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Individual quotas, discarding and stock size

This paper analyses how successful an individual transferable quota (itq) management sys-
tem is in bringing a fishery from the open access level to the optimum in the presence of
discarding. The model developed extends previous work in this area by including long run ef-
fects, firstly to assess whether an itq system can lead to a reduction in, or even depletion of,
fish stocks through excessive discarding, and secondly, to analyse the effect of discarding on the
number of fishers operating in the fishery. It is shown that in an itq fishery more fish will be
discarded than is optimal and that too many fishers will operate in the fishery. A significant
result is that an itq system will result in a larger stock size, as compared to open access, even
with excessive discarding. This suggests that the combination of itqs and excessive discarding
will not result in stock depletion.

Keywords: Fisheries management, discarding, individual transferable quotas
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1 Introduction

This paper aims to add to the understanding of the interaction between discarding of fish

and fisheries management. Fishers have in recent years faced accusations of wasting valuable

resources by excessviely discarding low value catches, and individual transferable quota (itq)

management is believed to exacerbate this problem.

In terms of theoretical economic analysis of discarding and highgrading behaviour the field is

not large. During the mid 1990s a few papers analysing discarding formally appeared [4, 2, 8, 9],

but the interest seems to have faded since then. Some of the findings of this work were that

discarding may be optimal in fisheries with different grades of fish, for example, because of hold

constraints. Also, itqs tend to generate an excessive incentive for discarding catch as compared

to a socially optimal fishery. An empirical study from a shrimp fishery in Greenland finds

that discarding may exist without any management of the fishery, and that individual quotas

increase the incentive to discard [10]. An interesting aspect of the Greenland study is that a

non-transferable quota system had different discarding incentives than a transferable system.

In the itq case the incentive was found to depend on the quota price. If the price is below

the shadow value of the quota in the non-transferable case then the incentive to discard falls.

However, there is no attempt made to include the quota price in the model.

In the current literature there are a number of gaps. Firstly, all the above analyses assume a

short run fishery, i.e., the biomass is fixed in the models. This is unfortunate because one of the

biggest concerns of discarding, among politicians, fishers and the general public, is the negative

effect it may have on fish stocks. The argument is that excessive discarding and highgrading

will lead to increased fishing mortality, perhaps to such an extent that the fish stock in question

may come under threat of depletion. This is such an important concern that models looking at

discarding should be capable of analysing this stock effect.

Secondly, the short run nature of these papers will only give a partial analysis of the impact

on the effort level in the fishery. Effort changes come, not only from the change in behaviour of

the individual fisher, but also through the entry and exit of fishers. Entry and exit may offset

or amplify impacts from changes in the behaviour of the individual fisher.

Thirdly, there is no attempt made in these papers—most of which aim to analyse individual

transferable quotas and discarding—to explicitly model the quota market and the interaction
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between the price of quota and discarding. There have been suggestions [10] that the price of

quota may be linked to the incentive to discard, and therefore it seems a worthwhile exercise to

bring the determination of quota prices into the models.

The purpose of this paper is to address these problems to see if and how that will change the

conclusions of previous work on discarding, and what additional insights can be gained regarding

discarding behaviour. The paper is organised as follows. First, the model is introduced and the

social optimum derived. Then the open access situation is presented, following which itqs are

introduced and compared to the other situations. Finally, the conclusions of the analysis are

summarised.

2 The model

Discarding, in the current model, can occur because the fish stock is differentiated; there are

high quality fish and low quality fish. The difference between high and low quality fish is that

catches of high quality fish fetch a price, p1, which is higher than the price that catches from the

low quality part of the fish stock fetch, p2. Fishers sell their catches to fish markets that have

substitutes available, thus prices are not influenced by the supply from this particular fish stock.

Why the price differential exists is not important for the purposes of the current analysis. For

a curious reader, one possibility is that some fish are larger than other fish and that the market

is willing to pay a premium for large fish. What is important, however, is that this differential

exists, that fishers are aware of it, and it is crucial that fishers are able to recognise high quality

fish from low quality fish while at sea.

Fish can be harvested by the individual fisher according to the function

h(ei, x), i = 1, . . . , n

implying that all fishers have access to the same harvest technology. The effort of the i-th fisher

is denoted ei, while x is the total biomass of the fish stock. The stock size affects all fishers, and

therefore enters the harvest function of each and every fisher. The harvest function is assumed
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to have the following properties

hei > 0 hx > 0 ∀ i

heiei ≤ 0 hxx ≤ 0 ∀ i

heix ≥ 0 heix = hxei ∀ i

These standard assumptions regarding production functions imply diminishing marginal returns

of both inputs. The cross derivative heix is assumed positive implying a search fishery [6].

In the model, the catch of high quality fish is a certain fraction, α, of the total harvest

and the remainder, (1 − α), is the catch of low quality fish. As in other work analysing the

economics of discarding, this production function restricts fishers to harvest a fixed composition

of the stock.1 In a model such as the one developed here, where the focus is on comparing

long run equilibria, this restriction may not be very serious. The determination of α comes

from the fishers themselves. They experiment with different fishing techniques in order to find

the one that maximises their profits. This experimentation includes gear type, mesh size, tow

time, distance of gear from bottom etc. By varying these techniques fishers can change the

selectivity of their harvesting operations. It is only reasonable to expect that in the long run

fishers choose fishing techniques that maximise their return, i.e., the techniques that equate the

marginal benefit and marginal cost of improving selectivity. It is assumed that this decision

is not affected in any significant way by the choice of management policy and therefore α is

considered fixed in the analysis.

In this model fishers may not necessarily land their full harvest of low quality fish. Fishers

might throw overboard less valuable fish, in either the hope of exchanging it for more valuable

fish or simply because the fisher judges the price not sufficient to cover the landings cost of the

fish. Landings of an individual fisher, yi, are given by

yi = αh(ei, x) + (1− α)h(ei, x)− di = h(ei, x)− di

where di represents the amount of low quality fish discarded by fisher i.

Total landings in the fishery are the sum of the landings of individual fishers, i.e.,

n∑

i=1

yi =
n∑

i=1

(
h(ei, x)− di

)

1However, this allows a focus on the essentials of discarding in a relatively straightforward manner [2, 8].
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It is assumed that discarded fish do not survive. If all discarded fish would survive, then

discarding is not a problem as discarded fish would grow to become bigger and more valuable

and could be harvested at a later stage. The problem with discarding arises because fish that

are discarded will not contribute to the productivity of the fish stock. How much of discarded

fish survives depends on many factors and some species, lobster being one, may survive quite

well [1]. However, in this model complete mortality of discarded fish is assumed. It would not

be difficult to include a parameter in the model that would reflect the survival rate of discarded

fish [4]. However, it will not add significantly to the qualitative analysis undertaken here and is

therefore not pursued.

The cost of fishing comes from three sources. Firstly, is the cost of fishing effort and, secondly,

the cost of landing the fish. The latter cost includes cost from any fish processing done aboard

the fishing vessel, in addition to the cost of physically landing the fish. Thirdly, is the cost of

discarding. For instance, in order to discard fish of lower quality, someone has to keep an eye

out for such fish, grab them and throw them over the side. This may use up time and energy

that could be used for other activities. The total cost of the individual fisher is expressed as

ci(ei, di, yi), i = 1, . . . , n

indicating that cost depends on effort, discarding and landings. The following assumptions are

made regarding the cost function

ci
ei > 0 ceiei > 0 ∀ i

cyi = γ cyiyi = 0 ∀ i

cdi > 0 cdidi > 0 ∀ i

cjk = ckj = 0 j, k = ei, di, yi; j 6= k

It is assumed that the cost of effort and the cost of discarding are increasing at an increasing

rate. The marginal cost of landings, cyi , is assumed constant and the same across all fishers. The

cost of landings will to a large extent be outside the control of the fisher. For instance harbour

dues and the cost of physically landing the fish will often by decided by the port authorities and

will not differ among fishers. Therefore, this seems a reasonable assumption. The last condition

implies that the cost function is additively separable in its arguments. For instance, if the price

of fuel increases, raising the cost of effort, that does not affect the marginal cost of discarding.
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Also, since effort, discarding, and landings do not occur at the same time, they do not affect

each other’s unit cost. Finally, the average cost of a fisher as a function of harvest,

aci =
ci(ei, di, yi)

h(ei, x)
, i = 1, . . . , n

is assumed to have the traditional U-shape, with minimum average cost denoted as ãci. Indi-

vidual fishers may have different cost functions, implying heterogeneity of fishers.

Now the stage has been set and all the ingredients needed to analyse discarding have been

introduced. Next it is time to look at the socially optimal situation.

3 Social optimum

In order to maximise the value of the fishery to society, the management authority, or social

planner, chooses the level of effort, discarding, and stock size, taking into account that it is not

possible to discard more than is harvested of low quality fish. This maximisation problem can

be expressed formally as

max
∀ei,∀di,x

V =
n∑

i=1

(
p1αh(ei, x) + p2

(
(1− α)h(ei, x)− di

)
− ci(ei, di, yi)

)

s.t. (1− α)h(ei, x)− di ≥ 0, ∀ i

F (x)−
n∑

i=1

h(ei, x) = 0

where the role of the first n constraints is to ascertain that only low quality fish are discarded,

while the last constraint assures a sustainable fishery limiting harvest to the surplus growth of

the fish stock, F (x). The Lagrangian of the maximisation problem is the following

L =
n∑

i=1

(
p1αh(ei, x) + p2

(
(1− α)h(ei, x)− di

)
− ci(ei, di, yi)

)

+
n∑

i=1

ηi
(

(1− α)h(ei, x)− di
)

+ λ

(
F (x)−

n∑

i=1

h(ei, x)
)

where λ represents the shadow value of the fish stock. The other Lagrangian multipliers, ηi, are

the shadow values of discarding for the individual fishers. Differentiating the Lagrangian with

respect to the choice variables results in 3n+2 Kuhn-Tucker conditions, solving for the optimal

effort, discarding, and shadow values of discarding for the n fishers, in addition to the optimal
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biomass level and the shadow value of the stock. From these, the marginal effort condition for

fisher i can be expressed as

(
p1α + (p2 + ηi)(1− α)− λ

)
hei(ei, x) = ci

ei(ei, di, yi) + γhei(ei, x) (1)

This simply states that marginal benefits from changing effort must equal marginal costs of

the effort change. The marginal cost has two components, first the direct cost from the effort

increase, ci
ei , and second the increased cost in landing the additional catch, γ, multiplied with

the additional harvest arising from the effort increase. The marginal benefit reflects that the

fish stock consists of two types of fish, high and low quality. Each additional effort unit will

bring in a certain quantity of high quality fish, αhei , which are priced at p1. In addition, some

low quality fish are caught, (1 − α)hei , which are valued at p2 plus whatever shadow value is

associated with discarding. Account must also be taken of the fact that the fish input does not

carry a market price and therefore the marginal benefit is reduced by the shadow value of the

additional harvest, λ.

From the first order conditions a marginal discarding condition can also be derived for a

representative fisher as

γ ≤ p2 + ci
di(ei, di, yi) + ηi, di ≥ 0, diLi

di = 0 (2)

where the marginal benefits from discarding—avoided landings costs—are on the left-hand side

(lhs) of the inequality sign and the marginal costs on the right-hand side (rhs). The Lagrangian

multiplier, ηi, is the shadow value of discarding, showing how much society values a marginal

increase in the harvest of low quality fish for fisher i, keeping everything else constant. This

increase in value results from being able to discard the marginal catch. Notice, that when cost

functions differ among fishers, the shadow value of discarding will differ among them.

Since discarding is expressed as an inequality constraint, there are some cases to keep in mind,

depending on whether the constraint is binding or not. In figure 1 the discarding constraint is

partially drawn in (ei, di) space. The area above di = (1−α)h(ei, x) is non-feasible since there a

fisher would be discarding more than was caught of low quality fish. The feasible set is anywhere

on or below the curve. If located on the curve the fisher is discarding all the low value catch,

while points below the curve indicate that some low value catch is retained and landed. Three

cases need consideration. The first is when profit maximisation leads fishers to operate on the
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di = (1− α)h(ei, x)

non-feasible
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Figure 1: The discarding constraint of an individual fisher

horizontal axis, e.g., point A. In that case, ei > 0 and di = 0. The second case is when the

optimum is somewhere along the constraint, e.g., point C. The constraint is binding in that case,

and ei > 0 and di = (1 − α)h(ei, x). The third case is when the optimum is somewhere inside

the feasible set, e.g., point B. There, ei > 0 and 0 < di < (1 − α)h(ei, x). Often it is beneficial

to use the third case in the analysis as discarding is present and fishers can react to exogenous

changes without restrictions.

The final marginal condition of interest here is the marginal stock condition, which can be

written as

(p̂− γ)
n∑

i=1

hx(ei, x) = −λ

(
F ′(x)−

n∑

i=1

hx(ei, x)
)
−

n∑

i=1

ηihx(ei, x) (3)

where p̂ = p1α + p2(1 − α). The condition simply states that biomass must be kept at a level

where the marginal cost of increasing the stock, i.e., the foregone profit from leaving the marginal

fish in the ocean, be equal to the marginal benefit of doing so, namely the increase in the value

of the resource from adding one fish to the stock.

As stated above, the first order conditions determine the optimum levels of effort, discarding

and stock size, as well as the shadow values of discarding and the stock. In addition to these

variables, the number of fishers is endogenous to the model and needs to be determined. The

marginal fisher will earn zero profits and his profit function looks like

(p̂− λ)h(en, x)− p2d
n − cn(en, dn, yn) = 0
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indicating that fishers enter this fishery until

ãcn ≤ p̂− λ− p2d
n

h(en, x)
< ãcn+1 (4)

where ãci is the minimum average cost for fisher i. This condition shows that the level of

discarding will affect the number of fishers, as the optimal number of fishers depends on the

average revenue of the marginal fisher, including loss from discarding and adjusted for the shadow

value of the stock.

4 Open access

The next step is to analyse an open access fishery and compare to the social optimum. In

the analysis it is assumed that fishers behave as if they do not realise that their harvesting

decisions affect stock size. Perhaps, this assumption gives fishers less credit than is due. Many

fishers are knowledgeable about the biology and behaviour of fish stocks, and realise that their

harvest affects the size of the fish stock. It has been argued that the most reasonable assumption

when modelling the behaviour of fishers is rationality where fishers take all relevant variables

into account, including the stock constraint and effort levels of other fishers [3]. Also, surveys

indicate that fishers have an understanding of the effects that too many fishers can have on

the resource [5]. However, it is possible to show that as soon as the number of fishers begins

to increase, each fisher only has a miniscule effect on the overall fishery, thus behaving as not

recognising stock effects. This is a result of a common pool externality where the benefits of

one fisher reducing effort is spread across all fishers. Therefore, in the current model, each fisher

is assumed to choose the level of effort and discarding that maximises his individual profits,

without taking the stock constraint into account. Of course, each fisher cannot discard more

than is caught of low quality fish. Formally this is expressed as

max
ei,di

πi = p1αh(ei;x) + p2

(
(1− α)h(ei; x)− di

)
− ci(ei, di, yi)

s.t. (1− α)h(ei; x)− di ≥ 0

Since the fisher does not recognise the impact harvesting has on the fish stock, there is no stock

constraint. The Lagrangian is

Li = p1αh(ei; x) + p2

(
(1− α)h(ei; x)− di

)
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−ci(ei, di, yi) + µi
(

(1− α)h(ei;x)− di
)

where µi is the shadow value of discarding for the individual fisher.

From the corresponding Kuhn-Tucker conditions for maximisation, the marginal effort con-

dition can be shown as
(
p1α + (p2 + µi)(1− α)

)
hei(ei; x) = ci

ei(ei, di, yi) + γhei(ei; x)

Comparison to equation (1) shows the expected result, that since the fisher does not take the

shadow value of the stock into account, marginal benefit would exceed marginal cost if effort was

chosen at the optimal level. Therefore, more effort will be used in open access than is optimal.

In addition to the increased effort of the individual fisher in open access as compared to

the optimal situation, more fishers will enter the fishery. This is seen from the entry condition,

which now is

ãcn ≤ p̂− p2d
n

h(en, x)
< ãcn+1

This is very similar to equation (4) which shows the socially optimal entry condition. The only

difference is that now λ is missing—fishers do not recognise the shadow value of the fish stock—

increasing the average cost at which the marginal fisher enters, indicating that more fishers will

be operating in the fishery than is socially optimal. This can also be looked at from the revenue

side. Since fishers do not recognise the shadow value, their private landed value of the catch is

higher than the social landed value. Therefore the marginal fisher can enter at a higher average

cost than if the shadow value is included.

To compare the stock size between the socially optimal situation and open access, rewrite

the socially optimal marginal stock condition (equation 3) as
(

p̂− λ

) n∑

i=1

hx(ei, x) +
n∑

i=1

ηihx(ei, x) = −λF ′(x) + γ
n∑

i=1

hx(ei, x)

The lhs of this equation measures the marginal benefits from reducing the size of the fish stock,

while the rhs is the marginal cost of the reduction. Since in open access the landed value is

higher than is optimal, it implies that the marginal benefit of reducing the stock, for any given

effort level, is higher in open access than in the socially optimal situation. As a result, at the

optimal stock size fishers in open access will have marginal benefits from reducing the stock

greater than the marginal cost. They will fish the stock further down and consequently the

stock size in open access will be lower than is socially optimal.
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5 Individual transferable quotas

The management authority sets a total allowable catch (tac) in the fishery and each fisher

receives an allocation of q̂i. Each fisher may also purchase or sell quota. Notice, that enforcement

takes place by comparing the quota against the amount of fish landed, not harvested fish. The

problem of the individual fisher is now to

max
ei,di,qi

π = p1αh(ei; x) + p2

(
(1− α)h(ei; x)− di

)
− ci(ei, di, yi)− aqi

s.t. (1− α)h(ei; x)− di ≥ 0

q̂i + qi − yi = q̂i + qi − h(ei;x) + di ≥ 0

where the second constraint is the quota constraint. The total quota of the fisher is the sum of

his allocation and his purchases, qi, of additional quota. If qi is a positive number, that indicates

that the fisher purchased additional quota at the unit price of a. If qi is negative, on the other

hand, then the fisher sold some of the initial allocation, also at a price of a. Landings of fish

may not exceed the sum of quota allocated and net purchases of quota. If harvest exceeds the

quota of a fisher, then some fish must be discarded.

The Lagrangian for the individual fisher is now

Li = p1αh(ei; x) + p2

(
(1− α)h(ei;x)− di

)
− ci(ei, di, yi)− aqi

+µi
(

(1− α)h(ei; x)− di
)

+ ρi(q̂i + qi − h(ei;x) + di)

where ρi is the shadow value of quota.

Assuming that the discarding constraint is non-binding and di > 0, the marginal discarding

condition under the itq system can be derived from the Kuhn-Tucker conditions as

γ + a = p2 + ci
di(ei, di, yi)

Comparing this with the socially optimal condition from equation (2)2, there is an extra term

on the marginal benefit side, namely the quota price, a. This is because discarding fish not only

saves landings cost but also less quota is used and that quota may be sold. The quota price

therefore has an impact on discarding behaviour, as suggested in [10]. Unless a = 0, the quota

price will increase the incentive to discard as compared to the optimal situation. The more
2Since the discarding constraint is assumed non-binding, ηi = 0 in the socially optimal situation.
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restrictive the quota, the more valuable it is, and the greater is the discarding incentive. Only

when the quota constraint is not binding will a = 0, but in that case the itq system has no

impact on fishers’ behaviour anyway.

To compare the itq fishery with the open access situation, let’s derive the comparative

statics results of the model when the quota allocation is changed. In that exercise the discarding

contraint is assumed nonbinding, while the quota constraint is binding. The relevant first order

conditions are

Lei = (p̂− cyi − a)hei(ei; x)− ci
ei(ei, di, yi) = 0 ∀ i

Ldi = −p2 − ci
di(ei, di, yi) + γ + a = 0 ∀ i

Lρi = q̂i + qi − h(ei;x) + di = 0 ∀ i

Notice, that differentiating the Lagrangian with respect to qi results in the condition that a = ρi

for every fisher. This condition means that quota trading will take place until all fishers have

the same shadow value for quota, equal to a. If that was not the case, and two or more fishers

have different shadow values then there are gains from trade to be made between those fishers.

In the above equations, a has been substituted in for ρi to facilitate the calculations.

In addition to these equations, two more conditions need to be taken into account. The first

is
n∑

i=1

qi = 0

which sets a limit on the supply of quota, recognising that fishers cannot buy, or sell, unlimited

amounts of quota. What one buys, another must sell, and this equation is the market clearing

condition for the quota market.

The last equation to be added to the system is the ubiquitous stock condition

θ(e1, . . . , en, x) = F (x)−
n∑

i=1

h(ei, x) = 0

ensuring that the harvest level is sustainable.

All these 3n + 2 equations together solve for the endogenous variables in the system, ei,

di, qi, x, and a for all i. The equation system can be differentiated with respect to all the

endogenous variables and the exogenous variables of interest, q̂i. The resulting equation system
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can be expressed as



Lei 0 0 −~h T

ei
~L T

eix

0 Ldi 0 ~1 T ~0 T

−hei I I ~0 T −~h T
x

~0 ~0 ~1 0 0

−~hei ~0 ~0 0 θx







~dei
T

~ddi
T

~dqi
T

da

dx




=




~0 T

~0 T

−~1 T

0

0




dq̂i

where Li
eiei = (p̂ − γ − a)heiei − ceiei < 0, Li

eix = (p̂ − γ − a)heix > 0, Li
didi = −cdidi < 0,

and θx = F ′(x) − ∑n
i=1 hx < 0. The coefficient matrix, denoted D, has been partitioned into

smaller matrices. The boldfaced elements of D refer to n × n diagonal matrices. For instance,

the diagonal of Lei consists of the second derivatives of the Lagrangian with respect to the effort

level of the corresponding fisher. That is

Lei =




Li
e1e1 0 · · · 0

0 Li
e2e2

...
...

. . . 0

0 · · · 0 Li
enen




Ldi is the same except the diagonal elements are differentiated with respect to di. The matrix I

is the n×n identity matrix, while 0 is n×n matrix with all elements equal to zero, ~0 is a 1×n

vector of zeros, and ~0 T is the transpose of ~0. The vectors, in general, are 1× n, containing the

elements indicated. For instance,

~hei = [ he1 he2 · · · hen ]

~dei = [ de1 de2 · · · den ]

~1 = [ 1 1 · · · 1 ]

This notation simplifies considerably some of the matrix equations that need to be analysed.

Turning back to the model, the determinant of D can be shown to equal3

|D| =
n∏

i=1

Li
eieiLi

didi

(
F ′

n∑

i=1

h2
ei

Li
eiei

+

((
F ′ −

n∑

i=1

hx

)
+

n∑

i=1

heiLi
eix

Li
eiei

)
n∑

i=1

1
Li

didi

)

3To calculate this determinant, and the others that follow, use was made of the mathematical computer

programme Maple V created by the University of Waterloo. The number of fishers was set to three and Maple

asked to calculate the determinant. Once the outcome had been simplified, it was expanded to the case of n

fishers.
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This determinant is difficult to sign. However, assuming that F ′ < 0, makes the whole determi-

nant positive.4

Starting with the quota price, the effects an increase in the quota allocation has can be found

by utilising the following determinant

|Da| = n
n∏

i=1

Li
eieiLi

didi

((
F ′ −

n∑

i=1

hx

)
+

n∑

i=1

heiLi
eix

Li
eiei

)
< 0

which implies
∂a

∂q̂i
=
|Da|
|D| < 0

If there is a greater supply of quotas, i.e., quota allocations are increased, the price of one quota

unit falls. If less is supplied, then the price increases. This is not surprising at all; it simply

indicates a downward sloping demand for quotas.

Looking next at the effect a change in the quota allocation has on discarding, it is clear in

the model. Since the determinant

|Ddi | = −nLi
eiei

n∏

j 6=i

Li
ejejLi

djdj

((
F ′ −

n∑

i=1

hx

)
+

n∑

i=1

heiLi
eix

Li
eiei

)

is negative, the implication is that
∂di

∂q̂i
=
|Ddi |
|D| < 0

This means that if the management authority allocates more quota, the individual fisher will

reduce discarding. With a higher allocation the quota constraint is not as restrictive as before.

As shown above, the value of quota falls and with it the marginal benefit of discarding low value

fish. If, on the other hand quotas are reduced, the opposite occurs. Quotas will be in greater

demand, and consequently their value increases. The marginal benefit of discarding rises and

each fisher will have an incentive to increase the amount of fish that is discarded.

Turning the attention to the effect an increase in the quota allocation has on stock size, it

can be shown to equal

∂x

∂q̂i
=
|Dx|
|D| =

n
n∏

i=1

Li
eieiLi

didi

(
n∑

i=1

h2
ei

Li
eiei

)

|D| < 0

4This assumption follows [7] who claims that it: ”. . . is reasonable for a fishery comprised of a large number of

entrepreneurs.” This assumption is actually stronger than needed as D will be positive for some range of positive

values of F ′
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which states that as the quota allocation is increased the stock size falls. Reducing the quota

allocation, even in the presence of discarding will therefore have conservatory effects on the fish

stock. This is of considerable interest, of course, since a frequently heard argument against an

itq system is the destructive impact that discarding may have on the stock. This model, on

the other hand, predicts that the biomass will always increase following a reduction in quota

levels. The rationale is that it will never pay to increase the effort level when you are allowed to

land less fish. It increases marginal costs while marginal revenues are falling. Since stock size

falls when more quota is allocated, overall effort must increase. On the other hand, when quota

allocations are reduced, effort must fall since the biomass becomes larger.

The optimal number of fishers will be reduced, as compared to open access, when a quota is

introduced. Remember, that the quota is restricting the fisher from the open access situation by

giving him a quota that is less than he would want to harvest. Therefore the quota constraint

is binding. The profits of the n-th fisher will now be

πn = p̂h(en; x)− p2d
n − cn(en, dn, yn)− aqn = aq̂n

where aq̂n is the profit that can be made by selling the quota allocation and leaving the fishery.

In other words, the profit of the marginal fisher of staying in the fishery must be equal to the

profit he can make if he leaves. From this equation the entry condition in the itq situation can

be expressed as

ãcn ≤ p̂− a +
adn

h(en; x)
− p2d

n

h(en; x)
< ãcn+1

As long as a is positive, the minimum average cost of the n-th fisher will be lower than in open

access. Consequently fewer fishers will operate in the fishery after individual quotas have been

introduced. This is logical, since low cost fishers that value quota more will buy quota from

high cost fishers. Some high cost fishers will opt to sell all their quota and leave the fishery for

greener pastures elsewhere. It is worth emphasising that these fishers leave the fishery at their

own free will and receive the value of their quota allocation when they leave.

It is of interest to compare the itq entry condition with the optimal entry condition as given

by equation (4). If an itq system is to be optimal, the correct number of fishers must operate in

the fishery. However, when discarding is present, the two entry conditions differ. Even if a = λ,

which results in an optimal fishery in the absence of discarding [3] the itq entry condition has an
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extra term that is not present in the optimal condition, i.e., λdn/h(en; x). This term represents

the fact that the individual fisher does not recognise the loss to society caused by the reduction

in the biomass due to discarding. Therefore, the minimum average cost of the n-th fisher is

higher with itqs than is optimal, indicating that too many fishers will operate in the fishery.

6 Conclusion

The presence of discarding means that an itq system will not lead to an optimal situation. There

will be excessive discarding and too many fishers. However, an itq system will nonetheless be

an improvement from the open access situation. The biomass will be larger and rents will be

generated in the fishery, represented by the quota price. Whether fishers capture these rents

depends on how the government allocates quotas. If allocated for free, then the rents accrue to

fishers, but if the government charges for the allocation then the government receives a part or

all of the rents.

A striking result from the analysis is that even if an itq system is suboptimal in the presence

of discarding, it leads to an increase in biomass as compared to the open access situation. This

is an important finding as it suggests that even if restrictive management policies such as itqs

increase the incentive to discard fish, they will not lead to an increase in effort. A fisher whose

quota is reduced will reduce effort even if he discards more fish. The reduction in effort will be

less than if discarding was not possible, but it will still be a reduction. Since effort is falling,

the size of the fish stock will increase. This suggests that it is not the level of discards that

is important from a conservation point of view, but the overall effort level and the associated

fishing mortality of the stock. Therefore conservation policies should focus on effort, aiming to

reduce fishing mortality, rather than a reduction in discards. This is not to say that the excessive

discarding that may result from a management policy is harmless. However, the harm is on the

economic side, not on the biological side. Excessive discarding leads to a loss for society in terms

of wasted economic resources, but according to the model presented here it is not expected to

result in the depletion of fish stocks.
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