ORKUSTOFNUN

Blue lagoon mud. Chemical composition and grain size distribution

Hrefna Kristmannsdóttir, Svanur Pálsson

ORKUSTOFNUN

Geothermal Division Geochemistry Department 26. July, 1996

	ORKUSTOFNUN Greinargerðasafn
--	---------------------------------

HK/SP hk 96/12

BLUE LAGOON MUD

Chemical composition and grain size distribution

The chemical composition of Blue Lagoon mud is shown in the table below. Moisture (H₂O) is on average 71,9 % and silica (SiO₂) 26,5 %. Sodium (Na), potassium (K) and calcium (Ca) chlorides (Cl) are less than 1,5 % and other components are in trace amounts. Since this is a natural product some variation in composition can be expected.

Composition	of silica				
mud from the					
BLUE LAGOON					
Weight %					
H2O	71,9				
SiO ₂	26,5				
ij	0,0004				
Na	0,62				
K	0,11				
Mg	0,004				
Ca	0,14				
Sr	0,002				
Al	0,012				
Cr	0,0001				
Mn	0,002				
Fe	0,01				
Cu	0,0001				
Zn	0,0011				
As	0,00008				
Cd	0,00001				
Со	<0,00008				
Hg	<0,00008				
Pb Pb	0,0001				
Se	<0,00006				
Ni	0,0001				
CO3	0,002				
В	0,0006				
CI	1,1				
SO ₄	0,003				
Total	100,43				

The analyse is based on measurements of the moisture by weighing the substance in natural condition and dried at 100 °C and 200 °C. There was not observed significant differences between weight loss by drying at either temperature. The chloride (Cl), boron (B), sulfate (SO₄) and carbonate (CO₃) were derived from analyses of the Blue Lagoon water, but all other components from analyses of the dried substance. Analytical methods are described in annex 1.

The measured grain size distribution reveals that 30 % are clay size, <0,002 mm, 60 % silt size, 0,002-0,063 mm, and 10 % sand size, > 0,063 mm. The measurements are based on the assumption that the grains are all cubes in shape, which certainly is not the case and makes the results somewhat less accurate. Dissoved solids will be added to the smallest grain fraction, but this gives less than 1 % error in measurement. A diadram showing result of the actual measurement is shown in annex 2.

Hrefna Kristmannsdóttir and Svanur Pálsson

...

Const- ituent	Fract- ion	Method	Brief description	Standard	RSD %	D.L µg/l
Cd	Fa	AAS CF	Dried 30 s 125°C, ashed 30 s 700°C, atomized 10 s 2000°C. Purge gas Ar. 228.8 nm	Merck. Cd(NO ₃) ₂ 0.5 M HNO ₃	3.2-4.6 for 2.5- 10 µg/l	0.05
Cu	Fa	AAS CF	Dried 30 s 125°C, ashed 30 s 900°C, atomized 2 s 2000°C. Purge gas Ar. 324.7 mm	Merck. Cu(NO ₃) ₂ 0.5 M HNO ₃		0.1
Pb	Fa	AAS CF	Dried 30 s 125°C, ashed 30 s 750°C, atomized 2 s 2000°C. Purge gas Ar. 283.3 nm	Merck Pb(NO ₃) ₂ 0.5 M HNO ₃	32-52 for 25- 100 µg/l	0.1
Zn	Fa	AAS GF DA	Dried 30 s 125°C, ashed 30 s 400°C, atomized 2 s 1000°C. Purge gas Ar. 213.9 nm. Aspirated directly into flame	Merck Zn(NO ₃) ₂ 0.5 M HNO ₃	34-37 for 280- 310 µg/l	0.1 20
Cr	Fa	AAS GF	Dried 30 s 125°C, ashed 30 s 1200°C, atomized 3 s 2300°C. Purge gas Ar. 357.9 nm	Merck Cr(NO ₃), 0.5 M HNO ₃	0.4-1 for 19- 77 µg/l	0.1
Со	Fa	AAS GF	Dried 30 s 125°C, ashed 30 s 1000°C, atomized 3 s 2200°C. Purge gas Ar. 240.7 nm.	Merck Co(NO ₃) ₂ 0.5 M HNO ₃		0.2
Ni	Fa	AAS Œ	Dried 30 s 125°C, ashed 30 s 1000°C, atomized 3 s 2300°C. Purge gas Ar. 232.0 mm	Merck Ni(NO ₃) ₂ 0.5 M HNO ₃		0.5
Al	Fa	AAS Œ	Dried 30 s 125°C, ashed 30 s 1500°C, atomized 3 s 2400°C. Purge gas Ar. 309.3 nm	Merck Al(NO ₃) ₃ 0.5 M HNO ₃		l
Fe	Fa	AAS GF	Dried 30 s 140°C, ashed 30 s 1200°C, atomized 3 s 2100°C. Purge gas Ar. 248.3 nm	Merck Fe(NO ₃), 0.5 M HNO ₃		0.1
Min	Fa	AAS GF	Dried 30 s 140°C, ashed 30 s 1000°C, atomized 3 s 2000°C. Purge gas Ar. 279.5nm	Merck Cr(NO ₃) ₃ 0.5 M HNO ₃		0.1
As	Fa	AAS HG	Organic matter converted with HNO ₃ -H ₂ SO ₄ -HClO ₄ , As reduced and converted to AsH, using NaBH. The hydride is swept into a heated cell placed int he beam of an As EDL lamp and As determined at 193.7 nm.	Merck H ₂ AsO ₄ 0.5 M HNO ₃	5.5-9 for 5-20 µg/l	0.1

Const- ituent	Fract- ion	Method	Brief description	Standard	RSD %	D. l. µg/l
塔	Fu	AAS FI	For clay digest Hg is reduced and converted to HgH, with NaBH4. The hydride is swept into a cell placed in the beam of an Hg EDL lamp and the atomic absorption determined at 253.7 nm. At collection KMnO/K ₂ S ₂ O/HNO ₃ is added to water sample_HNOHHCl and then SnCl ₂ added at the start of determination. The resulting gaseous Hg is amalgamated with gold and then heated to be released into a cell for flameless AAS determination at 253.7 nm	Merck Hg(NO ₃) ₂ 0.5 M HNO ₃	4-16 for 2.5-18.1 ng/1	0.001
Se		AAS HG	Se is reduced and converted to SeH, using NaBH, The hydride is swept into a heated cell placed in the beam of a Se EDL lamp and Se determined at 196.0 nm.	Merck SeO ₂ 0.5 M HNO ₃	11-19 for 5-15 µg/l	4
pН	· Ru	Electro- metric	A glass electrode in combination with a reference potential is inserted into the sample and pH and temperature values recorded.	Merck- Titrisol. pH 4, 7, 10	±0.1 pH unit	
Cond- uctivity	Ru	Bridge	Specific conductance is measured using a Wheatstone type bridge using temperature compensation to 25°C.	KCI		
Na	Fa	AAS DA	A small amount of Cs solution is added and the sample directly aspirated into an oxidizing airacetylene flame. Absorption read at 589.6 nm.	Merck- Titrisol. NaCl /H ₂ O	1.2-1.5 for 8.2- 52 mg/l	1
K	Fa	AAS DA	A small amount of Cs solution is added and the sample directly aspirated into an oxidizing airacetylene flame. Absorption read at 766.5 nm.	Merck- Titrisol. KCl /H ₂ O	7.9-12.5 for 1.6- 6.3 mg/l	1
Li	Fa	AAS DA AES	Sample directly aspirated into an oxidizing air- acetylene flame. Absorption read at 670.8 nm. Clay digests aspirated into air-acetylene flame and emission read at 670.8 nm.	Merck- Titrisol for 0.1 ppm Na, K and Li after dilution to 1 L		0.5
Mg	Fa	AAS DA	A small amount of La solution is added to water sample which isdirectly aspirated into an oxidizing air-acetylene flame. Absorption read at 285.2 mm.	Merck- Titrisol MgCL/HCL	2.4-4.8 for 21- 82 mg/l	1
Ca	Fa	AAS DA	A small amount of La solution is added and the sample directly aspirated into an oxidizing airacetylene flame. Absorption read at 422.7 nm.	Merck- Titrisol CaCL/HCL	1.7-3.3 for 9-36 mg/l	10

Const-	Fract-	Method	Brief description	Standard	RSD %	D. I.
ituent	ion					hā⁄I
Sr	Fa	AAS DA CF	A small amount of La solution is added to water sample which is directly aspirated into an oxidizing air-acetylene flame. Absorption read at 460.7 nm. Clay digests dried 30 s 140°C, ashed 30 s 1300°C, atomized 3 s 2600°C. Purge gas Ar. 460.7 nm	Merck Sr(NO ₂) ₂ 0.5 M HNO.		Da 50 CF 0.1
SiO ₂	Rd	Spec- tro- photo- metry	Iodine and thiosulphate added to destroy H_S, ammonium heptamolybdate and HCl added. Absorption determined at 410 nm.	Natural hot spring water from Spóastaðir whose SiO ₂ concentr- ation (-104 ppm) is determined gravi- metrically.	1.8-2.5 for 0.87 - 67.3 mg/l	500
В	Fu	Spec- tro- photo- metry	Sample buffered with NH,Ac/Na,EDTA/HAc. Azomethine-H/ascorbic acid reagent added. Absorption determined at 420 mm.	Merck- Titrisol. H,BO/H,O		5
CO ^z	Ru	Electro- metric titration	Sample pH adjusted to 8.2 with HCI/NaOH, then titrated to pH 3.8 with 0.1 N HCl using a pH meter.	Merck- Titrisol. 0.1 N HCl	3.6 for 5-1500 ppm	1000
H ₂ S	Ru	Tit- ration	NaOH added to make sample basic. Titrated with 0.001 M HgAc, dithizone as indicator.		3.9 for 0.03- 800 ppm.	20
a	Fu	IC	Anions from a small volume of sample are separated by means of a guard column, a separator column and a suppressor column. Cl determined using a conductivity detector.	Merck- Titrisol HCVH ₂ O	2.9 for 10 mg/l	25
F	Fu	Select- ive electr- ode	TISAB buffer added, electrode inserted and potential read.	Merck 1000 mg/l NaF/H ₂ O	3.5 for 0.85 ppm	2
Br	Fu	IC	Anions from a small volume of sample are separated by means of a guard column, a separator column and a suppressor column. Br determined using a conductivity detector.	Merck- Titrisol 1000 mg/l NaBr/H ₂ O	and the second s	5 and 10
I	Fu	IC	Anions from a small volume of sample are separated by means of a guard column, a separator column and a suppressor column. I determined using an electrochemical detector.	Merck solid KI weighed dissolved in H ₂ O to make 1000 mg/1		02
NO ₃	Ru	IC	Anions from a small volume of sample are separated by means of a guard column, a separator column and a suppressor column. NO ₃ determined using a conductivity detector.	Merck- Titrisol NaNO, AH,O		25

Const- ituent	Fract- ion	Method	Brief description	Standard.	RSD %	D. L μg/l
SO ₄	Fu	IC	Anions from a small volume of sample are separated by means of a guard column, a separator column and a suppressor column. SO ₄ determined using a conductivity detector.	Merck- Titrisol H ₂ SO/H ₂ O	1.5 for 98.5 mg/l	20
Total dis- solved solids	Fu	Gravi- metric	Sample evaporated and dried at 180°C and 260°C and residue weighed.	·	2.6-3.8 for 190- 1680 ppm	2500

I - ORKUSTOFNUN Raforkudeild	K 2206
Blue Lagoon Much time A	
	1996 07 12 SUP

I - ORKUSTOFNUN Raforkudeild	K 2207
"Blue Lasoon Mud" tupe B	
	194607 12 507

