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Abstract

According to Dudley’s extension of the Skorohod representation theo-
rem, convergence in distribution on a separable metric space is equiv-
alent to the existence of a coupling with elements converging a.s. in
the metric. A density analogue of this theorem says that a sequence of
probability densities on a general measurable space has a probability
density as a lower pointwise limit if and only if there exists a cou-
pling with elements converging a.s. in the discrete topology. In this
paper the latter result is extended to discrete-topology convergence of
stochastic processes in a widening time-window. An elementary ver-
sion of that result is then used to prove the Skorohod-Dudley theorem.

1 Introduction and statement of results

The aim of this paper is to present a coupling characterization of finite-win-
dows density convergence of a sequence of stochastic processes (Theorem 1),
and to use an elementary version of that result (Corollary 1) to prove Dudley’s
extension of the Skorohod representation theorem. Recall that with I some
index set, a coupling of a collection of random elements Xi, i ∈ I, is a family
(X̂i : i ∈ I) such that for each i ∈ I, X̂i has the same distribution as Xi. For
convenience, let all random elements in this paper be defined on the same
probability space (Ω,F ,P).

The following celebrated theorem was proved by Skorohod (1956) in the
Polish (i.e. complete separable) case, and extended to the separable case by
Dudley (1968). For historical notes, see Dudley (2002).
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Skorohod-Dudley Theorem. Let X1, X2, . . . , X be random elements in a
separable metric space E endowed with its Borel subsets E. Then

Xn → X in distribution with respect to the metric, as n→∞, (1)

if and only if there exists a coupling (X̂1, X̂2, ..., X̂) of X1, X2, ..., X such that

X̂n → X̂ a.s. in the metric, as n→∞.

While this theorem does not have a simple proof, the following density
analogue from Thorisson (1995) is easy to establish. Note that random el-
ements X1, X2, . . . in an arbitrary space always have densities with respect
to some measure λ, for instance with respect to λ =

∑∞
n=1 2−nP(Xn ∈ ·).

Proposition 1. Let X1, X2, . . . , X be random elements in an arbitrary mea-
surable space (E, E). Let f1, f2, . . . be the densities of X1, X2, . . . with respect
to some measure λ. Then

lim inf
n→∞

fn is a density of X with respect to λ (2)

if and only if there exists a coupling (X̂1, X̂2, . . . , X̂) of X1, X2, . . . , X and
an N-valued random variable N such that

X̂n = X̂, n > N. (3)

Proof. Assume existence of the coupling. Take n < m and partition E into
sets An, . . . , Am ∈ E such that minn6i6m fi = fj on Aj for n 6 j 6 m. This
yields the last step in the following calculation: for A ∈ E ,

P(X̂ ∈ A,N 6 n) =
m∑

j=n

P(X̂j ∈ A ∩ Aj, N 6 n) [partition and (3)]

6
m∑

j=n

P(X̂j ∈ A ∩ Aj) =
m∑

j=n

∫
A∩Aj

fj dλ =

∫
A

min
n6i6m

fi dλ.

Send first m and then n to infinity to obtain P(X ∈ A) 6
∫

A
lim infn→∞ fn dλ

for all A ∈ E . This forces the inequality to be an identity for all A ∈ E .
Conversely, assume that gn := infm>n fm increases to a density of X as

n → ∞. Let N have distribution function P(N 6 n) =
∫
gndλ, n ∈ N. Let

V1, V2, . . . ,W1,W2, . . . be independent random elements in (E, E) that are
independent of N . For n ∈ N, let Vn have density (gn− gn−1)/P(N = n), let
Wn have density (fn − gn)/P(N > n), and put X̂n = VN on {N 6 n} and
X̂n = Wn on {N > n}. Put X̂ = VN to obtain the coupling result.
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The following theorem extends this result on convergence in the discrete
topology to convergence of stochastic processes in a widening time-window.
We use the notation X = (Xs)s∈[0,∞) for a continuous-time stochastic process,
and Xt = (Xs)s∈[0,t) for a finite segment of the process of length t ∈ [0,∞).

Theorem 1. Let X1,X2, . . . ,X be continuous-time stochastic processes on
a Polish state space (E, E) with right-continous paths having left-hand limits.
For each t ∈ [0,∞), let f t

1, f
t
2, . . . be the densities of Xt

1,X
t
2, . . . with respect

to some measure λt. Then

∀t ∈ [0,∞) : lim inf
n→∞

f t
n is a density of Xt with respect to λt (4)

if and only if there exist non-negative numbers t1 6 t2 6 · · · 6 tn → ∞
as n → ∞, a coupling (X̂1, X̂2, . . . , X̂) of X1,X2, . . . ,X, and an N-valued
random variable N such that

X̂tn
n = X̂tn , n > N.

It follows as a corollary, or by repeating the proof with the appropriate
modifications, that the same holds for discrete-time stochastic processes on
a Polish state space. In particular, Theorem 2 has the following corollary,
where we use the notation X = (X1, X2, . . . ) for a discrete-time stochastic
process and Xk := (X1, . . . , Xk) for a segment of integer length k > 0.

Corollary 1. Let X1,X2, . . . ,X be discrete-time stochastic processes on a
countable state space E. If

∀k ∈ N : P(Xk
n = xk)→ P(Xk = xk) as n→∞, xk ∈ Ek, (5)

then there exist non-negative integers k1 6 k2 6 · · · 6 kn →∞ as n→∞, a
coupling (X̂1, X̂2, . . . , X̂) of X1,X2, . . . ,X, and an N-valued random variable
N such that

X̂kn
n = X̂kn , n > N.

It is readily checked that the implication in the corollary can be reversed.
We prove Theorem 1 in Section 2, and use the corollary in Section 3

to prove the Skorohod-Dudley Theorem. In fact, Corollary 1 is a relatively
elementary result and we include a direct proof in Section 4.

2 Proof of Theorem 1

Assume existence of the coupling. For t ∈ [0,∞), takem ∈ N such that tm > t
and note that X̂t

n = X̂t, n > max{N,m}. Apply Proposition 1 to obtain (4).
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Conversely, assume (4). Regard the processes as random elements in Sko-
rohod space, denoted (D,D) and (Dt,Dt) for the time sets [0,∞) and [0, t),
respectively. Let P1, P2, . . . , P be the distributions of X1,X2, . . . ,X, and
P t

1, P
t
2, . . . , P

t the distributions of Xt
1,X

t
2, . . . ,X

t. Note that P 0
1 , P

0
2 , . . . , P

0

all have mass one at the empty vector. Let νt
n be the greatest common

component of the measures P t
n, P

t
n+1, . . . , that is, let νt

n be the measure with
density infm>n f

t
m with respect to λt. Let ||·|| denote mass. Use (4) to find non-

negative numbers t1 6 t2 6 · · · → ∞ such that ||P − νtn
n || 6 2−n, n ∈ N. Due

to (4), for all n ∈ N we have νtn
n 6 P tn . Use this to extend νtn

n from (Dtn ,Dtn)
to a measure νn on (D,D) by νn(A) :=

∫
P(X ∈ A|X tn = ·)dνtn

n , A ∈ D.
Then νn 6 P . Let µn be the greatest common component of νm, m > n. Let
Am ∈ D, m > n, be a partition of D such that µn(· ∩ Am) = νm(· ∩ Am).
Then P−µn =

∑∞
n (P (·∩Am)−νm(·∩Am)) 6

∑∞
n 2−m = 2n+1→ 0 as n→∞.

Thus µn increases setwise to P as n→∞. Let µt
n be the restriction of µn to

(Dt,Dt) and note that µtn
n 6 νtn

n . Thus µtn
n 6 P tn

n , n ∈ N. Put µ0 := 0.
Now, let N,V1,V2, . . . ,W1,W2, . . . be independent. Let N have distri-

bution function P(N 6 n) = ||µn||, n ∈ N. For n ∈ N, let Vn be a random
element in (D,D) with distribution (µn − µn−1)/P(N = n), let Wn be a
random element in (Dtn ,Dtn) with distribution (P tn

n − µtn
n )/P(N > n), and

define X̂tn
n = Vtn

N on {N 6 n} and X̂tn
n = Wn on {N > n}. Then X̂tn

n has dis-
tribution P tn

n , which is the distribution of Xtn
n . Use this, the Ionescu-Tulcea

Extension Theorem, and the existence [since (D,D) is Polish] of a regular ver-
sion of the conditional distribution of (X tn+s

n )s∈[0,∞) given the value of Xtn
n ,

to extend each X̂tn
n to a full process X̂n with the same distribution as Xn.

Finally, note that X̂ := VN has the same distribution as X.

3 Proof of the Skorohod-Dudley Theorem

Assume existence of the coupling. Let h be bounded and continuous to
obtain that h(X̂n) → h(X̂) a.s. as n → ∞. Then by bounded convergence
E[h(Xn)]→ E[h(X)] as n→∞. Thus by definition, (1) holds.

Conversely, assume (1). Let d be the metric and put P := P(X ∈ ·).
Recall that A ∈ E is a P -continuity set if P (∂A) = 0 where ∂A denotes the
boundary of A, and that for such A the Portmanteau Theorem [Theorem
11.1.1 in Dudley (2002)] implies that P(Xn ∈ A) → P (A) as n → ∞. By
separability, for each ε > 0 the set E can be covered by countably many balls
of diameter < ε. Note that ∂{x ∈ E : d(y, x) < r} ⊆ ∂{x ∈ E : d(y, x) = r}
and that the sets on the right have P -mass 0 except for countably many
radii r. Thus the covering sets may be taken to be P -continuity sets. More-
over, since ∂(A∩B) ⊆ ∂A∪∂B the covering sets can be taken to be disjoint.
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Let {A1, A2, . . . } be a partition of E into P -continuity sets of diameter < 1.
For i ∈ N, let {Ai1, Ai2, . . . } be a partition of Ai into P -continuity sets of di-
ameter <1/2. Continue recursively to obtain nested partitions {Aik : ik∈ Nk}
of E into P -continuity sets of diameter < 1/k, k ∈ N.

After these standard preliminaries, we are now ready to apply first Port-
manteau and then Corollary 1: with M1,M2, . . . ,M the discrete-time pro-
cesses on N defined by (well-defined because the partitions are nested)

Mk
n := ik if Xn ∈ Aik and Mk := ik if X ∈ Aik ,

we have P(Mk
n = ik) → P(Mk = ik) as n → ∞, and thus there are

non-negative integers k1 6 k2 6 . . . 6 kn → ∞ as n → ∞, a coupling
(M̂1, M̂2, . . . , M̂) of M1,M2, . . . ,M, and an N-valued N such that

M̂kn
n = M̂kn , n > N. (6)

Since the family (N, M̂1, M̂2, . . . ) consists of countably many discrete random
variables, there exists a regular version of its conditional distribution given
the value of M̂. Thus by extending the underlying probability space, we can
take (N, M̂1, M̂2, . . . , M̂) such that M̂ = M. Put X̂ := X.

Let (Vn,ikn : n ∈ N, ikn ∈ Nkn) be a family of independent random ele-

ments. Let the family be independent of (N, M̂1, M̂2, . . . , M̂, X̂). Let Vn,ikn be

Aikn -valued with distribution P(Xn ∈ · | Xn ∈ Aikn ). Put X̂n := Vn,M̂kn
n

.
Then

P(X̂n ∈ ·) =
∑

ikn∈Nkn

P(Vn,ikn ∈ ·)P(M̂kn
n = ikn) = P(Xn ∈ ·), n ∈ N.

By (6), n > N implies X̂n = Vn,M̂kn and thus X̂n ∈ AM̂kn . But X̂ ∈ AM̂kn for

all n ∈ N. Thus n > N implies d(X̂n, X̂) 6 1/kn, which goes to 0 as n→∞.

4 A more elementary proof of Corollary 1

Assume (5). The main part of the proof is a stepwise construction of a coup-
ling (X̂1, X̂2, . . . , X̂) and N-valued N1 6 N2 6 . . . such that for k ∈ N,

X̂k
n = X̂k, n > Nk. (7)

First note that (5) with k = 1 yields (2) with fn = P(X1
n = ·) and λ counting

measure. Thus the only-if part of Proposition 1 gives us the existence of
a family (X̂1

1 , X̂
1
2 , . . . , X̂

1, N1) such that (X̂1
1 , X̂

1
2 , . . . , X̂

1) is a coupling of
(X1

1 , X
1
2 , . . . , X

1) and X̂1
n = X̂1 for n > N1. Thus (7) holds for k = 1.
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Then, note that there are countably many yk := (xk
1,x

k
2, . . . ,x

k,m) such
that k,m ∈ N, xk

1,x
k
2, . . . ,x

k ∈ Ek, xk
n = xk for n > m and P(Xk = xk) > 0,

and that for each such yk we obtain from (5) that

P(Xk+1
n = · | Xk

n = xk
n)→ P(Xk+1 = · | Xk = xk), n→∞.

Thus Proposition 1 gives us a family (Xyk

1 , Xyk

2 , . . . , Xyk
, Nyk

) such that

P(Xyk

n = ·) = P(Xk+1
n = · | Xk

n = xk
n), n > 1,

P(Xyk

= ·) = P(Xk+1 = · | Xk = xk),

Xyk

n = Xyk

, n > Nyk

. (8)

Let these families be independent. Define the full coupling (X̂1, X̂2, . . . , X̂)
recursively in k ∈ N by (X̂k+1

1 , X̂k+1
2 , . . . , X̂k+1) := (XYk

1 , XYk

2 , . . . , XYk
)

where Yk := (Xk
1,X

k
2, . . . ,X

k, Nk). Put Nk+1 := max{Nk, NYk} for k ∈ N.
We have already established (7) for k=1. Make the induction assumption

that (7) holds for a k ∈ N. By (8) and the definition of Nk+1, X̂k+1
n = X̂k+1

for n > Nk+1. This and the induction assumption imply that (7) also holds
with k replaced by k + 1. Thus by induction, (7) holds for all k ∈ N.

In order to complete the proof of Corollary 1, let n1 < n2 < · · · < nk →∞
as k → ∞ be positive integers such that P(Nk > nk) 6 1/k2, k ∈ N. Put
K := sup{k ∈ N : Nk > nk} and note that K <∞ a.s. due to Borel-Cantelli.
Let n0 = 0 and for n ∈ N put kn = k if nk 6 n < nk+1. Define N := nK+1.
Take n > N and note that then kn > K which implies that nkn > Nkn . Now
n > nkn and thus n > Nkn , and (7) yields X̂kn

n = X̂kn .
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