-

ulation with GaAs quantum dots. Nevertheless, the hyperfine rate, which was

found to be lower than the spin-orbit rates at small magnetic field, may diverge

and become dominant at certain values of magnetic field corresponding to the
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resonance between triplet and singlet excited states in the dot.
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Chapter 3

Hyperfine-mediated transitions between

a Zeeman split doublet in GaAs

quantum dots: The role of the internal

field

Sigurdur I. Erlingsson, Yuli V. Nazarov

We consider the hyperfine-mediated transition rate between Zeeman split

states of the lowest orbital level in a GaAs quantum dot. We separate the

hyperfine Hamiltonian into a part which is diagonal in the orbital states and

another one which mixes different orbitals. The diagonal part gives rise to an

effective (internal) magnetic field which, in addition to an external magnetic

field, determines the Zeeman splitting. Spin-flip transitions in the dots are

induced by the orbital mixing part accompanied by an emission of a phonon. We

evaluate the rate for different regimes of applied magnetic field and temperature.

The rates we find are bigger than the spin-orbit related rates provided the

external magnetic field is sufficiently low.
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3.1 Introduction

Manipulation of an individual quantum state in a solid state system is currently

the focus of an intense research effort. There are various schemes which have

been proposed and they are in various stages of development. [1–4] Many pro-

posals concentrate on the spin degree of freedom of an electron in a quantum

dot. Recent experiments indicate very long spin decoherence times and small

transition rates between states of different spin [5–7] in some semiconductor

heterostructures.

A characteristic feature of a quantum dot is its discrete energy spectrum.

Depending on the strength of the confinement, both potential and magnetic, an

orbital level energy separation of a few meV is possible. [8] This large energy

separation strongly affects inelastic transition rates in the dot. The nuclei in

GaAs have a substantial hyperfine interactions with the conduction electrons.

This makes it relevant to investigate hyperfine related effects in quantum dots

in GaAs-AlGaAs heterostructures.

Manipulating the electron spin while maintaining phase coherence requires

that it should be relatively well isolated from the environment. Coupling a

quantum dot, or any closed quantum system, to its environment can cause

decoherence and dissipation. One of the measures of the strength of the coupling

to the environment are the transition rates, or inverse lifetimes, between the

quantum dot states. In GaAs there are two main mechanisms that can cause

finite lifetimes of the spin states. These are the spin-orbit interaction and the

hyperfine interaction with the surrounding nuclei. If a magnetic field is applied

the change in Zeeman energy due to a spin-flip has to be accompanied by phonon

emission. For two electron quantum dots, where the transitions are between

triplet and singlet spin states, both spin-orbit [9, 10] and hyperfine [11] mediated

transitions have been studied. In both cases the transition rates are much

smaller than the usual phonon rates, the spin-orbit rate being the higher except

when the excited singlet and triplet states cross. [11] For low magnetic fields,

i.e. away from the singlet-triplet transition, the energy of the emitted phonon

can be quite large and the transitions involve deformation phonons rather than

piezoelectric ones.

If there are an odd number of electrons in the dot the ground state is usually

a spin doublet so that energy change associated with the spin-flip is the electron

Zeeman energy. Owing to the small g-factor in GaAs this energy is rather small

compared to the orbital level spacing and the dominating phonon mechanism is

due to piezoelectric phonons. Recently spin-orbit mediated spin-flip transitions

between Zeeman levels were investigated [12]. Due to Kramer’s degeneracy the

transition amplitude for the spin-flip is proportional to the Zeeman splitting.

This results in a spin-orbit spin-flip rate proportional to the fifth power of the

Zeeman splitting.
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In this paper we consider hyperfine mediated transitions between Zeeman

split levels in a quantum dot. The transition amplitude remains finite at zero

external magnetic field, resulting in a spin-flip rate [Eq. (3.27)] that is propor-

tional to the cube of the Zeeman splitting. The cause of this is an internal

magnetic field due to the hyperfine interaction. We consider the important con-

cept of internal magnetic field in some detail. Since the parameters of hyperfine

interaction between conduction band electrons and underlying nuclei in GaAs

have been extensively investigated [13, 14], including the Overhauser effect and

spin-relaxation in GaAs/AlGaAs heterostructures [15–19] , we are able to cal-

culate the hyperfine-mediated spin-flip transition rate for quantum dots in such

structures.

Upon completion of this work we learned about recent results of Khaetskii,

Loss and Glazman [20]. They consider essentially the same situation and model

and obtain electron spin decoherence without considering any mechanism of

dissipation. This is in clear distinction from the present result for the spin-flip

rate that requires a mechanism of dissipation, i.e. phonons.

The rest of the paper is organized as follows: in section 3.2 the model used

is introduced in addition to the basic assumptions and approximations used,

section 3.3 deals with the internal magnetic field due to the hyperfine interaction

and section 3.4 contains the derivation of the transition rates. Finally, in section

3.5 the results are discussed.

3.2 Model and assumptions

We consider a quantum dot embedded in a AlGaAs/GaAs heterostructure.

Since the details of the quantum dot eigenstates are not important for now,

it suffices to say that the energy spectrum is discrete and the wave functions

are localized in space. The spatial extension of the wave function in the lateral

and transverse direction (growth direction) are denoted with ` and z0, respec-

tively. Quantum dots in these heterostructures are formed at a GaAs/AlGaAs

interface, where the confining potential is very strong so that `� z0. We define

the volume occupied by an electron as VQD = π`2z0. The Hamiltonian of the

quantum dot can be written in the form

H0 =
∑

l

(

εl + gµBB · Ŝ
)

|l〉〈l|, (3.1)

where εl are the eigenenergies which depend on the structure of the confining

potential and the applied magnetic field B. The magnetic field also couples to

the electron spin via the Zeeman term, where g is the conduction band g-factor

and µB is the Bohr magneton.

Since the Γ point of the conduction band in GaAs is mainly composed of s
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orbitals the dipole interaction with the nuclei vanishes and the hyperfine inter-

action can be described by the usual contact term

HHF = AŜ ·
∑

k

Îkδ(r − Rk), (3.2)

where Ŝ (Îk) and r (Rk) denote, respectively, the spin and position of the

electron (kth nuclei). The delta function indicates that the point-like nature

of the contact interaction will result in a position dependent coupling. The

coupling constant A has the dimension volume×energy. To get a notion of the

related energy scale, it is straightforward to relate A to the energy splitting of

the doublet for a fully polarized nuclear system,

En = ACnI, (3.3)

Cn being density of nuclei and I the spin of a nucleus. In GaAs this energy is

En ≈ 0.135 meV, which corresponds to a magnetic field of about 5 T. [15] For a

given quantum dot geometry the number of nuclei occupying the dot is defined

as NQD = CnVQD. Since the Ga and As nuclei have the same spin and their

coupling constants are comparable, we will assume that all the nuclear sites are

characterized by the same hyperfine coupling A, and Cn ≈ a−3
0 where a0 is the

lattice spacing. For realistic quantum dots NQD ≈ 104 − 106, and it is therefore

an important big parameter in the problem.

The coupling between the electron and the phonon bath is represented with

Hph =
∑

q,ν

αν(q)(bq,νe
iq·r + b†q,νe

−iq·r), (3.4)

where b†qν and bqν are creation and annihilation operators for the phonon mode

with wave-vector q on brach ν. In GaAs there are two different coupling mecha-

nisms, deformation ones and piezoelectric ones. For transitions between Zeeman

split levels in GaAs, i.e. low energy emission, the most effective phonon mecha-

nism is due to piezoelectric phonons. We will assume that the heterostructure is

grown in the [100] direction. This is the case for almost all dots and it imposes

important symmetry relations on the coupling coefficient. The square of the

coupling coefficient for the piezoelectric phonons is then given by (see Ref. [21])

α2
ν(q) =

(eh14)
2
~

2ρcνV q
Aν(θ) (3.5)

where (eh14) is the piezoelectric coefficient, ρ is the mass density, cν is the

speed of sound of branch ν, V is normalization volume, we have defined q =

q(cosφ sin θ, sinφ sin θ, cos θ) and the Aν ’s are the so-called anisotropy functions,

see Appendix B.
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3.3 Internal magnetic field

In this section we will introduce the concept of the effective magnetic field,

the internal field, acting on the electron due to the hyperfine interaction. This

internal field is a semiclassical approximation to the nuclear system, this ap-

proximation being valid in the limit of a large number of nuclei, NQD � 1.

If the nuclei are noticeably polarized, this field coincides with the Overhauser

field that represents the average nuclear polarization. It is important that the

internal field persists even at zero polarization giving rise to Zeeman splitting

of the order EnN
−1/2
QD .

First we write the Hamiltonian in Eq. (3.2) in the basis of the electron orbital

states and present it as a sum of two terms

HHF = H0
HF + VHF, (3.6)

where the terms are defined as

H0
HF = A

∑

l

|l〉〈l|Ŝ ·
∑

k

|〈Rk|l〉|2Îk (3.7)

VHF = A
∑

l 6=l′

|l〉〈l′|Ŝ ·
∑

k

〈l|Rk〉〈Rk|l′〉Îk. (3.8)

By definition H0
HF does not couple different orbital levels. By combining Eqs.

(3.1) and (3.7) one obtains the following Hamiltonian

H0 =
∑

l

(

εl + gµBB̂l · Ŝ
)

|l〉〈l|. (3.9)

We will regard the mixing term VHF as a perturbation to H0. The justification

for this is that the typical fluctuations of the electron energy due to the hyperfine

interaction are much smaller than the orbital energy separation.

We now concentrate on H0 and formulate a semiclassical description of it.

For this we consider the operator of the orbitally dependent effective magnetic

field,

B̂l = B +
1

gµB
K̂l, (3.10)

where

K̂l =
En

ICn

∑

k

|〈Rk|l〉|2Îk. (3.11)

Our goal is to replace the operator K̂l with a classical field. To prove the

replacement is reasonable we calculate the average of the square for a given

unpolarized nuclear state |µ〉

K2
l = 〈µ|K̂2

l |µ〉 ≈
E2

n

NQD
. (3.12)
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We cannot simply replace K̂l by its eigenvalues: as in the case of the usual spin

algebra, different components of K̂l do not commute. In addition its square

does not commute with individual components, [K̂2
l , K̂

α
l ] 6= 0. To estimate

fluctuations of K̂l we calculate the uncertainty relations between its components

∆Kα
l ∆Kβ

l ≥ αlE
2
n

N
3/2
QD

≈ K2
l

1

N
1/2
QD

, (3.13)

where αl is a numerical constant o(1) which depends on the details of the orbital

wave functions. Since N
−1/2
QD � 1 we have proved that the quantum fluctuations

in K̂l are much smaller than its typical amplitude. The semiclassical picture

introduced above is only valid for high temperatures, kT � EnN
−1
QD, where there

are many states available to the nuclear system and the typical amplitude of Kl

is proportional to EnN
−1/2
QD . For temperatures below EnN

−1
QD the nuclear system

will predominantly be in the ground state and the classical picture breaks down.

This is similar to the quantum mechanical description of a particle moving in a

potential. At zero temperature it will be localized in some potential minimum

and quantum mechanics will dominate. At sufficiently high temperatures the

particle occupies higher energy states and its motion is well described by classical

mechanics. Having established this we can replace the average over the density

matrix of the nuclei by the average over a classical field Kl, and note that it

has no ‘hat’, whose values are Gaussian distributed

P (Kl) =

(

1

2πσ2
l

)3/2

exp

(

− (Kl − K
(0)
l )2

2σ2
l

)

, (3.14)

where σ2
l = 1

3 (〈K2
l 〉 − 〈Kl〉2) is the variance and K

(0)
l is the average, or Over-

hauser, field. In the case of a polarized nuclear system the variance decreases

and the distribution becomes sharper around the Overhauser field, eventually

becoming P (Kl) = δ(Kl −K
(0)
l ) as σ2

l → 0. The effective magnetic field acting

on the electron is Bl = Bln where n is the unit vector along the total field for a

given Kl, see Fig. 3.1. For this configuration the spin eigenfunctions are |n±〉,
corresponding to eigenvalues

n · Ŝ|n±〉 = ±1

2
|n±〉. (3.15)

The effective Zeeman Hamiltonian is then

HZ = gµBBl · Ŝ (3.16)

in this given internal field configuration. The spectrum of H0 thus consists of

many doublets distinguished by the value of Bl. The magnitude of the effective

field Bl determines the Zeeman splitting of each doublet,

∆l = gµBBl

= (E2
B +K2

l + 2EBKl cos θ)
1/2 (3.17)
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where EB = gµBB is the external field Zeeman energy.

θ

φ

(θ,φ)l

lB

KB

x

y

z

Figure 3.1: The internal field coordinate system is set by the external magnetic field

B, i.e. ez ‖ B. The combination of the external and the internal field Kl results in

an effective field Bl.

We conclude this section with two remarks concerning time and energy

scales. First, since the dynamics of Kl is due to the precession around the

average electron spin, and the time scale for a full rotation is proportional to

NQD~/En. [22] For electron processes taking place on shorter time scales Kl

plays the role of a ‘frozen disorder’. At longer timescales self-averaging over

all values of Kl takes place. Second, the typical length of Kl is approximately

5 × 10−4 meV (for a value NQD ≈ 105) which corresponds to a 100 Gauss mag-

netic field.

3.4 Transition rate

We concentrate on the transitions between the doublet components in Eq. (3.15).

Assuming that the higher energy doublet state is initially occupied, we will cal-

culate the transition rate to the lower one. The transition must be accompanied

by energy dissipation equal to ∆0. This energy cannot be absorbed by the nu-

clear system. [11, 23] So an external mechanism of energy dissipation is required.

The most effective one in quantum dots is known to be phonons. However the

phonons alone cannot change the electron spin so we need a mechanism which

mixes spin and orbital degrees of freedom, that is VHF from Eq. (3.8). Thus

the transition amplitude is proportional to both VHF and the electron phonon

coupling Hph.
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Here we assume that the electron is in the lowest orbital state |0〉 since

the phonon mechanism will bring the electron to this state from any higher

orbital on timescales much smaller than those related to transitions between

the doublet components. Thus we consider an initial state of the entire system

|i〉 = |0,n−;µ;N〉 which is a product state of the electron, nuclear |µ〉 and

phonon |N〉 systems and the final state |f〉 = |0,n+;µ′;N ′〉. Note that to a

given state of the nuclear system |µ〉, which is a product state of all individual

nuclei, there is an associated value of the classical field Kl. The transition

amplitude between |i〉 and |f〉, in second order perturbation theory, reads

T =
∑

l 6=0

( 〈0,n+;µ′|VHF|l,n−;µ〉〈l;N ′|Hph|0;N〉
(ε0 − εl) + EB

+
〈0;N ′|Hph|l;N〉〈l,n+;µ′|VHF|0,n−;µ〉

(ε0 − εl) − EB

)

. (3.18)

The summation is over virtual states involving higher orbitals and the denom-

inators in Eq. (3.18) contains the energy differences between different orbital

states. The internal field depends on the orbital state, resulting in a rather

complicated expression. Albeit the energy related to the internal field is much

smaller than the orbital separation so we can safely replace the Zeeman splitting

with EB . The reason for that is that only at high external fields where ∆0 ≈ EB

will the effects of the Zeeman splitting be appreciable in the denominator. The

internal field also appears in the phonon rate since it determines the electron

energy difference between the initial and final states. Since Hph does not con-

nect different nuclear states and conversely VHF does not mix different phonon

states the sums over intermediate phonon and nuclear states reduce to a single

term. From this transition amplitude the transition rate is obtained via Fermis

golden rule

Γsf =
2π

~

∑

N ′

∑

µ′

|T |2δ(Ei − Ef), (3.19)

where Ei −Ef is the energy difference between the initial and final states of the

combined systems. Substituting Eq. (3.18) into Eq. (3.19) we get the following
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relation for the spin-flip rate

Γsf =
∑

l,l′ 6=0

( 〈l,n−;µ|VHF|0,n+〉〈0,n+|VHF|l′,n−;µ〉
((ε0 − εl) + EB)((ε0 − εl′) + EB)

× 2π

~

∑

N ′

〈0;N |Hph|l;N ′〉〈l′;N ′|Hph|0;N〉δ(Ei − Ef)

+
〈l,n−;µ|VHF|0,n+〉〈l′,n+|VHF|0,n−;µ〉

((ε0 − εl) + EB)((ε0 − εl′) − EB)

×2π

~

∑

N ′

〈0;N |Hph|l;N ′〉〈0;N ′|Hph|l′;N〉δ(Ei − Ef)

+
〈0,n−;µ|VHF|l,n+〉〈0,n+|VHF|l′,n−;µ〉

((ε0 − εl) − EB)((ε0 − εl′) + EB)

×2π

~

∑

N ′

〈l;N |Hph|0;N ′〉〈l′;N ′|Hph|0;N〉δ(Ei − Ef)

+
〈0,n−;µ|VHF|l,n+〉〈l′,n+|VHF|0,n−;µ〉

((ε0 − εl) − EB)((ε0 − εl′) − EB)

× 2π

~

∑

N ′

〈l;N |Hph|0;N ′〉〈0;N ′|Hph|l′;N〉δ(Ei − Ef)

)

.

(3.20)

The spin-flip rate depends on the initial state of the nuclear system |µ〉. This

poses the problem of how to deal with the nuclear state |µ〉, since we already

demoted all the spin operators to a collective classical variable. A conceptually

simple solution lies in the fact that when Eqs. (3.20) and (3.8) are considered

together one sees that the rate is a sum over all pairs of nuclei in the system.

Focusing on a given pair of nuclei k and k′, all the other nuclei are unchanged

when the electron spin is ‘scattered’ on by this pair. By simply redefining

the classical field such that it is composed of all nuclei except this given pair

we can circumvent the problem. This procedure will not change our previous

result regarding the properties of Kl and by defining |µ〉 = |µk〉|µk′〉 makes it

straightforward to work with the nuclear states in Eq. (3.20).

Although the transition rate can be very slow, the typical duration of a

transition event is set by energy uncertainty, ~/∆0. This is much shorter than

the typical time for nuclear system dynamics so that the nuclear system is frozen

in a given value of K0 during the transition. In this case taking an average over

K0, using the probability distribution in Eq. (3.14), is not well motivated. For

now we will postpone the averaging over the classical field. Expanding the

energy denominators to second order in the Zeeman splitting and performing

the thermal average over nuclei spin pairs (see Appendix A) we obtain the
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following equation for the transition rate

Γsf = Gcorr





∑

l 6=0

{

2allγll

δε2l

(

1 + 3
E2

B

δε2l

)

+
2<{ãllγ̃ll}

δε2l

(

1 +
E2

B

δε2l

)}

+
∑

l<l′ 6=0

4<{all′γll′}
δεlδεl′

(

1 +

(

(δεl + δεl′)
2

δεlδεl′
− 1

)

E2
B

δεlδεl′

)

+
∑

l<l′ 6=0

4<{ãll′ γ̃ll′}
δεlδεl′

(

1 +

(

(δεl − δεl′)
2

δεlδεl′
+ 1

)

E2
B

δεlδεl′

))

(3.21)

where δεl = ε0 − εl. The parameters all′ , ãll′ are related to the VHF matrix

elements

all′ = A2Cn

∫

d3RkΨ∗
l (Rk)|Ψ0(Rk)|2Ψl′(Rk) (3.22)

ãll′ = A2Cn

∫

d3RkΨ∗
l (Rk)Ψ∗

l′(Rk)Ψ0(Rk)2, (3.23)

and γll′ , γ̃ll′ are generalized phonon transition rates

γll′ =
2π

~

∑

qν

α2
ν(q)[e−iq·r]0,l[e

iq·r]l′,0
1 − e−β~ωq,ν

δ(~ωqν−∆0) (3.24)

γ̃ll′ =
2π

~

∑

qν

α2
ν(q)[e−iq·r]0,l[e

iq·r]0,l′

1 − e−β~ωq,ν
δ(~ωqν−∆0). (3.25)

Here we have only included the emission process since we assume that the spin

is initially in the higher energy doublet state.

Until now we have considered a general quantum dot and the rate in Eq.

(3.21) is valid for any quantum dot. To proceed further we will specify the con-

fining potential to be parabolic in the lateral direction and in the transverse one a

triangular well potential is chosen. The wave function is 〈r|l〉 ≡ χ0(z)ψn,M (r, θ)

where n,M denote the orbital and angular momentum quantum numbers re-

spectively of the Darwin-Fock solution and χ0(z) is the wave function in the

transverse direction. The generic quantum number thus becomes l = (n,M).

The square of the lateral confining length is `2 = ~
2/m∗

~Ω, where m∗ is the

electron effective mass and Ω = (Ω2
0 + (ωc/2)

2)1/2 is the effective confining fre-

quency, with ~Ω0 being the confining energy and ωc = eB/m∗ the cyclotron

frequency. What remains is to calculate the a’s and γ’s in Eqs. (3.22)-(3.25).

The result of these calculations are presented Appendix B.

In principle it is possible to obtain the rate for all parameter values but to

make the discussion more transparent we will consider two regimes of applied

magnetic field (i) EB ≈ EnN
−1/2
QD and (ii) EB � EnN

−1/2
QD . In regime (i)

both ∆0 � ~cν`
−1 and ∆0 � kT (for experimentally relevant temperatures)
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and only the lowest order terms in ∆0/~cν`
−1 need to be considered. In GaAs

~cl`
−1 = 3.3`−1 nm×meV and ~ct`

−1 = 2.0`−1 nm×meV for the longitudinal

and transverse branches respectively. In the other regime the applied field dom-

inates and the internal field may be ignored, but no additional assumptions are

made in this case. The resulting hyperfine-mediated spin-flip rates are

ΓHF = 0.34
Gcorr

I2

E2
n

NQD(~Ω)2
(eh14`)

2kT

8πρc5~4

(

E2
B +K2

0 + 2EBK0 cos θ
)

for EB ≈ EnN
−1/2
QD (3.26)

ΓHF =
Gcorr

I2

E2
n(n(EB) + 1)

NQD(~Ω)2
(eh14`)

2E3
B

8πρc5~4

(

C0(EB) +

(

EB

~Ω

)2

C2(EB)

)

for EB � EnN
−1/2
QD (3.27)

Note that the rates have different dependencies on the emitted energy ∆0. In

Eq. (3.27) we introduce the functions C0 and C2 which contain the details of the

higher orbitals and the anisotropy integrals. For low fields ∆0 � ~cν`
−1 these

functions are constant. The saturation value of the spin-flip rate in Eq. (3.26),

for some typical value of K0 = 5 × 10−4 meV, is very low ΓHF < 10−6 s. This

results in a lifetime of days, which will be extremely difficult to measure. For

0.0001

0.001

0.01

0.1

1

10

0.1 1

Γ H
F 

[s
-1

]

B [T]

B in-plane, T=0.1K
B perpendicular, T=0.1K
B in-plane, T=4K
B perpendicular, T=4K

Figure 3.2: The hyperfine-mediated spin-flip rate for a quantum dot with z0 = 10nm

and ~Ω0 = 2meV, plotted as a function of external magnetic field for two different

temperatures T = 0.1 K and 4 K.

regime (ii) we have plotted the general spin-flip rate in Eq. (3.27) for different

confining energies and temperatures in Figs. 3.2 and 3.3, for both in-plane and

perpendicular applied magnetic field. Due to the Bose distribution function

factor (n(EB) + 1), there is a crossover from ΓHF ∝ kTE2
B to ΓHF ∝ E3

B that
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Figure 3.3: The hyperfine-mediated spin-flip rate for a quantum dot with z0 = 10 nm

and ~Ω0 = 5 meV, plotted as a function of external magnetic field for two different

temperatures T = 0.1 K and 4K.

occurs around EB ≈ kT . In both Figs. 3.2 and 3.3 this crossover is observed

for the T = 0.1 K curves around B = 0.34 T. For the T = 1 K curves the

crossover occurs around 12T. In the case of the higher confining energy there is

small difference between the in-plane and perpendicular direction of the external

magnetic field. For the lower confining energy there is a substantial difference

between the two directions of magnetic field. In this case the approximation

∆0 � ~cν`
−1 is no longer good and the ∆0 dependence of the rate is changed

by the C-functions. The values of the rates are quite small, depending on the

applied field, being ∼ 1 s−1 for T = 4 K at B ≈ 0.5 T for a confining frequency

of ~Ω0 = 2 meV.

3.5 Discussion

Generally speaking, inelastic spin-flip rates require an external source of dissi-

pation to facilitate the transitions. This is why at small Zeeman splittings they

will contain small factor reflecting the vanishing phonon density of states. For

a spin-orbit rate [12], the Kramer’s degeneracy results in this small factor being

proportional to E5
B . The presence of nuclear spins violates Kramer’s theorem.

Thus, the hyperfine rate discussed in the present paper is proportional to E3
B

and will dominate at sufficiently low fields.

Comparing the hyperfine rate in Eq. (3.27) to spin-orbit related rates [12]

and requiring that the rates are equal we obtain (EB/~Ω)2ε2β ≈ E2
nN

−1
QD, where

εβ determines the spin-orbit admixture strength. The extra factor (EB/~Ω)2 is
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due to Kramers degeneracy which suppresses the spin-orbit rate compared to

hyperfine one at low fields. The crossover occurs at EB ≈ ~Ω(EnN
−1/2
QD /εβ),

which correspond to magnetic field B ≈ 0.3 T, assuming typical quantum dot

parameters z0 = 10 nm and ~Ω0 = 4 meV.

The role of the internal field produced by the nuclei is that the spin-flip rate

does not vanish even for in the absence of external magnetic field. We show

that the minimum rate is rather small, corresponding to a relaxation time of the

order of days. We believe that the internal field will play an important role when

the full dynamics of the electron spin in the presence of the nuclear system is

considered. Our model should also be applicable to other polar semiconductors

which have non-zero nuclear spin, e.g. InAs where the g-factor is much larger.
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Loss and Alexander V. Khaetskii. This work is a part of the research program

of the “Stichting voor Fundementeel Onderzoek der Materie (FOM)”

References

[1] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).

[2] J. E. Mooij et al., Science 285, 1036 (1999).

[3] B. E. Kane, Nature 393, 133 (1998).

[4] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

[5] J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1997).

[6] Y. Ohno et al., Physica E 6, 817 (2000).

[7] T. Fujisawa, Y. Tokura, and Y. Hirayama, Phys. Rev. B 63, R81304 (2001).

[8] L. P. Kouwenhoven et al., in Mesoscopic Electron Transport, NATO Se-

ries, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schoen (Kluwer,

Dordrecht, 1997), Chap. Electron transport in quantum dots, p. 105.

[9] A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639 (2000).

[10] A. V. Khaetskii and Y. V. Nazarov, Physica E 6, 470 (2000).

[11] S. I. Erlingsson, Y. V. Nazarov, and V. I. Fal’ko, Phys. Rev. B 64, 195306

(2001).

[12] A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 64, 125316 (2001).

[13] D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev. B 15, 5780

(1977).

Using the notation in Ref. [12] the spin-orbit admixture constant is εβ = β~/a, where a

is the lateral quantum dot size, corresponding to ` in the present paper.



36
Hyperfine-mediated transitions between a Zeeman split doublet in GaAs

quantum dots: The role of the internal field

[14] D. Paget and V. L. Berkovits, in Optical Orientation, edited by F. Meier

and B. P. Zakharchenya (North-Holland, Amsterdam, 1984).

[15] M. Dobers et al., Phys. Rev. Lett. 61, 1650 (1988).

[16] A. Berg, M. Dobers, R. R. Gerhardts, and K. v. Klitzing, Phys. Rev. Lett.

64, 2563 (1990).

[17] I. D. Vagner, T. Maniv, and E. Ehrenfreund, Solid State Comm. 44, 635

(1982).

[18] S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995).

[19] R. Tycko et al., Science 268, 1460 (1995).

[20] A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88, 186802

(2002).

[21] P. J. Price, Ann. Phys. 133, 217 (1981).

[22] I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B 65, 205309 (2002).

[23] J. H. Kim, I. D. Vagner, and L. Xing, Phys. Rev. B 49, 16777 (1994).



Chapter 4

Nuclear spin induced coherent

oscillations of transport current through

a double quantum dot

Sigurdur I. Erlingsson, Oleg N. Jouravlev and Yuli V. Nazarov

We propose a mechanism for coherent oscillations of transport current through

a double quantum dot. It is based on coupling of the states of different spin due

to hyperfine interaction with nuclei. We study the dependence of the current

oscillations on various system parameters and external magnetic field. Our

results may qualitatively explain recent experimental observations.
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4.1 Introduction

Motivated by possible device applications which utilize both the spin and charge

of electrons there has been a great effort to come up with means of manipulat-

ing the electron spin and even the nuclear spin of the host material. In GaAs

the dominant coupling mechanism between electron and nuclear spins is the

hyperfine interaction. Furthermore, the nuclear spin relaxation times are much

longer than other timescales related to electron dynamics [1]. This difference of

timescales has facilitated many experiments where a quasi-stationary polariza-

tion of the nuclear system is achieved and its effect on the electronic behavior

can be observed [2–5]. Many recent experiments have involved novel ways of

controlling the coupling of the electron and nuclear spin [6, 7], and even co-

herent oscillations between ’up’ and ’down’ polarized nuclear system have been

reported [8].

Transport experiments have proven to be a very good tool to probe nanos-

tructures. This is especially true in quantum dots where the control of the dot

energetics allows for a detailed study of the quantum dot spectrum, both in the

linear regime and in excitation spectroscopy [9, 10]. In between the conduction

peaks, i.e. in the Coulomb blockade regime, there still flows a small current due

to cotunneling [11]. This cotunneling current, sometimes referred to as leakage

current, has been discussed in connection with limitations of operating SET

devices [12].

Unexpected oscillations of the leakage current through a double quantum dot

in a spin blockade regime have been observed in transport experiments [13]. The

system is the same as used in a recent experiment where current rectification was

observed in the transport characteristics [14]. The origin of this rectification was

explained in terms of spin blockade, i.e. interdot transitions between states with

different spins are blocked. The inclusion of a spin-flip mechanism lifts the spin

blockade, giving rise to a small leakage current in a similar way cotunneling lifts

the Coulomb blockade. Related ideas of spin blockade based on certain selection

rules have previously were proposed in [15]. More recently, spin blockade was

observed in transport through quantum dot systems that was attributed to spin

polarized leads [16]. The timescale of the leakage current oscillations, which is

much larger than the usual timescale related to electronic transport, and the fact

that the oscillation period and amplitude were modified by resonant excitation

of the nuclei indicates that the origin of the oscillations may be traced to the

hyperfine interaction [13].

Here we propose a novel transport mechanism based on the hyperfine inter-

action which leads to an oscillating leakage current in the spin blockade regime.

This mechanism may, in a qualitative way, shed light on some of the experi-

mental results observed in Ref. [13]. The key steps in formulating a solution

of the problem are (i) calculating the stationary solution of the density matrix
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for the double dot system assuming a fixed nuclear system and (ii) using that

stationary solution to determine the average electrons spins in the dots which

are then used to calculate the dynamics of the nuclear system. This approach

is only valid if the transport timescales are much shorter than the dynamical

timescales associated with the nuclear system. We assume that this is the case in

the system studied here. The relevant transport processes may be characterized

by 4 rates, the left (right) barrier tunnel rate ΓL (ΓR), the inelastic interdot tun-

nel rate Γi and the transport rate in the spin blockade regime ∝ (KA/∆ST )2Γi,

where KA and ∆ST respectively characterize the coupling and energy separa-

tion of the blocked and non-blocked spin states. The factor (KA/∆ST )� 1 is

responsible for suppressing the current in the spin blockade regime in compar-

ison with non-blocked current ∝ Γi. The fastest nuclear spin process which

enters the density matrix is the precession frequency γ of the nuclear system in

the hyperfine field of the average electron spins [17]. This results in the condi-

tion Γi � (∆ST /KA)2γ for the validity of our approach. The timescale of the

oscillation is determined by the factor γ−1(∆ST /KA), which can be quite long

approaching tenths of seconds.

4.2 Model

For details of the setup we refer the reader to Ref. [14]. Each charge configura-

tion of the double dot system can be characterized by (NL,NR) where NL(NR)

is the number of charges of the left (right) dot, see Fig. 4.1. The multiplicity

of the (0,1) configuration is 2 since it is a spin doublet, denoted by |±〉. The

(1,1) configuration has a multiplicity of 4, one singlet |S0〉 and 3 triplets |Ti〉,
i = 1, 2, 3. At low magnetic fields the total spin of the configuration (0,2) is a

singlet [14], the state being denoted by |Sg〉.
It is instructive to look more closely at the eigenstates of the double dot

system since they are instrumental in determining the transport characteristics.

Also, the spin structure of the eigenstates becomes clear after diagonalizing the

Hamiltonian of the double dot system. The Hamiltonian for the isolated double

dot system is

HDD = H0 +HT +HC (4.1)

where H0 is the Hamiltonian of each dot

H0 =
∑

η

(εLηd
†
LηdLη + (εRη + e∆V )d†RηdRη) (4.2)

where d†αη creates a particle in state α = L,R with spin η =↑, ↓ and e∆V

is determined by the voltage drop over the central barrier. Using the above

assumptions about the possible charge configurations, only one orbital level on
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each is dot is relevant. The quantization axis of the electron spin is along the

external magnetic field that is applied parallel to the 2DEG plane. The orbitals

are not affected by the field and thus the sole effect of magnetic field is through

the Zeeman energy

εαη = ~Ωα ± ∆/2, (4.3)

where ~Ωα is the ground state orbital energy of the α = L,R dot and ∆ = gµBB

is the Zeeman splitting. The second term in Eq. (4.1) is the tunneling Hamilto-

nian describing interdot tunneling between the L and R orbital, assuming spin

conservation,

Ht =
∑

η

(Vτd
†
LηdRη + V ∗

τ d
†
RηdLη), (4.4)

where Vτ is the tunneling amplitude. The Coulomb interaction is approximated

by the following expression

HC = ULnL↑nL↓ + URnR↑nR↓ +
∑

ηη′

ULRnLηnRη′ . (4.5)

where nαη = d†αηdαη, UL and UR are the charging energies for the on-site

charging and ULR is the interdot charging energy.

Once a suitable basis has been chosen, the double dot Hamiltonian can be

diagonalized. It is convenient to introduce the following basis states

|0; η〉 = d†Rη|〉
|η; η′〉 = d†Lηd

†
Rη|〉

|0; ↑↓〉 = d†R↑d
†
R↓|〉.

These states are eigenstates of H0 and HC but not HT . It is easy to establish

that only three (of seven possible ) states are coupled by HT . By diagonalizing

the submatrix of these three states, the resulting eigenstates and eigenenergies

are

|T2〉 =
1√
2
(| ↑; ↓〉 + | ↓; ↑〉), ET2

= ~ΩL + ~ΩR + ULR (4.6)

|S0〉 ≈ 1√
2
(| ↑; ↓〉 − | ↓; ↑〉), ES0

≈ ET2
+

|Vτ |2
e∆V − δU

(4.7)

|Sg〉 ≈ |0; ↑↓〉, ESg
≈ ET2

− eδV + δU − |Vτ |2
eδV − δU

, (4.8)

where δU = UR −ULR. These equations were obtained assuming Vτ � (e∆V −
δU), which is a good approximation for the system in question. The other four
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eigenstates are simply

|T1〉 = | ↑; ↑〉, ET1
= ET2

− ∆ (4.9)

|T3〉 = | ↓; ↓〉, ET3
= ET2

+ ∆ (4.10)

|±〉 = |0; ↑/↓〉, E± = ~ΩR ± ∆/2. (4.11)

The triplet states are degenerate at B = 0 and otherwise they are separated by

the Zeeman splitting ∆. The (1, 1) singlet has a higher energy at zero field than

the triplet states. The |S0〉 and |T3〉 states cross at a magnetic field

B∗ =
1

gµB

|Vτ |2
e∆V − δU

. (4.12)

The hyperfine interaction induces mixing of the singlet and triplets in the

(1, 1) configuration which lift the spin blockade. Since we are interested in

the leakage current oscillations, other spin-flip mechanisms that only give rise

to a dc current will not be considered. Our starting point is to introduce a

semiclassical picture of the hyperfine interaction. This approximation [17–19]

is valid when the number of nuclei in the quantum dot NQD � 1. The part of

the total Hamiltonian which explicitly contains the electron spin operators ŜL

and ŜR is

Hs = KL · ŜL + KR · ŜR + gµBBext · (ŜL + ŜR)

=
1

2
(KL + KR) ·

(

ŜL + ŜR

)

+
1

2
(KL − KR) ·

(

ŜL − ŜR

)

+gµBBext · (ŜL + ŜR)

= gµBBŜz +
1

2
KA · (ŜL − ŜR) (4.13)

where g is the g-factor, µB is the Bohr magneton and KL (KR) it the semiclas-

sical effective nuclear magnetic field acting on the electron spin localized in the

left (right) dot. In Eq. (4.13) the quantization axis has been set along the total

magnetic field

B = Bext +
1

2gµB
(KL + KR) (4.14)

and Ŝz is the z-component of the total spin operator. The latter term in Eq.

(4.14) does not couple the singlet and triplets, it only changes the Zeeman

splitting of the triplet states. The second term in Eq. (4.13) mixes the (1,1)

singlet and triplet states, i.e. the mixing is proportional to the asymmetry in

the two effective nuclear magnetic fields

KA = KL − KR. (4.15)

The spin operator is Ŝα =
∑

η,γ σ̂ηγd†αηdαη where σ̂ = (σ̂x, σ̂y , σ̂z) are the Pauli matrices

and d†
Lη

creates an electron with spin η in dot α.
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Γ

Figure 4.1: The three possible charge configurations of the double dot system. Each

charge configuration is characterized by (NL,NR) and there can be many quantum

mechanical states corresponding to a given configuration. See text for discussion on

the Γ’s.
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Figure 4.2: The energy diagram of the double dot system.

This is quite reasonable since the singlet and triplet states are not eigenstates

when the magnetic field is inhomogeneous [20]. The matrix elements of Eq.
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(4.13) between the singlet and triplet states are

[Hs]S0T1
=−[Hs]T3S0

=
(KAx + iKAy)

2
√

2
, [Hs]S0T0

=
KAz

2
(4.16)

and the matrix element between different triplet states are zero. The magnitude

of the semiclassical fields is determined by KL/R ∝ EnN
−1/2
QD where En ≈

0.135 meV in GaAs and NQD ≈106 for the quantum dots in question [19].

4.3 Density matrix and average electron spin

In addition to the hyperfine coupling to nuclei the double dot system is coupled

to a left and right lead, and also to a phonon bath. The coupling to the leads is

represented by tunneling rates ΓL and ΓR, which are determined by the barrier

transparency and the density of states at the Fermi energy in the leads. Since the

energies of the two singlet states are not equal, some mechanism for inelastic

scattering is required to facilitate the current. The most probable inelastic

scattering mechanism is the phonon scattering. The inelastic scattering is taken

into account by introducing the rate Γi that couples the (1, 1) and (0, 2) charge

configuration states. At this point the spin structure of these states comes into

play. Eqs. (4.7) and (4.8) represent only the leading contribution to the singlet

eigenstates. In fact both states contain an additional admixture of each other,

e.g. the (1, 1) singlet is

|S̃0〉 = |S0〉 +

√
2Vτ

ES0
− ESg

|0; ↑↓〉, (4.17)

and the other singlet has a similar structure (the magnitude of the admixture is

just the perturbation theory result, which is the ratio of the coupling strength

and the energy separation). In other words, the (0, 2) singlet is only coupled to

the (1, 1) singlet and none of the triplets. Thus any orbital scattering mecha-

nism, e.g. phonons, will only couple the singlet states. The transport cycle is

shown in Fig. 4.1. In this scenario a blocking of the current occurs as soon as

one of the triplets is occupied, which occurs on a timescale ∝ Γ−1
L .

The density matrix approach is a very powerful method of describing the

evolution of the double dot system. The full density matrix for the whole

system is 49 × 49 which can be reduced to 19 × 19 by disregarding off-diagonal

elements involving states |Sg〉 and |±〉. The justification for this is that the

matrix elements between these state and the (1, 1) states involve exchanging

electrons with the leads and thus all coherence is lost on a timescale ∝ Γ−1
R .

Instead of writing the whole set of equations, it is more instructive to write a
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few representative equations indicating the role of the off-diagonal elements

dρ11

dt
=

ΓL

2
ρ++ + ={K+

Aρ10} (4.18a)

dρ00

dt
= −Γiρ00 +

ΓL

4

(

ρ++ + ρ−−

)

+={−K+
Aρ10 +KAzρ20 +K−

Aρ30} (4.18b)

dρ10

dt
= −i

(

w10 + i
Γi

2

)

ρ10 +
1

2

(

−iK−
A (ρ11−ρ00)

+iKAzρ12 + iK+
Aρ13

)

, (4.18c)

where w10 = ~
−1(E1 − E0) and the complex variable

K+
A =

1√
2
(KAx + iKAy) (4.19)

has been introduced. The rates and the chemical potentials of the dot states and

the leads are shown in Fig. 4.2. Note that the inelastic rate Γi does not appear

in Eq. (4.18a), the same is true for the other triplets, but it is present in Eq.

(4.18b) for the singlet. The inclusion of the off-diagonal term goes beyond the

standard master-equation approach and will give rise to average electron spin

not only in the z-direction but also the xy-plane. The set of equations in Eq.

(4.18) are sometimes referred to as Bloch equations. The stationary solution

ρ̂St of Eq. (4.18) is obtained by ignoring the time dependence of KA. This is

equivalent to treating the semiclassical field in the adiabatic approximation. The

average electron spin in each dot is thus 〈ŜL/R〉 = Tr{ρ̂StŜL/R}. The energy

scales that determine the stationary solution are the (1,1) singlet-triplet splitting

∆ST = E2 − E0 and the Zeeman splitting of the triplets ∆ = E3 − E2. The

exact solutions for the average spin are to large to present here, so instead we

present the leading order in KA/∆ST which the relevant expansion parameter

〈SL/Rx〉 =
± KAx

2∆ST

2(1 + x2
B) + |K+

A |2/(KAz)2
(4.20a)

〈SLy/Ry〉 =
± KAy

2∆ST

2(1 + x2
B) + |K+

A |2/(KAz)2
(4.20b)

〈SLz/Rz〉 =
−2xB ± KAz

2∆ST

|K+

A
|2

(KAz)2

2(1 + x2
B) + |K+

A |2/(KAz)2
, (4.20c)

where xB = ∆/∆ST and the the current is given by

I

e
=

4Γi
(

1 +
Γ2

i

∆2
ST

)(

∆2
ST

(KAz)2 +
2∆2

ST

|K+

A
|2

)

+ x2
B

2∆2
ST

|K+

A
|2

. (4.21)

Note that the term proportional to xB in the z-component of the spins is the

dominant term, i.e. on average the electron spins point mainly in the direction

of the applied field.
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4.4 Nuclear system dynamics

Knowing the average electron spin in both the left and right dots allows us to

write down the equation of motion of the effective nuclear magnetic field

d

dt
Kα = γα〈Sα〉 × Kα + γGaAsB × Kα (4.22)

where γGaAs is the effective gyromagnetic ratio of nuclei in GaAs and γα is de-

termined by the hyperfine coupling and the quantum dot wave functions [17, 21].

The hyperfine coupling is assumed to be constant for all nuclei within a given

dot. The details of the dynamics change when the coupling is made inhomoge-

neous but the timescale of the oscillations remains the same, see Chap. 5. The

effect of introducing an inhomogeneous hyperfine coupling will be discussed later

in the paper.

There are 6 equations of motion and at least 2 integrals of motion, i.e. the

square moduli K2
α and in the following discussion we try to identify more to

simplify the dynamics. Since the average spins are known functions of Kα then

Eq. (4.22) constitutes a set of autonomous differential equation whose solution

will determine the time dependence of the coupling strength KA. We will

proceed along two parallel paths in solving these equations of motion. Firstly

we will use the approximate expressions for the electron spin in Eq. (4.20) which

allow us to express the period of the motion as a single integral which we solve

numerically. The other approach is to use the full solution for the average spin

and use a numerical method to obtain an approximate solution of the equations

of motion in Eqs. (4.22).

4.4.1 Integrals of motion

It is possible to simplify the equations of motion in Eq. (4.22) using the approx-

imate solution for the average electron spin. As a first step new variables are

introduced, in a similar fashion as in Eq. (4.19), for each α = L,R

K+
α ≡ Kαx + iKαy√

2
(4.23)

and subsequently the equations of motion in Eq. (4.22) become

dK+
α

dt
= iγα〈Sαz〉K+

α − iγα〈S+
α 〉Kαz + iγGaAsBK

+
α (4.24)

dKαz

dt
= iγα(〈S−

α 〉K+
α − 〈S+

α 〉K−
α ) (4.25)

Note that the x and y components of the original equations have been incor-

porated into a single equation, Eq. (4.23), for a complex variable. It is also

convenient to introduce a parameterization of K+
α and Kαz which explicitly
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incorporate the known integrals of motion. One choice would be to write Kα

in spherical coordinates but it turns out that cylindrical coordinates are better

suited since retaining the z components will turn out to be useful later on. The

xy components of the semiclassical fields are written in polar coordinates

Kαx =
√

K2
α −K2

αz cosφα (4.26)

Kαy =
√

K2
α −K2

αz sinφα. (4.27)

Note the this parameterization ensures a constant K2
α, and the number of dy-

namical variables is 4. Writing the variables in Eq. (4.23) in term of the polar

coordinates gives

K+
α =

1√
2

√

K2
α −K2

αze
iφα (4.28)

and its time derivative is

dK+
α

dt
= iK+

α

dφα

dt
+

KαzK
+
α

K2
α −K2

αz

dKαz

dt
. (4.29)

Using Eqs. (4.24) and (4.28) to get rid of K±
α we get, after some manipulation,

the following equations of motion

dφL

dt
= γL

−2xB + KAz

2∆ST

|K+

A
|2

K2
Az

− KLz

∆ST

(

1 +

√
K2

R
−K2

Rz√
K2

L
−K2

Lz

cos(φ)

)

2(1 + x2
B) + |K+

A |2/K2
Az

+ γGaAsB

(4.30)

dKLz

dt
= −γL

2

√

K2
R −K2

Rz

√

K2
L −K2

Lz

2(1 + x2
B) + |K+

A |2/K2
Az

sinφ (4.31)

dφR

dt
= γR

−2xB − KAz

2∆ST

|K+

A
|2

K2
Az

− KRz

∆ST

(

1 +

√
K2

L
−K2

Lz√
K2

R
−K2

Rz

cos(φ)

)

2(1 + x2
B) + |K+

A |2/K2
Az

+ γGaAsB

(4.32)

dKRz

dt
=
γR

2

√

K2
R −K2

Rz

√

K2
L −K2

Lz

2(1 + x2
B) + |K+

A |2/K2
Az

sinφ. (4.33)

where the polar angle difference

φ = φL − φR (4.34)

has been introduced. The right hand sides of the preceeding equations contain

term |K+
A |2, which in terms of the new cylindrical variables is

|K+
A |2 =

1

2

(

K2
L −KLz +K2

R −KRz − 2
√

K2
L −K2

Lz

√

K2
R −K2

Rz cos(φ)

)

.



4.4 Nuclear system dynamics 47

(4.35)

Note that |K+
A | only depends on φL and φR through their difference φ. On

inspection it is apparent from Eqs. (4.31) and (4.33) that

d

dt

(

KLz

γL
+
KRz

γR

)

= 0 (4.36)

from which a third integral of motion can be defined as

KSz =
γLγR

γL + γR

(

KLz

γL
+
KRz

γR

)

. (4.37)

To reduce the number of dynamical variables further it is necessary to to sep-

arate fast term from slow ones. To this end the sum of the polar angles is

introduced

Φ = φL + φR. (4.38)

In the right hand side of Eqs. (4.30) and (4.32) the precession rate due to the

external field γGaAs is much larger than the terms proportional to γL/R, for the

magnetic fields used in the experiment. Thus, the equation of motion may be

approximated as

dΦ

dt
≈ γGaAsB (4.39)

and thus Φ has effectively been decoupled from the other equations of motion

since it does not appear in anywhere on the right hand side of Eqs. (4.30)-(4.33).

Finally, the terms that depend on KLz and KRz can be rewritten in term of the

integral of motion in Eq. (4.37) and KAz

KLz = KSz +
γL

γL + γR
KAz (4.40)

KRz = KSz −
γR

γL + γR
KAz. (4.41)

At this point is worthwhile to summarize the the results from the above manip-

ulations. Initially there were 6 equations of motion with 2 known integrals of

motion. These integrals of motion were incorporated into the parameterization

in Eq. (4.28). The number of variables was further reduced by identifying a new

integral of motion KSz and assuming a fast rotation in Eq. (4.38). This leaves

us with only two independent variables KAz and φ. It is also important that

the current depends on these variables only. This means that determining the

dynamics of KAz and φ will give the time dependence of the current.

Let us now write the equation of motion for the two remaining variables in

the form

dKAz

dt
=

a(KAz) sinφ

b(KAz) − cosφ
(4.42)

dφ

dt
=

c(KAz) − f(KAz) cosφ

b(KAz) − cosφ
(4.43)
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where the functions a, b, c and f are determined by straightforward manipulation

of Eqs. (4.30)-(4.33), resulting in

a(KAz) = − (γL + γR)K2
Az

2∆ST
(4.44)

b(KAz) =
2(xB + 1)K2

Az
√

K2
L −K2

Lz

√

K2
R −K2

Rz

+
1

2

(

√

K2
R −K2

Rz
√

K2
L −K2

Lz

+

√

K2
L −K2

Lz
√

K2
R −K2

Rz

)

(4.45)

c(KAz) = −
(

(γL − γR)2xB +
γLKLz

∆ST
− γRKRz

∆ST

)

K2
Az

√

K2
L −K2

Lz

√

K2
R −K2

Rz

+
(γL + γR)KAz

4∆ST

(

√

K2
R −K2

Rz
√

K2
L −K2

Lz

+

√

K2
L −K2

Lz
√

K2
R −K2

Rz

)

(4.46)

f(KAz) =
(γL + γR)KAz

2∆ST
+

K2
Az

2∆ST

(

γLKLz

K2
L −K2

Lz

+
γRKRz

K2
R −K2

Rz

)

, (4.47)

where KL/Rz depends on KAz through Eqs. (4.40) and (4.41).

The asymmetry in the precession frequencies ∆γ = γL − γR only appears in

the function c(KAz). Even if ∆γ/γα � 1 it can still be large compared to the

other important scale KL/∆ST . To emphasize this a dimensionless measure of

the asymmetry is defined as

ε =
γL − γR

2γ

∆ST

KL
, (4.48)

where 2γ = (γL+γR). The ε parameter is important since depending on whether

it is larger, or smaller, than 1 strongly affects the dynamics and the period of

the resulting solution.

The form of Eqs. (4.42) and (4.43) suggest that it is possible to further

reduce the problem. To proceed we introduce the function

L(KAz, φ) = X(KAz) + Y (KAz) cosφ. (4.49)

The function L can be made an integral of motion by requiring that its time

derivative vanishes

dL
dt

=
dX

dKAz

dKAz

dt
+

dY

dKAz

dKAz

dt
cosφ− Y

dφ

dt
sinφ (4.50)

=

(

a(KAz)
dX

dKAz
− c(KAz)Y

)

cosφ

+

(

a(KAz)
dY

dKAz
− f(KAz)Y

)

cosφ sinφ = 0. (4.51)

The quantities in both the parentheses need to vanish which results in the
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following equations for X and Y

Y (x) = exp

(∫ x

du
f(u)

a(u)

)

(4.52)

X(x) =

∫ x

duY (u)
c(u)

a(u)
. (4.53)

It turns out that these integrals can be solved analytically using Eqs. (4.44),

(4.46) and (4.47). The resulting functions are

X(kz) = −12 + k2
R − 2k2

Sz

2
kz + 2εxBk

2
z +

1

4

(

1 +

(

∆γ

2γ

)2
)

k3
z (4.54)

Y (kz) = kz

√

1 −
(

kSz +
γL

2γ
kz

)

√

k2
R −

(

kSz −
γR

2γ
kz

)

(4.55)

where kz = KAz/KL and other small caps k-variables are measured in units of

KL.
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Figure 4.3: The phase space plot for different values of the integral of motion L, with

ε=0.1, xB = 1.2 and kSz = 0.
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Figure 4.4: The phase space plot for different values of the integral of motion L, with

ε=0.25, xB = 1.2 and kSz = 0.
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Figure 4.5: The phase space plot for different values of the integral of motion L, with

ε=1.0, xB = 1.2 and kSz = 0.
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Figure 4.6: The phase space plot for different values of the integral of motion L, with

ε=4.0, xB = 1.2 and kSz = 0.
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For a given value of L, the (kz, φ) phase space trajectory is determined by

L(kz, φ) = L. In Fig. 4.3-4.6 the possible trajectories are plotted for various

values of the integral of motion L. From figure to figure, the value of the

asymmetry ε changes. When ε → 0 it becomes an irrelevant parameter, see

Eq. (4.54), and so Fig. 4.3 is a good representation for ε . 0.1. When the

asymmetry increases, the phase space plots change and for a large value of

ε = 4.0 the motion is reminescent of a magnetic moment in constant magnetic

field along the z-axis. This is to be expected since when ε� 1 precession around

the large constant term in 〈ŜL/Rz〉 dominates the motion.
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Figure 4.7: The period as a function the integral of motion L for for ε=0.1 and

various values of xB .

Using Eqs. (4.42) and (4.43), which gives the ‘velocity’ at each point of the

trajectory, the period can be determined using

T = 2

∫ k+

k−

dx

(

dkAz

dt
(x)

)−1

, (4.56)

where k− and k+ are the turning points of the trajectory in question. A similar

equation for dφ/dt is can also be used. The period is obtained by numerical

integration of Eq. (4.56) with the turning points obtained from Eq. (4.49). In

Fig. 4.7 the period is plotted as a function of the integral of motion L. The

corresponding phase space trajectories are plotted in 4.3. The period diverges

at L = 0 since these solutions involve kz → 0, where the velocity goes to

zero. Away from L = 0, the T is in the range 10-100, measured in units of

γ−1∆ST /KL. The resulting numerical value of the period is ≈ 1 − 10 second
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Figure 4.8: The period as a function the integral of motion L for for ε=1.0 and

various values of xB .

for γ−1∆ST /KL ≈ 0.01 − 0.1 sec. Thus the period is quite long, approaching

seconds and even above that.

Similar data for the period when ε = 1.0 is shown in Fig. 4.8. Note that

the period is decreased in comparison to the ε = 0.1 case. We cannot a priori

determine the value of the asymmetry since it is determined by sample quality

and fabrication errors. The value of ε is extracted from experimental data

through the magnetic field, or xB , behavior of the period. The insets of Figs.

4.7 and 4.8 show the xB dependence for some fixed values of L. For ε = 0.1

there is a monotonic increase of T with xB but for the the larger asymmetry

ε = 1.0 the behavior is non-monotonic with a minimum around xB . 1. This

reflects that the period for large asymmetry is

T (ε� 1) ∝ (x2
B + 1) + const

xBε
. (4.57)

Note the 1/ε dependence which reduces the period. For low asymmetry the

period behaves as

T (ε� 1) ∝ (x2
B + 1) + const. (4.58)

The different xB dependence of the period observed in the experiment should

indicate whether the asymmetry is large or small.
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4.4.2 Numerical integration

The initial values of Kα are unknown since they depend on the microscopic state

of the nuclear system initially. The initial condition should be randomly chosen

from a Gaussian ensemble [19]. Different realizations of initial conditions give

different dynamics, but as long as they do not correspond to L to close to zero

they give periods which are comparable. In Fig. 4.9 the current, see Eq. (4.21),

is plotted for various initial conditions but fixed ε = 0.1 and xB = 1.6. The

inset shows calculations where the the semiclassical fields Kα are split into Nb

blocks, each with a different precession frequency due to the position dependent

hyperfine coupling. These calculations show that even for many blocks the long

period motion persist but there are additional fast oscillation on the timescale of

γ−1 which we have averaged over before plotting them. Note that even including
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Figure 4.9: The current shown as a function of time for ε=0.1, xB=1.6, but for

different initial conditions, i.e. different L. The inset current as a function of time for

L = −0.14 and Nb=1 and 25, where Nb is the number of blocks.

the inhomogeneous coupling the coherent oscillations persist. The details of the

dynamics change, i.e. fast oscillation appear, but the slow dynamics remain and,

most importantly, no relaxation of the current is observed.
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4.5 Conclusions

In conclusion, we have proposed a novel transport mechanism which leads to an

oscillating current, whose period is proportional to γ−1∆ST /KL. For low asym-

metry and high magnetic fields xB the period can become quite large. Some of

our model parameters are not well known so the numerical value of the period is

not quite certain, although it should lie in the range 0.1-10 sec. The asymmetry

plays an important role in determining the dynamics of the system. Due to

the different magnetic field dependence of the period depending on whether the

asymmetry is large or small, it should be possible to determine from experimen-

tal data in which regime ε lies. For small ε the period increased monotonically

with magnetic field. This seems to be the consistent with the experimental data,

which indicates that the asymmetry is not so large in the sample used. Indeed,

this might expected since the two dots are nominally identical [13]. Taking into

account inhomogeneous hyperfine coupling does not destroy the long period

oscillations although it introduces additional short period motion.

References

[1] D. Paget and V. L. Berkovits, in Optical Orientation, edited by F. Meier

and B. P. Zakharchenya (North-Holland, Amsterdam, 1984).

[2] D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev. B 15, 5780

(1977).

[3] G. Salis et al., Phys. Rev. Lett. 86, 2677 (2001).

[4] G. Salis, D. D. Awschalom, Y. Ohno, and H. Ohno, Phys. Rev. B 64,

195304 (2001).

[5] K. R. Wald et al., Phys. Rev. Lett. 73, 1011 (1994).

[6] J. H. Smet et al., Nature 415, 281 (2002).

[7] R. K. Kawakami et al., Science 294, 131 (2001).

[8] T. Machida, T. Yamazaki, K. Ikushima, and S. Komiyama, App. Phys.

Lett. 82, 409 (2003).

[9] L. P. Kouwenhoven et al., in Mesoscopic Electron Transport, NATO Se-

ries, edited by L. L. Sohn, L. P. Kouwenhoven, and G. Schoen (Kluwer,

Dordrecht, 1997), Chap. Electron transport in quantum dots, p. 105.

[10] L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Prog. Phys. 64,

701 (2001).

[11] S. DeFranceschi et al., Phys. Rev. Lett. 86, 878 (2001).

[12] H. Matsuoka and S. Kimura, Jpn. J. Appl. Phys. 34, 1326 (1995).



56
Nuclear spin induced coherent oscillations of transport current through a

double quantum dot

[13] K. Ono and S. Tarucha, (unpublished).

[14] K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Science 297, 1313

(2002).
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Chapter 5

Time-evolution of the effective nuclear

magnetic field due to a localized

electron spin

Sigurdur I. Erlingsson, Yuli V. Nazarov

An effective spin Hamiltonian is considered where the spatial dependence of

the electron wavefunction results in an inhomogeneous hyperfine coupling of the

electron spin to different nuclear spins. A semiclassical description of the nuclear

spin system is introduced which also takes into account the inhomogeneous

coupling. Using that the electron spin dynamics are much faster than for the

nuclear spins, an approximate solution for dynamics of the nuclear system is

obtained. From this solution certain electron spin correlation functions are

calculated. Contrary to what one may guess, the dynamics are not chaotic and

the correlation functions show no decay in time, only complicated oscillations.

This may be attributed to the fact that the system has many integrals of motion

and that it is close to exactly solvable.

57
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5.1 Introduction

The coherent manipulation of localized spins in solid state systems is currently

a very active field research. Studying such systems may lead to new insight

regarding fundamental questions, e.g. the measurement problem in quantum

mechanics and limitations on control of such systems due to environmental

effects. There are also possible applications in which conventional electronics is

used in combination with spin manipulation. This field of research is commonly

referred to as spintronics. One of the most ambitious goals in this field of

research is developing a quantum bit, or qubit. Such qubits would form the

basic building blocks of the quantum computer. Building a qubit in solid state

systems is advantageous since fabrication techniques are very advanced and

scaling the number of qubits is straightforward, at least in theory. However,

environmental effects are much stronger in comparison with systems based on

NMR or trapped ions (which lack scalability). The qubit should be any (quasi)

two level system in which the strength of the coupling to the environment can

be sufficiently well controlled so that the residual environmental interactions are

below a threshold set by the operating speed of the device [1–3]. The benefit

of working with individual spins is that they are natural two level systems and

the spin is less susceptible to environmental effects. There are two timescales,

socalled T1 and T2, which are used to characterize the quality of the qubit.

These terms are borrowed from the NMR community which have been using

them long before anyone thought of the qubit [4, 5]. The lifetime of a certain

state of the qubit, or energy relaxation time, is determined by T1 while T2 gives

the decoherence time.

Since the first proposal [6], the qubit candidate based on localized electron

spins in quantum dots has been the subject of many theoretical and experimental

studies. This system, and any other, has to fulfill some strict criteria to be a

viable qubit, the most difficult to realize being long relaxation and decoherence

times. There already have been quite a few studies of the relaxation time of

electron spins in GaAs (which seems to be the most relevant material) quantum

dots [7–11] for various different spin-flip mechanisms and they all give very long

relaxation times. The operation of a qubit requires making a superposition of

states that persists during the decoherence time. A few papers have addressed

the question of the decoherence time of electron spin in GaAs quantum dots

[12–17]. It was suggested in the literature that the most important source for

decoherence of electron spins in GaAs quantum dots would be hyperfine coupling

to the surrounding nuclei. In Ref. [12] the characteristic timescale for the decay

of a specific correlation function was associated with the decoherence time of

the electron spin. The decohence in this case was due to the spatially dependent

hyperfine coupling constant which caused small frequency changes through flip-

flop processes involving spatially separated nuclei. A different approach was
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used in Ref. [13] which focused on developing an effective magnetic field acting

on the electron spin due to the total nuclear spin system. The authors were

interested in ensemble averaged quantities and so they averaged over all possible

initial configurations of the effective nuclear field.

In this work we will try to bridge between these two approaches, i.e. we will

further develop the idea of the effective magnetic field due to the nuclear system

acting on the electron spin in the quantum dot [10] including the effects of the

spatially varying hyperfine coupling constant. The dynamics of the system will

be represented by a set of equations of motion for the electron spin and the

various subsystem of nuclei which are defined in such a way that the coupling

to the electron spin is the same for all the nuclei within a subsystem. Due to

the large difference of timescales for the electron and nuclear spin systems we

are able to solve the problem in two steps. In the first step we establish that the

nuclear system can be treated as an adiabatic effective nuclear magnetic field

acting on the electron. The latter step involves the backaction of the electron

spin which will determine the evolution of the nuclear spins.

5.2 Hyperfine interaction in quantum dots

The Hamiltonian describing the hyperfine coupling between conduction band

electrons and the lattice nuclei in GaAs is of the well known form of the contact

potential

HHF = AŜ ·
∑

k

Îkδ(r − Rk). (5.1)

In the GaAs conduction band (which is mainly composed of s-orbitals), the

dipole-dipole part of the hyperfine interaction vanishes [18]. The quantum dots

considered here are quite general, but we introduce some restrictions to simplify

the model. First of all it is assumed that the number of electrons is fixed,

preferably to one. From the experimental point of view this assumptions is

quite reasonable since having only a single electron in the dot has already been

demonstrated [19, 20]. Also, by pinching off the connection to the leads the

electron number should remain fixed over very long timescales. It can also be

argued that our treatment applies for odd number of electron since the ground

state should be a doublet. The second assumption is that the orbital level

splitting is the largest energy scale of the system. In this case the hyperfine

Hamiltonian can be projected to the lowest orbital level since contributions from

higher orbitals are strongly suppressed due the large orbital energy separation.

If the ground state orbital ψ(r) of the the quantum dot is known, then an

effective spin Hamiltonian can be written as

Hs = gµBB · Ŝ + γGaAs

∑

k

B · Îk +
∑

k

A|ψ(Rk)|2Ŝ · Îk (5.2)
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where B is the external applied field and the hyperfine interaction has been

projected onto the lowest orbital.

5.3 Semiclassical dynamics

The fact that the single electron spin is coupled to a large number of nuclei but

each nucleus is only coupled to the single electron spin hints at an asymmetry

in the behavior of the electron and nuclear spins. Indeed the electron precesses

in an effective nuclear magnetic field which is due to the whole nuclear spin

system. This field is ∝
√

NQD times larger than the corresponding hyperfine

field caused by the single electron spin in which the nuclear spins precess. Thus

the dynamics of the electron are much faster than the dynamics of the nuclei.

Also, the large number of nuclei involved makes it possible to treat the nuclear

system in a semiclassical way [10, 13, 21]. In the following section we discuss

the origin of the different dynamical timescales involved in the problem and we

introduce a semiclassical approximation to the dynamics of the system.

The Hamiltonian in Eq. (5.1) describes the coupling of a single electron spin

to many nuclear spins. The actual number is determined by the confinement of

the electron, i.e. the number of nuclei the electron is coupled to is proportional

to the volume that the electron occupies. In a typical quantum dot a single

electron spin may be coupled to 106 nuclear spins. When the electrons interacts

with so many (independent) nuclei it is possible to interpret the combined effect

of the nuclei as an effective magnetic field .

The last term in Eq. (5.2) represents the coupling of the electron spin and the

nuclear system through the hyperfine interaction. By introducing the operator

of the nuclear magnetic field

K̂ =
∑

k

A|ψ0(Rk)|2Îk, (5.3)

the hyperfine coupling can be written as

HHF = Ŝ · K̂. (5.4)

Before proceeding further it is convenient to introduce a different way of writing

Eq. (5.3). The wavefunction of the ground state orbital has some characteristic

spatial extent which is determined by the confining potential. Without loss of

generality it may be assumed that the lateral and transverse confining lengths

are ` and z0 respectively. The volume of the quantum dot is the defined as

VQD = πz0`
2. (5.5)

Let us define a dimensionless function

f(Rk) = VQD|ψ(Rk)|2. (5.6)
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Furthermore, denoting the maximum value of f with fMax we introduce a di-

mensionless coupling constant

gk = g(Rk) =
f(Rk)

fMax
. (5.7)

The hyperfine coupling constant expressed in terms of the concentration, Cn, of

nuclei with spin I and a characteristic energy En is

A =
En

CnI
. (5.8)

The energy En is the maximum Zeeman splitting possible due to a fully polarized

nuclear system, its value being En ≈ 0.135 meV in GaAs [22, 23]. The nuclear

system operator can then be written as

K̂ = A
∑

k

f(Rk)

VQD
Îk (5.9)

=
AfMax

VQD

∑

k

gkÎk (5.10)

=
EnfMax

NQDI

∑

k

gkÎk (5.11)

where NQD = CnVQD is the effective number of nuclei in the dot. The operator

defined in Eq. (5.11) represents combined contributions from many independent

spins. For a typical unpolarized nuclear system the average squared modulus

can be estimated as

〈K̂2〉 =
(EnfMax)

2

(NQDI)2

∑

kk′

gkgk′〈Îk · Îk′〉

=
(EnfMax)

2

NQDI2

1

NQD

∑

k

g2
kI(I + 1)

=
E2

n

NQD

I(I + 1)f2
Maxg

2

I2
. (5.12)

where the average squared coupling strength is

g2 =
1

NQD

∑

k

g2(Rk). (5.13)

It is important to note that

√

〈K̂2〉 ∝ EnN
−1/2
QD and that this field acts on the

electron spin even in the absence of polarization in the nuclear system. As was

shown in Ref. [10] the typical fluctuations in the components of K̂ are

∆Kα∆Kβ & 〈K̂2〉 1

N
1/2
QD

. (5.14)
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This means that as long as NQD � 1 the operator in Eq. (5.11) can be replaced

by a classical vector whose length is determined by Eq. (5.12). The actual

value of K is completely random since it determined by unknown details of the

nuclear system. The value of the effective nuclear field should be chosen from a

Gaussian distribution [10, 13]

P (K) =

(

1

2πσ2

)3/2

exp

(

−K2

2σ2

)

, (5.15)

where σ2 = 1
3 〈K2〉 is the variance of the distribution.

Let us now turn to the dynamics of the combined electron and nuclear spins.

The dynamics of both are determined by the Heisenberg equation of motion

d

dt
Ŝ = K̂ × Ŝ + gµBB × Ŝ (5.16)

d

dt
Îk =

EnfMax

NQD
gkŜ × Îk + γGaAsB × Îk. (5.17)

Multiplying Eq. (5.17) with gk and summing over k gives the equation of motion

for K̂

d

dt
K̂ =

EnfMax

NQD
Ŝ ×

(

∑

k

g2
kÎk

)

+ γGaAsBnB × K̂ (5.18)

In contrast to the simple dynamics of the electron spin, the equation of motion

for K̂ is quite complicated. The reason for the asymmetry in the form of Eqs.

(5.16) and (5.18) is the position dependent coupling gk. The quantity in the

brackets on the rhs of Eq. (5.18) can not be expressed in terms of K̂. Only in

the simple case of constant gk it is possible to write a closed equation of motion

for K̂ and Ŝ [14].

Even though Eqs. (5.16) and (5.18) cannot in general be solved it possible

to extract general features of the dynamics. Assuming B = 0, the electron

spin will precess with frequency ∝ EnN
−1/2
QD (since this is the magnitude of the

effective nuclear magnetic field) and the nuclear system precesses with frequency

∝ EnN
−1
QD. The ratio of these two precession frequencies is N

1/2
QD � 1, which

means that the electron spin effectively feels a quasi stationary nuclear system

and in turn the nuclear system feels a time averaged electron spin.

To incorporate the (i) separation of timescales, (ii) the inhomogeneous cou-

pling we introduce a scheme that separates the nuclear system into Nb subsys-

tems, each being characterized by a fixed coupling gb. The effective nuclear field

of a given subsystem is

K̂b =
EnfMax

NQDI
gb

∑

k∈b

Îk (5.19)
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where the notation k ∈ b is shorthand for all nuclei whose coupling is gk ∈
[gb − δg/2, gb + δg/2]. As long as Nb � NQD each subsystem can be replaced

by a classical variable. The initial condition for each block is chosen from a

Gaussian distribution whose variance is

〈K2
b 〉 = 〈K2〉 g2

bVb

VQDg2
, (5.20)

where Vb is the volume of the region which fulfills gk ∈ [gb − δg/2, gb + δg/2].

The volume of the subsystem Vb is related to gb via

Vb ≡
∣

∣

∣

∣

dV

dg

∣

∣

∣

∣

g=gb

δg, (5.21)

where V is the volume of the region where g ≥ gb. The functional form of g(r) is

determined by the density |ψ(r)|2. For example, using a parabolic confinement

in the lateral direction and assuming a steplike density of the 2DEG in the

transverse direction gives a coupling g(r) = exp(−r‖/`)2 . The volume V is

then given by

V (g) = z0π`
2 ln(1/g), (5.22)

which results in the following subsystem volume

Vb = VQD
δg

gb
. (5.23)

Note that the value of the total effective field which the electron experiences

does not depend on Nb.

Taking all this together we arrive at the following set of equations which

determine the approximate dynamics of the nuclear system.

dKb

dt
=
EnfMax

INQD
gb〈S〉 × Kb + γGaAsB × Kb, (5.24)

where the average electron spin 〈S〉 is determined by the total effective nuclear

field

K =
∑

b

Kb. (5.25)

Obviously separating the nuclear system into subsystem with a constant gb is

an approximation to the continuous coupling gk. As the number of subsystems

increases gb will more closely represent gk. However, for the the semiclassical ap-

proximation to be valid each subsystem must contain many nuclear spins. Thus,

increasing Nb should better reproduce the actual system, as long as Nb � NQD.

The Nb differential equations, with the associated random initial conditions

constitute a set of autonomous differential equations. Its solutions, for a given

functional form 〈S〉 = S(K) completely determines the dynamics of the nu-

clear system. The solution of the average spin will be the discussed in the next

section.
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5.4 Adiabatic approximation for the electron spin

As we have shown in the previous section, the nuclear spin system may be

treated as a slowly varying effective nuclear magnetic field acting on the elec-

tron spin. Assuming a constant external magnetic field along the z-axis, the

Hamiltonian for the electron spin reads

He(t) = ∆Ŝz + Ŝ · K(t), (5.26)

∆ = gµBB being the Zeeman splitting due to the external field. Let us now

introduce a general magnetic field

H(t) = ∆ez + K(t), (5.27)

to represent any slowly varying magnetic field. It is convenient to introduce the

instantaneous eigenfunctions of the Hamiltonian, which are solutions of

He(t)|n(t);±〉 = E±(t)|n(t);±〉. (5.28)

The eigenstates are labeled by n(t) to indicate that these eigenstates are either

pointing ‘up’ (+) or ‘down’ (-) along the total magnetic field, whose direction

is determined by the normal vector

n(t) =
H(t)

|H(t)| . (5.29)

For spin 1/2 in an external field, the eigenenergies can be written as E±(t) =

±E(t), where

E(t) =
1

2

√

H2
x(t) +H2

y (t) +Hz(t)2 (5.30)

and the corresponding eigenstates are written in the basis of the Ŝz eigenvectors

|n(t);+〉 =
1

√

1 + |a(t)|2
(| ↑〉 + a(t)| ↓〉) (5.31)

|n(t);−〉 =
1

√

1 + |a(t)|2
(−a∗(t)| ↑〉 + | ↓〉). (5.32)

The time dependent mixing of spin components is ∆ and K is given by

a(t) =
H+(t)√

2

(
√

H2
x(t) +H2

y (t) +Hz(t)2 −Hz(t))

|H+(t)|2 (5.33)

where

H+(t) =
Hx(t) + iHy(t)√

2
(5.34)
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The wavefunction may be expanded in basis of instantaneous eigenstates

|ψ(t)〉 =
∑

σ=±

cσ(t)|n(t);σ〉 (5.35)

where the expansion coefficients are

c±(t) = c±(t0) exp

(

γ±(t) − i

~

∫ t

t0

dτE±(τ).

)

(5.36)

The additional phase factor appearing in the previous equation is the usual

adiabatic phase [24]

γ±(t) =

∫ t

t0

dτ〈n(τ);±|d/dτ |n(τ);±〉. (5.37)

Integrating by parts the rhs of the last equation and using the orthogonality of

the instantaneous eigenstates, it can be shown that the phase γ± is an imaginary

number. Also, for a doublet γ± = ±γ.
Using the wave function in Eq. (5.35), the average electron spin is

〈Ŝ(t)〉 ≡ 〈ψ(t)|Ŝ|ψ(t)〉 (5.38)

=
∑

σ=±

|cσ(t0)|2〈n(t);σ|Ŝ|n(t);σ〉

+2<
{

c∗+(t0)c−(t0) exp

(

2γ(t) − i

~

∫ t

t0

dτ2E(τ)

)}

.

(5.39)

The latter term in Eq. (5.39) oscillates with frequency E(t)/h� EnN
−1
QD/h, so

its average is zero on the timescales of the nuclear system. The average value

of the electron spin entering Eq. (5.24) is

〈S〉 =
∑

σ=±

|cσ(t0)|2〈n(t);σ|Ŝ|n(t);σ〉 (5.40)

=
1

2
cos(θ0)

H

|H| , (5.41)

where θ0 is the angle between the initial electron spin and n, see Fig. 5.1 Dis-

sipation will direct the spin opposite to instantaneous magnetic field. This is

why we expect that at a timescale longer than that of dissipation the spin will

be anti-parallel to instantaneous field and will follow this direction when this

field slowly changes. To account for this we assume in further calculations that

the spin is indeed antiparallel to instantaneous magnetic field.
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<S(t)>
<S> θ 0

n(t)

Figure 5.1: The time dependent electron spin 〈S(t)〉 precesses rapidly around the

total effective magnetic field, resulting in a slowly varying average spin 〈S〉 that the

nuclei see. The angle between the instantaneous electron spin and n is θ0

5.5 Correlation functions

A wide class of classical systems exhibits decaying correlation functions. This

occurs in classically chaotic systems in which the motion is such that the memory

about initial conditions is lost at some typical timescale [25]. Most of sufficiently

complicated classical systems are eventually chaotic. One might expect that

the set of equations Eq. (5.24) should describe chaotic dynamics and decay of

correlation functions. We will see below that this is not the case.

A useful way to characterize the electron spin dynamics it is to introduce

certain correlation functions. For an isolated quantum system these correlation

function are expected to oscillate periodically, without any damping. Incor-

porating environmental effects usually shows up in modified behavior of the

correlation functions. The expected behavior is that they should decay or be

damped as a function of time. To investigate how the nuclear spin system acts

as a spin bath (environment), we introduce the following correlation functions

Gzz(t, t0) = 〈↑ |Ŝz(t)Ŝz(t0)| ↑〉 (5.42)

G+−(t, t0) = 〈↑ |Ŝ+(t)Ŝ−(t0)| ↑〉, (5.43)

where the time evolution of the operators is

ô(t) = U−1(t, t0)ôU(t, t0), (5.44)

and U is the Schroedinger time propagator |ψ(t)〉 = U(t, t0)|ψ(t0)〉.
Since we are focusing on the slow dynamics it is useful to write these corre-

lation functions for long timescales. In the adiabatic approximation the corre-
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lation functions may be written as

Gzz(t, t0) =
1

4

(

1 − |a(t)|2
1 + |a(t)|2

)(

1 − |a(t0)|2
1 + |a(t0)|2

)

(5.45)

G+−(t, t0) = 2

(

a(t)

1 + |a(t)|2
)(

a∗(t0)

1 + |a(t0)|2
)

. (5.46)

Furthermore, it is possible to define a new correlation function

G(t, t0) = Gzz(t, t0) +
1

2
(G+−(t, t0) +G−+(t, t0)) (5.47)

= 〈↓ |Ŝ(t) · Ŝ(t0)| ↑〉 (5.48)

The most interesting regime corresponds to weak external magnetic fields.

In this case there is no preferred direction and the dynamics show the richest

behavior. In that limit the correlation functions take the simplified form

Gzz(t, t0) =
Kz(t)Kz(t0)

4K(t)K(t0)
(5.49)

G+−(t, t0) =
K+(t)K−(t0)

4K(t)K(t0)
(5.50)

G(t, t0) =
K(t) · K(t0)

4K(t)K(t0)
(5.51)

From these equations it is evident that the electron spin correlation function is

determined by the nuclear system variables.

For completeness we also give the results for the opposite limit. For large

external magnetic fields the correlation functions reflect that the dynamics is

mainly a precession around the external field. The correlation function are

Gzz(t, t0) =
1

4

(

1 − Kx(t)2 +Ky(t)2 +Kx(t0)
2 +Ky(t0)

2

2∆2

)

(5.52)

G+−(t, t0) =
1

4

(

K+(t)K−(t0)

∆2

)

. (5.53)

5.6 Nuclear subsystem dynamics

The dynamics of the combined electron and nuclear system is given by Eqs.

(5.24) and (5.39). The large separation of timescales allows the electron spin

to be calculated separately, resulting in an average spin that depends on K. In

the absence of an external magnetic field the average electron takes the simple

form given in Eq. (5.39) and the equations of motion for the Kb’s become

d

dt
Kb = γgb

∑

b Kb

|
∑

b Kb|
× Kb. (5.54)
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Here we introduce the characteristic precession frequency γ of the nuclear system

γ =
EnfMax cos θ0

2NQDI
. (5.55)

The order of magnitude of γ is determined by En/NQD. In GaAs γ ≈ 10−7 meV≈
105 Hz for quantum dots containing NQD ≈ 106 nuclei. From these equations

quite a few integrals of motion can be constructed

0 =
d

dt
|Kb|2 (5.56)

0 =
d

dt
|
∑

b

Kb|2 (5.57)

0 =
d

dt
I =

d

dt

(

∑

b

Kb

gb

)

(5.58)

0 =
d

dt

(

I ·
(

∑

b

Kb

g2
b

))

. (5.59)

Only in the case of 2 or 3 subsystems are these integrals of motion helpful in

obtaining exact solutions.

The preceeding integrals of motion are generally not integrals of motion of

the original Hamiltonian. However, the integral of motion in Eq. (5.58) is closely

related to an exact integral of motion of the original Hamiltonian, i.e. the total

spin of the electron and nuclear system. The total spin of the whole system is

an integral of motion:

d

dt
Ĵ =

d

dt

(

Ŝ +
∑

k

Îk

)

= 0. (5.60)

The exact value is set by the microscopic initial state of the nuclei and as long

a NQD � 1 we have

Î ≡
∑

k

Îk = Ĵ − Ŝ ≈ Ĵ . (5.61)

Thus, the total spin of the nuclear system is an approximate constant of motion,

which is reflected by the integral of motion in Eq. (5.58). It should be mentioned

that the dipole-dipole interaction between the nuclei change the total spin but

only on very long timescales of around milliseconds [13].

The correlation functions are obtained by integrating numerically Eq. (5.24)

using the 4th order Runge Kutta method. The Kb(t)’s are used to calculate

a(t) that enter Eq. (5.45) and (5.46). The calculations were done at B = 0, and

Nb = 8, 32, 128 and 256. For each number of subsystems Nb the calculations

were repeated for various initial conditions, but no averaging is performed. The

results of these calculations for Gzz(t) are presented in Figs. 5.2-5.5.
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Figure 5.2: Numerical calculations of the correlation function Gzz(t) for Nb = 8 and

various randomly chose initial conditions. The curves are offset for clarity and the

vertical range is the same for all curves, i.e. −0.25 to 0.25
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Figure 5.3: Numerical calculations of the correlation function Gzz(t) for Nb = 32

and various randomly chose initial conditions. The curves are offset for clarity and

the vertical range is the same for all curves, i.e. −0.25 to 0.25
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Figure 5.4: Numerical calculations of the correlation function Gzz(t) for Nb = 128

and various randomly chose initial conditions. The curves are offset for clarity and

the vertical range is the same for all curves, i.e. −0.25 to 0.25

-0.25

0

0.25

0 100 200 300 400 500 600 700 800 900 1000

G
zz

t [γ-1]

Figure 5.5: Numerical calculations of the correlation function Gzz(t) for Nb = 128

and various randomly chose initial conditions. The curves are offset for clarity and

the vertical range is the same for all curves, i.e. −0.25 to 0.25
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The common feature of all curves, for all values of Nb, is that they do not decay

with time. This behaviour persists to even higher times, not shown here. Even

though more complicated behaviour is observed for large Nb, the characteristic

frequencies of the correlation function oscillations do not show any obvious

dependence on the number of subsystems use, as long as Nb � 1.

5.7 Conclusion

Although a more detailed study of the dynamics is needed, it is evident from

the numerical calculations that the correlation functions of the electron spins

do not show any decay in time. In the limit of low external magnetic field, the

dynamics of the system can be quite complicated depending on the initial state

of the subsystems and their number Nb. The timescale of the slow electron

evolution is determined by γ−1 even though the details depend on the initial

conditions and the number of subsystems. At high applied magnetic fields the

behaviour of the correlation functions is constrained by the external field, see

Eqs. (5.52) and (5.53)

Since the system has many integrals of motion, it may be close to exactly

solvable and thus one expects periodic oscillations and no decay [26]. The ob-

served behaviour of the system may be explained in this way, i.e. the oscillations

of the correlation function reflect that the system lies somewhere on the bound-

ary on being exactly solvable. These features will probaly vanish if further terms

into the Hamiltonian in Eq. (5.2) are included. The most natural term would

be the dipole-dipole interaction between the nuclei which would kill most of the

integrals of motion. It is important to recognize that the timescale related to

the dipole-dipole interaction is very long, of the order 10−3 s, and the relaxation

time would reflect that.

In connection to coherently controlling the spin, the motion of the electron

spin in the effective nuclear magnetic field will cause ‘errors’. Even though

in this model nuclear spins do not decohere the electron spin, they leads to

a complicated (unknown) evolution that is difficult to predict. Consequently,

an electron spin initially in | ↑〉 can be found in the opposite spin state on a

timescale ∝ γ−1. Thus, the hyperfine coupling to the nuclear system does not

lead to decoherence in this model but it can strongly affect the dynamics of the

electron spin.
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Appendix A

Thermal average over nuclear spin pairs

Even though we do not average over the classical field Kl, which is fixed, there

are still fluctuations in the nuclear system. Each pair of nuclei can fluctuate,

without affecting the classical field. One should think of these fluctuations as

small deviations around a given value of Kl, i.e. we (thermally) average over the

pairs for a fixed value of the classical field. When the thermal average over a pair

of free nuclei is performed the following nuclear correlation function appears in

Eq. (3.21)

Gcorr = (Sα
+−)∗Sβ

+−〈δIα
k δI

β
k′〉T

= (Sα
+−)∗Sβ

+−〈δÎαδÎβ〉T δk,k′ , (A.1)

where δÎα = Îα − 〈Iα〉T and the electron spin matrix elements are Sα
+− =

〈n+|Sα|n−〉. The Kronekker delta reflects that there are no correlations be-

tween two different nuclei and we have dropped the k subscript in 〈δÎαδÎβ〉T
since the nuclei is assumed to be identical. By defining the symmetric correlator

gαβ =
1

2
〈δÎαδÎβ + δÎβδÎα〉T (A.2)

we get the following

Gcorr = (Sα
+−)∗Sβ

+−(gαβ + i/2εαβγ〈Îγ〉T ). (A.3)

In an isotropic system, 〈Î〉T = 0, the value of the correlation function is Gcorr =
1
2

1
3I(I + 1).

73
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Appendix B

Matrix elements for a parabolic

quantum dot

Using the Darwin-Fock solutions and the Fang-Howard variational solution for

the triangular quantum well we obtain the following equation for Eqs. (3.22)-

(3.25)

all′γll′ = δM,M ′

A2Cn

VQDζ

(eh14`)
2∆3

8πρc5~4

Γ(n+ n′ + |M | + 1)2−3(n+n′+|M |)

n!n′!(n+ |M |)!(n′ + |M |)!

×(n(∆) + 1)
∑

ν

c5

c5ν

(

∆

~cν`−1

)2(n+n′+|M |−1)

×
∫ π

0

d(cos θ)Aν(θ)

(sin θ)2(n+n′+|M |) exp

(

− 1
2

(

∆ sin θ
~cν`−1

)2
)

(

1 +
(

∆ cos θ
3~cνz−1

0

)2
)3

(B.1)

where ζ−1 = z0
∫

dz|χ(z)|4 and c−5 = c−5
l + c−5

t is the effective sound velocity

of the phonons. The anisotropy functions are

At(θ) =
sin2 θ(8 cos4 θ + sin4 θ)

4
(B.2)

Al(θ) =
9 cos2 θ sin4 θ

2
. (B.3)

The equation for ãll′ γ̃ll′ is identical except for a different Kronekker delta func-

tion δM,−M ′ . The integral needs in general to be evaluated numerically but

when ∆ � ~cν`
−1 the exponential term and the denominator become unity

and the resulting integral is simple to calculate.
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Summary

Nuclear Spins in Quantum Dots

The main theme of this thesis is the hyperfine interaction between the many

lattice nuclear spins and electron spins localized in GaAs quantum dots. This

interaction is an intrinsic property of the material. Despite the fact that this

interaction is rather weak, it can, as shown in this thesis, strongly influence the

dynamics of electron spins in quantum dots. In chapter 1 some basic features

of quantum dots are described and the most important sources for the mixing

of spin components in GaAs, i.e. the hyperfine and spin-orbit interaction, are

introduced and discussed.

The hyperfine mediated transition rate from a triplet state to the ground

state singlet is considered in chapter 2. The transition involves changing both

the orbital and spin degree of freedom so the phonon scattering alone cannot

facilitate the transition. Also, the hyperfine interaction alone can not cause the

transition because the nuclear spin system cannot absorb the energy released by

the singlet-to-triplet transition. Thus, both a source of inelastic scattering and

the hyperfine interaction are required for the transition. The resulting transition

involves virtual excited states. Assuming a small exchange splitting a simple

expression for the transition rate is obtained that involves only the first excited

singlet state.

The subject of chapter 3 is the hyperfine mediated transitions between Zee-

man split doublet components of the ground state orbital of a single-electron

quantum dot. The spin-flip mechanism is the same as for the singlet-triplet

case, i.e. the transition goes via higher orbital virtual states and involves both

the hyperfine interaction and phonon scattering. A closer look is taken at the

relevant electron-phonon coupling mechanism: The piezoelectric phonons. In

addition, a semiclassical picture of the nuclear system is formulated. The great

number of nuclei in the quantum dot makes it possible to consider them as

an effective nuclear magnetic field acting on the electron spin. The transition

amplitude between the doublet components due to the hyperfine interaction re-

mains finite even if the external magnetic field goes to zero. This is in contrast

to spin-orbit interaction where the transition amplitude vanishes at zero field.
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Thus, at sufficiently low magnetic field the hyperfine related spin-flip rate will

dominate the spin-orbit one. The rates obtained in chapters 2 and 3 are usually

much smaller than non-spin-flip transition rates in quantum dots.

Transport through a GaAs double quantum dot in the socalled spin-blockade

regime is the subject of chapter 4. The current is blocked due to the absence

of transitions between singlet and triplet states within the quantum dots. Mo-

tivated by a recent experiment, we consider the influence of the hyperfine in-

teraction on transport in the spin-blockade regime. A small transport current

will flow if the singlet and triplet states are mixed. In our model the mixing

is induced by the different effective nuclear magnetic fields acting the electron

spins in the two dots. Not only does the nuclear system affect the electron spins

and lift the spin-blockade, there is also a back-action on the nuclear system

that is determined by the average electron spin in the two dots. The nuclear

system precesses around the average electron spin, leading to a time dependent

transport current whose characteristics are in qualitative agreement with the

experimental observations.

In the last chapter the dynamics induced by the hyperfine coupling of the

electron and nuclear spins in a quantum dot are studied. An effective spin

Hamiltonian is considered where the spatial dependence of the electron wave-

function results in an inhomogenoues hyperfine coupling of the electron spin to

different nuclear spins. Generally, it is not possible to solve this Hamiltonian

except in the special case of homogeneous coupling. To obtain an approximate

solution, we split the nuclear system into Nb subsystems where all nuclei within

a given subsystem have equal coupling to the electron spin. An important fea-

ture of the original Hamiltonian is the separation of the timescales, i.e. the

electron spin dynamics are much faster than that of the nuclear spins. This

allows us to use the adiabatic approximation when calculating the average elec-

tron spin which each nuclear spin sees. In this way the electron spin is removed

from the problem leaving 3Nb coupled differential equations. These are solved

numerically and the results used to calculate certain electron spin correlation

functions. Contrary to what one may guess, the dynamics are not chaotic and

the correlation functions show no decay in time, only complicated oscillations.

This may be be attributed to the fact that the system has many integrals of

motion and that it is close to exactly solvable. This behavior persists even for

Nb � 1, which is the limit in which our approximation becomes more accurate.

Sigurdur I. Erlingsson, Delft 2003



Samenvatting

Nucleaire Spins in Quantum Dots

Het hoofdthema van dit proefschrift is de hyperfijninteractie tussen de spins

van de vele nuclëı in het kristalrooster en de spins van gelokaliseerde elektro-

nen in GaAs quantum dots. Deze interactie is een intrinsieke eigenschap van

het materiaal. Ondanks het feit dat deze interactie vrij zwak is, kan ze, zoals

aangetoond in dit proefschrift, de dynamica van elektronspins in quantum dots

sterk bëınvloeden. In hoofdstuk 1 worden enkele basiseigenschappen van quan-

tum dots beschreven en worden de belangrijkste bronnen voor de vermenging

van de spin componenten in GaAs, dwz. de hyperfijninteractie en de spin-baan

interactie, gëıntroduceerd en besproken.

De door de hyperfijninteractie gemedieerde overgang van een triplet toestand

naar de singlet grondtoestand wordt beschouwd in hoofdstuk 2. De overgang

gaat gepaard met een verandering van zowel de baan- als de spinvrijheidsgraad

waardoor met fononen verstrooïıng alleen de overgang niet bewerkstelligd kan

worden. Ook de hyperfijninteractie kan de overgang niet alleen veroorzaken om-

dat het nucleaire spinsysteem de energie die vrijkomt bij de triplet-naar-singlet

overgang niet kan opnemen. Dus, zowel een bron van inelastische verstrooïıng

als de hyperfijninteractie zijn nodig voor de overgang. De resulterende overgang

gaat gepaard met virtuele aangeslagen toestanden. Onder de aanname van een

kleine zgn. ’exchange’ splitsing is een simpele uitdrukking verkregen voor de

snelheid van de overgang, waarbij alleen de eerste aangeslagen singlet toestand

betrokken is.

Het onderwerp van hoofdstuk 3 is de door hyperfijninteractie gemedieerde

overgang tussen Zeeman-gesplitste doubletcomponenten van de laagste orbitaal

van een één-elektron quantum dot. Het spin-flip mechanisme is hetzelfde als in

het geval van de singlet-tripletcomponenten, dwz. de overgang gaat via hogere

virtuele orbitaaltoestanden and gaat samen met zowel de hyperfijninteractie als

fononen verstrooiing. De relevante elektron-fonon koppeling is nader bekeken:

de piezo-elektrische fononen. Bovendien is een semi-klassiek beeld van het nu-

cleaire systeem geformuleerd. Het grote aantal nuclei in de quantum dot maakt

het mogelijk om deze te beschouwen als een effectief nucleair magnetisch veld
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dat op de elektronspin werkt. De overgangsamplitude tussen de doubletcompo-

nenten ten gevolge van de hyperfijninteractie blijft eindig, zelfs als het externe

mangeetveld naar nul gaat. Dit is in tegenstelling tot de overgang ten gevolge

van spin-baan interactie, waarvan de overgangsamplitude verdwijnt bij nul veld.

Bij magnetische velden die laag genoeg zijn zal de hyperfijn-gerelateerde spin-flip

snelheid dus domineren over de spin-baangerelateerde. De snelheden verkregen

in hoofdstuk 2 en 3 zijn gewoonlijk veel lager dan de snelheden in quantum dots

voor overgangen zonder spin-flip.

Transport door een GaAs dubbele quantum dot in het zogenaamde spin-

blokkade regime is het onderwerp van hoofdstuk 4. De stroom is geblokkeerd

door de afwezigheid van overgangen tussen singlet en triplettoestanden in de

quantum dots. Gemotiveerd door een recent experiment beschouwen we de in-

vloed van de hyperfijninteractie op het transport in het spinblokkade regime.

Een kleine stroom zal lopen als de singlet en triplet toestanden vermengd wor-

den. In ons model wordt de vermenging veroorzaakt door de verschillende effec-

tieve nucleaire magneetvelden die op de spins in de twee dots werken. Niet alleen

bëınvloedt het nucleaire systeem de elektronspins en heft het de spinblokkade

op, er is ook een terugwerking op het nucleaire systeem dat wordt bepaald door

de gemiddelde elektronspin in de twee dots. Het nucleaire systeem precedeert

om de elektronspin, wat leidt tot een tijdsafhankelijke stroom waarvan de karak-

teristieken kwalitatief overeenkomen met de experimentele waarnemingen

In het laatste hoofdstuk wordt de dynamica bestudeerd die wordt gëınduceerd

door de hyperfijnkoppeling van de elektronspins en de nucleaire spins. Een ef-

fectieve spin Hamiltoniaan wordt beschouwd waar de plaatsafhankelijkheid van

de golffunctie van het elektron resulteert in een inhomogene hyperfijnkoppel-

ing van de elektronspin naar de verschillende nuclei. Het is niet mogelijk om

deze Hamiltoniaan op te lossen, behalve in het speciale geval van een homogene

koppeling. Om een benadering van de oplossing te verkrijgen splitsen we het

nucleaire systeem in Nb subsystemen, waarbij alle nuclei in een gegeven sub-

systeem gelijke koppeling hebben naar de elektronspin. Een belangrijke eigen-

schap van de originele Hamiltoniaan is de scheiding van de tijdsschalen, i.e.

de dynamica van de elektronspin is veel sneller dan die van de nucleaire spins.

Hierdoor mogen we de adiabatische benadering toepassen bij het berekenen van

de gemiddelde elektronspin die door elke nucleaire spin wordt gezien. Op deze

manier wordt de elektronspin uit het probleem verwijderd en blijven er 3Nb

gekoppelde differentiaalvergelijkingen over. Deze zijn numeriek opgelost en de

resultaten zijn gebruikt om bepaalde elektron correlatiefuncties te berekenen.

In tegenstelling tot wat men zou denken is de dynamica niet chaotisch en laten

de correlatiefuncties geen verval zien in de tijd, enkel ingewikkelde oscillaties.

Dit zou kunnen worden toegeschreven aan het feit dat het systeem vele beweg-

ingsintegralen heeft en dat het bijna exact oplosbaar is. Dit gedrag houdt aan
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voor Nb � 1, de limiet waarin onze benadering nauwkeuriger wordt.

Sigurdur I. Erlingsson, Delft 2003
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