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Abstract 
 
State of the art: Local optimization is common knowledge but leads to difficult calculations and time consuming 
search for an optimum. Global optimization is difficult in spreadsheets or matlab software but becomes easy in a 
software using Genetic Algorithms. An Objective Function is built by finding the net present value of the future 
income from energy sales and subtracting the financial and running costs. The basic equations are studied; 
different objectives, resource utilization policies and environmental considerations are discussed with respect to 
their influence on the result. In the final phase a Genetic Algorithm routine search out an optimum and this is 
demonstrated on a case study example.  



 

Introduction 
Local optimization of individual structures such as tunnel diameters is common knowledge in 
design of hydropower stations. The calculations are very difficult however. The search for an 
optimum is also very time consuming.  

Global optimization is very difficult, even fully computerized in spreadsheets or matlab 
programs. The software application HYDRA overcomes this difficulty by using Genetic 
Algorithms.  

The HYDRA software produced by Univ. of Icel.  in cooperation with NPCI and Tech. Univ. 
of Vienna.  In the reference list the 5 first references discuss this application. In this lecture is 
focusses on the special principles that are the working mechanism of this application and also 
shows a case study. 

One principle used, is the mathematical maximization of an objective function is (Eliasson et 
al 1997): 

max f(x1, x2,…,xn) ai ≤ xi ≤ bi for i = 1 to n   (1) 

gj(x1,x2,…,xn) ≤  cj for ∀ j     (2) 

In this chapter the principle of optimal profit is introduced as our objective, so f(x1,x2,…,xn) is 
the profit, depending on the vector (x1,x2,…,xn), that stores all the necessary variables needed 
to compute the power production and investment costs. This leads to a method that in fact 
includes many of the conventional local optimization methods used so far, and can yield the 
same results. 

By assuming an infinite energy demand and a fixed energy price, ke, the present value of the 
revenue of energy sale becomes (Eliasson & Ludvigsson 1996): 
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Where T is total income, G gross expenses, r is the interest rate, N is the lifetime of the 
investment, C is the project investment, ν is the annual operation and maintenance cost, ke is 
the unit price of energy, and E is the annual energy capacity of the hydrostation. 

As all costs and revenues are included in the objective function, the optimization can be 
considered global. Inserting NPV for f(x1, x2,…,xn) in (2) gives: 
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The optimization that Mosonyi (1991), and since then other authors, presents for tunnels, may 
be deduced from (4). This is local optimization. Often, variable costs of other project items 
than the conduit itself are not taken into account, which results in a larger tunnel diameter 
than the optimal one.  

 

Example 1: Local optimization of x1, the diameter of a headrace tunnel  
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Speculations on how long the economic lifetime N should we and what the interest rate r and 
the annual maintenance cost ν should be is outside our topic so we put N very large (40 – 60 
years), v < r < 10 % and get: 
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The tunnel diameter x1 only affect the energy losses in the E term and the construction costs 
of the tunnel itself in the C term. We differentiate partially with respect to x1: 

11
e

i dx
dC

a
dx
dE

k0
x

NPV =⇒=
∂

∂
 

We take x1 to be the diameter of the tunnel. Now E depends on A = π x1
2, the tunnel area, as 

smaller tunnel diameter means greater flow resistance and less energy output. We also take C 
= k3A L where L is the tunnel length, k3 the tunnel construction cost per cubic meter so 
construction costs decrease with decreasing tunnel diameter. Somewhere there must be an 
optimum.  

Choosing Chezy’s formula to represent the flow resistance will result in the following formula 
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Where Ce is Chezy’s coefficient of flow resistance, e is efficiency of power station, γ is unit 
weight of water and µ is the ratio of hydraulic radius over square root of A, it is 0,25 – 0,28 
for most tunnel cross-sections.  

What have we got here? It is one of many forms of the formula for optimal size of a headrace 
tunnel cross section in a hydroelectric power plant. Now several questions arise. First: is the 
formula explicit and ready to use ? Answer is no,  k3 and Ce depend slightly on x1 (tunnel 
diameter) so at least we have to use some iteration. Second: are there limitations to the 
validity? Answer is yes, we have used simplifying assumptions to get through a very 
complicated part of the calculations, which is the relationship between flow resistance and 
annual energy production, for details we must refer to Eliasson 1997. Third: is the formula 
generally valid accepting the limitations and possible iterations?  Answer is no, there is a cost 
item not included in the formula, which is the size of powerhouse and mechanical equipment.  

The conclusion of this example is that even using complicated methods, local optimization 
can only produce implicit formulas of limited validity. Counterexamples do exist, but they are 
few and uninteresting.  

Different objectives  
The result of example 1 brings us back to the global problem of eq. (3). We may ask the 
question if the principle of profit optimization is really global enough, can it possibly include 
important objectives such as environmental consideration and the reasonable demand for 
cheap electricity for public utilities? Can these considerations be included in a profit 
maximizing objective function? 



Environmental considerations have two sides, first there is the resource utilization principle, 
second the principle of nature conservation. These two sides will be discussed in examples 2 
and 3.  
 

Example 2: The principle of long-term marginal costs 
In the first case we don’t want the utilization of a certain amount of resource to spoil the 
resource. This can happen in harnessing hydroelectric energy. We never utilize 100 % of a 
resource, there is always something left, and what is left is usually uneconomical to use. 
Diminishing energy resources of the world have as consequence rising prices, energy 
resources that are uneconomical to harness today, maybe economical tomorrow. But it is 
usually uneconomical to enlarge old power plants, so considerable hydroelectric energy may 
go lost in the future if we build only small power plants today.   
The principle of long-term marginal cost has been applied in Norway and Iceland. In short it 
says that a resource shall be utilized until the marginal cost, J kr/kwh, matches the long-term 
price for other (fossil) energy.  
In order to understand this design principle imagine that we plan a power station with annual 
energy output E. Then we plan a little bit bigger power station with annual energy output E + 
dE. Assuming that our plan is the most economical way to achieve the enlargement dE, the 
principle of long term marginal cost tells us that the power station is big enough not spoil the 
resource if: 
 
 dC/dE  =  J 
 
Then the size of the power station is right. If our dC/dE < J we have to try a bigger station, if 
dC/dE > J we have to make it smaller. How can this be included in our objective function eq. 
3? ? 
Differentiating eq. 3 with respect to E and putting the result equal to zero as in eq. (4) results 
in: 
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Which shows that for the optimum of the objective function, ke is equal to the marginal cost of 
energy instead of the power sales price. By simply replacing the power sales price with the 
long-term marginal cost (augmented for operation and maintenance) we change the objective 
from profit maximization to resource utilization. The conclusion of example 2 is that selecting 
the ke different from the power sales price the objective function is changed from profit 
maximization to another objective, e.g. marginal cost design.  

Example 3: Nature conservation. 
Second class, or the second site, of environmental considerations is that the development must 
not harm the environment, the values of nature have to be conserved. 
Total conservation is simple; law (conservation act) protects the project site and the project 
suspended. Several sites are protected this way in almost every country in the world. The 
respective area is usually made a national monument.  
Partial conservation can be made in a number of ways. The most common is restrictions on 
land use (such as borrow pits and fill areas), restrictions on storage volumes in reservoirs or 
minimum (or maximum) flows in rivers and many other things. Such restrictions either enters 
the cost function directly through their influence on unit prices or as restriction on the vector 
(x1,x2,…,xn) in eq. (2) and through that they become a natural element in the optimization 



process. E.g. if we are supposed not to let the water level in a storage reservoir not exceed a 
certain elevation H, and suppose the storage volume V(H) in this reservoir is x2 = V, then we 
have 
 
 x2  <  Vmax(H) 
 
As a natural restriction in the optimization.  
Usually there are various environmental obligations involved in the permit the developer must 
obtain prior to construction of the power plant. This may involve various cost items that are 
not functions of the vector (x1,x2,…,xn) but independent of it and can therefore not be 
included in the optimization in the way we just did with the reservoir elevation. This may be 
items to protect and research wildlife or fish habitats or create public access to scenic areas. 
These cost items do not affect the optimization as such as they drop out in the differentiation 
in eq. (4), but they affect the resulting profit and may turn it negative and thus render the 
project unfeasible for the developer. In the case of marginal costs, they can keep the average 
cost above the marginal cost and thus rule the project out. In such a way environmental 
obligations can serve the same purpose as total conservation.  
In short, including environmental obligations that protect the nature in the optimization eqs (1) 
– (4) is usually not a problem.  
 

Global optimisation  
The global optimization problem cannot be solved analytically, the nonlinear constraints eq. 2 
rule this possibility out completely. Therefore the program HYDRA has been developed to 
solve the global optimization problem. It does so using genetic algorithms, but it belongs to 
the class of methods called evolutionary methods (Goldberg 1989). One does not have to 
understand how genetic algorithms work, it is sufficient to know that the method seeks out the 
optimum by giving the vector { xi } a definite values, calculating C and comparing the results. 
This sounds as both impractical and time consuming, but the genetic algorithm seeks out the 
optimum and finds it with astonishing speed (Eliasson et al 19971, 19972, 1998 and 1999).  
 
Example 4: Global optimization of simple powerplant 
A simple example, shown in figure 1 (Eliasson et al 19971). Eqs. 1 – 4 are derived by direct 
mathematical analysis and solved. To do so it was necessary to build special approximation 
formula for the powerhouse and other construction elements shown in fig 1. The 
mathematical solution is compared to the findings of the HYDRA program in table 1, NPV, 
for different number of individuals P, generations G and mutation probability µ.  It is 
necessary to explain the parameters P, G and µ shortly.  
The computer stores {xi} vectors as P individual strings in the memory. Profit is calculated 
for all of them and the best performing (highest profit) individuals selected, these are the 
“parents”. By special mixing of the elements of the best vectors a new set of P individuals is 
formed, this set is a new generation the “children”. Now the process is repeated G times. To 
prevent the process to get stuck in a local maxima brand new children, unrelated to the parents 
are formed randomly, the mutation probability µ decides how often this happens. When the 
process stops after G generations the optimum should be found.  
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Fig. 1 Simple hydropower plant(Eliasson et al 19971). 
 

Table 1. Mathematical solution (bold) compared to optimisation results, 
 

P  50 50 50 50 50 20 20 
G  100 100 100 100 100 200 200 

µ  0.001 0.005 0.01 0.025 0.05 0.025 0.05 
D 4,0 4.0 4.0 4.0 3.9 4.0 4.0 3.9 
H1 543,0 543 543 543 543 543 543 543 
H2 48,2 44 49 49 48 42 50 44 
H3 44,9 39 46 46 45 37 46 39 
NPV 28594 28580 28594 28594 28590 28569 28593 28576 
dNPV - -14 0 0 -4 -25 -1 -18 

The trick in this computation is to select P, G and µ so the optimum is truly found, without 
spending excessive computertime by selecting P, G and µ too high.  
When the results of the optimization are compared with the mathematical solution, it is 
obvious that the runs where the P, G and µ parameters are optimally tuned reach results very 
close to the true optimum.  



Development of Best Solution
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Figure 2. Development of solution for the different parameters in table 1 
Eliasson et al 19971 

 
The result of the conventional local optimization method is also calculated and it gives an 
optimum diameter, D, of 4.5 m, which is a 0.5 m difference in the diameter between methods.  
The conclusion of example 3 is that genetic algorithm is a suitable tool for finding the optimal 
plant arrangement.  
 
The HYDRA  software is a shell that contains program objects that calculate the NPV of all 
construction elements (Eliasson et al 19972). Points that have geographical coordinates 
connect them and these can be included in the optimization if necessary. Thus tunnel lengths 
and position of powerhouses can be found, see e.g. the tailrace tunnel in fig. 1 example 3. 
Here L4 is optimized.  
 
Experience shows that running times are in the vicinity of 2-4 minutes for very complicated 
hydropower plants, depending on the size of population and number of generations. G = 2P 
seems to be a suitable rule and in most cases P = 30 is enough. The suitable m is highly 
dependent upon P see fig. 1 example 3.  
 
HYDRA has performed very well on very complicated project planning tasks (Eliasson et al 
1998, Eliasson et al 19991 and Eliasson et al 19992). Fig 3 shows the object diagram in 
Eliasson et al 1999. It is a good example of the complexity that can be handled by the 
program.  
 
In the beginning all the objects in HYDRA used approximation formulas to calculate the NPV 
of their respective construction elements. Today cost estimates based on quantities and locally 
adjusted unit prices for concrete, dam fills, tunnel-driving etc. are used. An exception from 
this is the powerhouse but here the old formula is still in use. The guidelines for a more 
advanced powerhouse object have been given in chapter 5 in Eliasson et al 19991, and this 
important contribution is by professors Matthias, H. – B. and G., Doujak of Technical 
University of Vienna. G., Doujak, further elaborates the subject in chapter 4 in Eliasson et al 
19992, this time.  
 
To find the profit E has to be calculated. This has to be the expected power output of the 
station. This calculation has to be performed for each individual in each generation. This is 



done by using the load factors derived in (Eliasson 2000). The load factors have to be putted 
into HYDRA in the beginning of each run. The method to find them is very complicated and 
will not be repeated here.  

Global optimization results, theoretical remarks 
Some information is included in the optimization in an implicit manner and has to be 
extracted by means of theoretical considerations. Lets take a few examples. 

In theory, we search for maximum profit in the optimization. We have not considered the 
average cost of power per kwh the utility can offer the customers. We have only considered a 
fixed market price but a utility may want to offer cheaper electricity to its customers. What 
can be done?  
 
Example 5: Average power cost and opportunity cost 
For the utility the average power cost is   
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Here Ga and Ta are annual values in contrast to the NPV’s G and T. The factor κ is to take 
care of that the ratio of annual values is not exactly the same as the ratio of NPV´s. A 
common value of κ is between 0.9 and 1.1 
If we make a series of optimizations for lower and lower sales price k, the profit H will tend 
to zero and in that limit we get: 
 ko  = ke  

Or the average power cost is equal to the unit energy sales price. This is called the break-even 
price or the opportunity cost price. It is the lowest unit price one can offer for a commodity 
without loosing money.   

Case studies 
Skagafjordur Iceland  
The scheme is described in (Eliasson et al 1998). It consists of a storage reservoir 
(Austurbugur Storage = AS) and one or two powerhouses downstream. The reservoir is 
considered to release a fixed discharge to the powerhouse turbines. The discharge is 
calculated from the project capacity, a load factor of 0.816 is used. Economical benefits are 
calculated from power sales and surplus capacity that can act as a spinning reserve according 
to (prices in US dollars): 
Primary power   0.03  $/kWh 
Spinning reserve  7.14  $/kW/a 
The investment cost includes various owner's costs as % of construction costs: 
 

Camp and Mobilisation  6,2  % 
Contingencies  20  % 
Supervision and Engineering  12,66  % 
Preliminary Investigation Cost  2,33  % 
Other Owner's Cost  4,18  % 
Interest During Construction  17,83  % 

Table 2   Various owner's costs 
Annual operation and maintenance is 0,8% of the project investment. The interest rate in NPV 
calculation is 6% and project economic lifetime 40 years.   



Eventual use of thermal reserves has the following tariff: 
Thermal reserve power 0.06  $ /kWh 
Standby thermal reserve 17.14  $/kW/a 
The main results of the optimisation compared to Fljotsdalsvirkjun are as follows: 
 
Project I.c.1 Power Inv.c.2 B.e.p.3 C.cost4 Po.cost A.stor. (AS) 
 Mw Gwh/a M$ $/kwh M$/Mw $/kwh/a m.a.s.l M m3 
Merkigilsvirkjun 176 1.259 355 0.021 2.01 0.286 708 282 
SV / Villinganes 123 879 283 0.024 2.30 0.314 709 179 
Giljamúli 103 735 237 0.024 2.30 0.329 704,5 215 
Fossárvirkjun 92 655 245 0.028 2.65 0.371 705 223 
Fljotsdalsvirkjun 176 1.259 328 0.019 1.86 0.257   
1Installed capacity 2Investment costs 3Break even price 4Capacity cost 

Table 3 Comparison of project economies 

Notice in table 3, that each arrangement gives a different maximum elevation of the 
Austurbugur storage (AS), which clearly shows that the optimal size of the storage is very 
much dependent on other parts of the scheme. 
Following answers to the principal questions concerning the project were given: 
How much power can be economically exploited in the region?  
Merkigilsvirkjun gives 176 MW installed capacity with anticipated production of 1259 Gwh/a. 
This is about 60 % of the technically harnessable potential in the area.  
The locations and the dimensions of main construction items.  
 Main features are a headrace tunnel 46 km long and 4.9 m wide, and a pressure shaft 366 m 
deep and 2.7 m wide. 
What is the construction cost of the respective power stations.  
The construction costs are 2.0 – 2.3  M$/Mw, a very competitive price.  
How does the economy of individual projects compare to Fljotsdalsvirkjun. Skagafjoerdur 
hydro is 10 – 20% more expensive than the Fljotsdalur project.  
What further field investigations will be necessary 
This is as follows: 

• More information is needed on the effect of rhyolite on tunnelling conditions. 
• Unmapped spots on Nyjabaejarfjall and west of the junction of the Austari 

Joekulsa river and the Vestari Joekulsa river need to be mapped.   
• Streams flowing from the Nyjabaejarfjall area to Austari Joekulsa have to be 

gauged and their discharge estimated.   
• Environmental investigations need to be started as soon as possible. 

The last point is because this hydropower potential is indeed very attractive so eventual 
adverse effects of the exploitation on the environment have to be uncovered as quickly as 
possible.  
It is remarkable that the most economical project is the Merkigilsvirkjun project. From this we 
can draw the inference that field investigations in the Merkigilsvirkjun area, that is in the 
eastern part of the Skagafjoerdur catchment, have to be given high priority.  



 

Fljotsdalur 
This example is taken from (Eliasson et al 1997 and 19991 and 19992).  

Table 4. Premliminary optimisation 1997 
 

Description  PPR1 PPR2 O1150 O∞ 
Reservoir level m.a.s.l. 664.5 668.5 665.1 667.6 

Headrace tunnel dia. m 5.0 5.0 4.3 4.8 
Pressure shaft dia. m 2.9 2.9 2.6 2.7 

Power MW 213 239 211 233 
Energy GWh/a 1159 1300 1150 1278 

Investment BIKR 21.16 22.91 19.92 21.96 
Profit BIKR 10.90 13.44 12.28 13.86 

∆Profit/∆Investment % / % 0/0 +23/+8 +13/-6 +27/+4 

Optimised dimensions are bold faced. 60 BIKR ≅ 1 billion $ in 1997 
The O1150 optimisation seeks a slightly higher dam (increased discharge to the plant) to 
compensate for increased power losses in narrower conduits.  
The O∞ optimisation results in a significantly higher dam compared to the PPR1. The 
explanation is that in the project planning report, the size of the power plant and the size of 
reservoir is selected on basis of a power market scenario at the expected construction time of 
the plant, but the optimisation assumes infinite demand. The solution is however not far from 
the PPR2 arrangement.  
The global optimisation O1150, leads to a 0,7 m narrower headrace tunnel compared to the PPR. 
Local optimisation, considering only variable cost of the headrace, leads to the same result as 
in the PPR (5 m). The power capacity reduction due to increased headlosses, is compensated 
with a slightly larger reservoir (increased discharge). 
The O∞ optimisation results in a slightly smaller headrace diameter compared to the PPR. It is 
quite natural when compared to O1150, that this optimisation seeks a larger tunnel, because 
there are no market restrictions. 
The same logic can be used to explain the difference in the pressure shaft diameter. There is, 
however, a problem with the maximum velocity in the shaft. In both optimisations the 
diameter breaks the design criteria that the maximum velocity should be below 8 m/s. For 
both O1150 and O∞, the minimum diameter that satisfies this constraint should be selected by 
the user, in both cases close to d = 2,8 m, depending on design discharge. This has a minor 
economical significance in this case, but is however a good example of how dependent 
constraints g(x, y) ≥ 0 have to be considered in the future development. The way to handle this 
is to develop and add a penalty function, Φ(x), to the construction cost of the pressure tunnel 
type object (and other objects where necessary), that 'penalizes' the tunnel if it's water velocity 
exceeds the allowed value but is otherwise zero. This prevents the Genetic Algorithm from 
breaking this constraint. 
The O∞ optimisation results in a larger energy output than in the PPR1. This is natural, as this 
optimisation assumes plant stage, which means no market restrictions and no extra benefit for 
the system. The extra benefit is that interactions between Fljótsdalur Power Plant and the 
existing power system produces substantial extra energy (estimated 250 GWh/a firm energy 
in the PPR) through better utilisation of the water resources.  
The project investment is 6% lower in optimisation O1150 compared to the PPR1, resulting in a 
13% higher profit, which is a significant improvement. The optimisation O∞ on the other hand 
leads to a 4% higher investment and a 27% higher profit. When it is kept in mind that the 



PPR1 plans a future raising of the dam to reservoir level 668,5 m.a.s.l (Fljótsdalur Engineering 
Joint Venture 1991), the result of O∞ is very close to the PPR2 version.  
In order to ensure the best possible result in the global optimisation the cost estimation of the 
whole scheme is completely revised. The VOS construction cost functions are removed and 
replaced with new cost functions, specially prepared by the engineering consultants (Helgason, 
pers. comm.).  
Now similar runs as for the Plant Stage are performed. The results are presented in table 5.  
 

Table 6. Tabulation of significant data and net profit of the investment  
(optimised dimensions are bold faced). 60 BIKR ≅ 1 billion $ 

 
Description  PPR1 PPR2 O1150 O∞ 
Reservoir level m.a.s.l. 664.5 668.5 665.1 669.6 
Headrace tunnel dia. m 5.0 5.0 4.3 5.3 
Pressure shaft dia. m 2.9 2.9 2.6 2.8 
Power MW 212 239 210 242 
Energy GWh/a 1159 1300 1149 1325 
Investment  BIKR 22.78 24.40 22.18 24.91 
Profit BIKR 9.36 11.78 9.72 11.97 
∆Profit/∆Investment        % / % 0/0 +26/+7  +4/-3 +28/+9 

 
The O1150 optimisation leads to a similar arrangements as the plant stage optimisation. The O∞ 
however shows significant changes. This is because the new cost formulas do not represent 
the true variation of the costs except in a narrow region around the PPR1 values. Therefore the 
results of the O∞ optimisation are hardly applicable. However a comparison of the columns 
O∞ in Tables  4 and 5, shows how important it is that the cost formulas in the optimisation are 
accurate. It may therefore be concluded that it is worth the effort for the consultants, to take 
the time and trouble to have the cost formulas in Hydra improved with formulas specially 
designed by themselves, in order to improve the accuracy of optimisations performed. 
The economical result is of course dominated by the overall increase in the construction cost, 
compared to the plant stage, which leads to a considerable decrease in the profit, probably 
meaning considerable decrease in the profit margin of venture capital.  
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