GEOTHERMAL TRAINING PROGRAMME Orkustofnun, Grensasvegur 9, IS-108 Reykjavik, Iceland # APPENDIX I TO THE REPORT: JOINT 1D INVERSION OF MT AND TEM DATA FROM MENENGAI GEOTHERMAL FIELD, KENYA by Joseph M. Gichira Geothermal Development Company Ltd. P.O. Box 17700-20100 Nakuru KENYA jgichira@gdc.co.ke United Nations University Geothermal Training Programme Reykjavík, Iceland Published in 2012 This is Appendix I to the report "Joint 1D inversion of MT and TEM data from Menengai geothermal field, Kenya" by Joseph M. Gichira at the UNU Geothermal Training Programme in 2012. The appendix shows the TEM and MT resistivity data from the Menengai geothermal field in Kenya and 1-D joint inversion of the MT and TEM profiles and the corresponding model curves. #### MEN57_out ### MENM04-T13A_out #### MENM04–T29A_out # MENMT03_out # MENMT11A out # MENMT27A_out ### MENMT31A out ### MENMT38A out # MENMT47A_out ### MENMT68_out ### MENMT70 out # MENMT72_out # MENMT74 out # MENMT80_out #### MENMT84 out #### MENMT87_out 10¹ 10⁰ 10^{1} Resistivity (Ω m) 10² 10² 10¹ 10^{-2} 10^{-1} Period (s) 10^{-3} 10⁰ # MN110_out 0 10-3 10-2 10⁻¹ Period (s) 10⁰ 10¹ #### MN114 out $\chi = 0.44194$ Apparent Resistivity, ρ_{det} (Ωm) Shift = 0.609 mntem73 (126/-5) 10^{-1} 10² Depth (km) 10-3 10^{-2} 10⁰ 10^{-1} 10⁰ 0 10⁻¹ Period (s) 10-2 10^{-3} 10⁰ 10^2 Resistivity (Ω m) 10³ 10¹ out Apparent Resistivity, ρ_{det} (Ωm) $\chi = 1.0028$ EM36 (105/–12) Shift = 0.62 10^{-1} 10² Depth (km) 10-3 10^{-2} 10⁰ 10¹ 10^{-1} 10¹ 10⁰ $\begin{array}{ccc} 10^1 & 10^2 \\ \text{Resistivity } (\Omega \text{m}) \end{array}$ 10³ ### MN117_out #### MN125_out ### mn141 out # MN152_out 23 #### MN154 out 24 #### MN156_out ## MN160_out #### MN166 out # MN169_out #### mn171 out #### mn182_out #### mn190 out 10^{-2} 10^{-1} Period (s) 10⁰ 10¹ 10^{-3} $\begin{array}{cc} 10^1 & 10^2 \\ \text{Resistivity } (\Omega \text{m}) \end{array}$ 10^{3} 10⁰ #### mn215 out #### mn218_out 10^{-3} 10-2 10⁰ Period (s) 10^{-1} #### mn220 out $\chi = 0.73695$ Shift = 0.865 mntem88 (392/-11) 10^{-1} Depth (km) 10¹ 10⁰ 10-3 10^{-2} 10^{-1} 10² 0 10-2 10⁻¹ 1 Period (s) $\begin{array}{ccc} 10^1 & 10^2 \\ \text{Resistivity } (\Omega \text{m}) \end{array}$ 10⁰ 10⁰ 10-3 10¹ 10² 10³ out Phase Det. (Deg.) Apparent Resistivity, ρ_{det} (Ωm) $\chi = 0.70766$ mntem90 (275/4) Shift = 0.577 10^{-1} Depth (km) 10-2 10-3 10⁰ 10² 10¹ 10^{-1} 90 75 60 45 30 15 10¹ 0 10² 10¹ 10⁰ 10^1 10^2 Resistivity (Ω m) 10^{3} # MN264_out ## MN299_out #### MN301 out $\chi = 0.61918$ Apparent Resistivity, ρ_{det} (Ωm) MN07 (344/-37) Shift = 2.03 10^{-1} 10¹ Depth (km) 10-3 10-2 10⁰ 10¹ 10^{-1} Phase Det. (Deg.) 10⁰ 0 10-2 10⁻¹ Period (s) 10-3 10⁰ 10⁰ 10^1 10^2 Resistivity (Ω m) 10³ 10¹ out Phase Det. (Deg.) Apparent Resistivity, ρ_{det} (Ωm) $\chi = 0.57882$ E5 (205/-35) Shift = 0.28 10^{-1} 10^{2} Depth (km) 10-3 10^{-2} 10^{-1} 10° 90 10⁰ 60 45 30 15 0 10^2 Resistivity (Ω m) 10-1 10⁰ 10¹ 10^{-3} 10^{-2} 10³ #### MN360_out 10^2 Resistivity (Ω m) 10³ #### MNEW3 out Apparent Resistivity, ρ_{det} (Ωm) TEM33 (163/16) Shift = 0.637 10^{-1} Depth (km) 10-2 10^{-3} 10⁰ 10^{-1} 10¹ 10^{2} 10¹ 0 $\begin{array}{cc} 10^1 & 10^2 \\ \text{Resistivity } (\Omega \text{m}) \end{array}$ 10-2 10⁰ 10^{-1} 10² 10^{-3} 10¹ 10⁰ 10^{3} Period (s) out Phase Det. (Deg.) Apparent Resistivity, ρ_{det} (Ωm) $\chi = 1.0122$ EW23 (63/6) Shift = 0.218 10^{-1} 10² Depth (km) 10-2 10² 10-3 10⁰ 10¹ 10^{-1} 90 75 60 45 30 10¹ 15 10² 10¹ 10¹ 10⁻¹ 1 Period (s) 10⁰ 10-3 10^{-2} #### MNS5 out 10^{-2} 10^{-3} 10⁰ Period (s) 10^{-1} 10¹ 10² 10³ 10⁰ 10^{1} Resistivity (Ω m) 10² #### MNWELL3_out # MNWP2A_out #### out $\chi = 0.66\overline{342}$ Apparent Resistivity, $\rho_{det}\left(\Omega m\right)$ TEM33 (157/12) Shift = 0.687 10^{-1} Depth (km) 10-3 100 10-2 10² 10¹ 10^{-1} 10¹ 0 10-2 $\begin{array}{cc} 10^1 & 10^2 \\ \text{Resistivity } (\Omega \text{m}) \end{array}$ 10° 10-3 10^{-1} 10² 10⁰ 10³ 10¹ Period (s) $\chi = 0.81575$ Apparent Resistivity, ρ_{det} (Ωm) EW5 (152/5) Shift = 0.665 10^{-1} 10² 10¹ 10-3 100 10-2 10¹ 10^{-1} 90 Phase Det. (Deg.) 75 60 45 30 10¹ 15 10⁻¹ Period (s) 10-2 $\begin{array}{cc} 10^1 & 10^2 \\ \text{Resistivity } (\Omega \text{m}) \end{array}$ 10^{-3} 10⁰ 10¹ 10⁰ 10³ #### MT72_out $\chi = 0.461$ Phase Det. (Deg.) Apparent Resistivity, ρ_{det} (Ω m) of ω of ω of ω mntem63 (13/3) Shift = 0.382 10^{-1} Depth (km) 10-3 10² 10^{-1} 10⁰ 10¹ 10^{-2} 10¹ 0 10-1 $\stackrel{\cdot}{\text{10}^2} \text{Resistivity } (\Omega \text{m})$ 10-2 10² 10^{-3} 10⁰ 10¹ 10¹ 10^{3} Period (s) out $\chi = 0.57049$ Apparent Resistivity, $\rho_{det}\left(\Omega m\right)$ TEM09 (173/21) Shift = 0.657 10^{-1} Depth (km) 10¹ 10² 100 10^{-3} 10^{-1} 10¹ 10^{-2} 90 Phase Det. (Deg.) 75 60 45 30 10¹ 15 10² $\begin{array}{ccc} 10^1 & 10^2 \\ \text{Resistivity } (\Omega \text{m}) \end{array}$ 10⁰ 10⁰ 10^{-3} 10^{-2} 10^{-1} 10³ 10¹ #### MT84 out