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ABSTRACT

In this article the main aspects of the Magneto Telluric (MT) method is introduced.
How the resistivity is calculated is derived from basic electromagnetic theory and
then it is applied to practical situations, horizontally layered earth, solved for 1D and
2D structure.

1. INTRODUCTION

In the MT-method time variations in the Earth’s magnetic field are used to probe the subsurface resistiv-
ity structure.

The Earth’s electromagnetic field contains a wide frequency spectrum (Figure 1). The low frequencies
are generated by ionospheric and magnetospheric currents caused by solar wind (plasma) interfering

Figure 1: Natural magnetic field spectrum.
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with the Earth’s magnetic field. Higher frequencies (> 1 Hz) are due to thunderstorms near equator dis-
tributed as guided waves between the Earth and the ionosphere. The time varying magnetic field induces
electric field and hence currents in the ground. By measuring variations in the magnetic and electric
fields in the surface of the ground, information about the subsurface resistivity structure can be obtained.

As we will see, the depth of penetration of the electromagnetic field depends on frequency. Low fre-
quency variations penetrate, and hence probe, deep into the Earth but high frequency variations probe
shallow depths.

In the MT terminology a distinction is made between applied frequency ranges. When variations of
frequencies lower than 10 Hz are used we speak of MT-method but for frequencies higher than 10 Hz
we speak of AMT (Audiofrequency Magneto Telluric) -method. This distinction is partly based on
different source mechanism, but mainly because of difference in measuring instruments.

1.1. Basic Electromagnetic Theory

Maxwell’s equations in conducting medium

∇×E = −∂B
∂t

(1)

∇×H = σE + ε
∂E
∂t

(2)

∇ ·B = 0 (3)

∇ ·E =
1
ε
η (4)

where

B = µH; µ = µrµ0; ε = εrε0

µ0 = 4π · 10−7 Henry/m; ε0 = 8.85 · 10−12 Farad/m

In the Earth we have usually that
µr ' 1 and εr ' 1

Outside discontinuities in the conductivity σ we have no charge density η so that ∇ ·E = 0.

By taking time derivative of (2) and by multiplying by µ and using (1) we get

−∇× (∇×E) = µσ
∂

∂t
E + µε

∂2

∂t2
E

using that
∇× (∇×A) = ∇ · (∇ ·A)−∇2A

and that ∇ ·E = 0 we get

∇2E− µσ
∂

∂t
E− µε

∂2

∂t2
E = 0 (5)

By similar procedure we get

∇2H− µσ
∂

∂t
H− µε

∂2

∂t2
H = 0 (6)

For σ = 0, Equations (5) and (6) are wave equations describing waves propagating with velocity
υ = 1√

εµ . For high conductivities (low resistivities, ρ = 1
σ ) Equations (5) and (6) are diffusion equations.
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If the fields vary harmonically in time, that is as eiωt we get:

∇2E + k2E = 0; ∇2H + k2H = 0 (7)

where
k2 = µεω2 − iµσω (8)

Equations (7) have plain wave solutions

E(x, t) = E
+
e−i(k·x−ωt) + E

−
ei(k·x+ωt) (9)

H(x, t) = H
+
e−i(k·x−ωt) + H

−
ei(k·x+ωt) (10)

where k = ku is the propagation vector and u is normal to the planes of constant phase. The first terms
in (9) and (10) is a wave propagating in the direction of u but the second terms, a wave propagating in
the opposite direction.

The wave number k is the square root of (8) and is complex;

k = α− iβ (11)

where

α =
√

εµ ω

√√√√1
2

(√
1 +

( σ

εω

)2
+ 1

)
(12)

β =
√

εµ ω

√√√√1
2

(√
1 +

( σ

εω

)2
− 1

)
(13)

For the electric field of a wave propagating in the direction of u we have

E(x, t) = E
+
e−βu·xe−i(αu·x−ωt) (14)

which is a wave propagating with velocity
υ =

ω

α
(15)

and exponentially decreasing in amplitude. For σ = 0 we see from (12) and (13) that β = 0 and hence
no decrease in amplitude and α =

√
εµ ω so that

υ0 =
1

√
εµ

(16)

The resistivity of ground rocks is usually in the range of 1−104 Ωm so that σ is in the range 1−10−4 S/m.
The frequencies used in MT are lower than 103 Hz so we have, since εr ' 1,( σ

εω

)2
>

(
10−4

8.85 · 10−12 · 2π · 103

)2

= 3.2 · 106 >> 1 (17)

We see therefore that we can take

α ' β '
√

µωσ

2
=

1
δ

(18)

which is called the quasistationary approximation. δ is called the skindepth. From (14) we see that the
amplitude of wave along the z-axis decreases as

E(z) ∝ e−z/δ (19)
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and it is seen that the amplitude decreases faster for higher conductivities and frequencies. From (15)
and (18) we see that the velocity is given

υ =
√

2ω

µσ
(20)

and decreases with increasing conductivity.

For a wave propagating in the direction of u with the wave vector k = ku, we have from (9) and (10)

E(x, t) = E0e
−i(k·x−ωt); H(x, t) = H0e

−i(k·x−ωt) (21)

From Maxwell’s equations (3) and (4)(
∇ ·B = µ∇ ·H = 0 and ∇ ·E =

1
ε
η = 0

)
we see that

k ·E = ku ·E = 0; k ·H = ku ·H = 0

so both E and H are perpendicular to the wave vector k.

From Maxwell’s equation (2) (
∇×H = σE + ε

∂

∂t
E
)

we see that

− ik×H = (σ + iεω)E =
ik2

µω
E (22)

or
E = −µω

k
u×H (23)

If we take z-axis along u then

u = (0, 0, 1); u×H = (−Hy,Hx, 0) (24)

and we have
Ex =

µω

k
Hy; Ey = −µω

k
Hx (25)

which can be written (
Ex

Ey

)
=
(

0 Zxy

Zyx 0

)(
Hx

Hy

)
(26)

where
Zxy = −Zyx = Z =

µω

k
(27)

In the quasistationary approximation k =
√

µωσ 1√
2

(1− i) and we have

Z =
√

µω

σ

√
2

1− i
=
√

µω

σ

1 + i√
2

=
√

µω

σ
eiπ/4 (28)

By measuring E and H we can determine the resistivity, because from (26) and (28) we can see that

ρ =
1
σ

=
1

µω

∣∣∣∣Ex

Hy

∣∣∣∣2 =
1

µω

∣∣∣∣Ey

Hx

∣∣∣∣2 (29)
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Figure 2: Reflected and refracted waves.

2. THE MT METHOD

We now turn to the MT-method and consider plain electromagnetic wave of angular frequency ω and
wave vector k0 incident at the surface of a homogeneous earth with resistivity ρ = 1/σ. The wave
vector k0 makes the angle θi (angle of incidence) with the z-axis. A refracted wave propagates into the
half-space with wave vector k making the angle θt with the z-axis.

By Snell’s law we have
1
υ0

sin θi =
1
υ

sin θt (30)

where υ0 and υ are the velocities in the air and the half-space respectively. From (16) and (20) we have

υ0 =
1

√
ε0µ0

; υ =
√

2ω

µoσ
(31)

and we have

sin θt = sin θi

√
2ε0ω

σ
(32)

In (17) we found that for ρ = 1/σ < 104 Ωm and ω < 103 Hz

2ε0ω

σ
< 10−7

So that θt is practically zero and the refracted wave in the Earth has the wave vector k along the z-axis
for all angles of incidence. The equations that we have derived (Equations (25)-(29)) apply to the trans-
mitted wave. By measuring the E and H fields in the surface of the half-space we obtain the resistivity
by Equation (29).

3. HORIZONTALLY LAYERED EARTH

In the surface of a horizontally layered earth we have(
Ex(ω)
Ey(ω)

)
=
(

0 Zxy(ω)
Zyx(ω) 0

)(
Hx(ω)
Hy(ω)

)
(33)
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Figure 3: Layered earth.

where the impedance tensor elements are

Zxy(ω) = −Zyx(ω) = Ẑ1 (34)

The quantity Ẑ1 is determined by a recursion relation

Ẑi = Zi
Ẑi+1 + Zi tanh(ikidi)
Zi + Ẑi+1 tanh(ikidi)

(35)

for i = N − 1, . . . , 1 and ẐN = ZN

Zi =
µ0ω

ki
; ki =

√
µ0ε0ω2 − iµ0σiω (36)

The tensor element Ẑ1 can be written

Ẑi(ω) = |Ẑi(ω)|eiφ(ω) (37)

where both |Ẑi| and φ are dependent on the resistivity layering and angular frequency.

In analogy with homogeneous half-space we define apparent resistivity

ρa(ω) =
1

µ0ω
|Ẑ1|2 =

1
µ0ω

∣∣∣∣Ex

Hy

∣∣∣∣2 =
1

µ0ω

∣∣∣∣Ey

Hx

∣∣∣∣2 (38)

which is a function of ω.

From the concept of skindepth, it is plausible that with lower frequencies we probe deeper into the Earth.
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Figure 4: 1D MT apparent resistivity and phase.

Figure 5: MT setup.
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4. FIELD MEASUREMENT

We measure the electric and magnetic fields as a function of time in two perpendicular directions x and y

Hx(t); Hy(t)

Ex(t) =
Vx(t)
∆x

; Ey(t) =
Vy(t)
∆y

(39)

Figure 6: Timeseries.

Generally we have (
Ex(ω)
Ey(ω)

)
=
(

Zxx Zxy

Zyx Zyy

)(
Hx(ω)
Hy(ω)

)
(40)

To determine the tensor elements we Fourier transform the timeseries

Hx(t) → Hx(ω); Hy(t) → Hy(ω)
Ex(t) → Ex(ω); Ey(t) → Ey(ω)

(41)

then we have two equations

Ex(ω) = ZxxHx(ω) + ZxyHy(ω) (42a)

Ey(ω) = ZyxHx(ω) + ZyyHy(ω) (42b)

but four unknowns.

But the tensor elements Zij change slowly with ω and can be calculated for fewer frequencies than the
transformed values of E and H.

The most common way is to multiply (42a) and (42b) with the complex conjugate of the magnetic fields
and average over frequency intervals, we get

< ExH∗
x > = Zxx < HxH∗

x > +Zxy < HyH
∗
x > (43a)

< EyH
∗
x > = Zyx < HxH∗

x > +Zyy < HyH
∗
x > (43b)

< ExH∗
y > = Zxx < HxH∗

y > +Zxy < HyH
∗
y > (43c)

< EyH
∗
y > = Zyx < HxH∗

y > +Zyy < HyH
∗
y > (43d)
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where

< AB∗ > (ω) =
1
ω

ω+∆ω
2∫

ω−∆ω
2

A(ω′)B∗(ω′) dω′ (44)

Equations (43a-d) can be solved for Zij

Zxx(ω) =
1

D1

[
< ExH∗

x >< HyH
∗
y > − < ExH∗

y >< HyH
∗
x >
]

(45a)

Zyx(ω) =
1

D1

[
< EyH

∗
x >< HyH

∗
y > − < EyH

∗
y >< HyH

∗
x >
]

(45b)

Zxy(ω) =
−1
D1

[
< ExH∗

x >< HxH∗
y > − < ExH∗

y >< HxH∗
x >
]

(45c)

Zyy(ω) =
−1
D1

[
< EyH

∗
x >< HxH∗

y > − < EyH
∗
y >< HxH∗

x >
]

(45d)

where

D1 =< HxH∗
x >< HyH

∗
y > − < HxH∗

y >< HyH
∗
x > (46)

For one dimensional resistivity structure (horizontal layered earth) we have

¯̄Z =
(

0 Z
−Z 0

)
; Z = |Z|eiφ; ρa =

1
µω
|Z|2 (47)

Figure 7: 1D data.
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5. 2D EARTH

For two dimensional resistivity structure (Figure 8) it can be shown that if x is along strike then

¯̄Z =
(

0 Zxy

Zyx 0

)
; Zxy = |Zxy|eiφxy ; Zyx = |Zyx|eiφyx ; (48)

and we have two apparent resistivities and phases (Figure 9)

ρxy =
1

µ0ω
|Zxy|2 ; φxy︸ ︷︷ ︸

TE−mode

ρyx =
1

µ0ω
|Zyx|2 ; φyx︸ ︷︷ ︸

TM−mode

(49)

The strike is not known at forehand and we rotate the actual directions x and y to x’ and y’(
E′

x

E′
y

)
=
(

cos θ sin θ
− sin θ cos θ

)
︸ ︷︷ ︸

¯̄R

(
Ex

Ey

)
;
(

H ′
x

H ′
y

)
=
(

cos θ sin θ
− sin θ cos θ

)
︸ ︷︷ ︸

¯̄R

(
Hx

Hy

)
(50)

In the rotated coordinate system the impedance tensor is

¯̄Z ′ = ¯̄R · ¯̄Z ¯̄RT (51)

and the rotation to strike-direction is found by determining θ and hence ¯̄R so that

¯̄Z ′ =
(

0 Z ′
xy

Z ′
yx 0

)
(52)

In the general case of 3−dimensional resistivity structure all tensor elements are different from zero for
all orientations of measurement directions. The skewness, defined as

S =
|Zxx + Zyy|
|Zxy − Zyx|

(53)

Figure 8: 2D earth.
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Figure 9: Typical behavior of TE and TM mode apparent resistivities and impedance phases at two points
near a 2−D body in a homogeneous half-space

Figure 10: 2D data.
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is a measure of how severely the resistivity structure is 3−dimensional. S is independent of rotation. In
3−D cases one often uses apparent resistivity based on the determinant of ¯̄Z which is independent on
rotation

det ¯̄Z = ZxxZyy − ZxyZyx (54)

For 1-D resistivity structure

Zxx = Zyy = 0; Zxy = −Zyx = Ẑ1

and
ρa =

1
µ0ω

∣∣∣det ¯̄Z
∣∣∣ (55)

In the 3−D case this can be used to define a sort of "directional average" apparent resistivity.

Figure 11: 1D interpretation of Det. apparent resistivity and phase


