v

REYKJAVIK UNIVERSITY

HASKOLINN I REYKJAVIK

An algorithm to construct Lyapunov functions
Jor nonlinear switched systems

Sigurdur Freyr Hafstein

RUTR-CS06003, December 2006
School of Science and Engineering

Reykjavik University - School of Science and Engineering

Technical Report

ISSN 1670-5777






v

REYKJAVIK UNIVERSITY

HASKOLINN i REYKJAVIK

An algorithm to construct Lyapunov functions
for nonlinear switched systems

Sigurdur Freyr Hafstein*

School of Science and Engineering — School of Science and Engineering
Technical Report RUTR-CS06003 — December 2006

Abstract: In this thesis a converse theorem on arbitrary switched nonlinear, nonau-
tonomous, continuous systems is proved. Then an algorithm to construct Lyapunov func-
tions for such systems is presented and it is proved, that the algorithm always succeeds in
generating a Lyapunov function if one exists. These results together imply, that the algo-
rithm always succeeds if the equilibrium is uniformly asymptotically stable. The size of the
domain of the Lyapunov function generated is only limited by the size of the equilibrium’s
region of attraction. Note, that the systems x = f(x) and x = f(¢,x), where f is not
necessarily linear, fall under the class of arbitrary switched systems.

Keywords: Lyapunov function; Switched system; Uniform asymptotic stability; Converse
theorem; Algorithm.

(Utdrdttur: nesta sida)

* Reykjavik University, Kringlan 1, IS-103 Reykjavik, Iceland. sigurdurh@ru.is



v

HASKOLINN i REYKJAVIK

REYKJAVIK UNIVERSITY

Algrim til smidi Lyapunov-falla fyrir 6linuleg skiptikerfi

Sigurdur Freyr Hafstein

Teekni- og verkfreeddeild — Teckni- og verkfraedideild
Taekniskyrsla RUTR-CS06003 — Desember 2006

Utdrattur: I pessari ritgerd er fyrst sannad, ad adfellustédugleiki jafnvaegispunkts
6linulegs skiptikerfis er jafngildur tilvist Lyapunov falls fyrir kerfid. Sidan er algrim til smioi
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Historical background

[The universe] cannot be be read until we have learnt the language and become familiar
with the characters in which it is written. It is written in the mathematical language, and
the letters are triangles, circles and other geometrical figures, without which means it is
humanly impossible to comprehend a single word.

Galileo Galilei (1564 - 1642)

Mathematics is not only real, but it is the only reality. That is that entire universe is
made of matter, obviously. And matter is made of particles. It’s made of electrons and
neutrons and protons. So the entire universe is made out of particles. Now what are the
particles made out of ¢ They’re not made out of anything. The only thing you can say
about the reality of an electron is to cite its mathematical properties. So there’s a sense in
which matter has completely dissolved and what is left is just a mathematical structure.

Martin Gardner (born 1914)

In classical mechanics every state of a physical system is associated with a real-number known as
its energy. Energy of a system is an extremely powerful concept, just like momentum and angular
momentum, because it obeys a conservation law. However, this was not discovered until at the end
of the 17th century trough Sir Isaac Newton’s (1642 -1727) monumental work Philosophiae naturalis
principia mathematica and to some extent due to Galileo Galilei’s (1564 - 1642) and Renés Descartes’
(1596 - 1650) earlier work. Before this time it was assumed, in accordance with Aristotelian (384 BC -
322 BC) physics, that a physical system without external forces would come to rest. The late insight
in the true nature of the energy is not particularly surprising because every-day experience indicates
that terrestrial objects actually do eventually come to rest. A century later this discrepancy was
satisfactory resolved by Rudolf Clausius (1822 - 1888), who adopted the concept of entropy. In physical
processes energy does not disappear, but as the entropy of the system inevitable increases, the quality
of the energy decreases. For example, it is a simple task to transform mechanical work into heat with
100% efficiency, however, gaining work from heat is much more difficult, a temperature difference is
needed, and the efficiency has clear theoretical bounds. Thus, the useful energy (for example kinetic
energy, potential energy, or electrical energy) of a physical system, that is, the energy assessable by
the system to move macroscopic objects or to do some useful work, actually does decrease, whenever
the state of the system changes. If we identify physical systems states with points in their state-
spaces, this means that the useful energy of a particular system decreases along every trajectory of
it in its state-space. This implies that such a system must come to rest at a local minimum of the
useful energy and this fact can be very useful for the analysis of physical systems because it is in
general a formidable task to integrate the equations of motion.

In the 19th century Sir William Hamilton (1805 - 1865) developed a new mathematical framework for
mechanical systems. In the so-called Hamiltonian dynamics the equations of motion are first-order
ordinary differential equations x = f(¢,x), which are often better suited for mathematical analysis
than previous attempts by Joseph Lagrange (1736 -1813) and others. If a physical system % = f(¢, x)
is at rest at the state-space point y the dynamical variables do not change in the course of time,
which obviously implies that f(¢,y) = 0 for all ¢ > 0. Such a state-space point is called an equilibrium



of the differential equation x = f(¢,x). Thus, a necessary condition for a state y in the state-space
of the system x = f(¢,x) to asymptotically attract trajectories of a physical system is that it is an
equilibrium and that the useful energy of the system has a local minimum at y. Further, one can
conclude that an equilibrium is stable, in the sense that small perturbations are ironed out by the
dynamics of the system, if and only if the equilibrium is at a local minimum of the useful energy of
the system.

In 1892 the Russian mathematician and engineer Alexandr Mikhailovich Lyapunov (1857-1918, also
found in the literature as Liapunov, Liapunoff, Lyapunoff, Ljapunov, and Ljapunoff) published a
revolutionary work on the stability of motion. For an English translation of his work we refer to [32].
The ingenuity of his work was to generalize the concept of energy to arbitrary differential equations
of the form x = f(¢,x). Thus, if y is an equilibrium of the system x = f(¢, x) and, additionally, there
exists a continuous function V' that has a local minimum at y and that is strictly monotonically
decreasing along any trajectory of the system, then every trajectory of the system that starts close
enough to the equilibrium is asymptotically attracted to it !. The function V is then said to be a
Lyapunov function for the system. At first glance it might seem that the Lyapunov theory is purely
of theoretical interest, because one seemingly still needs to know the trajectories of the system
x = f(t,x) to verify that the Lyapunov function is decreasing along the trajectories. It is not! The
reason is that by the use of the chain rule one can easily verify that if the Lyapunov function V' and
the function f are differentiable, then V' is decreasing along every trajectory of the system if

(Vi V](t,x) - f(t,x) + %—‘t/(t,x) <0

for all x # y in a neighborhood of y, and this can be verified without solving the differential equation.

A Lyapunov function is traditionally denoted by the same alphabet as the potential energy of a phys-
ical system, namely V', which is somewhat confusing because a Lyapunov function is a generalization
of the energy, traditionally denoted by F or H for Hamiltonian. Maybe this inconsistence is due to
the fact, proved by Dirichlet in 1848, that an equilibrium y of a conservative, holonomic-skleronomic
2 mechanical system is stable, if and only if the potential energy V of the system, traditionally de-
noted by V or U, has a local minimum at y. However, it has become widely accepted to denote a
Lyapunov function by the alphabet V' and we will follow that tradition in most cases.

A Lyapunov function V for a differential equation x = f(¢,x) not only guaranties the stability, as
a local property, of an equilibrium y, but we can also take advantage of the fact that the system,
initially in a state (to,&,), can never reach a state (t1,&;), in which V' (t1,&,) > V(to,&,). Thus, the
state of the system is bound to stay in the set {(¢,&)|V(t,€) < V(to,&;)} and this can be used to
derive a lower bound on the region (domain, basin) of attraction of the equilibrium y, that is, the
set of those £ that are attracted to y in the course of time by the dynamics of the system.

The original Lyapunov theory did not secure the existence of Lyapunov functions for nonlinear sys-
tems with uniformly asymptotically stable equilibrium points, the arguably most important stability
concept. The first results on this subject are due to K. Perdeskii in 1933 [14]. The general case
was resolved somewhat later, mainly by J. Massera in 1949 and 1956 [38, 39] and I. Malkin in
1977 [33]. Theorems, which secure the existence of a Lyapunov or a Lyapunov-like function for a
system possessing an equilibrium, stable in some sense, are called converse theorems in the theory

!Those familiar with the Lyapunov theory might note that we are oversimplifying. However, we do this so we can
concentrate on the essentials of the theory in this historical discussion.

2Holonomic-skleronomic means that the dynamical variables x obey constraints of the form g(x) = 0 for some
smooth function g.



of dynamical systems. The converse theorems have in the past been proved by constructing by a
finite or a transfinite procedure a Lyapunov(-like) function using the trajectories of the respective
equations of motion. Because the trajectories are, of course, not known, these converse theorems are
pure existence theorems and do not help in the search for a Lyapunov function. This has been the
main drawback of the Lyapunov theory so far and is probably the main reason why it has proved so
difficult to extend the practical use of Lyapunov functions to systems, that do not feature a canonical
energy function, like systems in economics, biology, or basically any non-physical system. The aim of
this thesis is to present methods to automatically generate Lyapunov functions with computers for
arbitrary ordinary differential equations.






The contributions of this work

It is a profoundly erroneous truism, repeated by all copy books and by eminent people
when they are making speeches, that we should cultivate the habit of thinking of what we
are doing. The precise opposite is the case. Civilization advances by extending the number
of important operations which we can perform without thinking about them.

Alfred Whitehead (1861 -1947)

As the title of this work suggests, we will establish an algorithm that is able to generate Lyapunov
functions for switched systems of the form

x=1f,(t,x), peP, P#0 finite,

under arbitrary switching. Further, we will prove that the algorithm is always able to construct a
Lyapunov function for a particular system, whenever the system possesses a Lyapunov function at
all, and we will prove that this is exactly the case, when the system has an uniformly asymptotically
stable equilibrium. Without loss of generality, we can assume that the equilibrium in question is at
the origin.

The author (Hafstein / Marindsson) has recently used non-constructive converse Lyapunov theorems
to prove that his linear programming problem, presented 2002 in [35, 36|, is capable of parameterizing
Lyapunov functions for autonomous systems x = f(x) with an exponentially stable equilibrium [11],
and more generally, with asymptotically stable equilibrium [10, 13]. These results, however, will turn
out to be special cases of a much more general theorem, namely Theorem 6.1 in this work. In this
novel theorem the assumption that the system is autonomous is no more needed and further we
even prove that we can always generate numerically a common Lyapunov function for a finite set
of ordinary differential equations x = f,(¢,x), p € P, P # 0 finite, whenever such a Lyapunov
function exists. Further, in Theorem 3.10, we prove that if an arbitrary switched system possesses a
uniformly asymptotically stable equilibrium, then there exists a common Lyapunov function for the
systems. Thus, because the existence of a common Lyapunov function is a sufficient condition for the
uniform asymptotic stability of an equilibrium, we have proved that an arbitrary switched nonlinear,
nonautonomous system possesses a uniformly asymptotically stable equilibrium, exactly then when
there exist a common Lyapunov functions for the systems x = £,(¢,x), p € P, and we can construct
such a Lyapunov function numerically whenever the set P # () is finite and the functions f,, p € P
are two-times continuously differentiable.

Switched systems will be defined and discussed in Section 1.2. Here we let it suffice to point out,
that a function V' is a Lyapunov function for the switched system, if and only if it is, for each p € P,
a Lyapunov function for the system % = f,(¢,x). Especially, if P contains exactly one element p*,
then V is a Lyapunov function for the ordinary differential equation x = f,-(¢,x). The concept of a
Lyapunov function for a switched system under arbitrary switching is thus a non-trivial extension of
the concept of a Lyapunov function for an ordinary differential equation.

The functions f, are assumed to be mappings from Ry x ¢/ into R", where ¢/ is a domain in R" that
contains the origin. The components f,; of the functions £, are assumed to be two-times continuously
differentiable and we assume that we can give local upper bounds on their derivatives up to the second
order. These bounds do not need to be tight (every upper bound will do the job) so these assumptions



must be considered very weak. No further assumptions about the systems x = f,(¢,x) are needed, in
particular, we do not assume that the functions f, are of some specific structural form, like linear,
piecewise affine, rational, algebraic, real holomorphic, etc.

We will present a linear programming problem (Definition 5.1) and give an algorithmic scheme of
how to construct it from the original data, that is, the functions f,. We will prove that if the linear
programming problem possesses a feasible solution, then this solution parameterizes a Lyapunov
function V' € C([T", T"] x V) for the switched system (Theorem 5.2). The constants 0 < 7" < T" <
+o00 and the compact set ¥V C U can be chosen at will.

We will prove that if the switched system x = f,(¢, x) possesses a two-times continuously differentiable
Lyapunov function W : Rs¢ x W — R, where {0} C W C U, then, for every 0 < T" < T" < 400
and any compact set ¥V C W \ {0}, we can use the linear programming problem to generate a
Lyapunov function V' € C([T",T"] x V) for the system. The condition that V C W\ {0} is necessary,
because if the Lyapunov function V' is defined in a neighborhood of the origin, then the equilibrium
at the origin is uniformly exponentially stable. Because the existence of W merely secures uniform
asymptotic stability of the origin, which is a weaker property than exponential stability, this would
lead to a contradiction. Therefore, we have to cut out an open neighborhood of the origin from the
domain of the Lyapunov function V. However, this neighborhood can be as small as one wishes, so
this cannot be considered to be a major drawback.

Those, who merely have a rudimentary knowledge of the Lyapunov stability theory, might think
that the construction of Lyapunov functions was in essence a solved problem. This is entirely wrong!
The only case that can be considered to have been completely solved is for autonomous linear
systems, that is, systems of the form x = Ax. By linearizing exponentially stable nonlinear systems
at the equilibrium at the origin, one can actually construct a quadratic function that is a Lyapunov
function for the nonlinear system in some neighborhood of the origin. However, this neighborhood
is in general small so the only implication such a local Lyapunov function secures, is that there are
perturbations that are so small that they cannot affect the asymptotic behavior of the system. The
Lyapunov functions we will be discussing in this work are not just defined in some arbitrary small
neighborhood of the equilibrium, but are defined on a much larger set, whose size is only limited
by the size of the equilibriums region of attraction. Our Lyapunov functions can therefore give us
a reasonable estimate on the size of the equilibriums region of attraction and then, of course, the
magnitude of the disturbances the system can withstand. The fact that we even prove our results for
nonautonomous switched systems can be considered a substantial added bonus.

Practically everyone will assert that her / his work is of greatest importance. Because of this it seems
quite pointless to the author to expatiate upon the value of his own work. Quoting others is more
trustworthy and because there is a passage in almost every book on differential equations, dynamical
systems, or stability, that confirms the relevance of the results presented in this work, we leave the
affirmation to others.

J. Willems writes on page 38 in his book Stability Theory of Dynamical Systems |61]:

The main drawback of Liapunov’s method for the study of stability of dynamic systems
is that there exists no systematic procedure for constructing Liapunov functions.

M. Vidyasagar writes some concluding remarks on the Lyapunov theory on page 190 in his book
Nonlinear System Analysis [56]:

In this section, several theorems in Lyapunov stability theory have been presented. The
favorable aspects of these theorems are:



1. They enable one to draw conclusions about the stability status of an equilibrium
without solving the system equations.

2. Especially in the theorems on stability and asymptotic stability, the Lyapunov func-
tion V' has an intuitive appeal as the total energy of the system.

The unfavorable aspects of these theorems are:

1. They represent only sufficient conditions for the various forms of stability. Thus, if a
particular Lyapunov function candidate fails to satisfy the hypothesis on V 3, then
no conclusions can be drawn, and one has to begin anew with another Lyapunov
function candidate.

2. In a general system of nonlinear equations, which do not have the structure of
Hamiltonian equations of motion or some other such structure, there is no systematic
procedure for generating Lyapunov function candidates.

and further he writes on pages 235-236 on the converse theorems:

Since the function V is constructed in terms of the solution trajectories of the system, the
converse theorems cannot really be used to construct an explicit formula for the Lyapunov
function, except in special cases (e.g., linear systems; see Section 5.4).

H. Khalil writes on page 104 in his book Nonlinear systems |24]:

Lyapunov’s theorem can be applied without solving the differential equation x = f(x). On
the other hand, there is no systematic method for finding Lyapunov functions. In some
cases, there are natural Lyapunov function candidates, like energy functions in electrical
or mechanical systems. In other cases, it is basically a matter of trial and error.

and on page 180 he writes on the converse theorems:

Most of these converse theorems are provided by actually constructing auxiliary functions
that satisfy the conditions of the respective theorems. Unfortunately, almost always this
construction assumes the knowledge of the solutions of the differential equation. There-
fore, these theorems do not help in the practical search for an auxiliary function. The
mere knowledge that a function exists is, however, better than nothing. At least we know
that our search is not hopeless.

J. Slotline and W. Li write on page 120 in their book Applied Nonlinear Control [54]:

A number of interesting results concerning the existence of Lyapunov functions, called
converse Lyapunov theorems, have been obtained in this regard. For many years, these
theorems were thought to be of no practical value because, like the previously described
theorems, they do not tell us how to generate Lyapunov functions for a system to be
analyzed.

W. Walter writes on page 320 in his book Ordinary Differential Equations [59]:

3That the Lyapunov function V is decreasing along system trajectories.



There is no general recipe for constructing Lyapunov functions. In specific cases one may
relay on experience and examples; some imagination is also helpful.

and on page 325 he writes:

Determining, or at least estimating, the domain of attraction is a problem of great prac-
tical importance.

M. Hirsch, S. Smale, and R. Devaney write on page 195 in their book Differential Equations, Dynam-
ical Systems, and an Introduction to Chaos [15]:

Note that Liapunov’s theorem can be applied without solving the differential equation;
all we need to compute is DLx(F (X)) *. This is a real plus! On the other hand, there is
no cut-and-dried method of finding Liapunov functions; it is usually a matter of ingenuity
or trial and error in each case.

The author hopes to have convinced the potential readers of this work, that studying the theory that
is laid down in this thesis is worth the efforts. It should further be pointed out, that it is of course
possible to use the algorithm to construct Lyapunov functions without understanding in detail how it
works. Those that are not interested in the mathematics, but still want to use the results to construct
Lyapunov functions, for example for engineering applications, can move directly to Chapter 5.

‘Here DLx (F(X)) denotes the derivative of the Lyapunov function L along trajectories of the ordinary differential
equation X = F(X).



Outline of this thesis

Science is built up with facts, as a house is with stones. But a collection of facts is no
more a science than a heap of stones is a house.

Jules Pointcaré (1854-1912)

This work is divided into three parts. In Part I, which consists of the chapters 1, 2, and 3, we develop
a stability theory for arbitrary switched systems. In Chapter 1 we introduce switched dynamical
systems x = f,(¢,x), p € P, and discuss some elementary properties of their solutions. Switched
systems have gained much interest recently. For an overview see, for example, [29] and [27].

In Chapter 2 we consider the stability of isolated equilibria of arbitrary switched systems and we prove
that if such a system possesses a Lyapunov function, then the equilibrium is uniformly asymptotically
stable. These results are quite straightforward if one is familiar with the Lyapunov stability theory
for ordinary differential equations, but, because we consider Lyapunov functions that are merely
continuous and not necessarily differentiable in this work, we establish the most important results.

In Chapter 3 we prove a converse theorem on uniform asymptotic stability for arbitrary switched
nonlinear, nonautonomous, continuous systems. In the literature there are numerous results regarding
the existence of Lyapunov functions for switched systems. A short non-exhaustive overview follows:
In [44] K. Narendra and J. Balakrishnan consider the problem of common quadratic Lyapunov func-
tions for a set of autonomous linear systems, in [9], in [42], in [28], and in [2] the results were
considerably improved by I. Gurvits; Y. Mori, T. Mori, and Y. Kuroe; D. Liberzon, J. Hespanha, and
A. Morse; and A. Agrachev and D. Liberzon respectively. H. Shim, D. Noh, and J. Seo in [53] and L. Vu
and D. Liberzon in [57] generalized the approach to commuting autonomous nonlinear systems. The
resulting Lyapunov function is not necessarily quadratic. W. Dayawansa and C. Martin proved in
[37] that a set of linear autonomous systems possesses a common Lyapunov function, whenever the
corresponding arbitrary switched system is asymptotically stable, and they proved that even in this
simple case there might not exist any quadratic Lyapunov function. The same authors generalized
their approach to exponentially stable nonlinear, autonomous systems in [5]. J. Mancilla-Aguilar and
R. Garcia used results from Y.Lin, E. Sontag, and Y. Wang in [31] to prove a converse Lyapunov
theorem on asymptotically stable nonlinear, autonomous switched systems in [34].

In this work we prove a converse Lyapunov theorem for uniformly asymptotically stable nonlinear
switched systems and we allow the systems to depend explicitly on the time ¢, that is, we work
the nonautonomous case out. We proceed as follows: If the functions f,, of the switched system
x = f,(t,x), p € P, are locally Lipschitz in the state-space argument with a common Lipschitz
constant L > 0, that is, [|f,(t,x) — £,(t,y)|l2 < L||x — y||2 for all p € P, all ¢ > 0, and all x,y in
some compact neighborhood of the origin. Then, by combining a Lyapunov function construction
method by J.Massera for ordinary differential equations, see, for example, [38] or Section 5.7 in
[56], with the construction method presented by W.Dayawansa and C.Martin in [5], it is possible
to construct a Lyapunov function V' that is Lipschitz in the state-space. However, we need V to
be smooth so we prove that if the functions f,, p € P, are Lipschitz with a common Lipschitz
constant L, that is ||f,(¢,x) — £,(s,¥)|l2 < L(|t — s| + ||x — y||2) for all p € P, all s,t > 0, and
all x,y in some compact neighborhood of the origin in the state-space, then we can smooth the
Lipschitz Lyapunov function to be an infinitely differentiable Lyapunov function. A proof of this
needs a lot of efforts, partially because we have to prove that if A/ C R" is a neighborhood of the



origin and W € C(N) N C>®(N \ {0}) is Lipschitz at the origin, then W exp(—W ') € C*(N). This
fact was used by F. Wilson in [62] without any justification. In [43] T. Nadzieja repairs some other
parts of Wilson’s proof and notices this problem too. He argues that this must hold true because
W exp(—W 1) converges faster to zero than any polynomial. However, this argument does not seem
satisfactory to the author because some arbitrary derivative of W might still diverge to fast at the
origin. Therefore we deliver a rigid proof of this fact. Surprisingly enough it is about 6 pages long of
quite technical mathematics.

In Part IT of this work, which consists of the chapters 4, 5, 6, and 7, we give an algorithmic construction
scheme of a linear programming problem for the switched system x = f,(¢,x), p € P # 0 finite, where
the f, are assumed to be C? functions. Further, we prove that if this linear programming problem
possesses a feasible solution, then such a solution can be used to parameterize a function that is a
Lyapunov function for all of the individual systems and then a Lyapunov function for the arbitrary
switched system. We then use this fact to derive an algorithm to construct Lyapunov functions for
nonlinear, nonautonomous, arbitrary switched systems that possess a uniformly asymptotically stable
equilibrium.

In Chapter 4 we introduce the function space CPWA, a set of continuous functions R" — R that
are piecewise affine (often called piecewise linear in the literature) with a certain simplicial boundary
configuration. The spaces CPWA are essentially the function spaces PWL, presented by P. Julian,
A. Desages, and O. Agamennoni in [22], P. Julian, J. Guivant, and A. Desages in [23|, and by P. Julian
in [21], with variable grid sizes. A function space CPWA defined on a compact domain is a finite
dimensional vector space over R, which makes it particularly well suited as the foundation for the
search of a parameterized Lyapunov function. Another property which renders them appropriate as
a search space, is that a function in C? can be neatly approximated by a function in CPWA as shown
in Lemma 4.14.

In Chapter 5 we define our linear programming problem in Definition 5.1 and then we show how
to use a feasible solution to it to parameterize a Lyapunov function for the corresponding switched
system. We discuss the autonomous case separately, because in this case it is possible to parameterize
an autonomous Lyapunov function with a simpler linear programming problem, which is defined
in Definition 5.5. These results are generalizations of former results by the author, presented in
[35, 36, 11, 10, 12, 13].

In Chapter 6 we prove, that if we construct a linear programming problem as in Definition 5.1 for a
switched system that possesses a uniformly asymptotically stable equilibrium, then, if the boundary
configuration of the function space CPWA is sufficiently closely meshed, there exist feasible solutions
to the linear programming problem. There are algorithms, for example the simplex algorithm, that
always find a feasible solution to a linear programming problem, provided there exists at least one.
This implies that we have reduced the problem of constructing a Lyapunov function for the arbitrary
switched system to a simpler problem of choosing an appropriate boundary configuration for the
CPWA space. If the systems x = £,(¢,x), p € P, are autonomous and exponentially stable, then it
follows by [11] that it is even possible to calculate the mesh-sizes directly from the original data, that
is, the functions f,. This, however, is much more restrictive than necessary, because a systematic scan
of boundary configurations is considerably more effective, will lead to success for merely uniformly
asymptotically stable nonautonomous systems, and delivers a boundary configuration that is more
coarsely meshed. Just as in Chapter 5 we consider the more simple autonomous case separately.

In Chapter 7 we use the results from Chapter 6 to define our algorithm in Procedure 7.1 to construct
Lyapunov functions and we prove in Theorem 7.2 that it always delivers a Lyapunov function, if the
arbitrary switched system possesses a uniformly asymptotically stable equilibrium. For autonomous



systems we do the same in Procedure 7.3 and Theorem 7.4. These procedures and theorems are
generalizations of results presented by the author in [11, 10, 13].

In the last decades there have been several proposals of how to numerically construct Lyapunov
functions. For comparison to the construction method presented in this work some of these are listed
below. This list is by no means exhaustive.

In [55] L. Vandenberghe and S.Boyd present an interior-point algorithm to construct a common
quadratic Lyapunov function for a finite set of autonomous linear systems and in [30] D. Liberzon
and R. Tempo took a somewhat different approach to do the same and introduced a gradient decreas-
ing algorithm. Booth methods are numerically efficient, but unfortunately, limited by the fact that
there might exist Lyapunov functions for the system, non of which is quadratic. In [19], [20], and
[18] M. Johansson and A.Rantzer proposed construction methods for piecewise quadratic Lyapunov
functions for piecewise affine autonomous systems. Their construction scheme in based on continuity
matrices for the partition of the respective state-space. The generation of these continuity matrices
remains, to the best knowledge of the author, an open problem. R.Brayton and C.Tong in [3| and
[4], Y. Ohta, H. Imanishi, L. Gong, and H. Haneda in [45], A. Michel, N.Sarabudla, and R. Miller in
[41], and A.Michel, B. Nam, and V. Vittal in [40] reduced the Lyapunov function construction for a
set of autonomous linear systems to the design of a balanced polytope fulfilling certain invariance
properties. A. Polanski in [48] and X. Koutsoukos and P. Antsaklis in [26] consider the construction
of a Lyapunov function of the form V(x) := ||Wx|o, where W is a matrix, for autonomous lin-
ear systems by linear programming. P.Julian, J. Guivant, and A.Desages in [23| and P. Julian in
[21] presented a linear programming problem to construct piecewise affine Lyapunov functions for
autonomous piecewise affine systems. This method can be used for autonomous, nonlinear systems
if some aposteriori analysis of the generated Lyapunov function is done. The difference between
this method and our (autonomous) method is described in Section 6.2 in [36]. In [17] T. Johansen
uses linear programming to parameterize Lyapunov functions for autonomous nonlinear systems.
His results are, however, only valid within an approximation error, which is difficult to determine.
P. Parrilo in [47] and A. Papachristodoulou and S. Prajna in [46]| consider the numerical construction
of Lyapunov functions that are presentable as sums of squares for autonomous polynomial systems
under polynomial constraints.

In Part III of this thesis, which consists of the chapters 8-14, we give several examples of Lya-
punov functions that we generated by the linear programming problems from Definition 5.1 (nonau-
tonomous) and Definition 5.5 (autonomous). Further, in Chapter 14, we give some final words. The
examples are as follows: In Chapter 8 we generate a Lyapunov function for a two-dimensional, au-
tonomous, nonlinear ordinary differential equation, of which the equilibrium is asymptotically stable
but not exponentially stable. In Chapter 9 we consider three different two-dimensional, autonomous,
nonlinear ordinary differential equations and we generate a Lyapunov function for each of them. Then
we generate a Lyapunov function for the corresponding arbitrary switched system. In Chapter 10 we
generate a Lyapunov function for a two-dimensional, autonomous, piecewise linear variable structure
system without sliding modes. Variable structure systems are switched systems, where the switching
is not arbitrary but is performed in dependence of the current state-space position of the system. Such
systems are not discussed in Part I and Part IT of this work (the theoretical part), but as explained
in the example such an extension is straight forward. For variable structure systems, however, one
cannot use the theorems that guarantee the success of the linear programming problem in parame-
terizing a Lyapunov function. In Chapter 11 we generate a Lyapunov function for a two-dimensional,
autonomous, piecewise affine variable structure system with sliding modes. In Chapter 12 we gen-
erate Lyapunov functions for two different one-dimensional, nonautonomous, nonlinear systems. We
then parameterize a Lyapunov function for the corresponding arbitrary switched system. Finally, in



Chapter 13, we parameterize Lyapunov functions for two different two-dimensional, nonautonomous,
nonlinear systems. Then we generate a Lyapunov function for the corresponding arbitrary switched
system.



Part 1

Stability theory of dynamical systems under
arbitrary switching
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In this first part of the thesis we introduce arbitrary switched dynamical systems and prove some
elementary properties of their solutions. Thereafter we derive the direct method of Lyapunov for
these systems. The Lyapunov function is required to be continuous but not necessarily differentiable.
Finally, the main contribution of this part is presented, namely Theorem 3.10, a converse Lyapunov
theorem on uniform asymptotic stability for arbitrary switched nonautonomous, nonlinear, contin-
uous dynamical systems. These results are more general than the converse theorems found in the
literature (see Qutline of this work) and because these results are needed later on we give a rigid
proof.



24



Chapter 1

Switched dynamical systems

In this thesis we will consider arbitrary switched nonautonomous, nonlinear, continuous dynamical
systems. In order to define exactly what is meant by these concepts and to introduce the notations
used throughout this thesis, we will start by discussing continuous dynamical systems and some
elementary, but useful, properties of them and their solutions. Then we introduce switching signals
and switched systems.

1.1 Continuous dynamical systems

A continuous dynamical system is a system, of which the dynamics can be modeled by an ordinary

differential equation of the form
x = f(t,x). (1.1)

This equation is called the state equation of the dynamical system. We refer to x as the state of
the system and to the set of all possible states as the state-space of the system. Further, we refer
to t as the time of the system. If the mapping f in (1.1) does not depend explicitly on the time ¢,
that is f£(¢;,x) = f(t2,x) for all times ¢; and ¢, and all states x, then the system (1.1) is said to be
autonomous. A system that is not autonomous it is said to be nonautonomous.

In order to define the solution to a continuous dynamical system, we first need to define what we
mean by a solution to an initial value problem of the form

x =f(t,x), x(to) =&,

and we have to assure, that a unique solution exists for every £ in the state-space. In order to define
a solution to such an initial value problem, it is advantageous to assume that the state-space of the
system is a domain in R™, that is, an open and connected subset!. The set & C R" is said to be
connected, if and only if for every points a,b € U there is a continuous mapping = : [0, 1] — U such
that 4(0) = a and (1) = b.

The definition of a solution to an initial value problem is somewhat involved because we want it to
be a solution, of which the domain cannot be extended in a self-evident way. By a solution to an
initial value problem we exactly mean:

IThe term domain has several meanings in mathematics and it has to be deduced from the context what is meant.
If we, for example, say that a function g has the domain D C R"”, it means that the function value of g is properly
defined at x € R", if and only if x € D. The set D does not necessarily have to be a domain in R”.
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Definition 1.1 (Solution to an initial value problem) Let U be a domain in R™, let & € U, let
—00 < a<b<+oo, let T CR be an interval, of which the interior is the interval |a,b[, let ty € Z,
and let £: 7 xU — R" be a function.

We cally :]a’,b'[— R", a < d' < b <b, a solution to the initial value problem

X = f(t,X), X(to) = E,
if and only if y(to) = &, graph(y) Cla’, V[ xU, y(t) = £(t,y(t)) for all t €]a’,b'[, and neither the
closure of graphyp, v nor the closure of graphyja 4 is a compact subset of Ja, b X U.

Further, if a € T and the limit lim;_, y(t) exists and is in U, then we define y(a) to be this limit
(continuous extension), and, if b € T and the limit lim;_,_ y(t) exists and is in U, then we define

y(b) to be this limit
O

The condition that the closure of graphyy, 4 is not a compact subset of |a, b[ x U implies that one
of the following applies:

i) b’ = 400 so the solution y exists for all ¢ > .
ii) b < 400 and limsup,_,,_ ||y(¢)||2 = +oo.

iif) o' < 400 and lim;_y_ (inf,epmy ||z — y(t)[|2) = 0.

For y restricted to |a’,tg] analogous propositions apply. For a proof of this fact see, for example,
I1.§6.VII in [59]. Together these requirements secure, that y is a solution, of which the domain
cannot be extended in any sensible way. For a more detailed discussion on this we refer to [59] again.

One possibility to secure the existence and uniqueness of a solution for any initial state & in the
state-space of a system, is given by the Lipschitz condition.

The function f : R>g x & — R", where U C R™, is said to be Lipschitz, with a Lipschitz constant
L > 0 with respect to the norms ||+ || on R x R™ and || - ||« on R™, if and only if the Lipschitz condition

[£(s, %) = £(Z, )l < Ll[(s,x) = (£, ¥)]]

holds true for all (s,x), (t,y) € Rso X U.
It is said to be Lipschitz on U, with a Lipschitz constant L > 0, if and only if the Lipschitz condition

1£(t,x) — (£, y)[l. < Llx =y

holds true for all x,y € U and all ¢ € R>,.
It is said to be locally Lipschitz on U, if and only if its restriction f |[t1,t2]xc to any compact set
[t1,t2] X C C Rso x U is Lipschitz on [tq,ts] x C.

Still another concept that we will use in this work is locally Lipschitz uniformly in the first argument.
It is defined as follows: the function f is said to be locally Lipschitz uniformly in the first argument
on U, if and only if its restriction f|g. «c to any set R>o x C, where C is a compact subset of U, is
Lipschitz on Rsq x C. That is, there is a constant L > 0 such that

1£(t,x) = £(£,y)[l. < Llx =y
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for all x,y € C and all t € R>.

Note, that because all norms on R* are equivalent, the properties Lipschitz, locally Lipschitz, and
locally Lipschitz uniformly in the first argument do not depend on the norms. However, the numerical
values of the Lipschitz constants might.

Further note, that if the components of f : R>g x Y — R", where &/ C R™, are all differentiable,
then

ofi Ofi
sup J (t,x)| < +oo0 and sup / (t,x)| < 400
i=1,2,...,n 82& i=1,2,...,n al‘j
t>0,xeU Jtzzlé%;él’lm
implies that f is Lipschitz,
O
sup  [=—(t,x)| < +o0
i=1,2,...,n al‘j
j=1,2,..., m
t>0,xeU

implies that f is Lipschitz on U,

of:
sup a—ﬁ(t, x)| < 400 for every compact Z x C C R>g X U,
i=1,2,...,n T -
Nl

implies that f is locally Lipschitz on i/, and

of:
sup l(t, x)| < 400 for every compact C C U,
;f11,22 ,,,,, n 81‘]
Tbxec”

implies that f is locally Lipschitz on ¢/ uniformly in the first argument.

The next theorem states the arguably two most important results in the theory of ordinary differential
equations. It gives sufficient conditions for the existence and the uniqueness of solutions of initial
value problems. These conditions are not the most general known, but they are intuitive and usually
more easy to affirm than more abstract ones. For more general conditions see, for example, I11.§12.VII
in [59].

Theorem 1.2 (Peano / Picard-Lindel6f) Let U C R™ be a domain, f : Rsg x U — R" be a
continuous function, ty > 0 be a constant, and & € U. Then there exists a solution to the initial value
problem

x = f(t,x), x(ty) =€&.

If £ is locally Lipschitz on U, then there are no further solutions.

PROOF:
See, for example, Theorems VI and IX in I11.§10 in [59].

In this thesis we will only consider continuous dynamical systems, of which the dynamics are modeled
by an ordinary differential equation
x = f(t,x), (1.2)

where f : R>g x Y — R" is a locally Lipschitz function on the domain &/ C R". The last theorem
allows us to define the solution to the state equation of such a dynamical system.
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Definition 1.3 (Solution to an ordinary differential equation) Let U C R™ be a domain and
let £:Rso xU — R" be locally Lipschitz on U. For every & € U and every ty € Rxq let y(,.¢) be
the solution to the initial value problem

x =f(t,x), x(ty) = €.
Let the function
¢ : {(t,t0,€)|to € Rso, £ €U, and t € dom(y(,g)} — R”

be defined by @(t,10,&) = Y1o,¢)(t) for all ty € Rso, all§ €U, and all t € dom(y,e)). The function
¢ is called the solution to the state equation

x = f(t,x).
O

In this thesis we will use the functions spaces C™ of m-times continuously differentiable functions,
m =0,1,...,00. The characterization of these spaces is most conveniently done by the use of so-called
multiindices.

Definition 1.4 (Multiindex) An n-dimensional multiindez 3 is an n-tuple of nonnegative integers,
B = (01,52, ..., 0n). The length |B| of the multiindex B is defined as the sum of the 3;, that is

18 := Z@'-
i=1

The differential operator O is defined for sufficiently smooth functions f : U — R, where U C R"
15 a domain, by

ol f
= X
r o> - . O

P f(x) :

O

It is a well known fact, that if 9° f is properly defined and continuous on U, then the order of the
differentiations does not matter.

Let m € N5q. A function f: U — R, such that 9P f is properly defined and a continuous function
on U for all multiindices 3 satisfying |3| < m, is said to be of class C™(U). We usually write C(U)
instead of CY(U) and a function f : U — R that is of class C"™(U) for all m € N5 is said to be of
class C>*(U).

A vector valued mapping f : U — R* f := (f1, fo,..., fr), of which each component f; is of class
C™(U), is said to be of class C™(U) too and we write £ € [C™(U)]".

It is a remarkable fact, that if £ in (1.2) is a [C™(R>¢ x U)|™ function for some m € Nsq, then its
solution ¢ and the time-derivative ¢ of the solution are C™ functions on their domains as well. This
follows, for example, by the corollary at the end of I111.§13 in [59]. We need this fact later so we state
it as a theorem.

Theorem 1.5 LetU C R" be a domain, £ : R>g xU — R™ be locally Lipschitz on U, and ¢ be the
solution to the state equation X = f(t,x). Let m € N>q and assume that £ € [C"(Rso x U)]", then

¢, € [C™(dom(gp))]". =
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We end this discussion on continuous dynamical systems with a well know theorem, that gives an
upper bound on the difference of solutions to differential equations.

Theorem 1.6 LetZ C R be a nonempty interval and letU be a domain in R™. Letf, g : ITxU — R"
be continuous mappings and assume that £ is Lipschitz on U with a Lipschitz constant L > 0 with
respect to the norm || - || on R™. Let to € Z and let €&,m € U and denote the unique solution to the
initial value problem

x =f(t,x), x(to) =&,

byy :Zy — R" and let z : Z, — R™ be any solution to the initial value problem

X = g(t’ X)? X(to) =

Set J :==1,NZI, and let v and o be constants, such that

1€ —mll <~y and [[f(t,2(1)) —g(t,2(2)]| <o

for allt € J. Then the inequality

Iy (t) = 2(D)] < 7eHe-1 4 bl )
holds true for all t € J.

PROOF:
Follows, for example, by Theorem II1.§12.V in [59].

1.2 Switched systems

A switched system is basically a family of dynamical systems and a switching signal, where the
switching signal determines which system in the family describes the dynamics at what times or
states. As we will be concerned with the stability of switched systems under arbitrary switchings,
the following definition of a switching signal is sufficient for our needs.

Definition 1.7 (Switching signal) Let P be a nonempty set and equip it with the discrete metric
d(p,q) := 1 if p # q. A switching signal 0 : R>g — P is a right-continuous function, of which the
discontinuity-points are a discrete subset of R>o. The discontinuity-points are called switching times.
For technical reasons it is convenient to count zero with the switching times, so we agree upon that
zero 1s a switching time as well. We denote the set of all switching signals R>og — P by Sp.

([l

With the help of the switching signal in the last definition we can define the concept of a switched
system and its solution.

Definition 1.8 (Solution to a switched system) LetU C R" be a domain, let P be a nonempty
set, and let
{fp : RZO XU — R"|p S 7)}
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be a family of mappings, each locally Lipschitz on U. For every switching signal o € Sp we define
the solution t — ¢ (t,s,&) to the initial value problem

K= £(t%), x(s) =&, (1.3)
in the following way:
Denote by tg, t1,ta, ... the switching points of o in an increasing order. If there is a largest switching
point t, we set tp1 = +oo and if there is no switching time besides zero we set t; := 400. Let

s € Rsg and let k € Ny be such that ty, < s < tgy1. Then ¢, is defined by gluing together the
trajectories of the systems

x=1,(t,x), peP,

using p := o(s) between s and tyi1, p = o(tgr1) between ty 1 and tyyo, and in general p := o(t;)
between t; and t;11, © > k+ 1. Mathematically this can be expressed inductively as follows:

Forward solution:

i) @,(s,5,€6) =& foralls € Rsg and all £ € U.

ii) Denote by y the solution to the initial value problem

X = fa(s) (ta X)7 X(S) = é’

on the interval [s,ty1[, where k € Nsq is such that tp < s < tyy1. Then we define ¢ (t,s,§)
on the domain of t — y(t) by @, (t,s,&) = y(t). If the closure of graph(y) is a compact subset
of [s,tyq1] x U, then the limit limy_,,,— y(t) exists and is in U and we define ¢, (tyi1,5,§) ==
hmt—»tk-H— y(t)

iii) Assume ¢, (t;,s,&) € U is defined for some integer i > k + 1 and denote by y the solution to
the initial value problem

X = fo’(ti)(ty X), X(tz> = d)o‘(t’i) S, E)a

on the interval [t;, t;11[. Then we define ¢, (t,s, &) on the domain of t — y(t) by ¢, (t,s,&) :=
y(t). If the closure of graph(y) is a compact subset of [t;, t;1] XU, then the limit lim,_,,,_ y (1)
exists and is in U and we define ¢, (tiz1,s,€) = limy_,,,— y(1).

Backward solution:

i) ¢,(s,5,&) =& forall s € Ryg and all € € U.
ii) Denote by y the solution to the initial value problem
X = fa(tk)(t7 X)v X(S) = Eu

on the interval |t, s], where k € Nxq is such that t, < s < tgy1. Then we define ¢, (t,s,§)
on the domain of t — y(t) by ¢,(t,s,&) = y(t). If the closure of graph(y) is not empty and
a compact subset of [ty,s| x U, then the limit lim,_;, ; y(t) exists and is in U and we define

d)o(tku S, £> = limt—>tk+ Y(t)
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iii) Assume ¢ (t;,s,&) € U is defined for some integer i, 0 < i < k and denote by y the solution
to the initial value problem

X = fa(ti)(ta X), X<tz> — ¢o’(ti7 S, E)a

on the interval |t;_1,t;]. Then we define ¢,(t,s,&) on the domain of t — y(t) by ¢,(t,s,&) =
y(t). If the closure of graph(y) is a compact subset of [t;_1,t;] XU, then the limit lim;_;, 4 y(t)
exists and is in U and we define ¢, (ti—1,5,&) = limy_y,_,+ y(t).

Thus, for every o € Sp we have defined the solution ¢, to the differential equation

x = f,(t,x).
O

Now, that we have defined the solution to (1.3) for every o € Sp, we can define the switched system
and its solution.

Switched System 1.9 LetU C R" be a domain, let P be a nonempty set, and let
{fp : RZO X U —>Rn|p€ P}

be a family of mappings, each locally Lipschitz on U.

The arbitrary switched system
X = fa(t,X), o€ Sp,

1s simply the collection of all the differential equations
{X = fg(t,X)‘U S 873},

whose solutions we defined in Definition 1.8.

The solution ¢ of the arbitrary switched system is the collection of all the solutions ¢, to the individual

switched systems.
U

Note, that if 0,¢ € Sp, 0 # <, then in general ¢, (t,ty, &) is not equal to ¢_(t,o,§).

Because the trajectories of the Switched System 1.9 are defined by gluing together trajectory-pieces
of the corresponding continuous systems, the remarks after Definition 1.1 about the solution to a
continuous dynamical system apply equally to the switched system. That is, for every o € Sp, every
s € Rsp, and every € € U the closure of the graph of t — ¢ (t,s,£), t > s, is not a compact subset
of R>g x U and the closure of the graph of t — ¢,(t,s,£), t < s, is not a compact subset of R x U.

Note, that if the system 1.9 is autonomous, that is, f,(¢,x) = f,(s,x) for all p € P, all s,¢ > 0 and
all x € U, then

@, (t,t',x) = ¢ (t —1,0,§), where (s) :=o(s+ 1) for all s >0,

for all t > ¢/ > 0 and all £ € U. Therefore, we often suppress the middle argument of the solution to
an autonomous system and simply write ¢, (t, &).

We end this introduction on switched systems with a generalization of Theorem 1.6 to switched
systems.
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Theorem 1.10 Consider the Switched System 1.9 and assume that the functions £, are all Lipschitz
onU and have a common Lipschitz constant L > 0 with regard to some norm || - || on R™. That is,

1£,(¢,x) = £,(¢, y)|| < Lllx — ||

forallt >0, allx,y €U, and allp € P. Let ty >0, let &, €U, let 0,5 € Sp, and assume there is
a constant 6 > 0 such that
o) (£, %) — £ (£, )] < 0

forallt >0 and allx € U.

Denote the solution to the initial value problem
x =1f,(t,x), x(to) =&,

byy : Zy, — R"™ and denote the solution to the initial value problem
x =1f(t,x), x(to) =m,

byz:Z, — R". Set J :=1Z, NI, and set v := || —n||. Then the inequality

0
ly(t) — =z(t)|| < ~e"lrol + z(eL'HO' - 1) (1.4)
holds true for all t € J.

PROOF:

We only prove inequality (1.4) for ¢ > ¢y, the case t < to follows similarly. Let ¢; be the smallest real
number larger than ¢y that is a switching time of ¢ or a switching time of ¢. If there is no such a
number, then set ¢; := sup,c; . By Theorem 1.6 inequality (1.4) holds true for all ¢, t, <t < t;.
If t; = sup,c s« we are finished with the proof, otherwise ¢; € J and inequality (1.4) holds true for
t = t; too. In the second case, let t5 be the smallest real number larger than ¢, that is a switching
time of o or a switching time of ¢. If there is no such a number, then set ¢, := sup,c s x. Then, by
Theorem 1.6,

I(6) = 2] < (e 4 b0t - 1 ) B0 4 & ebioed
) ) ) )
— L(t—to) Y L(t—to) _ ~ _L(t—t1) Y L(t-t1) _
e e L° e L

)
_ ,yeL(t—to) + E(GL(t—to) _ 1)

for all ¢ such that t; <t < ts.

As this argumentation can, if necessary, be repeated ad infinitum, inequality (1.4) holds true for all

t >ty such that t € J. =



Chapter 2

Stability and Lyapunov functions for
switched systems

In this chapter we will discuss the stability of equilibrium points for switched systems. Further, we
will carry over the Lyapunov stability theory of continuous dynamical systems to switched systems
under arbitrary switching. Differentiable Lyapunov functions are too restrictive for our purposes so
we develop the theory for merely continuous Lyapunov functions.

We will make use of Dini derivatives and we need to smooth functions in our proofs, so a short
discussion on these subjects is given for completeness.

2.1 Equilibrium points and stability

The concepts equilibrium point and stability are motivated by the desire to keep a dynamical system
in, or at least close to, some desirable state. The term equilibrium or equilibrium point of a dynamical
system, is used for a state of the system that does not change in the course of time, that is, if the
system is at an equilibrium at time ¢t = 0, then it will stay there for all times ¢ > 0.

Definition 2.1 (Equilibrium point) A state y in the state-space of the Switched System 1.9 is
called an equilibrium or an equilibrium point of the system, if and only if £,(t,y) =0 for allp € P

and all t > 0.
O

If y is an equilibrium point of Switched System 1.9, then obviously the initial value problem
x =f,(t,x), x(0)=y

has the solution x(t) =y for all ¢ > 0 regardless of the switching signal ¢ € S. The solution with y
as an initial value in the state-space is thus a constant vector and the state does not change in the
course of time. By a translation in the state-space one can always reach that y = 0 without affecting
the dynamics. Hence, there is no loss of generality in assuming that a particular equilibrium point is
at the origin.

A real-world system is always subject to some fluctuations in the state. There are some external
effects that are unpredictable and cannot be modeled, some dynamics that have (hopefully) very little
impact on the behavior of the system are neglected in the modeling, etc. Even if the mathematical
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model of a physical system would be perfect, which hardly seems possible, the system state would
still be subject to quantum mechanical fluctuations. The concept of local stability in the theory
of dynamical systems is motivated by the desire, that the system state stays at least close to an
equilibrium point after small fluctuations in the state. Any system that is expected to do something
useful must have a predictable behavior to some degree. This excludes all equilibria that are not
locally stable as usable working points for a dynamical system. Local stability is thus a minimum
requirement for an equilibrium. It is, however, not a very strong property. It merely states, that
there are disturbances that are so small, that they do not have a great effect on the system in the
long run. In this thesis we will concentrate on uniform asymptotic stability on a set containing the
equilibrium. This means that we are demanding that the uniform asymptotic stability property of the
equilibrium is not merely valid for some, possibly arbitrary small, neighborhood of the origin, but
this property must hold on a a priori defined neighborhood of the origin. This is a much more robust
and powerful concept. It denotes, that all disturbances up to a certain known degree are ironed out
by the dynamics of the system, and, because the domain of the Lyapunov functions is only limited
by the size of the equilibriums’ region of attraction, that we can get a reasonable lower bound on the
region of attraction.

The common stability concepts are most practically characterized by the use of so-called K, £, and
KL functions.

Definition 2.2 (Comparison functions K, £, and KL) The function classes IC, L, and KL of
comparison functions are defined as follows:

i) A continuous function a : Rsg — R is said to be of class IC, if and only if a(0) = 0, it is
strictly monotonically increasing, and lim,_, ., a(r) = +o0.

ii) A continuous function [ : Rsg — Rsq is said to be of class L, if and only if it is strictly
monotonically decreasing and limg_, o, 5(s) = 0.

iii) A continuous function ¢ : R>g X Rsg — Rxq is said to be of class KCL, if and only if for every
fized s € Rsq the mapping r — <(r,s) is of class K and for every fixzed r € R>q the mapping
s+ ¢(r,s) is of class L. 0

Note that some experts make a difference between strictly monotonically increasing functions that
vanish at the origin and strictly monotonically increasing functions that vanish at the origin and
additionally asymptotically approach infinity at infinity. They usually denote the functions of the
former type as class K functions and the functions of the latter type as class K, functions. We are not
interested in functions of the former type and in this work o € K always implies lim, ., o, a(r) = 400.

We now define various stability concepts for equilibrium points of switched dynamical systems with
help of the comparison functions.

Definition 2.3 (Stability concepts for equilibria) Assume that the origin is an equilibrium
point of the Switched System 1.9, denote by ¢ the solution to the system, and let || - || be an ar-
bitrary norm on R™.

i) The origin is said to be a uniformly stable equilibrium point of the Switched System 1.9 on a
neighborhood N' C U of the origin, if and only if there exists an o € K such that for every
o€ Sp, everyt >tg >0, and every & € N the inequality

H¢O’<t7t07£)” S Oé(”€”)
holds true.
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it) The origin is said to be a uniformly asymptotically stable equilibrium point of the Switched
System 1.9 on the neighborhood N C U of the origin, if and only if there exists a ¢ € KL such
that for every o € Sp, every t > tq > 0, and every & € N the inequality

105 (£, 10, &)l < <([[€]], T —to) (2.1)
holds true.
iii) The origin is said to be a uniformly exponentially stable equilibrium point of the Switched System
1.9 on the neighborhood N C U of the origin, if and only if there exist constants k > 0 and
v > 0, such that for every o € Sp, every t >ty > 0, and every € € N the inequality
b5 (£ to, €)| < ke Tig |

holds true.
O

The stability definitions above imply, that if the origin is a uniformly exponentially stable equilibrium
of the Switched System 1.9 on the neighborhood N, then the origin is a uniformly asymptotically
stable equilibrium on N as well, and, if the origin is a uniformly asymptotically stable equilibrium of

the Switched System 1.9 on the neighborhood N, then the origin is a uniformly stable equilibrium
on N.

If the Switched System 1.9 is autonomous, then the stability concepts presented above for the systems
equilibria are uniform in a canonical way, that is, independent of ¢y, and the definitions are somewhat
simpler.

Definition 2.4 (Stability concepts for equilibria of autonomous systems) Assume that the
origin is an equilibrium point of the Switched System 1.9, denote by ¢ the solution to the system, let
| - || be an arbitrary norm on R™, and assume that the system is autonomous.

i) The origin is said to be a stable equilibrium point of the autonomous Switched System 1.9 on
a neighborhood N° C U of the origin, if and only if there exists an o € K such that for every
o € Sp and every & € N the inequality

16, (t, &)l < a(ll&l)
holds true.

ii) The origin is said to be an asymptotically stable equilibrium point of the autonomous Switched
System 1.9 on the neighborhood N' C U of the origin, if and only if there exists a ¢ € KL such
that for every o € Sp and every & € N the inequality

b, (&, &) <<€l t)
holds true.

iit) The origin is said to be an exponentially stable equilibrium point of the Switched System 1.9 on
the neighborhood N' C U of the origin, if and only if there exist constants k > 0 and v > 0,
such that for every o € Sp and every € € N the inequality

|, (t, &) < ke™||€]
holds true.
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O

The set of those points in the state-space of a dynamical system, that are attracted to an equilibrium
point by the dynamics of the system, is of great importance. It is called the region of attraction of the
equilibrium. Some experts prefer domain, basin, or even bassin instead of region. For nonautonomous
systems it might depend on the initial time.

Definition 2.5 (Region of attraction) Assume thaty = 0 is an equilibrium point of the Switched
System 1.9 and let ¢ be the solution to the system. For every ty € Rs( the set

RY, = {& €U limsup ¢, (t,t0,€) =0 for all o € Sp}

t——+oo

is called the region of attraction with respect to ty of the equilibrium at the origin.

The region of attraction Ry of the equilibrium at the origin is defined by

Thus, for the Switched System 1.9 & € R 44 implies limy ., ¢, (t, 10, &) = 0 for all 0 € Sp and all
to > 0. The next theorem confirms the usefulness of the definition of uniform asymptotic stability
from Definition 2.3.

Theorem 2.6 Assume that the origin is a uniformly asymptotically stable equilibrium point of the
Switched System 1.9 on the neighborhood N C U of the origin and let || - || be a norm on R™. Then
N C Ray. Further, if N is bounded, there exists a constant C' > 0 such that

sup ||, (t, £, §) < C.

ocESP
t>tn=>0
EeN

PROOF:
Obvious from the definition of the set R 44 and the definition of uniform asymptotic stability, just
set

C :=sup<(|ly|,0),
yeN

where ¢ € KL is a comparison function as in Definition 2.3 4i) with respect to the norm || - ||.

Before we come to the Lyapunov stability theory of switched dynamical systems we shortly discuss
Dini derivatives and the smoothing of functions by convolutions with C* functions having a compact
support as a preparation for the forthcoming.
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2.2 Dini derivatives

The Italian mathematician Ulisse Dini introduced in 1878 in his textbook [6] on analysis the so-called
Dini derivatives. They are a generalization of the classical derivative and inherit some important
properties from it. Because the Dini derivatives are point-wise defined, they are more suited for
our needs than some more modern approaches to generalize the concept of a derivative like Sobolev
Spaces (see, for example, [1]) or distributions (see, for example, [60]). The Dini derivatives are defined
as follows:

Definition 2.7 (Dini derivatives) LetZ C R, g:Z — R be a function, and y € T.

i) Assume y is a limit point of TNy, +oo[. Then the right-hand upper Dini derivative Dt of g
at the point y is defined by

D¥o(y) = limsup LD =9W) _ pyy [ g, @) =00)
r—y+ r—Yy e—0+ z%in]y,zm[ r—y
r—Yyse

and the right-hand lower Dini derivative D, of g at the point y is defined by

D.g(y) :== liminfM = lim ( inf M) .

T—y+ r—vy e—0+ ﬂcefﬂ]yﬁzoo[ T —y
0<z—y<e

ii) Assume y is a limit point of TN ] — oo, y[. Then the left-hand upper Dini derivative D~ of g at
the point y is defined by

D7g(y) :==limsup := lim sup M
T—Y— e—0— z€ZN]—o00,y[ xr — y
e<z—y<0

and the left-hand lower Dini derivative D_ of g at the point y is defined by

D_g(y) = liminf 88 =90) _ ( inf M)_
T—Y— r—1y e—0— z€IN]—o0,y[ T —y

e<z—y<O0

O

The four Dini derivatives defined in Definition 2.7 are sometimes called the derived numbers of g at
y, or more exactly the right-hand upper derived number, the right-hand lower derived number, the
left-hand upper derived number, and the left-hand lower derived number respectively.

It is clear from elementary calculus, that if ¢ : Z — R is a function from a nonempty open subset
Z C R into R and y € Z, then all four Dini derivatives D*g(y), Dyg(y), D™ g(y), and D_g(y)
of g at the point y exist. This means that if Z is a nonempty open interval, then the functions
Dtg,D,g9,D"g,D_g : T — R defined in the canonical way, are all properly defined. It is not
difficult to see that if this is the case, then the classical derivative ¢’ : T — R of ¢ exists, if and
only if the Dini derivatives are all real-valued and Dtg = D,g = D g = D_g.

Using lim sup and lim inf instead of the usual limit in the definition of a derivative has the advantage,
that they are always properly defined. The disadvantage is, that because of the elementary

limsup[g(x) + h(z)] < limsup g(z) + limsup h(z),
T—y+ T—y+ r—y+
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a derivative defined in this way is not a linear operation anymore. However, when the right-hand
limit of the function A exists, then it is easy to see that

limsup[g(x) + h(z)] = limsup g(x) + lim h(z).
=Y+ T—Yy+ T—y+

This leads to the following lemma, which we will need later.

Lemma 2.8 Let g and h be real-valued functions, the domains of which are subsets of R, and let
D* € {D*,D.,D~,D_} be a Dini deriwative. Let y € R be such, that the Dini derivative D*g(y) is
properly defined and h s differentiable at y in the classical sense. Then

D*[g+ h](y) = D*g(y) + W' (y)-

The reason why Dini derivatives are so useful for the applications in this thesis, is the following
generalization of the Mean-value theorem of differential calculus and its corollary.

Theorem 2.9 (Mean-value theorem for Dini derivatives) LetZ be an interval of strictly pos-
itive measure in R, let C be a countable subset of I, and let g : T — R be a continuous function.
Let D* € {D*,D,,D~,D_} be a Dini derivative and let J be an interval, such that D*f(z) € J
forallx € T\ C. Then
9(x) —9(y)
r—Yy

eJ

forallz,y eI, x#y.

PROOF:
See, for example, Theorem 12.24 in [58].

This theorem has an obvious corollary.

Corollary 2.10 Let T be an interval of strictly positive measure in R, let C be a countable subset of
Z, let g: T — R be a continuous function, and let D* € {D*,D,, D™, D_} be a Dini derivative.
Then:

*

D*g(z) >0 forallz € T\C implies that g is monotonically increasing on I.
D*g(x) >0 forallxz € T\ C implies that g is strictly monotonically increasing on Z.
D*g(z) <0 for allz € T\C implies that g is monotonically decreasing on Z.
D*g(z) <0 forallz € T\ C implies that g is strictly monotonically decreasing on I.

Theses results on Dini derivatives will suffice for our needs.
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2.3 Use of convolution to smooth functions

The support of a function g : R” — R, denoted by supp(g), is defined as the closure of the set
{x € R”| g(x) # 0}. A common and convenient method to smooth a locally integrable function
f : R" — R" is given by a convolution with a nonnegative C* function g, that has a compact
support and whose integral is equal to one. The so constructed function

f(x) == / g(x —y)f(y)d"y = / g(y)f(x —y)d"y
inherits the smoothness from the function g¢. If, additionally, f is continuous, we have
fi(x) = fi(z)
for some z; € x+supp(g) for every i = 1,2,...,n, so f has similar function values to f if the support

of ¢ is small enough. A basic example of such a nonnegative C* function with a compact support is
the Sobolev function.

Definition 2.11 (Sobolev function) On R" the Sobolev function p, : R® — Rsq is defined by

—1 -1 .
pn(X) = {C" P (W) ’ if x|l < 1,

0, else,

-1
C, = / exp (—) d"x.
[|x|l2<1 1—|Ix|13

where

Because

- &Xp (ﬁ)
AT Y

for any k € N>, we have p, € C*(R") and obviously supp(p,) = Bj.,,1(0). Further, by the definition
of the constant C,,, we clearly have [,, pn(x)d"z = 1.

We will use convolutions with nonnegative C*> functions that have a compact support later on to
smooth functions. The first results of this kind, which we will use later in this thesis, are delivered
by the next lemma.

Lemma 2.12 Let f : Rog — R>¢ be a monotonically decreasing function. Then there exists a
function g : Rog — Ry with the following properties:

i) g € C¥(Rxo).
ii) g(x) > f(x) for all x € Ryy.
iii) g is strictly monotonically decreasing.
) lim, oy 9() = +00 and lim,— o0 g(x) = lim, . f(2).

v) g is invertible and g=' € C*(g(Rso)).
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PROOF: B
We define the function A : R.y — Ry by,

h(z) = ) . ntl’ n
f(n)+ if x € [n,n+ 1] for some n € Ny,

z)

- {f(%ﬂ)—i_%? jfxe[L l[ for some n € Ny,

and the function h : Ry — R-o by

h(z) := h(x — tanh(z)).

Then A is a strictly monotonically decreasing measurable function and because h is, by its definition,
strictly monotonically decreasing and larger than f, we have

h(z + tanh(z)) = h(z + tanh(z) — tanh(z + tanh(z))) > h(z) > f(z)

for all x € Ryy.
We claim that the function g : Ryg — Ry,

z+tanh(z) T — 1
g(x) = / iy (mm(i;)) t;ﬁgx)dy = / 1 p1(y)h(z — ytanh(x))dy,

where p; is the one-dimensional Sobolev function, fulfills the properties i) - v).

Proposition i) follows from elementary Lebesgue integration theory. Proposition i) follows from

1 1

g@ﬁz/im@%@—yvmmwwy>/'m@%@+mmmwmy>/!mWV@My=f@)

1 -1 -
To see that g is strictly monotonically decreasing let ¢ > s > 0 and consider that

t —ytanh(t) > s — ytanh(s) (2.2)
for all y in the interval [—1, 1]. Inequality (2.2) follows from

t —ytanh(t) — [s — ytanh(s)] =t — s — y[tanh(t) — tanh(s)]
=t—5—y(t —s)(1 —tanh®(s + 0, 4(t — 5)))
>0,

for some ;5 € [0, 1], where we used the Mean-value theorem. But then
h(t — ytanh(t)) < h(s — y tanh(s))

for all y € [—1, 1] and the definition of g implies that g(¢) < g(s). Thus, proposition ) is fulfilled.

Proposition 7v) is obvious from the definition of g. Clearly g is invertible and by the chain rule

-1y o 1
o= @y

so it follows by mathematical induction that g~ € C*(g(Rx)), that is, proposition v).
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We will use the last lemma to give a relatively short proof of Massera’s lemma later on (Lemma 3.1).
Another useful results implied by Lemma 2.12 is given by the next lemma.

Lemma 2.13 Let a € K. Then, for every R > 0, there is a function Or € K, such that:

i) Br is a convex function.
ii) PR restricted to R~q is infinitely differentiable.

iii) For all 0 <z < R we have Br(z) < a(x).

PROOF:
By Lemma 2.12 there is a function g, such that g € C®(Rsy), g(z) > 1/a(x) for all z > 0,
lim; o1 g(z) = 400, and g is strictly monotonically decreasing. Then fr : Rsg — Ry, defined

through
1 [* dr
Or(x ::—/ —_
R( ) R Jy 9(7')

is the desired function.

First, Br(0) = a(0) = 0 and for every 0 < < R we have

1 [* dr 1
5R($):E/O ﬁ§m<@(l‘)-

Second, to prove that (g is a convex K function is suffices to prove that the second derivative of Gr
is strictly positive. But this follows immediately because for every x > 0 we have ¢'(x) < 0, which
implies

d2ﬁR( )= —g'(z)

&z T Rgwp ~ "

Another results we will take advantage of later on is given in the following lemma.

Lemma 2.14 Let m > 2 be an integer and let —oo =:t1 <ty < ... < tp,_1 <t = +00 be elements
of the compactified real-line. Let a;,b;, 1 = 1,2,...,m — 1, be vectors in R™ such that the piecewise
affine function

p(t):==ait+b; if t; <t <t

foralli=1,2,...,m—2, and
p(t) = a,,_1t + b1 Zf to1 <t <ty

is continuous. Then, for every nonnegative function p € C*(R) with a compact support and such that
Jg p(T)dT =1, we have for any norm || - || on R™ that

d m—1
— — < |l
I3 Lot = 7opioart < 3 Ja
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PROOF:
By partial integration

d m tit1
— [ p(t —7)p(r)dr = / Pt —7)(a;T + b;)dr
dt Jx i=1 Vi
m—1 tig1 tit1
=3 (<ot =+ m 7+ [ ot ).
. T:ti t:
=1 7
Because p is continuous we have a;t; + b; = a;1t; + b; 1 for all ¢ = 2,3,...,m — 2 and because p

has a compact support p(t — t1) = p(t — t,,) = 0. Therefore

d m—1 tiv1 m—1
15 [ ott=mp@ar < X laid [ ot = riar < 3 il
i=1 ti i=1

2.4 Direct method of Lyapunov

The Russian mathematician and engineer Alexandr Mikhailovich Lyapunov published a revolutionary
work in 1892 on the stability of motion, where he introduced two methods to study the stability of
general continuous dynamical systems. An English translation of this work can be found in [32].

The more important of these two methods, known as Lyapunov’s second method or Lyapunov’s direct
method, enables one to prove the stability of an equilibrium of (1.2) without integrating the differential
equation. It states, that if y = 0 is an equilibrium point of the system, V € C'(Rsq X U) is a positive
definite function, that is, there exist functions aq, s € K such that

a1 ([[xll2) <V (t,x) < as(l|x]l2)

for all x € Y and all t € R, and ¢ is the solution to the ordinary differential equation (1.2). Then
the equilibrium is uniformly asymptotically stable, if there is an w € KC such that the inequality

SV (1,1, 10,)) = [VaVI(1 Bl0, 0, )£ S0 10, ) + D1, B(110,8)  (23)
< —w(||lg(t,to, &)]]2)

holds true for all ¢(t,ty,€£) in an open neighborhood N C U of the equilibrium y. In this case the
equilibrium is uniformly asymptotically stable on a neighborhood, which depends on V| of the origin.
The function V' satisfying (2.3) is said to be a Lyapunov function for (1.2). The direct method of
Lyapunov is covered in practically all modern textbooks on nonlinear systems and control theory.
Some good examples are [14], [15], [24], [50], [56], and [61].

In this section we are going to prove, that if the time-derivative in the inequalities above is replaced
with a Dini derivative with respect to ¢, then the assumption V' € C!(R>¢ X U) can be replaced with
the less restrictive assumption, that V' is merely continuous. The same is done in Theorem 42.5 in
[14], but a lot of details are left out. Further, we generalize the results to arbitrary switched systems
of the form Switched System 1.9.

Before we state and proof the direct method of Lyapunov for switched systems, we proof a lemma
that we use in its proof.
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Lemma 2.15 Assume that the origin is an equilibrium of the Switched System 1.9 and let || - || be
a norm on R™. Further, assume that there is a function o € IC, such that for all o € Sp and all
t >ty > 0 the inequality

10, (£, 10, &)l < a(lI€]) (2.4)
holds true for all &€ in some bounded neighborhood N° C U of the origin.

Under these assumptions the following two propositions are equivalent:

i) There exists a function [ € L, such that

H¢ ttOv V& H€ ﬁt_t[)
forallo € Sp, allt >ty >0, and all € € N.

it) For every € > 0 there exists a T > 0, such that for every ty > 0, every o € Sp, and every
& € N the inequality

b, (t 0, &)l < ¢
holds true for all t > T + t.

PROOF:
Let R > 0 be so large that N' C B) z and set C' := max{1, o(R)}.

Proposition i) implies proposition i) :
For every € > 0 we set T':= 37'(¢//a(R)) and proposition i) follows immediately.
Proposition 4i) implies proposition ):

For every ¢ > 0 define T(g) as the infimum of all 7" > 0 with the property, that for every t, > 0,
every o € Sp, and every & € N the inequality

15 (t, 10, &) <€

holds true for all ¢t > T + ¢,.

Then T is a monotonically decreasing function R.g — R and, because of (2.4), T(¢) = 0 for
all ¢ > a(R). By Lemma 2.12 there exists a strictly monotonically decreasing C*(R-) bijective
function g : Ryg — Ry, such that g(¢) > f(e) for all € > 0. Now, for every pair t > tq > 0 set
e := g~1(t — ty) and note that because t = g(&') + to > T(¢') + to we have

g (t—to) =€ = ||, (t 0, &)

But then

B(s) = V20 = Clg(1)-s, if s €0,9(1)],
' Cg=1(s), if s > g(1),

is an L function such that
"(ﬁo(t’ th €>H S ﬁ(t - t0)>
for all t >ty > 0 and all £ € N, and therefore

105 (L, to, )| < Va(l[€]])5(t — to).
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We come to the main theorem of this chapter, the direct method of Lyapunov for arbitrary switched
systems.

Theorem 2.16 (Direct Method of Lyapunov for arbitrary switched systems) Assume
that the Switched System 1.9 has an equilibrium at the origin. Let || - || be a norm on R"™ and let
R >0 be a constant such that the closure of the ball By r is a subset of U. Let V : R>ox B g — R
be a continuous function and assume that there exist functions oy, ay € K such that

ar([[€]) < V(¢ &) < ax([I€]])

for allt > 0 and all &€ € U. Denote the solution to the Switched System 1.9 by ¢ and set d =
ay (a1 (R)). Finally, let D* € {D*,D,,D~,D_} be a Dini derivative with respect to the time t,
which means, for ezample with D* = DT, that

D+[V(t7 ¢0’(t7t07 S))] = limsup V(t + h’ ¢U(t + h7 t07€>> _ V(ta ¢0(t7t07£>> ]

h—0+ h

Then the following propositions are true:

i) If for every o € Sp, every & € U, and every t > to > 0, such that ¢,(t,t0,&) € By g, the
inequality
D[V (t, 6, (t,0,€))] <0 25)

holds true, then the origin is a uniformly stable equilibrium of the Switched System 1.9 on B).| 4.

i) If there exists a function ¢ € IC, with the property that for every o € Sp, every € € U, and
every t >ty > 0, such that ¢,(t,t0,&) € By.|,r, the inequality

DV, ¢, (1,10, €))] < = ([l b, (L, 0, E)1) (2.6)

holds true, then the origin is a uniformly asymptotically stable equilibrium of the Switched
System 1.9 on Bj.|q-

PROOF:

Proposition i):

Let to > 0, £ € Bj.,¢, and o € Sp all be arbitrary but fixed. By the note after Definition 1.8 either
@, (t,t0,&) € B),r for all t > t, or there is a t* > t, such that ¢,(s,t0,&) € By.,r for all s € [to, ]
and ¢, (t*,t9, &) € OB|.| r- Assume that the second possibility applies. Then, by inequality (2.5) and
Corollary 2.10

ar(R) S V(15, @, (1", 10, §)) < V (o, §) < aa([|€]]) < a2(d),
which is contradictory to d = a5 ' (a1 (R)). Therefore ¢, (t,to, &) € By.r for all t > t,.
But then it follows by inequality (2.5) and Corollary 2.10 that

ar(l@,(t, 10, §) 1) <V (E, @, (1,10, €)) < V(to, §) < ax(]|€]]),

for all t > ty, so

18, (. to, €)]| < a7 (az(/I€]D))

for all ¢ > t,. Because a;' o ay is a class K function, it follows, because t, > 0, £ € By.|.4, and
o € Sp were arbitrary, that the equilibrium at the origin is a uniformly stable equilibrium point of
the Switched System 1.9 on B 4.
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Proposition i) :
Inequality (2.6) implies inequality (2.5) so Lemma 2.15 applies and it suffices to show that for every
€ > 0 there is a finite T" > 0, such that

t >T +1ty implies ||@,(t,t0,&)]| <e (2.7)
for all £ty > 0, all £ € Bj.| 4, and all o € Sp. To prove this choose an arbitrary € > 0 and set
. _ az(d)
§* :=min{d, a; (aq (e and T := .
We first prove that for every o € Sp,
€ € Bja and to >0 implies |, (1", t0,&)| <6~ (2.8)

for some t* € [tg, T + ty]. We prove (2.8) by contradiction. Assume that
16, (t, 10, &)l = 67 (2.9)
for all ¢ € [tg, T + to]. Then
0 < a1(6") < an(l|@, (T + to, to, &)I]) < V(T + to, @, (T + to, 10, §)). (2.10)
By Theorem 2.9 and the assumption (2.9), there is an s € [tg, T + to], such that

V(T +ty, (T +to, t0,§)) — V(to, §)
T

IN

[D*V](s, @(s, to, £))]

— ([l (s, 10, €)I])
—4(d%),

IAIA

that is

V(T 4 to, @, (T + Lo, 9, §)) < V(to, &) — T(0%)

< ay([[€]l) = T(57)
< ag(d) = Ty(d7)

—on(y 22 s
= a(d) ¢(5*)¢(5)
—0,

which is contradictory to (2.10). Therefore proposition (2.8) is true.
Now, let t* be as in (2.8) and let ¢ > T+ ¢y be arbitrary. Then, because

st V(S7 ¢O’(S7 tO?E))a s> t(la
is strictly monotonically decreasing by inequality (2.6) and Corollary 2.10, we get by (2.8), that

a1 (||d,(t, to, ) < V(E, d,(t, 10, §))
< V(" @, 10,§))
< as(|[@, (17, 10, €)))
< ap(d")
= min{as(d), ai(e) }
< ai(e),

and we have proved (2.7). The proposition ) follows.
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The function V' in the last theorem is called a Lyapunov function for the Switched System 1.9.
Because of its importance, we spend it a definition.

Definition 2.17 (Lyapunov function) Assume that the Switched System 1.9 has an equilibrium
at the origin. Denote the solution to the Switched System 1.9 by ¢ and let || - || be a norm on R™. Let
R >0 be a constant such that the closure of the ball B).| g is a subset of U. A continuous function
Vi Rs X Bj,g — R is called a Lyapunov function for the Switched System 1.9 on By g, if and
only if there exists a Dini derivative D* € {D*, D, , D=, D_} with respect to the time t and functions
aq, e, € K with the properties that:

(L1)
ar([[€]]) < V(¢ €) < aa(l€]])
Jor allt >0 and all § € Bjj.,r-

(L2)
DV (L, ¢,(t, 10, §))] < = ([, (t, 10, E)I)

for every o € Sp, every £ € U, and every t >ty > 0, such that ¢, (t,t0,&) € B).,r-
([

The Direct Method of Lyapunov (Theorem 2.16) can thus, by Definition 2.17, be rephrased as follows:

Assume that the Switched System 1.9 has an equilibrium point at the origin and that
there exists a Lyapunov function defined on the ball ). g, of which the closure is a subset
of U, for the system. Then there is a d, 0 < d < R, such that the origin is a uniformly
asymptotically stable equilibrium point of the system on the ball By, 4. If the comparison
functions a; and s in the condition (L1) for a Lyapunov function are known, then we
can take d = ay ' (a1 (R)).



Chapter 3

A converse theorem for switched systems

In the last chapter we proved, that the existence of a Lyapunov function V' for the Switched System
1.9 is a sufficient condition for the uniform asymptotic stability of an equilibrium at the origin. In
this chapter we prove the converse of this theorem. That is, if the origin of the Switched System 1.9
is uniformly asymptotically stable, then there exists a Lyapunov function for the system. Because
the algorithm we present in Chapter 7 to actually construct Lyapunov functions for switched systems
demands the second-order derivatives of the Lyapunov functions to be bounded, we have to prove
that there exists a Lyapunov function that complies with these requirements. As an added bonus
we even prove that there exists a Lyapunov function for the switched system that is continuously
differentiable up to any order.

3.1 Some notes on converse theorems

There are several theorems known, similar to Theorem 2.16, where one either uses more or less
restrictive assumptions regarding the Lyapunov function than in Theorem 2.16. Such theorems are
often called Lyapunov-like theorems. An example for less restrictive assumptions is Theorem 46.5 in
[14] or equivalently Theorem 4.10 in [24], where the solution to a continuous system is shown to be
uniformly bounded, and an example for more restrictive assumptions is Theorem 5.17 in [50|, where
an equilibrium is proved to be uniformly exponentially stable. The Lyapunov-like theorems all have
the form:

If one can find a function V' for a dynamical system, such that V' satisfies the properties
X, then the system has the stability property Y.

A natural question awakened by any Lyapunov-like theorem is whether its converse is true or not,
that is, if there is a corresponding theorem of the form :

If a dynamical system has the stability property Y, then there exists a function V' for the
dynamical system, such that V satisfies the properties X.

Such theorems are called converse theorems in the Lyapunov stability theory. For nonlinear systems
they are more complicated than the direct method of Lyapunov and the results came rather late
and did not stem from Lyapunov himself. The converse theorems are covered quite thoroughly in

47
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Chapter VI in [14]. Some further general references are Section 5.7 in [56] and Section 4.3 in [24].
More specific references were given in Qutline of this thesis.

About the techniques to prove such theorems Hahn writes on page 225 in his book Stability of Motion
[14]

In the converse theorems the stability behavior of a family of motions p(t,a, ty)! is as-
sumed to be known. For example, it might be assumed that the expression ||p(t, a, to)]| is
estimated by known comparison functions (secs. 35 and 36). Then one attempts to con-
struct by means of a finite or transfinite procedure, a Lyapunov function which satisfies
the conditions of the stability theorem under consideration.

In this chapter we will proof a converse theorem on uniform asymptotic stability of an arbitrary
switched system’s equilibrium, where the functions f,, p € P, of the systems x = £,(¢, x), are Lipschitz
on R>g X Bj.|,g with a common Lipschitz constant L > 0. To construct a Lyapunov function that
is merely Lipschitz in its state-space argument, it suffices that the functions f,, p € P, are locally
Lipschitz in the state-space argument uniformly in their first arguments (time) with a common
Lipschitz constant Ly > 0 on Bj. r, as shown in Theorem 3.3. Our procedure to smooth it to a C*
function, as done in Theorem 3.10, does not necessarily work if (¢,s) — ||£,(¢,x) — £,(s,x)||/|t — s|,
s # t, is unbounded. Therefore we additionally have to assume that there exists a constant L; > 0
such that ||f,(¢,x) —f,(s,x)|| < Li|t —s| for all p € P, all t,s € R>( and all x € B|.|,z. Note, that this
additional assumption does not affect the “growth" of the functions f,, p € P, but merely excludes
“infinitely fast oscillations" in the temporal domain. The “locally Lipschitz in the state-space argument
uniformly in the time argument" assumption already takes care of that ||f,(¢,x)]|, < Lx||x|| < LxR
for all t > 0 and all x € B,z because f,(¢,0) = 0.

3.2 A converse theorem for arbitrary switched systems

The construction here of a smooth Lyapunov function for the Switched System 1.9 is long, compli-
cated, and technical. We will therefore arrange the proof in a series of lemmas and theorems. As a
preparation for the construction of a concrete Lipschitz Lyapunov function (Definition 3.2) for the
Switched System 1.9 (it is proved in Theorem 3.3 and Lemma 3.4 that it actually is a Lipschitz
Lyapunov function) we state and prove the next lemma.

Lemma 3.1 (Massera’s lemma) Let f € L and A\ € R.g. Then there is a function g € C'(Rxy),
such that g,g" € IC, g restricted to R-q is a C*°(Rxg) function,

o0 400
/0 g(f(t))dt < +o00, and /0 g (f()eMdt < +oo.

PROOF:

By Lemma 2.12 there is a strictly monotonically decreasing C*°(R~q) bijective function h : Ryg —
R. such that h(z) > f(z) for all z > 0 and h™! € C®(R~). We define the function g : Rsg — Rxg
by

t
g9(t) ::/ e~ NN g
0

and prove that it fulfills all the claimed properties.

n our notation p(t,a, tg) = ¢(t,t9,a).
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i) Clearly g € C'(R>0), 9,4 € K, and g is continuously differentiable up to any order at every
point larger than zero.

ii) We have

400 +oo  pf(t) . +oo  ph(t) .
/ g(f(t))dt = / / e UMM grar < / / e~ WM gt
1 1 0 1 0

and because for 0 < 7 < h(t) we have h™'(7) > t, we get

h(t) . h(t)
/ e—(1+)\)h (T)d,]_ < / e—(1+)\)td7_ _ h<t)e—(1+/\)t < h<1)e—(1+)\)t
0 0

for all t > 1. Hence

400 1 +o00
| strnar< [ atrenar+ [ e < v
0 0 1
and the the first integral of the lemma is bounded.
iii) Because h™(f(t)) > h=(h(t)) =t for all ¢ > 0, we have
g/(f(t)) _ e*(l‘i’/\)h_l(f(t)) < 67(1+)\)t
for all ¢t > 0. Hence,
+o0 +oo
/ g (f(t)eMdt < / e~ 'dt < +oo,
0 0

so the second integral of the lemma is bounded too.

Note, that because g,g € K in Massera’s lemma above, we have for every measurable function
u: RZO — RZ()? such that u(t) < f(t) for all t € RZ()? that

[ stwonar< [ atsenae wa [ gopeas [ g

We now use the results from Massera’s lemma (Lemma 3.1) to define the functions W, o € Sp, and
them in turn to define the function W, and after that we prove that the function W is a Lipschitz
Lyapunov function for the Switched System 1.9.

Definition 3.2 (The functions W, and W) Assume that the origin is a uniformly asymptotically
stable equilibrium point of the Switched System 1.9 on the ball By r C U, where ||-|| is a norm on R"
and R > 0, and let ¢ € ICL be such that ||¢,(t,t0,&)|| < <(||&ll,t — to) for all o € Sp, all & € By r,
and allt >ty > 0. Assume further, that there exists a constant L > 0 for the functions £, such that

1£,(,x) = £,(¢, y)[| < Lix -y

for allt > 0, all x,y € Bj,r, and all p € P. By Massera’s lemma (Lemma 3.1) there exists a
function g € C*(Rsy), such that g,¢' € K, g is infinitely differentiable on Ry,

+o0 +oo
/ 9(s(R,7))dT < +00, and / g (s(R,7))eldr < +o0.
0 0
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i) For every o € Sp we define the function W, for allt >0 and all § € B).r by
+o0
Wat.©)i= [ gl (rt. &)l
t

i) We define the function W for allt >0 and all & € By ,r by

W(t, &) := sup Wy(t,&).

geSp

Note, that if the Switched System 1.9 is autonomous, then W does not depend on t, that is, it

18 time-1nvariant.
O

The function W from the definition above (Definition 3.2) is a Lipschitz Lyapunov function for the
Switched System 1.9 used for its construction. This is proved in the next theorem.

Theorem 3.3 (W is a Lipschitz Lyapunov function) The function W in Definition 3.2 is a
Lyapunov function for the Switched System 1.9 used for its construction. Further, there exists a
constant Ly, > 0 such that

(W (t, &) —W(t,n)| < Lwll§ —n| (3.1)
forallt >0 and all §,m € B).|.r;

where the norm || - || and the constant R are the same as in Definition 3.2.

PROOF:
We have to show that the function W complies to the conditions (L1) and (L2) of Definition 2.17.

Because

(1, €)= €+ / £y (7. by (7, 1, €))d,

and [[f,5)(s,y)|| < LR for all s > 0 and all y € By .z, we conclude ||¢,(u,t,§)|| > [|&]| — (v —t)LR
forall u >t >0, £ € Bj,r, and all o € Sp. Therefore,

o, (u,t, &) > ”g—” whenever t <u <t+ QH%LL,
which implies
Wot.8)= [ olle, (. & = 1L g2
AR A TUPoAT T T =32rR?

and then ay(|[£]]) < W(t,§) for all t > 0 and all £ € By g, where a;(z) := x/(2LR)g(x/2) is a K

function.

By the definition of W,

t+h
W(t,€) > / 91, (.t O))dr + W(t + h by (t + D1, €))

(reads: supremum over all trajectories emerging from &
at time t is not less than over any particular trajectory

emerging from & at time t)
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for all £ € By g, all t >0, all h > 0, and all o € Sp, from which

lim sup W(t + h7 ¢a(t + ha 7(;7 €)) _ W(t7 E) <
h—0+ h

—g(lI€ID

follows. Because g € K this implies that the condition (L2) from Definition 2.17 holds true for the
function W .

Now, assume that there is an Ly, > 0 such that inequality (3.1) holds true. Then W (¢, &) < as(||&]|)
for all t > 0 and all £ € By g, where ay(z) := Lwz is a class K function. Thus, it only remains to
proof inequality (3.1). However, as this inequality is a byproduct of the next lemma, we spare us the

roof here.
P n

Then results of the next lemma are needed in the proof of our converse theorem on uniform asymptotic
stability of a switched system’s equilibria and as a convenient side effect it completes the proof of
Theorem 3.3.

Lemma 3.4 The function W in Definition 3.2 satisfies for allt > s > 0, all §&,m € By ,r, and all
o € Sp the inequality

t

W(t.8) = Wis.m) < Cll& = d(t.smll = [ glln(ros.mhir (32)

where
+o0
C:= / d(c(R,7))eldr < +oc.
0
Especially,
(W (t,&) —W(t,n)| < C|&—n| (3.3)

for allt >0 and all §,m € B|.|,r-
The norm ||-||, the constants R, L, and the functions ¢ and g are, of course, the same as in Definition
3.2.
PROOF:

By the Mean-value theorem and Theorem 1.10 we have
+00 +oo
Walt.€) = Walss) = [ algn(rt.&dr— [ (o, (r.smlar (3.4)

o t s .

S/t \g(ll%(ﬂt,ﬁ)ll)—9(||¢a(775,77)||)|d7—/ 9([|@, (7. s.m)|)dr
“+o00 t

:/t }g(ll%(ﬂt,ﬁ)ll)—9(||¢U(T,t,¢a(t7Sm))ll){dT—/ 9([l@o (7, 5,m)[))dr
+oo t

S / g/(§<RvT - t))”(ﬁg(T, taﬁ) - ¢o’(7-7t7 ¢o(t7 S, 77))Hd7' - / g(H(bcr(Ta S, 77)H)d7'
t+oo . S

< /t g (s(R, 7 —1)e"" & — ¢, (t,5,m)|dr — / 9([|@, (7. s.m)|)dr

<COl€ =, (ts,m)l - / 9(ll, (7 s,m)|)dr.
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We now show that we can replace W,(t,&) — W,(s,m) with W(t,€) — W(s,n) on the leftmost
side of inequality (3.4) without violating the < relations. That this is possible might seem a little
surprising at first sight. However, a closer look reveals that this is not surprising at all because the
rightmost side of inequality (3.4) only depends on the values of o(2) for s < z < ¢ and because
W, (t,&) — W(s,m) < Wy(t,&) — W,(s,n), where the left-hand side only depends on the values of
o(z) for z > t, .

To rigidly prove the validity of this replacement let § > 0 be an arbitrary constant and choose a
~v € Sp, such that

W(t>€> - W’Y(ta €) < ga (35)
and a u > 0 so small that 5
ug(<([l€]l, 0)) +2CR(e" — 1) < o (3.6)
We define 6 € Sp by
0(r) {U(T), ?fO <7 <t+u,
y(r), ifr>t+u.
Then
W(t,&) —Wi(s,m) <W(t,&) — Wp(s,n) (3.7)
S [ ( E) ’Y(tvg)] + [W7<t7£) - Wﬁ(ta E)] + [Wﬁ(ta S) - W@(Sa 77)]
By the Mean-value theorem, Theorem 1.10, and inequality (3.6)
t+u
W, (¢, &) — Wo(t,€) :/t l9(l, (7. £, E)II) — g(l|@g(7. £, E)|])]dT (3.8)

+o0
+ / gl (Tt +u, ., (t +u, b, €))I) — gl (7, t + u, o(t + u, 1, £)))]dT

t+u

< ug(s([[€]],0))
+oo
+ / gl(g(R7 T—1— U))H(ﬁ,y(T,t +u, ¢7(t + U, t? 5)) - ¢’y<7—7 t+ u, ¢9(t + u, t7 £>>Hd7—

t+u
“+o00

Sw@WﬂﬁD+/isﬂdRT—f—wkw”“W%@+%t@—¢%“ﬂﬂ£ﬂﬁ

t+u

oo elv — 1
< ug(([[€][,0)) + / g (s(R,7 —t —u))el " "2RL, dr
t+u
400
— ugl<(€1.0) + 2R ~ 1) [ gs(R r)eVdr
0
<9
5
Because 6 and o coincide on [s, t], we get by (3.4), that
¢
Walt,) = Wals.m) < Cll¢ = gults.m)l = [ alllgulr.s.ml)dr (3.9

=Cl€ =, (t,s,ml - / 9l (7 s,m)|)dr.
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Hence, by (3.7), (3.5), (3.8), and (3.9) we conclude that

W(tvs) - W(San) <0+ CHE - 1750(75,5777)” - / g<||¢a(7_787?7)||)d7—

and because § > 0 was arbitrary we have proved inequality (3.2).

Inequality (3.3) is a trivial consequence of inequality (3.2), just set s = ¢ and note that & and n can

be reversed.
[ |

For our proof of the converse theorem on uniform asymptotic stability for the Switched System 1.9
we need the fact, that if N C R" is a neighborhood of the origin and f € C(N)NCY(N \ {0}), then

lim [[x5]|V £ (x)[|2 = 0. (3.10)

For n = 1 this is very easy to prove by the use of I'Hospital’s rule. For n > 1 it is possible to prove
this in a similar manner, however, we first need an alternate characterization of convergence in R",
using smooth paths rather that sequences or open sets. The next theorem proves the validity of this
alternate characterization of convergence, but first we prove a technical lemma as a preparation for
the proof of the theorem and the proof of the limit (3.10).

Lemma 3.5 Let (Xi)ken., and (Yi)kens, be sequences in R™ with the properties that:
CL) limk_>+oo X = 0.
b) |lyklle =1 for every k € Nyo.
¢) Xi -y > 0 for every k € Noo.
Then there exists a path s :]0,a] — R", a > 0, with the following properties:
i) s € [C(]0, a])]".
ii) lim;_o, s(t) = 0.
ii4) SUp;e1o,qf |[S(6)[2[l8'(£)]]2 < +o00.

iv) The set {k € Nuo|s(||xk|l2) = xi and s'(||xkll2) = y&} has an infinite number of elements.

PROOF:
Set X = {Xk|l€ € N}, that is, X is the set that contains exactly all the elements of the sequence

(X Jhenso-
For all z € R" with ||z|l2 = 1 we define

K, = {XER"

|x — rzlls < " for some r > 0}.

V3

Then IC, is a right circular cone with the vertex at the origin and the opening angle at the vertex is
7/3. Because there is a finite number ICp,, Ky, ..., Ky, of these cones
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such that 2 "
B € UK

=1

there is a z* such that X N KC,+ contains infinitely many elements. Define the sets

L i< o
X —
E+1 2= F

ICZ*’]g = {X < ’Cz*

for all £ € Nyy. Then at least one of the sets

+o0o +o0
XN U ICz*,Qk and X N U ICz*,Qk—l

k=1 k=1

contains an infinite number of elements. Without loss of generality we assume that X' N UZS; Ko ok
is infinite. The rest of the proof would be almost identical under the alternate assumption.

We construct sequences (a,)nen., and (by,)nen., in Ky« in the following way: For every k& € Ny
consider the intersection X N Ky« o5. If it is not empty there is an 7 € N5 such that x; from the
sequence (X,)nen., 18 in Ky o5 and in this case we set a; := x; and by, := y;. If the intersection is
empty we set a;, equal to an arbitrary element of Iy« o, and set by, := ay/||ax||2. By this construction
there are infinitely many k& € N, such that a; = x; and by, = y; for some 7 € Ny.

We now have everything we need to construct the claimed path s. First, we construct a piecewise
affine path § € C(]0, ||a;||2]) and then we round out the corners to get s.

For every k € N5y we define for m = 0, 1,2 the constants ¢, by

o = lalle — 2 (=1 !
m = ||akllz — = — .
k, M2\ 2k +1 26+ 2

We define § for every k € N-g on the interval |tx11.0,tko] :=|tkt1.0s th2)U ]tk 2, trea]U k1, teol, by:

For every t € |ty410, tr 2] we set
é(t) = Qg4 + (t — tk+170)bk+1.
For every t € |ty o, ;1] we set

)ak — a1 + (thy — tro)br — (th2 — trs1,0)brtr

b1 — Tk

S(t) == apy1 + (tr2 — thg1,0)brrr + (L — tro
and, for every t € |tg 1, tx 0] we set
g(t) = ag + (t — tk,l])bk-

Then
S(|lakll2) = s(tko) = ar and §'(||ak|l2) = §'(tko) = by for all k € N.. (3.11)

2Let the set S" := {x € Rn’”X”Q = 1} be equipped with its usual topology (see, for example, g8-8 in [16]). For
every ||z||2 = 1 define O, to be the interior of K, N S™ in the S™ topology. Because S™ is compact, a finite number of
the Oys, say Oy,,0y,, ..., 0y, , suffice to cover ™. But then, because K, = (J,~rO%,, the sets K;,, Kz, ..., Ky,
cover R™. B
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Further, § is continuous on |0, ¢1 o] and smooth with a possible exception of the points ¢ ;, k € N5g
and 7 =1, 2.

Let p € C*°(R) be a nonnegative function with supp(p) C [—1,1] and [, p(7)dT = 1. We define the
smooth path s :]0,t; o[ — R" by setting, whenever
tkt1,0 + tr2 <t < te1 +tho
2 - 2
for some k € Ny,

k0 tk,1

T 4(t_7)) 4 8(r) /1 ( tko—tm)
s(t) := dr = T)s|t— 17— ) dr,
®) /t_tk,o—tm P (tk,o —tr1) tho — tra 1 p(7) 4

4

and we set s(t) := §(t) otherwise. Then, as discussed in Section 2.3, s fulfills the claimed property ).

Note that because t0 > (2k + 1)~ and 5410 < (2k + 2)~', which implies 3110 — tho > tho — tr1,
the paths s and s coincide for every ¢ such that

tko — tha tko — tha

<t < tk+1,0 + 1

let1,0 —

and this advisement holds true for every k € N.g. Hence, by (3.11), the path s fulfills the claimed
property iv). For every k € Ny and every 0 < t < ;o we have the estimate

Is(t)ll2 < /o + (tro — ti)?

so, for every k € N.g and every 0 < ¢t < (2k)~! we have the crude estimate

Is@)l2 < — (3.12)

and the claimed property i) is fulfilled as well. We come to the claimed property iii). By Lemma
2.14 we have for every k € N5y and every t5410 <t <y the estimate

ap — g1 + (tka — teo)br — (tko — t b
Il < el + s + || 2 2ert it = Brolbre = (B = Bt )by

le1 — trpo 2
E+1 1 1

<24+3(2k+1)(2k+2 —

<2432k +1)2k+2) <l<;(2k:+2) T rek+2)  30k+ 1)(2k+2))

< 28k,
where we used

lae — 2kl = /llakl3 + lawel3 — 2 - 2,

which has a maximum with |lax|ls = (2k)7Y, |lagsillz = (2k +2)71, and ay, - ap1 = ||ak]|2]|ars1]]2/2

for all k£ > 2 (recall that the opening angle at the vertex of I« is 7/3). But then
Is(®)llz[ls"(#)]]2 < +o0

for all ¢ €]0, ¢, o[ and we have finished the proof. -

We come to the theorem that proves that the continuity of a function defined on a subset of R™ can
be characterized by the use of a convenient subset of smooth paths in R™.



26 CHAPTER 3. A CONVERSE THEOREM FOR SWITCHED SYSTEMS

Theorem 3.6 Let f : N — R be a real-valued function, defined on a neighborhood N° C R"™ of
the origin and such that f(0) = 0. Then f is continuous at the origin, if and only if for every path
s € [C*(]0,a])]™, a > 0, such that

Jim s(t) =0 and ts%l?a[||5(t)llzl|8’(t)llz < +o0, (3.13)
we have
Jim f(s(1) =0,
PROOF:

The only if part is obvious. We prove the if part by showing that if f is not continuous at the
origin, then there is a path s € [C*(]0, a[)]", a > 0, that fulfills the properties (3.13), but for which
limsup, o, | f(s(t))] > 0.

Assume that f is not continuous at the origin. Then there is an € > 0 and a sequence x;, k € Ny,
such that limy_, 1 xx = 0 but |f(x;)| > ¢ for all k. By Lemma 3.5 there is a path s € [C*(]0, a])]",
a > 0, with the properties that lim; o1 s(t) = 0, supc g o [I8(1)[l2]ls'(#)[|2 < +o00, and s([[xx[[2) = x&
for an infinite number of k € N.g. But then |f(s(||xx||2))| > & for an infinite number of k£ € N,

which implies limsup,_,o, | f(s(t))| > € and we have finished the proof. =

We now have everything needed to give a reasonably short proof of the limit (3.10). This is done in
the next lemma.

Lemma 3.7 Let N' C R™ be a neighborhood of the origin and let f € C(N) be continuously differ-
entiable on N'\ {0}. Then
tim 131 V.£(30) 2 = 0.

PROOF:
Obviously, we can assume without loss of generality that f(x) = 0. By Theorem 3.6 we then have

lim f(s(t)) =0

t—0+

for every path s € [C*(]0, a[)]", a > 0, that satisfies (3.13). Then, for every such path we obtain by
I’Hospital’s rule and partial integration

Jim I3[V f1(s(¢)) - 8'(t) = Jim — /H ||2 f(s(r))dr (3.14)

t—0+ ¢
= Jim 5 (I )H%f(s(f))‘t ~2 [ st S(ststrar)

Just note that, with C' > sup,¢p 4 [|S(7)|2[|8'(7)[|2 and for every 0 <t < a, we have

Is@)I51.f(s()] < 2Ct[ f(s(t))] and !/ f(s(r))dr| < Ct sup |f(s(7))]-

T7€]0,¢]

Now, assume that limsup,_q [|x]|3]|Vf(x)|2 > 0. Then there is a sequence (xx)n., and an € > 0,
such that limy ., o X = 0 and ||x.]|3]|V f(xx)|l2 > € for all k € N5y. By Lemma 3.5 there is a path
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s € [C>(]0,a[)]", a > 0, with the properties that lim; .oy s(t) = 0, sup,eig o [[S(¢)[|2[|8'(#) ]2 < +o0,
there are infinitely many k£ € N, such that

Is([lrll2) 120V £ (s Ik ll2)) = [k [15V f (1),

and Vf( )
s'(||xkll2) = va( k)l

where the sign is chosen for each k such that £x; - Vf(x;) > 0. But then

Is(llx[l2) 120V F1(s(xkll2)) - 8'(Ixell2) = lIsCllxxll2) 12NV FI(s(Ixkll2)]l2 > €

for all such k, which is contradictory to (3.14). Therefore limy ¢ ||x]|3]|V f(x)]|2 = 0.
|

Even after we have proved the validity of the limit (3.10), it is still advantageous to source out some
parts of our main proof. The next lemma states the last result we use to prove the last lemma for
our proof of the main theorem, a converse Lyapunov theorem for a uniformly asymptotically stable
equilibrium of the arbitrary Switched System 1.9.

Lemma 3.8 Let U C R™ be a domain, let f € C®(U) be a strictly positive function on U, and
let B € N%, be any multiindex with |B| > 0. Define the set Qg, of which the elements are sets of
multiindices, by

k
{on, 00, o} € Qp, if and only if > ;=B and |oy| > 0 for alli =1,2,... k.

i=1
Denote by w,, m = 1,2,...,|Qg|, the elements of Qg. Then there exists a positive integer dg and
for every wy, == {tm1, ma, ..., am,|wm‘} € Qg a polynomial

dp
— am,iy )
i=0

o |1 (75 )| - S i) (LX)M' =) [[omne 619

j=1

PROOF:

The representation (3.15) can be proved by mathematical induction over the length of the multiindex
B.1f |B] =1, then B = e; for some i € {1,2,...,n} and because

e (75)] = 50 (7o) o (70 L

the representation (3.15) holds true for all such 3.
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The induction-step is simple. For an arbitrary multiindex 3’ with |3'| > 1 thereisani € {1,2,...,n}
such that B := B’ — e; is a multiindex with |3| > 0. For the multiindex 3 the representation (3.15)
holds true by the induction-hypothesis and one just has to calculate

ﬁiiammeéfimG%ﬁﬁwmw

and verify that it is of the expected form. The calculations are trivial and not particularly interest-
ing, however, quite long. Therefore, we omit them and leave the induction-step as an exercise for

disbelievers.
[ |

Now we come to the last technical results needed for the proof of the main theorem.

Lemma 3.9 LetU C R" be a domain containing the origin and assume that U : Rs>o XU — R is
a function, that is infinitely differentiable at every point in the set R>o x [U \ {0}]. Further, assume
that U(t,0) =0 for allt > 0, U(t,x) > 0 for allt > 0 and x # 0, and that there exists a constant
L > 0 such that U(t,x) < L||x||a for all t > 0. Then the function V : Rso x U — R,

0 if€=0,
Ut exp (5 ) . €40,

o]

is a C®°(Rso x U) function.

PROOF:

We first show that

PV (t,€)
—— 2 =0 3.16
e o TTEN (3.16)

for every multiindex 3 € Nggl, every k € N5, and every s > 0.

Trivially we have for every k € N> and every s > 0 that

1 -1
lim ex = 0. 3.17
(t,8)—(s,0) U(t, &)F P (2U(t,£)> (8:17)

1 1
eXp(2cwas>)fgeXp(2Lnab>’

we have for every k € N>( and every s > 0, that

Further, because

1 —1
lim ex = 0.
te)=(s0) |[E]E T (2U(t,£)>

Therefore and by the representation (3.15) of

0PV (t,€) = 0P {U“’E) exp (U(_t}i))} ’
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proved in Lemma 3.8, it suffices to show that for every multiindex 3 € N’;l and every s > 0 we
have

L I€]5°'0°U (¢, €) = 0 (3.18)

to prove (3.16).

We prove (3.18) by mathematical induction. Clearly, it holds true for [3| := 37" 3 = 0. But then,
by Lemma 3.7, we have

. 8U 2 2
=0+ lelsy | (Spe.o) Z(% g) o

so equation (3.18) holds true for all s > 0 and all multiindices 8 with |3| = 1.

Now, assume that for some k € Ny equation (3.18) holds true for all s > 0 and all multiindices 3
with |3| = k. But then, with U := U(t, £) to shorten the equation, we obtain

lim  [(t—s)°+ [|€]2], ] 1€]5°" [0.0°U72 + |1€]| 7> Z[@aﬁmusuzagaﬁw — 0,

(t,€)—(s,0) =1

by applying Lemma 3.7 on the function (¢,£) — H«SH%'maﬁU(t,S). It follows that for every ¢ =
1,2,...,n we have

L €IS [607U 1 €) + [1€]30:.0°U (1,€)] =
and because

L IR 07Ut €) =0
by induction hypothesis, equation (3.18) holds true for all multiindices v with |a| = k+ 1. It follows
that equation (3.18) holds true for all s > 0 and every multiindex 3 € Nggl, which in turn implies
that equation (3.16) holds true for all s > 0, every k € N5, and every multiindex 8 € N”H.

Now, by definition, (¢,€) — 0PV (¢, &) is differentiable at (s,0), s > 0, with the total derivative
0 € R*" if and only if

ey OPV(EE) —0PV(s0)
-0 \/(t — )2+ [[€]3

But
0PV (t,€) = 9PV (s,0)] _ [0PV (1)

V=2 ]EE T llEl

and it follows by equation (3.16) that (t,&) — 9PV (¢, &) is differentiable at (s,0) for every s > 0
and every 3 € N”+1 Further, because differentiability implies continuity, we have proved that V' &
COO<R20 X Z/{)

Finally, we come to the central theorem of this part. It is the promised converse Lyapunov theorem
for a uniformly asymptotically stable equilibrium of the Switched System 1.9.
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Theorem 3.10 (Converse theorem on uniform asymptotic stability of switched systems)
Assume that the origin is a uniformly asymptotically stable equilibrium point of the Switched System
1.9 on the ball By r CU, R > 0, where || - || is a norm on R". Assume further, that the functions
f,, p € P, are all Lipschitz and that there exists a common Lipschitz constant for the functions, that
18, there exists a constant L > 0 such that

1£,(2,%) — £5(s, ¥)[| < L(Jt = s| + [[x = yl]) (3.19)

forallt,s >0, all x,y € Bj.,r, and all p € P.

Then, for every 0 < R* < R, there exists a smooth Lyapunov function V € C*°(Rxq X Bj.| g+) for the
system. Further, if the Switched System 1.9 is autonomous, then there exists a smooth time-invariant
Lyapunov function V € C*(B).| .r+) for the system.

PROOF:

The proof is long and technical, even after all the preparation we have done, so we split it into three
parts. In part I we introduce some constants and functions that we will use in the rest of the proof. In
part II we define a function U € C*(Rxo x [Bj.,r- \ {0}]) and prove that it is a Lyapunov function
for the system. In part III we smooth U out at the origin to obtain the claimed Lyapunov function

Ve COO(RZO X BHH,R*)

Part I:

Because the assumptions of the theorem imply the assumptions made in Definition 3.2, we can define
the functions W5 : B g — Rxo, 0 € Sp, and W : Bj g — R just as in the definition. As in
Definition 3.2, denote by g be the function from Massera’s lemma 3.1 in the definition of the functions
W,, and set

+oo
o / J(o(R, 7)) dr,
0

where, once again, ¢ is the same function as in Definition 3.2.

Let m, M > 0 be constants such that
[x[l2 < ml[x|| and [[x|| < M]Jx]|,

for all x € R™ and let a be a constant such that

a>2m andset y*:= m_R
a
Define
* 4
K = g(z )L (O {m(l + M)R+mR <§LR+ M)} +g(4R/3)mR> :
and set

a a(R— R a 1 } (3.20)

€ := min , ) ) Ir
{39(31*) Reg(y*) " 2mRLg(y*) K
Note that € is a real-valued constant that is strictly larger than zero.

We define the function ¢ : R>g — R by

e(x) == 6/0;1 g(2)dz. (3.21)
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The definition of € implies

(3.22)

for all 0 < x < mR and ]
() = Sg(a/a) (3.23)
for all x > 0.

Define the function ¥ by 9(x) := ¢g(22/3) — g(x/2) for all > 0. Then ¥(0) = 0 and for every x > 0
we have

/ 2 / ]' /
V'(2) = 39'(22/3) - 59'(x/2) > 0
because ¢’ € K, that is ¢ € K.

Part II:

Let p € C*(R) be a nonnegative function with supp(p) C [—1,0] and [, p(z) = 1 and let o € C*(R")
be a nonnegative function with supp(g) C Bj,1 and [, o(x)d"z = 1. Extend W on R x R™ by
setting it equal to zero outside of R>q x Bj. z. We claim that the function U : R X B,z — R,

U(t,0) := 0 for all £ > 0, and

vee)= [ [ 0 (eEHEHT )Q(ssa\;uyz))snzvl?uer]r>d"yd7

= [ [ oWl = (1€l € — (1€l yar

forallt > 0 and all € € Byz\{0},is a C*(Rxox [By.|,z- \ {0}]) Lyapunov function for the switched
system. Note, that if the Switched System 1.9 in question is autonomous, then W is time-invariant,
which implies that U is time-invariant too.

Because, for every ||yl < 1 and every ||€]| < R*, we have by (3.22) and (3.20), that

€ — <(lells yu_(1+ c(lE]z) )nsu

€l

co(lElln/a) [l
<(” Téll )”5”

a(R — R*g(y) .
<<” y)a )R

so U is properly defined on Rxq X By g+. But then, by construction, U € C*(Rxo % [Bj.j,z- \ {0}])
(see, for example, Section 2.3). It remains to be shown that U fulfills the conditions (L1) and (L2)
in Definition 2.17 of a Lyapunov function.

By Theorem 3.3 and Lemma 3.4 there is a function oy € K and a constant Ly, > 0, such that

ar([[€l)) < W(t,€) < Lw||€]]
for all t > 0 and all £ € Bj . By inequality (3.22) we have for all £ € Bz and all ||y|s <1, that

1€l € H
3l

1€ — e(lgll)y ] Hs _ 2 el (3.24)
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and
le - (el < e+ 5~ ey (3.25)
Hence
a1 (2[€]]/3) = // y)aa (2)|€l/3)d ydr (3.26)
< [ [ srretyenle = (gl ar
< [ [ oot )Wie - s(l€la)r.€ - e(lgl)yar
— U(t,€)
< [ [ sreniwlie - <(lelylayar
4LWH€H

and the function U fulfills the condition (L1).

We now prove that U fulfills the condition (L2). To do this let t > 0, & € By g+, and 0 € Sp be
arbitrary, but fixed throughout the rest of this part of the proof. Denote by Z the maximum interval
in R on which s +— ¢,(s,t,£) is defined and set

Q(SaT) =8 €<H¢o(57tv€>”2)7

for all s € Z and all —1 < 7 < 0 and define

D(h7Y7T) = W[Q(t + h7 T)? d)a(t + hata E) - 5(||¢a(t + ha t7€)||2)y} - W[Q(t’ T)>€ - €(||€H2)Y]

for all h such that t + h € Z, all ||y||2 <1, and all —1 < 7 < 0. Then

Ut+h,¢,(t+h,t €)—U(tE) = // (h,y,7)d"ydr

for all A such that t + h € Z, especially this equality holds true for all A in an interval of the form
[0, A'[, where 0 < W/ < +00.

We are going to show that
D(h
lim sup 20027 o
h—0+ h

—U([[€]])- (3.27)

If we can prove that (3.27) holds true, then, by Fatou’s lemma,

e e e )}

h—0+ h—0+

and we would have proved that the condition (L2) is fulfilled.

To proof inequality (3.27) observe that ¢(t,7) > 0 for all =1 < 7 < 0 and, for every s > ¢ that is
smaller than any switching-time (discontinuity-point) of ¢ larger than ¢, and because of (3.20) and
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(3.19), we have

dg, . eg(ll@,(s.t,)ll2/a) ¢,(s,t.§)
%(877) - 1 - a ‘|¢U(S’t’€)‘|2 fo’(s)(S? ¢o’(87t7£))7_
> Iy ) LmE
a
1
- 57

so q(t+ h,7) > q(t,7) > 0 for all small enough h > 0.

Now, denote by v the constant switching signal o(t) in Sp, that is y(s) := o(t) for all s > 0, and
consider that by Lemma 3.4

DY < Chgs 14 h1.6) 6,0 + b€ )y — b (alt + ).t 7). & — (€ly)]

1

q(t+h,T)
—aAm 9(16,(s,q(t, 7). € = e(|[&]12)y) ) ds

_c G (t+ht &) —& @alt+h7)q(t 7)€ —clléll2)y) — [€ —e(l€l2)y]
N h h
- ) — (Il a(t+h.7)
B (cho(t+h,t,§)H ) —e(ll€] )yH 3 %/(t | (|6, (s, q(t,7), &€ — ([|€]|2)y) || )ds.

For the next calculations we need s — ¢(s,7) to be differentiable at ¢. If it is not, which might be
the case if t is a switching time of o, we replace o with ¢* € Sp where

*( ) U(t)a 1f0§5§t,
o*(s) =
o(s), if s>t

Note that this does not affect the numerical value

. D(h,y, 1)
lim sup ————=
h—0+ h
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because o*(t + h) = o(t + h) for all h > 0. Hence, with p := o(t), and by (3.19), the chain rule,
(3.24), and (3.25),

) D(h,y, 1)
lim sup
h—0+ h

< C|t,(1.€) ~ fyla(t.7).€ — <(l€]1)y) - ;lf,@cr) N
— g, a(t,7), 401, 7),€ — (€I - it 7).
£(4,€) ~ £(a(t, 7). — (€] >[ (€ll) 2

—g(HE—e(H&HQ)yID[ (1€l <t,s>}

< CLIE(t.&) — fp(a(t. 7). & — (€l + £ (€I NIE(E )2 {lIfa(a(t. 7). & — e(I€)¥) + [y [} ]
— 9(2[1€11/3) + g(4l1&ll/3)"([1€l12)[1E (2, )2
CLL(It = gt 7)[ + (I€l)IYI) + ' (gll)mLRALIIE — (I€]l2)y)| + Mlyll} ]
—92lIEl1/3) + g(4l&ll/3)e ([ €ll)m LR

< CILA+ M)e([|€ll2) + €' ([|Ell)m LR {L§||€|I + M} ] = 9(lI€l/3) + g(4lI€ll/3)e (€]l 2)m LE.

(el - a1, 8l

7t

=C

100, 8)7| - <€l (t,s)]yH

H€H HéH
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Therefore, by (3.22), (3.23), and (3.20), and with = := ||€||, we can further simplify,

lim sup —D(h,hy, 7)

msu < —g(22/3) + gg(mm/a)L (C [m(l + M)z +mR (%Lx + M)} + g(4x/3)mR)
(22/3) + Keg(z/2)

< -9
S _19(37)7

and because t > 0, £ € B) g+, and o € Sp were arbitrary, we have proved that U is a Lyapunov
function for the system.

Part III:
We define the function V' : Rsq x By .z« — Rxo by V(¢,0) =0 for all ¢ > 0 and

V(t,€) = U(t. ) exp (#15))

for all t > 0 and all £ € Bjz- \ {0}. We claim that the function V is a C*°(R>¢ x Bj.|,z+) Lyapunov
function for the Switched System 1.9. Note, that if U is time-invariant, which is the case if the
Switched System 1.9 is autonomous, then so is V.

That V' € C*(Rxq x Bj.,z-) follows by Lemma 3.9 so it only remains to prove that V' is a Lyapunov

function for the system. By (3.26) we get
—1 4 -3
(230 (s ) < Vi€ < gLwliellesy (s )

for all ¢ > 0 and all & € By, g~ so V fulfills the condition (L1) in Definition 2.17 of a Lyapunov
function. The condition (L2) follows by

iV 0.90(0:5.9) = {%U(t’ Polt 5’5”} (1 o0 s,£>>) P (U(t, ¢a_<1,s,s>>)

-1
< —0([l@,(t, 5, &)|) exp (al(gn(pg( ,s,g)||/3))

for all 0 € Sp, allt > s > 0, and all £ € U, such that ¢,(t,s,§) € Bj.,r~ u

Now, we have proved the main theorem of this part of this thesis, our much wanted converse theorem
for the arbitrary Switched System 1.9. As a by-product of the proof, we observe, that by combining
Lemma 3.9 and the proof of Part III of the last theorem, the following results emerge.

Lemma 3.11 LetU C R" be a domain containing the origin and assume that U : R>o x U — Rxq
is a function, that is infinitely differentiable at every point in the set R>q x [U\{0}]. Further, assume
that U(t,0) = 0 for allt > 0 and that there exists a constant L > 0 such that U(t,x) < L||x||2> for all
t >= 0. Finally, assume that U is a Lyapunov function for the arbitrary Switched System 1.9. Then
the function V : R>o x U — R,

V(t.6) 0, if € =0,
ST e (k). EAO,
is a C*(Rsg x U) Lyapunov function for the arbitrary Switched System 1.9.

PROOF:
Follows immediately by Lemma 3.9 and the proof of Part III of Theorem 3.10. m
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Part 11

An algorithm based on linear programming
to generate Lyapunov functions for switched
systems and a proof that it always succeeds
if the equilibrium at the origin is uniformly
asymptotically stable
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In this part we will present an algorithm to construct Lyapunov functions for the Switched System
1.9. First, we give an algorithmic description of how to derive a linear programming problem from
the Switched System 1.9 (Definition 5.1), and we prove that if the linear programming problem
possesses a feasible solution, then it can be used to parameterize a Lyapunov function for the system.
Then we present an algorithm that systematically generates linear programming problems for the
Switched System 1.9 and we prove, that if the switched system possesses a Lyapunov function at
all, then the algorithm generates, in a finite number of steps, a linear programming problem that
has a feasible solution. Because there are algorithms that always find a feasible solution to a linear
programming problem if one exists, this implies that we will have derived an algorithm to construct
Lyapunov functions, whenever one exists. Further, we consider the case when the Switched System
1.9 is autonomous separately, because in this case it is possible to parameterize a time-independent
Lyapunov function for the system.

For completeness we spend a few words on linear programming problems. A linear programming
problem is a set of linear constraints, under which a linear function is to be minimized. There are
several equivalent possibilities to state a linear programming problem, one of them is
minimize g(x) :=c-x, (%)

given Cx <b, x>0,

where 7, s > 0 are integers, C' € R**" is a matrix, b € R® and ¢ € R" are vectors, and x <y denotes
x; <y, for all i. The function g is called the objective of the linear programming problem and the
conditions Cx < b and x > 0 together are called the constraints. A feasible solution to the linear
programming problem is a vector x’ € R” that satisfies the constraints, that is, x’ > 0 and Cx’ < b.
There are numerous algorithms known to solve linear programming problems, the most commonly
used being the simplex method (see, for example, [52]) or interior point algorithms, for example, the
primal-dual logarithmic barrier method (see, for example, [49]). Both need a starting feasible solution
for initialization. A feasible solution to () can be found by introducing slack variables y € R* and
solving the linear programming problem:

minimize g m) = ;y (%)

given [C’ —Is} [;] <b, [;] >0,

which has the feasible solution x = 0 and y = (|b1], |b2|, - . ., |bs]). If the linear programming problem
(x%) has the solution g([x" y']) = 0, then X’ is a feasible solution to (), if the minimum of g is strictly
larger than zero, then (%) does not have any feasible solution.

In order to construct a Lyapunov function with a linear programming problem, one needs a class
of continuous functions that are easily parameterized. That is, we need a class of functions that
is general enough to be used as a search-space for Lyapunov functions, but it has to be a finite-
dimensional vector space so that its functions are uniquely characterized by a finite number of real
numbers. The class of the continuous piecewise affine 3 functions CPWA is an obvious candidate, as
will become clear in the following chapter.

The algorithm to parameterize a Lyapunov function for the Switched System 1.9 consists roughly of
the following steps:

30ften called piecewise linear in the literature.
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i) Partition a neighborhood of the equilibrium under consideration in a family & of simplices.

ii) Limit the search for a Lyapunov function V' for the system to the class of continuous functions
that are affine on any S € G.

iii) State linear inequalities for the values of V' at the vertices of the simplices in &, so that if they
can be fulfilled, then the function V', which is uniquely determined by its values at the vertices,
is a Lyapunov function for the system in the whole area.

In this part we will first partition R™ into n-simplices and use this partition to define the function
spaces CPWA of continuous piecewise affine functions R” — R. A function in CPWA is uniquely
determined by its values at the vertices of the simplices in &. Then we will present a linear pro-
gramming problem, algorithmically derived from the Switched System 1.9, and prove that a CPWA
Lyapunov function for the system can be parameterized from any feasible solution to this linear
programming problem. Finally, we will prove that if the equilibrium of the Switched System 1.9 is
uniformly asymptotically stable, then any simplicial partition with small enough simplices leads to
a linear programming problem that does have a feasible solution. Because, by Theorem 2.16 and
Theorem 3.10, a Lyapunov function exists for the Switched System 1.9 exactly when the equilibrium
is uniformly asymptotically stable, and because it is always possible to algorithmically find a feasible
solution if at least one exists, this proves that the algorithm can parameterize a Lyapunov function
for the Switched System 1.9 if the system does possess a Lyapunov functions at all.



Chapter 4

Continuous piecewise affine functions

In order to construct a Lyapunov function by a linear programming problem, one needs a class of
continuous functions that are easily parameterized. Our approach is a simplicial partition of R", on
which we define the finite dimensional R-vector space CPWA of continuous functions, that are affine
on every of the simplices. In this chapter we are going to derive an appropriate simplicial partition
of R™ and then define the function space CPWA. Further, we will prove some important properties
of the space CPWA that we will use in the next chapter to define the linear programming problem,
of which every feasible solution parameterizes a CPWA Lyapunov function for the Switched System
1.9 if its equilibrium is uniformly asymptotically stable.

4.1 Preliminaries

Let U be a nonempty subset of R". A function p : i/ — R™ is said to be an affine function if there
is an m x n-matrix P and a vector ¢ € R™ such that p(x) = Px + c for all x € Y. A simplex is the
convex hull of affinely independent vectors in R™, more exactly:

Definition 4.1 (Simplex) Let x;,Xa, ..., X be vectors in R™. A vectorx € R™ is said to be a convex
combination of the vectors Xi,Xa, ..., Xy if there are numbers Ai, \a, ..., \g, such that \; € [0,1] for
alli=1,2,...k, S8 \=1, and

k
i=1

The set of all convex combinations of the vectors x1,Xa, ..., Xy is denoted by con{xy,Xs,...,Xx} and
is called the convex hull of the vectors Xi,Xsa, ..., Xg.

If the vectors x1,Xo, ..., Xy are affinely independent, which means that the vectors
X1 — X5, Xo—=Xj, ..., Xj1 =X, Xj41 — X5, ..., Xp—Xj

are linearly independent for any j = 1,2,...,k, then the set con{xy,Xa, ..., X} is called a (k — 1)-
simplex and the vectors x1,Xa, ..., Xy are called the vertices of the simplex. 0

The convex hull of n 4+ 1 vectors x1,Xs,...,X,11 in R” has a non-zero volume (n-dimensional Borel
measure), if and only if it is an n-simplex. This follows from the well known facts, that the volume
of con{xy,Xs,...,X,41} is the absolute value of

det(x1 — X5, X = X5, 0, X1 — X5, X401 — X, ., X1 — Xj)

71
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forany j =1,2,...,n+ 1, and that this determinant is non-zero, if and only if the vectors

X1 =Xy, Xo =Xy, ..., X1 = X5, Xjp1 — X5, ooy Xpg1 — X

are linearly independent.

It is fairly easy to see that because the vertices of a simplex are affinely independent, an element of a
simplex has a unique representations as a convex combination of the vertices. This property implies
that a simplex suits exceptionally well as a domain for the definition of affine functions R” — R™.
The following lemma confirms this.

Lemma 4.2 Let con{xy,Xa,...,X;} be a (k—1)-simplex in R™ and let a;, ag, . .., ay be vectors in R™.
Then the following propositions about the function p : con{Xy,Xa, ..., Xz} — R™ are equivalent:

i) The function p is affine and p(x;) := a; for alli=1,2,... k.

i) For every convex combination Y ., A\;X; of the vertices X1,Xa, ..., X, we have

k k
P(Z AiX;) = Z Aia;.
i=1 i=1

PROOF:
i) implies 4i): Just note that because p is affine we have

k k k
P(Z )\in’) = Z )\ip(xi) = Z Aidy
i=1 i=1 i=1

for every convex combination of the vertices x1,Xo, ..., X;.

i) implies i): Let P be an m X n-matrix such that P(x; — x;) = a; —a; for all i =2,3,... k and
define the vector ¢ := a; — Px;. Then p(x) = Px + c for all x in the simplex is an affine function
and p(x;) =a; forall i =1,2,... k.

|

This lemma has an obvious corollary that is useful for the following, namely:

Corollary 4.3 Let n € Nyg and let S; = con{xy,Xs,...,X,41} and So = con{y1,y2,...,¥Yns1} be
n-simplices in R"™. Assume that S3 := S1NSy = con{z1,2a, ..., 241} s a k-simplex, where 0 < k <n
and

{Z17Z2; cee ,Zk+1} C {X17X2, ce ,Xn+1} N {Y17Y27 s >Yn+1}-

Then, if p1 : S1 — R™ and py : So — R™ are affine functions, the following propositions are
equivalent :

i) The function q : S; U Sy — R™,

_pi(x), ifxes,
q(X) o {p2<X), fo € 52;

is properly defined and continuous.
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i) For everyi=1,2,... k+1 we have p1(z;) = p2(z;).

PROOF:

Follows immediately by Lemma 4.2. m
For every n € Ny, we denote by Perm[{1,2,... n}| the permutation group of {1,2,... n}, that is,
Perm[{1,2,...,n}] is the set of all one-to-one mappings from {1,2,...,n} onto itself.

The simplices S,, where o € Perm[{1,2, ..., n}], will serve as the atoms of our partition of R". They

are defined in the following way:

Definition 4.4 (The simplices S,) For every o € Perm[{1,2,...,n}] we define the set
Se ={y €R" 0 < yott) S ¥o2) < -+ < Yo(m) < 11,

where Yo is the o(i)-th component of the vectory. 0

For every o € Perm[{1,2,...,n}] the set S, is an n-simplex with the volume 1/n!. That it is an n-
simplex follows by the next theorem. That its volume is 1/n! follows from straight forward integration

1 To(n) To(2)
/ng (x)d"x = /0 (/ ( (/ do(1 > ) d:c(,(n_l)) A o(n)
o(3)
(/ daf,‘g(g ) ) dxg(n_1)> dl’g(n)
0
o(4)
(/ dxa 3)) ) dxa(n—l)) dxcr(n)
0
o(5)
(/0 2 3 0(4)d:(]0(4)> ) dxa(n_l)) d&:a(n)

Before stating and proving the next theorem we will first state a very simple, but useful lemma, that
will be used in its proof and later on.

Lemma 4.5 Let vi,vsy,...,v, € R™ and py, pa, - .., b, € R. Then
n n n J

> (30w) -3 (w2om).
i=1 j=i j=1 i=1

PROOF:
Just calculate

ZMZVJ' = MlZVj+Mszj+ oo F 1 (Vo1 V) F Ve
=1  j=i j=1 =2
= VnZNi+Vn—1Z,Ui+ coo Vo + o) + Vi

n J
= E V; E ;-
j=1  i=1
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The next theorem states that the set S, is an n-simplex and provides a formula for its vertices.

Theorem 4.6 For every o € Perm[{1,2,...,n}| we have
SUZCOD{Zea(j),ZeU(j),..., Z eg(j)},
j=1 =2 j=nt1

where e, ;) s the o(i)-th unit vector in R".

PROOF:
We first show the inclusion

con {Z €s(j) Zeg(j), e Z eg(j)} cS,.
j=1 j=2 j=n+1

Let

y € con {Z €5(j)s Zeg(j), ceey Z ea(]—)} .
j=1 =2

j=n+1

Then there are Ay, Ao, ..., App1 € [0, 1], such that

n+1 n n+1

y = Z)\izea(]’) and Z)\i =1
=1 Jj=i i=1

Because
n+1 n n+l n
Yoy = Y- €o(k <Z)\ Zeg ) €o( ZZ)‘(SJ’“*ZA“
=1 j=1

it follows that y, ) € [0,1] and Yoy < Yoy if K <1, 50y € 5,.

We now show the inclusion
SUCcon{Zeg(j),Z o) - - - Z €o(j }
Jj=1 Jj=2 j=n+1

Let y € S;. Then 0 < yo(1) < Uo2) < -+ < Yon) < 1. Set Ay = y,(1), set Ay == Yo(i) — Yo(i—1) for
1 =2,3,...,n,and set A1 =1 — Yg(n). Then obviously Z”+1 A; = 1 and by Lemma 4.5

y= Zz)‘ea])—id)‘iea(]
j=1 i=1
that is,
y € con {Z €s(j)s Zeg(j), ceey Z ea(]—)} .
=1 =2 j=n+1 -
In the next theorem we show that for every «, 3 € Perm[{1,2,...,n}] the intersection S, N Sz is a

simplex, whose vertices are exactly the vertices that are common to S, and Sp.
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Theorem 4.7 Let v, f € Perm[{1,2,... ,n}]. Then
Sa NSz = con{cy,ca, ..., CLlty
where the cq,cq, ..., ¢y are the vertices that are common to S, and Sg, that is,
{c1,¢cq,...,C1} = {x € ]Rn‘x = Zea(j) = Zeﬁ(j) for some a € {1,2,...,n+ 1}} )
j=a j=a

PROOF:
The inclusion S, N Sz D con{cy, o, ..., cx} is trivial, so we only have to prove

Sa NS C con{ey, Ca, ..., Cp} (4.1)

To do this define 0 € Perm[{1,2,...,n}] by 0 := 7 a and the set

Ar ={ze{1,2,... .n+1}c({1,2,...,2 = 1}) ={1,2,...,2 — 1} }.

Clearly
A, = {ze{l,2,....n+1}o({1,2,...,2—1}) ={1,2,..., 2 — 1}}
= {ze{l,2,...,n+1}o({z,z+1,...,n}) ={z,x+1,...,n}}
= {1:6{1,2,...,n+1}‘@({x,x+1,...,n}):ﬁ({x,x—l—l,...,n})}
and

Z Ca(j) = Z €5(4)>
j=a j=b

if and only if @ = b and a({a,a+1,...,n}) = f({b,b+1,...,n}).
Hence
{C17C27 s 7Ck} = {Z ea(j)a Z ea(j)7 EER) Z ea(])} )
Jj=a1 j=az Jj=ay,
where 1 = a1 < as < ... <ap =n+ 1 are the elements of A, in an increasing order.

Let x be an arbitrary element in S, N Sz. Then there are p;, A; € [0,1], for i =1,2,...,n+ 1, such

that
n+1 n+1

Z/M = Z)\i =1
i=1 i=1

and
n+1 n+1 n

X = ZM €a(j) = Z Ai Zeﬁm'
i=1 j=i i=1 Jj=i

We prove (4.1) by showing by mathematical induction, that p; = A; for all i € {1,2,...,n+ 1} and
that u; = \; =0 foralli e {1,2,...,n+ 1} \ A,.

Lemma 4.5 implies
J n J

X=) eal) ) M=) €5 )N
j=1

i=1 j=1 i=1
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By comparing the components of the vectors on the left-hand and the right-hand side of this equation,
we see that for every pair (r,s) € {1,2,...,n}? such that a(r) = 3(s), we must have

=1 =1
that is,

m o(m)
i=1 =1 ; P

forallm=1,2,...,n.

Denote by P(r) the following proposition, in which the number r € Ny, is a variable:
‘wi =N forallie {1,2,...;a,— 1} and u; = \; =0 foralli € {1,2,...,a, — 1} \ {a1,a9,...,a,_1}"

From the definition of A, it follows that a; = 1, so the proposition P(1) is obviously true. There is
indeed nothing to prove. We now show that for » < k, P(r) implies P(r + 1).

Assume that P(r) is true for some 1 < r < k. Then p; = \; foralli =1,2,...,a, — 1 and o(a,) and
o~ !(a,) must be greater than or equal to a,. If o(a,) = 07! (a,) = a,, then trivially a, + 1 € A,, that
is, a, 41 = a, + 1, and it follows from (4.2) that p,, = A,., which implies that P(r + 1) is true.

Suppose o(a,) and o7 (a,) are greater that a,. Then it follows from (4.2), that

ar—1 o(ar)

i:uz—zA—sz >
=1

1=ar+1

that is,
o(ar)

Hay = Aa, + Z A

1=a,r+1

and similarly

o~ ar)

=l + Y i

i=a,r+1

By adding the two last equation, we see that

o(ar) o Y(ar)

i=ar+1 1=ar+1
and because p;, \; € [0,1] for all i = 1,2, ..., n, this implies that
Hap+1 = Map+2 = -+ - = Ho=1(a,) = 0, Agpy1 =Agpp2=...= >\U(ar) =0, and pq, = A,
Define the integers a and b by

a := max{s < ar+1‘uar+1 = lg12 = ... = s = 0}

and
b := max{s < ar+1})\ar+1 = X422 =...=A; =0}
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For all m € {a, + 1,a, + 2,...,a} we have

a(m) m ar
> == Yu
i=1 i=1 i=1
and because y; = \; for all i = 1,2, ... a,, this implies that
o(m)
> o
i=ar+1
and then
)\ar+1 - )\U«r+2 —_- ... = )\U(m) - O
Therefore and because o(m) < a,41 for allm =1,2,...,a,41 — 1 we have

b > max{o(m)|m=a, +1,a, +2,...,a} = max{o(m)|m =1,2,...,a},

where the equality on the right-hand side is a consequence of 0({1,2,...,a,—1}) ={1,2,...,a,— 1}
and b > o(a,).

The set {a(m)|m =1,2,...,a} is a subset of {1,2,...,n} with a distinct elements, so
max{o(m)|m=1,2,...,a} > a,
that is b > a. With similar reasoning, we can show that a > b. Hence a = b.
We have shown that p,. = A,,, that there is a constant a, with a, < a < a,41, such that
Pay+1 = Hap42 = - = fla = Agp41 = Aagpq2 = ... = Aq = 0,

and that o({1,2,...,a}) = {1,2,...,a}. This implies a + 1 = a,;1 € A, and that the proposition
P(r + 1) is true, which completes the proof.

|
We now apply the last theorem to prove the general case. That the family of simplices
(Z + Sa)zGZgo,aGPerm[{l,Z...,n}]
partitions R%, such that for every pairs a,b € Z%; and «, 3 € Perm[{1,2,...,n}| the intersection of

the sets a + S, and b + Sp is a simplex whose vertices are exactly those vertices that are common
toa+ S, and b + Sp.

Theorem 4.8 Let o, f € Perm[{1,2,...,n}| and s,,sp € Z". Let C = {c1,Ca,...,ci} be the set of
the vertices that are common to the simplices s, + S, and sg+ Sg. Then (sq + S,) N (sg+ Sg) =0
if C =10 and

(Sa + Sa) N (sg + Sp) = con{cy, ca, ..., Cr}

ifC #90.
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PROOF:
Obviously C = {cy, ¢y, ..., ¢} # 0 implies

(S + Sa) N (sg + Sp) D con{cy,ca,...,ck},

and (s, +S,) N (sg+S5) = 0 implies C = (), so we only have to prove that if (s, +S.) N (sg+ Ss) # 0,
then C = {cy,co, ..., ¢} # 0 and

(S + Sa) N (sg+ Sz) C con{cy,ca, ..., Ck}.

Assume that (s, + Sa) N (sg + Ss) # (. Because
(Sa + Sa) N (sg+ Ss) =8a + Sa N (z + Sp),

with z := sg — s, we consider an arbitrary x € S, N (z + Sz). Then there are p;, A\; € [0,1] for

1=1,2,...,n+ 1, such that
n+1 n+1

ZMZZAZ‘Z 1
i=1

=1

and n+1 n n+1 n n+1 n
DI SUUES 36 SEFRERD SR 0 SRS 13)
i=1 j=t =1 j=t i=1 j=t

Because S,, S C [0, 1] the components of z must all be equal to —1, 0, or 1.

If z; = —1, then the i-th component of the vectors

Zeg(j)—l—z, Zeg(j)an, e Z €p(j) Tz

j=1 j=2 J=B71()
is equal to 0 and the i-th component of the vectors

Z €5(j) + 2, Z esi) t+2, -, Z €s(j) + 2
J=p~1(i)+1 J=B~1(i)+2 j=n+1
is equal to —1. Because z; > 0, this implies that
Aﬁfl(i)—i—l - /\/371(7;)_;,_2 == ... = )\n—i-l - O

If z; = 1, then the ¢-th component of the vectors

n

Zeﬁ(j)ﬂLZ, Zeﬁ(j)+za cee Z €5(j) T 2
j=2

J=1 J=B71(3)
is equal to 2 and the i-th component of the vectors

n n

Z €s(j) T %, Z es) +2, .. Zeﬂ(j)+z

J=B71(i)+1 j=B~1(i)+2 j=n+1
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is equal to 1. Because z; < 1, this implies that

)\1:)\2: :Aﬁfl(i):().

It follows that there are integers 1 < r < s < n+ 1 such that Ay = Ay = ... = \,_1 = 0,
Ast1 = As42 = ... = App1 = 0, and the components of the vectors

Zeﬁ(j)+za Zeﬁ(j)"’za 7Zeﬁ(j)+z
j=r Jj=s

Jj=r+1

are all equal to 0 or 1. Let aq,as,...,a;_1 be the indices of those components of

Z €p(j) T2
j=r

that are equal to 0. By defining the permutation v € Perm[{1,2,...,n}] as follows,

v(i) :=ay, foralli =1,2,... t—1,
v(@):=p(r+i—t), foralli=tt+1,...;t+s—r,

and with {biys—ri1, bprs—rro, -, 00t :={1,2,...,n}\v({L,2,...;t+s—1}),
v(@) :=0b;, foralli=t+s—r+1,t+s—r+2,...,n,

we obtain,

doew= ) et (4.4)

i=t+7j i=r+j

forall 7 =0,1,...,s —r. To see this, note that

Z €4(i)
i=t

has all components equal to 1, except for those with an index from the set v({1,2,...,t—1}), which
are equal to 0. But from v({1,2,...,t —1}) = {a1, a9, ...,a;_1} and the definition of the indices a;,

it follows that . .
Z €y(i) = Z €si) t 2.
1=t i=r

The equivalence for all j =0,1,...,s —r then follows from
n n t+j—1 n t+j—1
doewn = D em— D Gn =Y € TE— Y iy
i=t+j i=t i=t i=r i=t
n r4+j—1 n
= Zeﬁm +z- Z €s(i) = Z €5(i) T 2.
i=r i=r i=r+j
Because of

X € So N (z+ Sp)
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and
t+s—r

x=) A (Z esi) + Z) =2 At Do
i=r J=t =t g=t

we have
x € S5, NS,

By Theorem 4.7 and equation (4.3), it follows that

! n ! n
X =) D €al) = D M ) €0
=1

j=us =1 j=u

where
{ur,ug, ... w} ={ye{L,2,....n+ 1}Ha({1,2,...,y = 1}) =y({1,2,...,y — 1} }.

Because the representation of an element of a simplex as a convex sum of its vertices is unique,

some of the uq,us, ..., u; must be larger than or equal to ¢t and less than or equal to ¢t + s — r, say
U1, Usg, . .., U, and we have
n n
Z €a(j) = Z €s(j) + 2
J=u; j=u;+r—t

foralli =1,2,...,k, that is

C:={ci,co,....C1} = {sa + Z €a(j)s Sa + Z €a(j)s - 5 Sa+ Z ea(j)}

Jj=u1 J=u2 J=ug

and

(Sa +Sa) N(sg+Sp) =84+ SaN(z+ Sz) C con{cy, g, ..., Cp} =

We will use a simplicial partition of R", invariable with respect to reflections through the hyperplanes
e,-x=0,i=1,2,...,n, as a domain for the function space of continuous piecewise affine functions.
We will construct such a partition by first partitioning R%, into the family (z+SJ)z€Zgo, s€Perm[{1,2,....,n}]

and then we will extend this partition on R™ by use of the reflection functions RY, where J €

PBHL2,...,n}).

Definition 4.9 (Reflection functions RY) For every J € B({1,2,...,n}), we define the reflec-
tion function R : R" — R™,

n

R (x) =Y (~1) e

i=1

for all x € R, where x, : {1,2,...,n} — {0, 1} is the characteristic function of the set J.
O

Clearly RY, where J := {ji, jo, ..., ji}, represents reflections through the hyperplanes e, -x =0,
ej, x=0,...,e;, -x =0 in succession.

We now finally have derived a simplicial partition of R™ that qualifies as a definition domain for
continuous piecewise affine functions.
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Theorem 4.10 Let (qy)zezn be a collection of vectors in R™. Then there is exactly one continuous
function p : R® — R™ with the following properties:

i) p(z) = q, for every z € Z".

i) For every J € B({1,2,...,n}), every o € Perm[{1,2,...,n}], and every z € 7%, the restric-
tion of the function p to the simplex

R7(z + S,) :con{Rj(z—i—Zea(j)), Rj(z—i—Zeg(j)), .., RI(z+ Z eg(j))}

j=1 j=2 Jj=n+1

is affine.

PROOF:
By Corollary 4.3 there is only one candidate for the function p, namely, if

n+1

x=> AR7(z+) o)
i=1 =i

for some J € PB({1,2,...,n}), some ¢ € Perm[{1,2,...,n}]|, and some z € Z%;, we must have

n+1 n n+1

P(x) =D APRT(Z+)_e()) = Y NARI (457 00y

i=1 j=i =1

That the function p is properly defined and continuous by this formula is a direct consequence of
Theorem 4.8, Lemma 4.2, Corollary 4.3, and the fact that if x € R*(z + S,) NR7(z + S,,) for some
Z,J € B{L,2,...,n}), some o € Perm[{1,2,...,n}]|, and some z € ZZ,, then i € ZAJ implies
z; = 0, where ZAJ denotes the symmetric difference (:= [ZU J]\ [Z N J]) of the sets Z and 7. =

After this preparation we have everything we need to define the function spaces CPWA. This will be
done in the next section.

4.2 The function spaces CPWA

In this section we will introduce the function spaces CPWA and derive some results regarding the
functions in these spaces, that will be useful when we prove that a feasible solution to the linear
programming problem we specify in the next chapter can be used to define a CPWA Lyapunov
function.

A CPWA space is a set of continuous affine functions from a subset of R™ into R with a given
boundary configuration. If the subset is compact, then the boundary configuration makes it possible
to parameterize the functions in the respective CPWA space with a finite number of real-valued
parameters. Further, the CPWA spaces are vector spaces over R in the canonical way. They are thus
well suited as a foundation, in the search of a Lyapunov function with a linear programming problem.

We first define the function spaces CPWA for subsets of R™ that are the unions of n-dimensional
cubes.
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Definition 4.11 (CPWA function on a simple grid) Let Z C Z", Z # (), be such that the inte-
rior of the set

N = U(z +[0,1]™),

is connected. The function space CPWA[N] is then defined as follows.
A function p: N — R is in CPWA[N], if and only if:

i) p is continuous.

i) For every simpler R7(z + S,) C N, where z € 7%, J € PHL2,...,n}), and o €

Perm[{1,2,...}], the restriction plg7,,g, s affine. 0

It follows by Theorem 4.10 that the set CPWA[N/] is not empty and that its elements are uniquely
determined by their values on the set N/ N Z™.

We will need continuous piecewise affine functions, defined by their values on grids with smaller grid
steps than one, and we want to use grids with variable grid steps. We achieve this by using images
of Z™ under mappings R" — R", of which the components are continuous and strictly increasing
functions R — R, affine on the intervals [m,m + 1] for all integers m, and map the origin on itself.
We call such R" — R™ mappings piecewise scaling functions.

Definition 4.12 (Piecewise scaling function) A function PS : R" — R™ is called a piecewise
scaling function, if and only if PS(0) = 0 and

PS(x) := (PS;(x), PSy(x), ..., PS,(x)) = (PS;(x1), PSy(x2), . .., PSu(a))

for all x € R™, where Igéz € CPWAIR| and is strictly increasing on R for alli=1,2,...,n. Because
the i-th component of PS only depends on the i-th component of the argument, we will often write

PS;(x;) instead of PS;(x). 0

Note that if y; ;, 2 = 1,2,...,n and j € Z, are real numbers such that y; ; < y; j41 and y; o = 0 for
all :=1,2,...,n and all j € Z, then we can define a piecewise scaling function PS : R" — R" by
PSi(j) := i, foralli =1,2,... ,nand all j € Z. Moreover, the piecewise scaling functions R* — R"
are exactly the functions, that can be constructed in this way.

In the next definition we use piecewise scaling functions to define general CPWA spaces.

Definition 4.13 (CPWA function, general) Let PS : R" — R"™ be a piecewise scaling function
and let Z C 2", Z # 0, be such that the interior of the set

N ==+,

z€Z
is connected.
The function space CPWA[PS, N is defined as

CPWA[PS, N :={poPS™" | p € CPWA[N]}
and we denote by S[PS, N| the set of the simplices in the family
(PS(R7(z + So)))aczn,, TEP(1,2,...m}), o€Perm({1,2,...,n)]
that are contained in the image PS(N) of N under PS.
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Clearly
{x € R"| x is a vertex of a simplex in G[PS, N} = PS(V' NZ")
and every function in CPWA[PS, N/] is continuous and is uniquely determined by its values on the
grid PS(N' NZ").
We will use functions from CPWA[PS, ] to approximate functions in C*(PS(N)), that have

bounded second order derivatives. The next lemma gives an upper bound of the approximation
error of such a linearization.

Lemma 4.14 Let 0 € Perm([{1,2,...,n}|, let T € PB({1,2,...,n}), let z € 7%, let R7 be a
reflection function, and let PS be a piecewise scaling function. Denote by S the n-simplex that is the
convex combination of the vertices

n+1
yi := PS(R7 (z + Zeg(j))), i=1,2,...,n+1,
=i
and let f € C3(U) be a function defined on a domain S CU C R™. For everyi=1,2,....,n+1 and
every k =1,2,...,n define the constant
A= lex - (Vi — Ynt1)|
and for every r,s =1,2,...,n let B,s be a constant, such that
0 f
(x)]-

0x,0x,

B,s > max

Define for everyi=1,2,...,n+ 1 the constant

1
E; = 5 Z BrsAr,i<As,1 + As,i)~

r,s=1

Then for every convexr combination
n+1

Yy = Z AiYis (4.5)
=1

of the vertices of the simplex S we have
n+1

Fy) = D Af (i)

n+1

< Z NE;.
=1

PROOF:
Let y be as in equation (4.5). Then, by Taylor’s theorem, there is a vector y, on the line-segment
between y, 1 and y, such that

F5) = Faet) + VI Gaet) - 5 = Yur) + 5 D ler (7 = Yarnlles - (v = ¥l g a— (3

= DA (i) + VT Gr) - (v = V)
l zn: [eT ) (Yi - Yn—l—l)”es : (y - Yn—i-l)]L (yx)
i 2 0x,0x,

r,s=1
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and for every @ = 1,2,...,n there is a vector y; x on the line-segment between y; and y, 1 such that
1 « 0% f
Fyi) = f(ynr1) + VI (ynrr) - (70 = o) + 5 > e (yi— yar)lles - (vi — yn+1)]m (Yix) -
r,s=1 r $
Further, because a simplex is a convex set, the vectors yx and yix,¥2x,.--,¥nx are all in S. But
then
n+1 n+1
_Z)\if(YZ ZA Z e, (yi = Ynr1)| (|€s - (¥ = Ynr1)| + [€s - (¥i = Yns1)|) Brs
=1 r,s=1
1 n+1 n
= ) Z Ai Z B Avi(l€s - (Y = Ynr)| + Asi)
=1 r,s=1
and because
n+1

‘es . (y N Yn—i-l)‘ é Z)\iles ) <yl - Yn+1)| S |eS ' (Y1 - Yn+1)| = As,l
i=1

it follows that

ntl n+1 n+1
| =D Aify)| < Z/\ ZBTSAM (Agr + As) = Y NE;.
i=1 r,s=1 i=1 ]

An affine function p, defined on a simplex S C R" and with values in R, has the algebraic form
p(x) = w-x+ ¢, where w is a constant vector in R™ and ¢ is constant in R. Another characterization
of p is given by specifying its values at the vertices as stated by Lemma 4.2. The next lemma gives a
formula for the components of the vector w when the values of p at the vertices of S are known and
S is a simplex in G[PS, NV].

Lemma 4.15 Let PS : R" — R" be a piecewise scaling function, let z € Z%,, let J €
PBHL,2,...,n}), let 0 € Perm[{1,2,...,n}], and let p(x) := w - x + ¢ be an affine function de-
fined on the n-simplex with the vertices

yi =PSR7(z+ > eyp)), i=12...,n

j=i
Then .
p(y yz+1)
W = €o(i

i=1 ea YH-I)
PROOF:
For any i € {1,2,...,n} we have

p(yi) = p(yit1) = w- — Yit1) Z Wo (k) [€a(k —Yi+1)] = Wo|€0() - (Vi — Yit)]

because the components of the vectors y; and y; ;1 are all equal with except of the o(i)-th one. But

then
p(}"z‘) - p()’z‘+1)

€o(i) - (yi - y@'+1)

wo‘(i) =

and we have finished the proof.
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In this chapter we have defined the function spaces CPWA and we have proved some important
properties of the functions in these spaces. In the next chapter we will state our linear programming
problem, of which every feasible solution parameterizes a CPWA Lyapunov function for the Switched
System 1.9 used in the derivation of its linear constraints.
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Chapter 5

A linear programming problem to construct
Lyapunov functions for arbitrary switched
systems

In this chapter we define a linear programming problem, of which every feasible solution parameterizes
a Lyapunov function for the Switched System 1.9. The Lyapunov function is of class CPWA. In the
first section we define the linear programming problem in Definition 5.1. In the definition the linear
constraints are grouped into four classes, LC1, LC2, LC3, and LC4, for linear constraints 1, 2, 3,
and 4 respectively. In the sections thereafter we show how the variables of the linear programming
problem that fulfill these constraints can be used to parameterize functions that meet the conditions
(L1) and (L2) of Definition 2.17, the definition of a Lyapunov function. Then we state and discuss
the results in Section 5.7 and in Section 5.8 we consider a simpler linear programming, defined in
Definition 5.5, for autonomous systems and we show that it is equivalent to the linear programming
problem in Definition 5.1 with additional constraints that force the parameterized CPWA Lyapunov
function to be time-invariant.

5.1 The definition of the linear programming problem

The next definition plays a central role in this work. It is generalization of the linear programming
problems presented in [36], [35], [11], and [10] to serve the nonautonomous Switched System 1.9.

Definition 5.1 (Linear programming problem LP({f,|p € P},N,PS,t,D,| - |)) Consider
the Switched System 1.9 and assume that there are real-valued constants 0 < T' < T" such that the
functions £,, p € P, are all in [C*([T",T"] xU)]". Let PS : R" — R" be a piecewise scaling function
and N' C U be such that the interior of the set

M= |J  PS@+[0.1

zeZn
PS(z+[0,1]")CN

is a connected set that contains the origin. Let || - || be an arbitrary norm on R™ and let

D= PS(|d],df [ x]dy,d} [x ... x]d;,d])

n»-n

7
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be a set, of which the closure is contained in the interior of M, and either D =0 or d; and d; are
integers such that d; < —1 and 1 < d} for everyi = 1,2,...,n. Finally, let t := (to,t1,...,ty) €
RM+1 M € Nuo, be a vector such that T =:ty <t < ... <ty :=T".

Before we go on, it is very practical to introduce an alternate notation for the vectors (t,x) € RxR",
because it considerably shortens the formulae in the linear programming problem. We identify the time
t with the zeroth component T of the vector

X = (jl)ajjla"'axn)

and x with the components 1 to n, that is t := g and x; == x; for all i = 1,2,...,n. Then, the
systems

X:fp(t,X), pEP,
can be written in the equivalent form

. f,(x) eP
= X = X), )
i, 7 b

where

B(%) = |0 ®): 13, Fpa(®). - Fyn(X)]
= [1? fp,l(tv X)? fp,2(t7 X)7 R fp,n(t: X)] )

(Recall that f,; denotes the i-th component of the function f,.)

that is, fpo =1 and f,;(X) :== f,:(t,x), where X = (t,x), for allp € P and alli =1,2,... n.

Further, let PSy : R — R be a piecewise scaling function such that PSy(i) :=t; for alli =0,1,..., M
and define the piecewise scaling function

PS:RxR" — R x R”
through _
PS(x) := [Pso(fo), PSi(21),... aPSn(j:n»]v

that s, —
PS(x) = [PSo(t), PS(x)],

where X = (t,x).

We will use the standard orthonormal basis in R"™ = R x R"™, but start the indexing at zero (use

€y, €1,...,€,), that is,
n n
X = E iiei = teo + E ZT;€;.
=0 i=1

Because we do not have to consider negative time-values t = xo < 0, it 1s more convenient to use
reflection functions that do always leave the zeroth-component of x = (t,x) unchanged. Therefore,
we define for every reflection function R : R* — R™, where J C {1,2,...,n}, the function

f{j R xR" — R x R™ through

R’ (%) := [%),R7(x)] ::te0+Z(—1)X~7(i)xiei.
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We define the mapping || - || : R x R" — Rsq through

1(Zo, T1, -y @) ||« := ||(Z1, To, .. ., T0) |-

Then, obviously, ||X||. = ||x]|| for all x = (t,x) € R x R".

The linear programming problem LP({fp{p € PHLN,PSt,D, ||-|) is now constructed in the following

way:

1)

iii)

Define the sets
G:={XxeRxRxePS(ZxZ"N ([T, T"] x (M\ D))}

and

X = {||x||| x € PS(Z") N M}.

The set G is the grid, on which we will derive constraints on the values of the CPWA Lyapunov
function, and X' is the set of distances of all relevant points in the state-space to the origin
with respect to the norm || - ||.

Define for every o € Perm[{0,1,...,n}] and every i =0,1,...,n+ 1 the vector

n
g .__
X; = E :ea(j)v
j=i

where, of course, the empty sum is interpreted as 0 € R x R™.

Define the set Z through:
The tuple (z, J ), where z := (20, 21, - . . , 2n) € ZxoxZ%y and J € *B({1,2,...,n}, is an element
of Z, if and only if

PSR’ (z+[0,1]")) [T, T"] x (M\ D).

Note that this definition implies that

) PSR’ (z+[0,1]") = [T, 7] x (M\ D).
(z,T)EZ

For every (z,J) € Z, every o € Perm[{0,1,...,n}|, and everyi=0,1,...,n+ 1 we set

z <57 o
y“7) = PS(R” (z + x7)).

(2,7)

(M \D) The position of the simplez is given by (z,J ), where zy specifies the position in time
and (z1, 22, - . ., 2n) Specifies the position in the state-space. Further, o specifies the simplex and
1 specifies the vertex of the simplex.

The vectors y are the vertices of the simplices in our simplicial partition of the set [T, T"] x

Define the set

Y= {57y o € Permf{0. 1, n}),(2,9) € 2, and k € {01, n} }.

The set ) is the set of all pairs of neighboring grid points in the grid G.
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vi) For every p € P, every (z,J) € Z, and every r,s = 0,1,...,n let B}f};ﬂ be a real-valued
constant, such that

82 fp,i ~
o705, %) | ‘

B > max sup
Tl 2 PSR (a4[0,1)7+1))
The constants BZSZ;Z) are local bounds on the second-order derivatives of the functions f, f,peP,
with regard to the infinity norm || - ||oo, similar to the constants B, in Lemma 4. ]4 Note that
because fpo := 1, the zeroth-components can be left out in the definition of the Bp 2T because
they are zdenmcally zero anyways. Further, for every r,s =0,1,...,n and every X = (t,%),

a2fp,i )~( - 82fp,i
07,07  Ox,0x,

if we read Oxq as Ot on the right-hand side of the equation. Finally, note that if B is real-valued
constant such that

(t,%)

0*f,
B > sup |

T D) 8w8x()”°°’ forallp € P and allr,s =0,1,....n,
X€[T", T")x (M\D) rOZs

then, of course, we can set B},ZT;? B forallp € P, all (z,TJ) € Z, and all ;s =0,1,...,n
Tighter bounds, however, might save a lot of computational efforts in a search for a feasible
solution to the linear programming problem.

vii) For every (z,J) € Z, every i,k =0,1,...,n, and every o € Perm[{0,1,...,n}|, define

z,J z,J z,J
Agkz) : ‘ (yL(TZ - y((Tn"r)].)

The Agk are constants similar to the constants Ay,; in Lemma 4.14.

i

viii) Define the constant
Tinom ‘= min{||x]|| }x e PS(Z") n oMy},

where OM s the boundary of the set M.

iz) For every p € P, every (z,J) € Z, every o € Perm[{0,1,...,n}], and everyi =0,1,...,n+1
set

z,7) (2,0 Z-.7
Ez()az : ZB 0'1”1, asz +A ) (51)

7"50

iz) Let € > 0 and § > 0 be arbitrary constants.

The variables of the linear programming problem are:

T,

Uly|, forallye Xl

Clyl, forally e Xl

VIx], forallxeg,
CHx,y}], foradl{x,y} €.
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Considering Definition 2.17, the definition of a Lyapunov function, the variables W|y| correspond to
the function oy, the variables T'[y] to the function 1, and the variables V[X] to the Lyapunov function
V', the &y component representing the time t. The variables C[{x,y}| are local bounds on the gradient
ViV e of the Lyapunov function V¥ to be constructed and Y is a corresponding global bound.

The linear constraints of the linear programming problem are:

LC1) Let yo,41,-..,yx be the elements of X in an increasing order. Then

LC2)

LC3)

LCA4)

Wlyo] = '[yo] = 0,

€Y1 < \I/[yl]v
€Y1 S F[yl]a
and for everyi=1,2,..., K —1:
Yyl = Yyl _ Yyen] — Yy,
Yi —Yi-1 Yyl — Vi
and
Plyi] = Tlyical _ Tlyia] = Clyl
Yi — Yi—1 - Yi+1 — Yi
For everyx € G:
U[fxl.] < Vx|
If D =), then, whenever ||X||, = 0:
V[x] = 0.

If D # 0, then, whenever (1,%s,...,%2) € PS(Z™)NID:
V[f(] S \IJ[JTmin,@M] — (5
Further, if D # (0, then for everyi=1,2,...,n and every j =0,1,...,M:

V[PSo(j)eo + PSi(d; )e;] < =T - PS;(d) and V[PSo(j)eo + PSi(df )e;] < T - PS(d7).

For every {x,y} € V:
—CHx Y- X = ¥llee VX = VI < CHX I - X = Ylloo T+ [[X = ¥ loo-

For everyp € P, every (z,J) € Z, every o € Perm[{0,1,...,n}|, and everyi =0,1,...,n+1:

"~ Viye:" = Vivesnl -

z,J o, o,j+1 z,J (z,7) z,J) . (z,J

F[”ygﬂ )H*] Z Z < : (z,7) (i;) pr(])(y((fz )) + Epo‘z [{y( 7y0']+)1}]
=0 \€o(j) ( oj o,j+1)

As the objective of the linear programming problem is not needed to parameterize a CPWA
Lyapunov function we do not define it here.

O
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Note that the values of the constants ¢ > 0 and § > 0 do not affect whether there is a feasible solution
to the linear program or not. If there is a feasible solution for ¢ := ¢’ > 0 and ¢ := ¢’ > 0, then there
is a feasible solution for all € := ¢* > 0 and ¢ := 6* > 0. Just multiply the numerical values of all
variables of the feasible solution with

Further note that if ||ym‘7)|| =0, then f, (y((nj)) =0 for all j € {0,1,...,n} such that o(j) #0
and if o(j) = 0, then V[yJ] ] V[yfmﬂ] = (. Thus, the constraints LC4 reduce to

z,J
0>2Epaz)c >yU]+1}]

which looks contradictory at first glance. However, if Hy i ‘7)H* = 0 then necessarily ¢ = n + 1 and
then

z,J Z

pcrn)+1 =3 ZB UTn+1(A¢(7'sn+1+A ) 0

r,s=0

because A 1—0f0rallr:0,1,...,n

arnJr

Finally, if the Switched System 1.9 is autonomous, then we know by Theorem 3.10 that there exists
a time-invariant Lyapunov function for the system. To reflect this fact one is tempted to additionally
include the constraints Vx| = Vl]y] for every x,y € G such that ||x — y|[«+ = 0 in the linear
programming problem to limit the search to time-invariant Lyapunov functions. However, as we will
show in Theorem 5.7, this is equivalent to a more simple linear programming problem if the Switched
System 1.9 is autonomous, namely, the linear programming problem defined in Definition 5.5.

In the next sections we prove that a feasible solution to the linear programming problem defined in
Definition 5.1 parameterizes a CPWA Lyapunov function for the Switched System 1.9 used for its
construction. For this proof the variable T is not needed. However, it will be needed for the analysis
in Section 5.7.

5.2 Definition of the functions ,~, and V™

Let vo,1,...,yx be the elements of X'l in an increasing order. We define the piecewise affine
functions ¥,y : Ry — R,

Ulyia] — Y[y

U(y) = Yy + — (v — i)
. Clyoss) — Tl
o ‘ Yirr] — LY~
V() =Ty + — (v —wi),

for all y € [y;,yi41] and all i = 0,1,..., K — 1. The values of ¢ and 7 on |yk, +oo[ do not really
matter, but to have everything properly defined, we set

Vyr| — V]yx 1]

U(y) = V[yx—1] + I — Uk

(Y — yr-1)
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and
Dlyx] — Ulyr-1]

Yk —Yk-1

Y(y) = Tlyx-1] + (Y — yx—1)

for all y > yg. Clearly the functions ¢) and v are continuous.
The function V¥ € CPWAI[PS, ﬁé_l([T’, T"] x (M \ D))] is defined by assigning
Vi (g) == V[X]
for all x € G. We will sometimes write V%(t,x) for V(%) and V[t,x] for V[x]. It is then to be

understood that t := T and x := (Z1, %2, ..., Tp).

In the next four sections we will successively derive the implications the linear constraints LC1,
LC2, LC3, and LC4 have on the functions 1, v, and V¥4,

5.3 Implications of the constraints LC1

Let 4o, v1,...,yx be the elements of X'l in an increasing order. We are going to show that the
constraints LC1 imply, that the functions ¢) and v are convex and strictly increasing on [0, 4+o00].
Because yo = 0, ¥(yo) = Y[yo] = 0, and v(yo) = I'[yo] = 0, this means that they are convex K
functions. The constraints are the same for ¥ and I, so it suffices to show this for the function .

From the definition of 1, it is clear that it is continuous and that

U(x) —Y(y) _ Ulyiz1] — Yyl (5.2)

r—=y Yi+1 — Yi

for all z,y € [y;,yi11] and all i = 0,1,..., K — 1. From 5o = 0, ¥[yg] = 0, and ey; < U[y] we get

< Uly1] — Vlyo] < Ulya] — Wy <. < Ulyk) — \I/[yK—l]'
Y1 — Yo Y2 — U1 Yk —Yk-1

But then D% is a positive and increasing function on Rx( and it follows from Corollary 2.10, that
1) is a strictly increasing function.

The function 1 is convex, if and only if for every y € R there are constants a,, b, € R, such that
ayy +b, =¢(y) and ayx+b, <Y(z)

for all z € Rxg (see, for example, Section 17 in Chapter 11 in [58]). Let y € R-(. Because the function
D) is increasing, it follows by Theorem 2.9, that for every = € Rsy, there is a ¢, , € R, such that

(@) =(y) + coy(® —y)
and ¢, < DY(y) if x <y and ¢, , > DTY(y) if © > y. This means that

() = (y) + caylz —y) = DTY(y)z +1(y) — DTP(y)y

for all x € R>(. Because y was arbitrary, the function 1 is convex.
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5.4 Implications of the constraints LC2

Define the constant

Lya _ : Lya
Va/vt min ’{25}/1\14 Vv (t7 X)
te[T!,T"]
and if D # () the constant
Lya _ Lya
VBD max {2%%( 14 (t7 X)
te[T!, T

We are going to show that the constraints LC2 imply, that

d(lIx]l) < VF(tx) (5-3)
for all t € [T",T"] and all x € M \ D and that

Va%/jnax < Va%tamm -0

it D £ 0.
We first show that they imply, that
D(lIx].) < Ve (x)

for all x € G, which obviously implies (5.3). Let X € G. Then there is a (z,J) € Z, a
o € Perm[{0,1,...,n}|, and constants A\, A, ..., Apy1 € [0, 1], such that

n+1 n+1

X :Z Zy((”J) and Z/\Z-: 1.
=0 =0
Then
n+1 n+1
(| szym L) < o> Ally%”
n+1 n-‘rll ’ n+1

<> x(lyS” ) anywn <Zwyﬁfﬁ
=0

n+1 n+1
_ Z /\iVLya (YE‘?Z,J) VLya Z /\zygzzj) VLya ()NC)

Now consider the case D # (). From the definition of V*¥* and the constants Vap o and VaL/\y/fmin it
is clear, that

Lya
Vo4t = max Vlt,,x
9D, max *x€dDNPS(Z™) [u’ ]
u=0,1,....M
and
Lya .
V. = min Vit., x|.
OM,min <EOMAPS(21) [ua ]
u=0,1,...,.M

Let x € IM NPS(Z") and u € {0,1,..., M} be such that Vt,, x| = Va%ﬁmm, then
Valginax < IIj[xmin,a./\/l] —0 = Qp(xmin,a/\/() —0
< P(x[l) =0 < V[t x] =6

_ 1/ Lya
- VaM,min — 9.
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5.5 Implications of the constraints LC3

The constraints LC3 imply that
—VIy]
HX — ¥llso

) < ol <

for every {X,y} € Y and these local bounds C[{x,y}] on the gradient VzV ¥ will be used in the
next section.

5.6 Implications of the constraints LC4

We are going to show that the constraints LC4 and LC3 together imply that

(.t )]) > lim sup VI (t 4 h, ¢ (t+ h,t', &) — VI(t, ¢ (L1, €))

5.4
msu . (5.4)

for all ¢ € Sp and all (¢, ¢ (t,1',£)) in the interior of [T, T"] x (M \ D).

Let ¢ € Sp and x := (¢,¢.(t,t',§)) in the interior of [1",7"] x (M \ D) be arbitrary, but fixed
throughout this section, and set x := ¢_(¢,t',§) and p := ¢(?).

We claim that there is a (z, ) € Z,a o0 € Perm[{0, 1,...,n}], and constants Ao, A1, ..., A\ya1 € [0,1],
such that

n+1 n+1
X = /\Zygzlj) Z XNi=1, and %+ hf, (%) € Con{y ,yf,zlj), . ,yf,zn{r)l (5.5)
i=0 i=0

for all h € [0, a], where a > 0 is some constant.

We prove this claim by a contradiction. Assume that it does not hold true. The vector X is contained
in some of the simplices in the simplicial partition of [T”, T"] x (M \D), say S1,S9,...,S. Simplices
are convex sets so we necessarily have

1-~

for every ¢ = 1,2,..., k. But then there must be a simplex S in the simplicial partition, different to
the simplices S7, 59, ..., Sk, such that the intersection

1~
{5<+ ;fp(i)‘j € N>0} ns

contains an infinite number of elements. This implies that there is a sequence in S that converges to
x, which is a contradiction, because S is a closed set and x ¢ S. Therefore (5.5) holds true.

Because 7 is a convex function, we have

n+1

(|11 ZA T ly&7).] (5.6)



96 CHAPTER 5. THE LINEAR PROGRAMMING PROBLEM

as was shown in Section 5.4. From the definition of V¥ it follows, that there is a vector w € R x R",
such that

VI(g) = w (5 —y &) + Vi (&) (5.7)

for all y € con{yo. ,y((fl ), _ >y((fzn{r)1

It follows by Holder’s inequality, that

n+1 n+1
woE®) =w-> M5 +w- (fpsc) -3 Aifp<y§:;~7>>> (5.8)
1=0 =0
n+1 n+1
] . s
<> aiw BT+ Wl &) D AEEE)
=0 1=0
and by Lemma 4.14 and the assignment in (5.1),
n+1 n+1
o~ P z,J ZJ
16,60 = 2 NGz loo = g 1508 = D N2
n+1
< —ZA Z BED AL (AED 1 Ay
r,s=0
n+1

< Z NED,

which implies that we have derived the inequality

n+1
ECEDM (w- B + IwlhEST) (5.9)

We come to the vector w. By Lemma 4.15, the constraints LC3, and because

z, z,7) z,J)
ea) Vo = Yoi)| = Ivey” =¥l
for all 7 =0,1,...,n, we obtain the inequality
| Viyes = Viverd| .7
Il =3 |5 2 - CHy ™D,y =T},
H - yaj+1HOO §=0

This inequality combined with (5.9) gives

. VR - viyET) (2,7) DOy ET)

f <Z/\ Z j (2,7) (ZJ) f ()<yaz )+Epaz [{y 7YJ]+1}]
yU] O',j-i-l)

(5.10)

We are going to show that inequality (5.10) together with the constraints LC4 imply that inequality
(5.4) holds true. First, note that because V1¥¢ is Lipschitz with a Lipschitz constant, say Ly > 0
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with respect to the norm || - ||, we have
VEIve(t + h,p (t + h,t' €)) — VIv(t + h,x + hf,(t
lim sup (t+ v¢<( +h,t',§)) (t+h,x+ p(’X))‘
h—0+ h
t+ h,t -
< limsup Ly Pl + 7h &) = x —f,(t,x)
h—0+
= Ly [I£,(£,x) — f,(t, x) |
= 0.

Hence, by Lemma 2.8 and the representation (5.7) of Vv,

Lya ’ _ 1/Lya ,
limsupv (t+h, ¢§(t+h’t’}§)> Vive(t, o (.t §))
h—0-+

Vive(x + hf,(X)) — VI (x)

= lim su
h—>0+p h
(%
= lim sup »(%)
h—0+ h
=W fp (5()7

and we obtain by (5.10), LC4, and (5.6) that

VEe(t + h, @ (t+ h,t' §)) — VI(t, d(t, 1, §))

lim sup
h—0+ h
=w-f,(%)
n+1 n (2,7) (2,7)
Yo ] V[yg +1] r (z,7) (2,T) (2,7)
< Z)‘ Z(e : (2,7) (ij) fpﬂ(a)(ym )"‘Epm C[{y ’YUJH}]
0'] ya’] a’,j-f—l)

n+1

< _zm [y 7]

< —7(H¢g(t,t,€)H)-

Hence, inequality (5.4) holds true for all ¢ € Sp and all (¢, ¢_(t,t',§)) in the interior of [T",T"] x
(MA\D).

5.7 Summary of the results and their consequences

We start by summing up the results in the previous sections in this chapter in a theorem.

Theorem 5.2 (Parametrization of a CPWA Lyapunov function by linear programming)
Consider the linear programming problem LP({f,|p € P}, N, PS,¢,D,| - ||) in Definition 5.1 and
assume that it possesses a feasible solution. Let the functions 1,7y, and V¥ be defined as in Section
5.2 from the numerical values of the variables Vx|, T'[z], and V[X] from a feasible solution. Then
the inequality

d(lIx]l) < Vet x)
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holds true for all x € M\ D and all t € [T",T"]. If D = 0 we have (0) = V¥ (t,0) = 0 for all
te [T, T"]. If D # () we have, with

Lya o : Lya
VoMmin 7= min VA(¢,x)
tE[T’,T”]
and
Lya _ Lya
Vﬁ'Dmax - 2%%{ Vv (t,X),
te[T!, T
that

Vﬁ%ﬁnax S Val}\y/la,min —o.
Further, with ¢ as the solution to the Switched System 1.9 that we used in the construction of the
linear programming problem, the inequality

VIt + h, d (¢t + h,t', €)) — VEve(t, p (¢, 1, £))

=yl (t, ', §)) = limsup . (5.11)
h—0+
hold true for all ¢ € Sp and all (t,¢(t,t',§)) in the interior of [T',T"] x (M \ D). =

We now come to the important question:

Which information on the stability behavior of the Switched System 1.9 can we extract
from the Lyapunov-like function V9% defined in Section 5.2 ?

Before we answer this question we discuss the implications secured by a continuously differentiable
Lyapunov function on the stability behavior of a non-switched system to get an idea what we can
expect. To do this consider the system

x = f(t,x),

where f € [C'(Rsp x V)" and V is a bounded domain in R™ containing the origin, and assume that
there is a function W € C'(R>¢ X V) and functions a,b, ¢ € K, such that

a(|[€]]) < W(t, &) < b([|€]])
for all £ € V and all t > 0 and

%W@a d)(ta tla 5)) = [VXW] (tv ¢(t7 tlv 5)) ’ f(t7 q,)(t’ t/7 5)) + aa_vz/(tv ¢(t7 tlv 5))
< —c(llo(t. ", E)I)

for all (¢, (t,t',€)) € Rsg x V, where ¢ is the solution to the differential equation x = f(¢, x).

For our analysis we let (t',&) € R>o x V be arbitrary but constant and set y(t) := W(t, ¢(t,t,§)).
Then y(t') = W(t',€) and y satisfies the differential inequality

y(t) < —c(07 (y(t)))

for all ¢ such that ¢(t,t', &) € V. Now, assume that there are constants b* > 0 and ¢* > 0, such that
b(|Ix|]) < b*[|x]| and c*[|€|| < ¢(||x]|) for all x € V. In this simple case it is quite simple to derive the
inequality

o) < u(Oyexn (< 0-0)).
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which is valid for all ¢ > ¢’ if
W(t', &) < inf W(s,y).
yeov

We are going to show that a very similar analysis can be done for a switched system and the
corresponding Lyapunov-like function V¥ if the arbitrary norm || - || used in Definition 5.1 of the
linear programming problem is a p-norm || - ||,, 1 < p < 400, but first we prove a technical lemma
that will be used in the proof of the theorem.

Lemma 5.3 Let [a,b] be an interval in R, —co < a < b < 400, and let y, z : [a,b] — R be functions
such that y(a) < z(a), y is continuous, and z is differentiable. Assume that there is a locally Lipschitz
function s : R — R such that

Dyt < —s(y(t) and (1) = —s(=()
for allt € [a,b]. Then y(t) < z(t) for all t € [a,b].

PROOF:

Assume that the proposition of the lemma does not hold true. Then there is a tg € [a, b[ such that
y(t) < z(t) for all t € [a, ] and an € > 0 such that y(t) > z(t) for all t €]ty,to + €|. Let L > 0 be a
local Lipschitz constant for s on the interval [y(to), y(to + €)]. Then, by Lemma 2.8,

D¥(y—2)(t) = DTy(t) — 2(t) < —s(y(t)) + s(2(t)) < L(y(t) — 2(1))
for every t € [tg,to + €]. But then, with w(t) := y(t) — z(t) for all t € [a,b], we have

t h —L(t+h) _ t —Lt
limsupw( +h)e w(t)e

h—0+ h

< ¢~ Jimsup w(t +h)(e ™" 1) 4 e~L lim sup w(t+h) —w(t)
h—0-+ h h—0-+ h
= —Le Mw(t) + e "D w(t)
< —Le Mw(t) + Le M w(t)
= 0,
for all t € [t, to+e€], which implies, by Corollary 2.10, that the function ¢ — e~ *w(t) is monotonically

decreasing on the same interval. Because w(ty) = 0 this is contradictory to y(t) > z(t) for all
t € |to, to + €] and therefore the proposition of the lemma must hold true. n

We come to the promised theorem, where the implications of the function V¥ on the stability
behavior of the Switched System 1.9 are specified.

Theorem 5.4 (Implications of the Lyapunov function V%) Make the same assumptions and
definitions as in Theorem 5.2 and assume additionally that the arbitrary norm || - || in the linear
programmaing problem LP({fp‘p e PLN,PS,t,D,| - ||) is a k-norm *, 1 < k < +o0. Define the set
T through T := {0} if D =10 and

T::DU{XEM\D

max V™ (t,x) < Va%’f:nax} ., if D#0,

te[T!,T")

'With k-norm we mean the norm |x|[; := (31, |zi|k)1/k if 1 <k < 400 and [|x|lec 1= max;—1,
Unfortunately, these norms are usually called p-norms, which is inappropriate in this context because the alphabet p
is used to index the functions f,, p € P.
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and the set A through

A= {X eEM\D max VLya(t’X) < VaL/\y/la,min} :

te[T", T"]

Setq:=k-(k—1)"Yifl1<k<+o0, q:=1ifk =400, and q := +oo if k = 1, and define the

constant
n
E, = Zein'
i=1

Then the following propositions hold true:

i) If ¢ (t, 1, &) € T for some particulars € Sp, T" >t >T",t' >0, and & € U, then ¢ (s,t',€) €
T forall s € [t,T"].

i) If ¢ (t, 1, &) € M\ D for some particular ¢ € Sp, T" >t > T', t' > 0, and & € U, then the
inequality

VI (5,0, (5,1 8) £ V0,040, €) exp (-~ (5 0) (512

q

holds true for all s such that ¢ (s',t',&) € M\ D forallt <s' <s<T".

wi) If @ (t, 1, &) € A for some particularc € Sp, T" >t >T', 1 > 0, and & € U, then the solution
¢, either fulfills inequality (5.12) for allt < s < T", or there is o T* €t,T"], such that the
solution ¢ fulfills inequality (5.12) for allt < s <T*, ¢ (T*,t',€) € OD, and ¢ _(s,t',§) € T
forall T* < s <T".

PROOF:
Proposition ) is trivial if D = (). To prove proposition i) when D # () define for every x > 0 the set

T.:={x €R"||[x — y[l < & for some y € T}.

Because VaLDyffnaX < VaLj\y/ﬁmin — ¢ by Theorem 5.2, it follows that 7, C M for all small enough x > 0.
For every such small x > 0 notice, that inequality (5.11) and Corollary 2.10 together imply, that if
o (t, 1, &) € T, for some particular¢ € Sp, T" >t > 1", ' > 0, and £ € U, then ¢_(s,t', ) € T, for all
s € [t,T"]. But then the proposition i) follows, because if ¢_(t,t',&) € T, then ¢_(t,t',&) € (.~ Zr:

and therefore ¢ (s,t',€) € (.0 Zx = 7T for all s € [t,T"].

To prove proposition i) first note that the linear constraints LC2 and LC3 imply that VI¥(¢, x) <
T|x||; for all t € [T",7"] and all x € M. To see this just notice that at least for one i € {1,2,...,n}
we must have either

because x ¢ D. But then either

VLya(t,ZEiei) S T . PSZ(d,j_> + T . |.T1 — PSZ(d;F)| = T‘(L’z|

or

VLya(t,QZiei) S -7T. PSZ(d;) + T. \xl — PSl(d;)’ = T|.’LZL’,

SO
VLya(t7 xiei) S T|$z‘,
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which in turn implies, for any j € {1,2,...,n}, j # i, that
VLya(t,inei + :Bjej) S VLyOJ(t,JTZ'ei) + T|[EJ| S T(|[E7,| + |[l§']|)

and by mathematical induction V*¥(¢,x) < Y||x||;.

But then, by Hélder’s inequality,

Vit x) < Tlx[ly =T (Z ez‘) : (Z |$z‘|ez‘> < TEq||x[|x,
i=1

i=1
so by the linear constraints LC1 and inequality (5.11), we have for every ¢ € Sp, T" >t > T',t' > 0,
and & € U, such that ¢_(t,t',€) € M\ D, that
€
__VLya(t7 ¢g(ta t/a E)) > _E||¢<(t7 t/> 5)”19

TE,
Z _’7(||¢§(t>t,7€>”k)
Vvt + h,p (t+h,t', €) — V(L ¢ (., €))

o h—0+ h

The solution to the differential equation y(s) = —TE,/¢ - y(s) is y(s) = exp[-TE,(s — t')/e] y(t').
Hence, by Lemma 5.3,

V(s (s '.€)) < V(t, (0. ',€)) exp (—}Eq@ - t>)

and proposition i) holds true.

Proposition i) is a direct consequence of the propositions i) and i) and the definition of the set A.
It merely states that if it is impossible for a solution to exit the set M \ D at the boundary oM,

then it either exits at the boundary 0D or it does not exit at all. -

5.8 The autonomous case

As was discussed after Definition 5.1, one is tempted to try to parameterize a time-invariant Lyapunov
function for the Switched System 1.9 if it is autonomous. The reason for this is that we proved in
Theorem 3.10 that if it is autonomous, then there exists a time-invariant Lyapunov function. In the
next definition we present a linear programming problem that does exactly this. It is a generalization
of the linear programming problem presented in [36], [35], [11], and [10] to serve the Switched System
1.9 in the particular case that it is autonomous.

Definition 5.5 (Linear programming problem LP({f,|p € P},N,PS,D,| - ||)) Consider the
Switched System 1.9, assume that it is autonomous, and assume that the functions f,, p € P, are all
in [C2(U)]™ (because the £, do not depend on the time t we consider them to be functions U — R™ ).
Let PS : R" — R" be a piecewise scaling function and N' C U be such that the interior of the set

M:= | PS@z+[0.1]")

zEZL™
PS(z+[0,1]")CN
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is a connected set that contains the origin. Let || - || be an arbitrary norm on R™ and let
D :=PS(]dy,df [ x]dy,d3 [x ... x]d, d;T])

be a set, of which the closure is contained in the interior of M, and either D = 0 or d; and d are
integers such that d; < —1 and 1 < d} foralli=1,2,...,n

The linear programming problem LP({f,|p € P}, N, PS,D, || - ||) is now constructed in the following
way:

i) Define the sets
G, = {x eRx e PS(Z")n (M \ D)}

and
XM= {]1x||| x € PS(Z") n M}.

ii) Define for every o € Perm[{1,2,...,n}] and every i =1,...,n+ 1 the vector
= Zeao‘)-
=i
iit) Define the set Z, through:
Z,:={(2,TJ) € Z% x B({1,2,...,n})|PS(R7 (z + [0,1]")) C M \ D}.
iv) For every (z,J) € Z,, every o € Perm[{1,2,...,n}|, and every i =1,2,... ,n+ 1 we set
vy = PS(RY(z + x7)).
v) Define the set

{{y(z‘j),yazk{r)l S Perm[{172, s 7n}]7 <Z7\7) S Zaa and k € {1’2" T ,TL}} :

vi) For every p € P, every (z,J) € Z,, and every r,s = 1,2,...,n let B,S?;:Z) be a real-valued
constant, such that
apr,i X‘

0x,01,

B}(fg ) > max sup
1=1,2,..., 7
" xePS(R (2+(0,1]"))

vii) For every (z,J) € Z,, every i,k =1,2,...,n, and every o € Perm[{1,2,...,n}], define

z, z,J
e - (ygz ) - ygn+)1>‘

o,k

A(Z J) . ‘

viii) Define the constant
Tminom = min{||x|| }x e PS(Z") n oM},

where OM s the boundary of the set M.

iz) For everyp € P, every (z,J) € Z,, every o € Perm[{1,2,...,n}], and everyi=1,2,...,n+1
set

z,7) (z,T ZL7
E}(aaz : ZB O"I”’L 0'51 +A ) (513)

rsl
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iz) Let e >0 and 6 > 0 be arbitrary constants.

The variables of the linear programming problem are:

Ta?
U,ly], forallye X”'”,

Tulyl, for ally e XM
Volx], for allx € G,,

Cal{x,¥}], for all {x,y} € V.

The linear constraints of the linear programming problem are:

LC1a) Let yo,y1,...,yx be the elements of X in an increasing order. Then

W,lyo] = Lalyo] = 0,
€ S \Ija[yl]a
eyr < Tulwl,

and for every1=1,2,..., K —1:

Yalys] = Yalyia] _ Valyin] = Yalyi]
Yi — Yi-1 N Yir1 = Vi

and
Colyi] — Dalyioi] < Lalyiva] — Pa[yi]'

Yi — Yi-1 N Yirl = Vi

LC2a) For everyx € G, :
Wo[llxl] < Valx].

If D=0, then:
V,[0] = 0.

If D # 0, then, for every x € PS(Z") N OD:
‘/a[x] S \Ija[xmin,af\/l] — 0.
Further, if D # (0, then for everyi=1,2,....,n
Va[PSZ(dZ_)ez] S —Ta . Psl(d;) and Va[PSZ(d:F)eZ] S Ta : PS,J(d:_)
LC3a) For every {x,y} € V,:

—Cal{x, y}] - [[x = ¥lloo < Valx] = Valy] < Cal{x, ¥} - X = ¥lloo < Ta - [[x = ¥llo-

LC4a) For everyp € P, every (z,J) € Z,, every o € Perm[{1,2,... ,n}|, and everyi =1,2,... ,n+1:

J) (2,7)

zJ yU ] V[ya +1] zj zJ z,7)

( H >Z < . (z,J) (zjj fPU] ( ))+E](70'Z [{y 7y<(7]+1}]
€o(j yUJ cr,]+1)

As the objective of the linear programming problem is not needed to parameterize a CPWA
Lyapunov function we do not define it here.
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O

Obviously, the two first comments after Definition 5.1 apply equally to the linear programming
problem from this definition. Further, if the functions f,, p € P, in Definition 5.5 are linear, then
obviously we can set Bﬁﬁ:s )= 0 for all peP,al(z,J) € Z,,and all ;s = 1,2,...,n, and then the
“error terms" E;i;? are all identically zero. Linear problems are thus the most easy to solve with the
linear programming problem because we can drop the variables C[{x,y}] and the constraints LC3
out of the linear programming problem altogether .

If the linear programming problem LP({fp|p € PHLN,PS,D,| -||) from Definition 5.5 possesses a
feasible solution, then we can use this solution to parameterize a time-invariant CPWA Lyapunov
function for the autonomous Switched System 1.9 used in the construction of the linear programming
problem. The definition of the parameterized CPWA Lyapunov function in the autonomous case is
in essence identical to the definition in the nonautonomous case.

Definition 5.6 Assume that
Ta,
U,lyl, forallye X,
Tulyl, for ally e XM
Vo], for allx € G,,
Cal{x, ¥}, for all {x,y} € V..

is a feasible solution to the linear programming problem LP({fp‘p e PHLN,PS, D, | -|) from Defi-
nition 5.5. Then we define the function V.24 trough V¢ € CPWA[PS,PS™" (M \ D)] and

VEva(x) = V,[x] for allx € G,.

Further, we define the function 1, from the numerical values of the variables V,[y| and ~y, from the
numerical values of the variables T'yly|, just as the functions ¢ and v were defined in Section 5.2
from the numerical values of the variables V]y| and T'[y] respectively. O

That V.2¥¢ in Definition 5.6 is a Lyapunov function for the autonomous Switched System 1.9, that is
equivalent to a time-invariant Lyapunov function parameterized by the linear programming problem
LP({f,|p € P},N,PS,t,D,|| - ) from Definition 5.1, is proved in the next theorem.

Theorem 5.7 Consider the Switched System 1.9 and assume that there are real-valued constants
0 <T" < T" such that the functions £,, p € P, are all in [C*([T",T"] x U)|". Let PS : R" — R" be
a piecewise scaling function and N° C U be such that the interior of the set

M = U PS(z +[0,1]")

zcZm

PS(z+[0,1]?)CN

is a connected set that contains the origin. Let || - || be an arbitrary norm on R™ and let
D= PS(Jd, df [x]dy,dy [x ... x]d,,d;[)

be a set, of which the closure is contained in the interior of M, and either D =0 or d; and d; are
integers such that d; < —1 and1 < d} foralli =1,2,... n. Finally, lett := (to,t1,...,ty) € RMTL
M € Ny be a vector such that T' =:tg <t < ... <ty :=T".

Assume the the Switched System 1.9 is autonomous. Then, the linear programming problem
LP({f,|p € P},N,PS,t,D,|| - ||) from Definition 5.1 with the additional linear constraints:
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LC-A) For every X,y € G such that ||Xx —y||+ =0:

For every {x,y} € Y such that |x —y|.=0:
ClH{x, ¥y} =0.

Is equivalent to the linear programming problem LP({fp|p e PHLN,PS,D, | -||) from Definition 5.5,
in the following sense:

i) If VI s a Lyapunov function, defined as in Section 5.2 from a feasible solution to the linear
programming problem LP({fp|p € PHLN,PSt.D,| -||) from Definition 5.1 that additionally
satisfies the constraints LC-A, then V¥ does not depend on t and we can parameterize a
Lyapunov function W with the linear programming problem LP({fp|p ePHLN,PS, D)
from Definition 5.5, such that

Whve(x) = V(T x)  for all x € M\ D.

i) If WEve is a Lyapunov function, defined as the function V.2¥* in Definition 5.6, from a feasible
solution to the linear programming problem LP({fp‘p € PHN,PS,D,|-|) from Definition 5.5,
then we can parameterize a Lyapunov function V¥ by use of the linear programming problem
LP({f,|p € P},N,PS,t,D,| - ||) from Definition 5.1 with LC-A as additional constraints,
such that

Vet x) = WH(x)  forallt € [T, T"] and all x € M\ D.

)

In both cases one should use the same numerical values for the bounds BZ(),Z,Z;T on the second-order

derivatives of the functions f,, p € P, and for the constants ¢ and ¢.

PROOF:
We start by proving proposition i) :

Assume that

Yo,
W,ly], forallye X
Toly], forallye X
Vo[x], for all x € G,
Col{x,y}], forall {x,y}€ V..
is a feasible solution to the linear programming problem LP({fp|p e PH,N,PS,D,| - |) from Defi-
nition 5.5, define C,[{x,x}] := 0 for all x € G,, and set
T:=7,,
Uly] := W,[y], forally e X
T[y] :=Ta[y], forallyc Xl
VIX] := V,[(21, %o, ..., T,)], forall x € g,
CH{x, ¥} = Cal{(Z1,Z2,. .., @n), (J1, P2s - -, Gn)}], forall {x, 5} € V.
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We claim that T, U[y], ['[y], V[x], and C[{x, y}] is a feasible solution to the linear programming prob-
lem LP({f,|p € P},N,PS,t,D,| - ||) from Definition 5.1 that additionally satisfies the constraints

LC-A. If this is the case, then clearly V¢ € CPWA[PS, PS ([77,7"] x (M\D))], defined through
VIve(x) ;= V[x] for all x € G, is the promised Lyapunov function.

It is a simple task so confirm that they satisfy the constraints LC1, LC2, LC3, and LC-A, so we
only prove that they fulfill the constraints LC4, which is not as obvious.

Let p € P, (2,J) € Z, 0 € Perm[{0,1,...,n}], and i € {0,1,...,n + 1} be arbitrary, but fixed
throughout this part of the proof. We have to show that

J) (2,T)
YU ]_V[ya 1] g z] z,
llyss" ] >Z< e oo (Vo) + By Cllyes” vy 50 ). (5.14)

e"(ﬂ) (yU] yonrl)
We define the mapping I, : {0,1,...,n+ 1} — {1,...,n+ 1} through

k+1, if0<k<og!
la(k)::{ +1, if0<k<o%0),

k, otherwise,

and ¢ € Perm[{1,2,...,n}| through

) olk—1), if1 <k<oY0),
S(k) =
a‘(kj), if 0‘71(0) <k<n.
Further, we set
z = (z21,2,...,20), Wwhere z=(20,21,...,2n)

Note that by these definitions and the definitions of y((,ZJ’.j) and yé?’y) we have forall j =0,1,...,n+1
and all » =1,2,... n, that

z —~ =7
ey =e PSR (z+ Y esry)) (5.15)

—e, PSRI(Z+ Y eqw))

= G Y6y
Especially, because [,(0) = 1, we have

(2,7) (=)

Yoo =€ -¥ea forallr=1,2,....,n
But then Hy(ZJ s = Hygzl;‘(Z;H and for every r = 1,2,... ,n and every j = 0,1,...,n we have
z,J z,J z,J L T z.J
A=) _ e, - (y=D) — ygn+>1>‘ e 07T =y = atT) (5.16)
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Further, because fp does not depend on the first argument

~ 1 if o(j) =0
z,J ) )
fp7o-(j (Yt(J'Z )) f (Z/7J) .f . 1 2 —1 0
P7<(ld(j))(yg,l0(i)>7 ifje{,2,....,n}\{o7(0)},
and similarly
z,J z' .\ J .
V[y((,] )] = V;l[yé,lg(j))] forall j =0,1,...,n+1,
and
z,J z',\J z'\J .
[{y 7yL(7]+)1 ] - a[{YEJO,(j)y y£7lo'(j)'~_l)j| fOI' all J = 07 1a ey N
Especially,
z,J z,J z,7) . .
Vive;:l = Viveshl = Cllye” v = 0 it o(j) = 0.
For the bounds Bﬁlg) on the second-order derivatives of f, we demand
0% f
B®J) > max sup el (5{)|
prs = . N ~ O~ )
120m  BE@E (2t 0.1 1)) 07,07
which is compatible with
BI(),Z;SJ) =0 ifr=0o0rs=0
and
B}(OZT,;Z) = B( I forr,s=1,2,...,n.
This together with (5.16) implies that
2,7) A(z J) (2,7) (2,7)
poz : ZBst Aarz 0,5, +AUSO)
r,5=0
_ z (z',7) (',J)
- ZB[()TS grl )(Agsl 1,)+A§81 )
r,s=1
(z",7)
p,§,lg(i).

Now, by assumption,
(z.7)
Y§ ]

Hy Z ( 7T
)
j=1 y§] ygg—i—l )

(z'.7)
Va
] [ycj-l-l]fpg ( gl (Z)>+E(Z

DsS5lo (

)
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(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

) ygzj—&—l)}}) )



108 CHAPTER 5. THE LINEAR PROGRAMMING PROBLEM

so by (5.15), the definition of the function I,, (5.21), (5.17), (5.18), (5.19), and (5.20), we have

T[lly%70.) = =Tu[ly& 3]

(VD) - V[y“ ?] DTN L T 7
> e (V) Bty Cal iy v
j=1 \€() " (yw‘ - §J+1 )
n (2/,7) (2',7)
_ Va[yg,z(,(j)] _V[ygzg ]+1)] Focl ( (2’ ,j))+E( Al (',.7) 1
e - (y& D — ) et elo i Cally 0y 8
im0, \&slie i) Yo () ygl(,(]—i-l)
é V[yiftj’] Vsl ;e e v
- Z ; (z]) L pr(J (yz(77, ))_’_E;O'Z)O[{y 7y((7]+?l ]
7 oo 057 =)
B V[yc(fz"j)] V[yc(fz j)l] r Z Z Z Z
:Z< ; @.7) _ (ZJ} Jo.oi) (yalj))+EpU{ [{y( ) 7yo’]i7r)1}]
j=0 o(j) (ij U,]+1>

and we have proved (5.14).
We now prove proposition ) :
Assume that
T,
Wly], forall y ¢ XM
I[y], forallye XM
V[x], forall x € G,
Cl{x,y}], forall {x,y} € ).

is a solution to the linear programming problem LP({fp‘p € PHLN,PS,t,D,| - ||) from Definition
5.1 and set

W,ly] == Wy, forallye X
[]zFM,mmmyeXM
Valx] == V[(T",x)], for all x € G,,
Culfxy)) = CH(T". ). (T'. )}, for all {x.y} € V.
We claim that, with these numerical values, the variables Y,, W,[y], T's[y], Va[x], and C,[{x,y}| are

a solution to the linear programming problem LP({f,|p € P}, N,PS,D, | - ||) from Definition 5.5,
that

Vi e CPWA[PS,PS  ([I7,7"] x (M\D))], defined through V¥ (%) := V[x] for all X € G,
does not depend on the first argument, and that W ¢ CPWA[PS, PS™', M\ D], defined through
Whve(x) .= V,[x] for all x € G,, is the promised Lyapunov function.

First we prove that the function values of V¥ do not depend on the first argument. To do this

it is obviously enough to show that this holds true for every simplex in the simplicial partition of
[T, T"] x (M\ D). Let (z,J) € Z and ¢ € Perm[{0,1,...,n}] be arbitrary and let

~ o~ z, z,J z,J
X,yECon{yg,o ;yz(ﬂ )7“'7Y¢(7n+)1
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such that

e.-x=e.-y forallr=1,2,... n
We are going to show that V%(x) = Vv(y).
Set k :=o71(0) and let Ao, A1, ..., Ayt € [0,1] and pg, i1, - - -, fns1 € [0, 1] be such that

n+1 n+1 n+1

)\zym , y= Zulym , and Z)\i:Zuizl.
=0 i=0

s

n

MR
I
~.
Il
o

From the definition of the yc(,zfj) it follows that :

A

n+1 n+1

€5(0) Z Aiyff;j) = €4(0) Z ,uiyf,z,;j) from which A\g = pg follows,
which implies

n+1 n+1
eoy Y NyET = oy D piys” from which A = py follows,

which implies

n+1 n+1
o(k—1) * Z )\lycrz = €5(k—1) Z ,uiy((;fj) from which A\y_; = g1 follows,
i=k—1 i=k—1

which implies
n+1 n+1
Colki1) Z Ay = gy - S iy ™7 from which Ay + Ay = pig + i follows,
which implies

n+1 n+1

€o(k+2) * Z )\iyl(,zﬂ?j) = €5(k+2) ° Z ,uiygflfj) from which Agio = pgso follows,
i=k+2 i=k+2
which implies
n+1 n+1

€o(n) * Z )\Zym = €s(n) - Z ,ulym ) from which An = pp, follows.
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But then \,;1 = 1,11 and because by LC-A we have V[yfj,’f | = V[ygzk{)l] we get
n+1 n+1
VLya()NC) _ VLya Z \i ((72[7) Z NV y((yzlj)
n+1
= 2 AV ot e V")
z;ékik+1
n+1
z,J
- Z iV ya-z + (e + /Lk’-‘rl)v[y((r,k )
it k+1
n+1 n+1
Z j a Zvj
- Zul yo’z ) VL?J (Z /"Liyg,i )
i=0
_ vy

and we have proved that V¥¢ does not depend on the first argument.

Now, let p € P, (z,J) € Z,, 0 € Perm[{1,2,...,n}],and i € {1,2,...,n+ 1} be arbitrary, but fixed
throughout the rest of the proof. To finish the proof we have to show that

" Valy &) - Valy &

z,J o o,j+1 z,J z J z,7) z,J

mwgmzz< e e V5T + BT Cly S TN ) (5.22)
j=1 \€o(j) (YO'] ya ]+1)

We define ¢ € Perm[{0,1,2,...,n}] trough

0, if k=0,
(k) = :
olk), ifke{l,2,...,n},

and z' € G through

2= (T 21,29,...,2n), where z=(z1,29,...,2,).
Then, for every r = 1,2,...,n, one easily verifies that
T J
er’YE,ZO ) =€ YEl )

and, forall r=1,2,...,nand all j =1,2,...,n+ 1, that

z’ Sy o - z
e - yé’j’j) =e,-PS(R (7' + Z eqn)) =€ PSR (z+ ) e,p)) =e, - y((”j). (5.23)
— k=j
But then Hyéi’j |+ = Hy(ZJ | and for every r =1,2,....n
T z z z,J z,J z,J
AETO )= (yg 7 yé n+1)) = |- (y((;,l ) - y((;n+)1> = A((f,r,l)- (5.24)
and for every every j,r =1,2,...,n we have
J z z z,J z,J z,J
AT e (v 5T =y &I = e v =y Th)| = AT, (5.25)
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For every k =0,1,..., M define

zg := (tx, 21,22, ..., 2n), Wwhere z:=(z1,29,...,2,),
and define for every r,s =1,2,...,n
(z,J) ._ (Zk,T)
Bl = i BRT.

Now set
BET) =0 forall k=0,1,...,M

and
B@J) .= BT forall k=0,1,...,M and all r,s =1,2,....n

p,rs : p,rs

and consider, that with these possibly tighter bounds Bl(ffs’j) in the linear programming problem
LP({f,|p € P}, N,PS,t,D,| - ||), the T, ¥[y], 'ly], V[x], and C[{x,y}] are, of course, still a
solution. Therefore we can just as well assume that these were the bounds ab initio.

It follows by (5.25) that

z',J z,J
PCl - ZB crz (Aész )+A£s,0)) (526)
r,s=0
-5 ZB erz z(rzs{ +A )
r,s=1
(2,7)
—Epoz .

By assumption

" (VS - viyEd)) "7

T +1 T z z’\J z\J

~T[ly&% 711 > ( e YT + B Oy Sy &N
=0 \ () ( i <J+1)

so, by (5.23), LC-A, because f, does not depend on the first argument, and (5.26), we get

Clly%N] = Iy ")1.]
(2’ J)] V[ (2 J)]

y y 1 ~ VA J z J Z/,
> Z( o 3T + BT Oy v }])
) (y§j _YQ]—‘,—l)

ZJ)] V [ (Z j)
YJ 1] (z,T ZJ z,
(z Zj+ fp, J)(ycrz )) + E}EUZ a[{yf(ﬂj ’y0'>J+1}]
z: T (2,T) )
: yo’j O',]+1

and we have proved (5.22) and finished the proof.
|

An immediate consequence of Theorem 5.7 is a theorem, similar to Theorem 5.2, but for autonomous
systems with a time-invariant CPWA Lyapunov function.
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Theorem 5.8 (Parametrization of a CPWA Lyapunov function by linear programming)
Consider the linear programming problem LP({f,|p € P},N,PS,D, || - ||) from Definition 5.5 and
assume that it possesses a feasible solution. Let the functions Vg, va, and V¥ be defined as in
Definition 5.6 from the numerical values of the variables V,[z], T'y[z], and V,[X]| from a feasible
solution. Then the inequality

va(llx]l) < V¥ (x)
holds true for allx € M\ D. If D = () we have 1,(0) = V.2¥(t,0) = 0. If D # 0 we have, with

Lya . Lya
Vet .= min VY (x
OM ,min xedM @ ( )
and
Lya Lya
V.Y = max V"V (x
0D, max oD @ ( )’
that

v@%ﬁ’nax S val}\y/la,min — 0.
Further, with ¢ as the solution to the Switched System 1.9 that we used in the construction of the
linear programming problem, the inequality

—Ya(llp (¢, €)])) > limsup Vi (gt + h,£)2L — Vi (g (t,8))

h—0+

hold true for all ¢ € Sp and all & in the interior of M\ D.

PROOF:
Follows directly by Theorem 5.2 and Theorem 5.7. -

We end this discussion with a theorem, that is the equivalent of Theorem 5.4 for autonomous systems
with a time-invariant CPWA Lyapunov function, parameterized by the linear programming problem
LP({f,|p € P},N,PS,D,| - ||) from Definition 5.5. It states some stability properties the system
must have, if it possesses such a Lyapunov function.

Theorem 5.9 (Implications of the Lyapunov function V¥%) Make the same assumptions and
definitions as in Theorem 5.2 and assume additionally that the arbitrary norm || - || in the linear
programming problem LP({f,|p € P}, N,PS,D, || -||) is a k-norm 2, 1 < k < +oc0. Define the set T
through T := {0} if D =0 and

T =DU{xe M\D | VIx) < Vo). #D#0,

and the set A through
A= {x e M\D

Setq:=k-(k—1)"1"ifl1<k<+4o0, q:=1ifk =400, and q := +oo if k = 1, and define the

constant
n
Ey = Zein'
i=1

Then the following propositions hold true:

VLya (X) < Val.//\?ila,min} :

*With k-norm we mean the norm [x|, = (X1, |z,;|k)1/k if 1 <k < 400 and [|x|lec 1= max;—1,
Unfortunately, these norms are usually called p-norms, which is inappropriate in this context because the alphabet p
is used to index the functions f,, p € P.
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i) If € € T, then ¢, (t,€) € T for all o € Sp and allt > 0.
ii) If &€ € M\ D, the inequality

VaLya(qsg(t, £)) < VaLya(E) exp (_g% t) (5.27)

q

holds true for all t such that ¢, (t',€) € M\ D for all0 <t <t.

iii) If € € A\T and D = 0, then inequality (5.27) holds true for all t > 0 and all 0 € Sp. If
&€ A\T and D # 0, then, for every o € Sp there is at' > 0, such that inequality (5.27) holds
true for all0 <t <t', ¢, (t',€) € 0T, and ¢,(t,€) € T for allt > 1.

PROOF:
Follows directly by Theorem 5.4.



114 CHAPTER 5. THE LINEAR PROGRAMMING PROBLEM



Chapter 6

Constructive converse theorems

Consider the Switched System 1.9 and assume that the set P is finite. In this chapter we will
prove that whenever this system possesses a two-times continuously differentiable Lyapunov function,
then it is always possible to parameterize a Lyapunov function for the system by use of the linear
programming problem in Definition 5.1. Further, we will prove that if the Switched System 1.9 is
autonomous, then we can alternatively use the linear programming problem from Definition 5.5 to
parameterize a time-invariant Lyapunov function for the system.

We will start by showing how to combine the results from Theorem 3.10, a non-constructive converse
Lyapunov theorem, and the linear programming problem from Definition 5.1, to prove a construc-
tive converse Lyapunov theorem. We will do this for the general, not necessarily autonomous, case.
Thereafter, we will do the same for autonomous switched systems and we will prove that in this
case, we can parameterize a time-invariant Lyapunov function by the use of the linear programming
problem from Definition 5.5.

The structure of this chapter is somewhat unconventional because we start with a proof of the yet
to be stated Theorem 6.1. In the proof we assign values to the constants and to the variables of
the linear programming problem such that a feasible solution results. By these assignments we will
use the numerical values of the Lyapunov function from Theorem 3.10. Note, that because Theorem
3.10 is a pure existence theorem, the numerical values of this Lyapunov function are not known.
However, our knowledge about these numerical values and their relations is substantial. Indeed, we
have enough information to prove that the linear constraints LC1, LC2, LC3, and LC4, of the
linear programming problem in Definition 5.1 are fulfilled by the numerical values we assign to the
variables and to the constants. Because there are well-known algorithms to find a feasible solution to
a linear programming problem if the set of feasible solutions is not empty, this implies that we can
always parameterize a Lyapunov function by the use of the linear programming problem in Definition
5.1, whenever the underlying system possesses a Lyapunov function at all.

6.1 The assumptions

Consider the Switched System 1.9 and assume that the set P is finite and that f, is a [C*(Rso x U)]"
function for every p € P. Further, assume that there is a constant a > 0 such that [—a,a]” C U
and W € C*(Rxo X [—a,a]™) is a Lyapunov function for the switched system. By Theorem 3.10, for
example, this is the case if the functions f, are globally Lipschitz in the time argument and locally
Lipschitz in the state-space argument, the origin is a uniformly asymptotically stable equilibrium of
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the Switched System 1.9, and [—a, a]™ is a subset of its region of attraction. By Definition 2.17 there
exist, for an arbitrary norm || - || on R™, class K functions «, 3, and w, such that

a(|[x[]) < Wt x) < 5(]Ix])

and

[VsW(t, x) - £,(t,x) + %—Vf(t’X) < —w(lIxl) (6.1)

for all (t,x) € Rogx | —a,a[" and all p € P. Further, by Lemma 2.13, we can assume without loss
of generality that o and w are convex functions. Now, let 0 < 7" < T” < 400 be arbitrary and
let D' C [—a,a]® be an arbitrary neighborhood of the origin. Especially, the set D' # ) can be
taken as small as one wishes. We are going to prove that we can parameterize a CPWA Lyapunov
function on the set [17,7"] x ([—a,a]™ \ D). We will start by assigning values to the constants
and the variables of the linear programming problem LP({fp|p € P}t —a,a”,PS,t,D,| - ||) in
Definition 5.1. This includes that we define the piecewise scaling function PS, the vector t, and the
set D C D'. Thereafter, we will prove that the linear constraints of the linear programming problem
are all fulfilled by these values.

6.2 The assignments

First, we determine a constant B that is an upper bound on all second-order derivatives of the
components of the functions f,, p € P. That is, with X = (Zo, Z1,...,Z,) == (t,x) and

f‘p(f() = (fp,ﬂ(i)v fp,l(i)a ) fpm(fi)) = (1, fpa(t,x), fpa(t,x), ..., fon(t, %)),

we need a constant B < +o0o such that

02f,:
B> max #(X) .
’Lmsggﬁ ..... n axraxs

xe[T!, T x [—a,a]™

We must, at least in principle, be able to assign a numerical value to the constant B. This is in
contrast to the rest of the constants and variables, where the mere knowledge of the existence of the
appropriate values suffices. However, because B is an arbitrary upper bound (no assumptions are
needed about its quality) on the second-order partial derivatives of the components of the functions
f, on the compact set [1”,7"] x [—a, a|™, this should not cause any difficulties if the algebraic form of
the components is known. It might sound strange that the mere existence of the appropriate values
to be assigned to the other variables suffices in a constructive theorem. However, as we will prove in
this chapter, if they exist then the simplex algorithm, for example, will successfully determine valid
values for them.

With
o = min x|
we set
(5 — Oé(l‘;knin)
2

and let m* be a strictly positive integer, such that

a a ., n

[~ 5 )" € {x € R?[B(|Ix])) < 6} N D’ (6.2)

2m* ) 2m*
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and set
a a

D Z:] — F,W[n.

Note that we do not know the numerical values of the constants 0 and m* because « and ( are
unknown. However, their mere existence allows us to properly define § and m*. We will keep on
introducing constants in this way. Their existence is secured in the sense that there exists a constant
with the following property.

Set

* . o—m*,_ x
=27 T,
. 1

w* = iw(:z:*),
e := min{w", (1) /11 },

where 7 is the second smallest element in X'l and

A= sup [E&)]s.
peEP

%€[T/, T"]x[—a,a]™

We define /V[V/(fc) := W (t,x), where X := (t,x), and assign

oW
C:= max —(x)|,
r=0,1,..., n ax
%x€[T!, T" X [—a,a]™ r
.
3 o“w
B*:=(n+1)2 max EFNE x)|,
et Caan | CErYTs

and
C*:= (n+1)*CB.

We set
a* :=max{T" —T', a}

and let m > m* be an integer, such that

a* < V/ (A*B*)? + dz*w*C* — A*B*
mo 2C* ’

[\]

and set
d:=2m""" .

We define the piecewise scaling function PS : R — R" through
PS(j1,72, -y dn) == a27 " (J1, 2, - - s Jn)
for all (j1,72,...,7n) € Z"™ and the vector t,
t = (to,t1,...,tom),

where
tj = T + 2_mj(T” — T’)
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forall 7 =0,1,...,2™.

We assign the following values to the variables and the remaining constants of the linear programming
problem LP({f,|p € P}, N,PS,t,D, || - ||):

B®7 .= B, forallpeP, all (z,J) € Z,and all 7,5 =0,1,...,n,
Uly] == a(y), forallye xI

Tly] := w'y, forallyec X!

| :=W(x) forall x €,

CHx,y} :=C, forall {x,y} €,

1,2,.., eZH)}

We now show that the linear constraints LC1, LC2, LC3, and LC4 of the linear programming
problem LP({f,|p € P}, N,PS,t,D, || - ||) are satisfied by these values.

'—%
Il

max

—N
Q
Q
N
[\]
S*
I
=B
&)
"
3
=y
Q
~
3‘}(’

6.3 The constraints LC1 are fulfilled

Let o, 1, ...,yx be the elements of X'l in an increasing order. We have to show that Ulyo| =
Clyo] =0, eyr < V[wn], eyy < [yy], and that for every i = 1,2,..., K — 1:

Uly:) — Uy < Ulyiz1] — Yy

Yi —Yi-r Yyl — Vi
and
Plyi] = Tlyi-a] _ Tlyia] = Ulyil
Yi = Y1 Yir1 — Y
PROOF:

Clearly ¥[yo] = I'[yo] = 0 because yy = 0 and

" o
eyp <w'yr =T[y] and ey < (yyl)yl = U[y].
1

Because « is convex we have for all i = 1,2,..., K — 1 that

Yi — Yi— Yi+1 — Yi

T a(yi) " alyi) > aly),

Yi+1 — Yi—1 Yi+1 — Yi—1
that is

Oé(yi) - Oé(yzel) _ ‘I’[yz] - ‘I’[yiq] < ‘If[yiﬂ] - ‘If[yz] _ Oé(yiﬂ) - Oé(yi)
Yi — Yi— Yi — Yi—1 - Yiv1 — Yi Yi+1 — Yi

Finally, we clearly have for every i = 1,2,..., K — 1 that

W_* _ F[yz] - F[yifl] < F[%’ﬂ] - F[yi] _ w_*

2 Yi — Yi—1 Yi+1 — Yi 2 m
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6.4 The constraints LC2 are fulfilled

We have to show that for every x € G we have
Wlx[l.] < VIx],
that for every x = (Zo, &1, ..., &), such that (Z1,Zs,...,%,) € PS(Z") N 0D we have
VIx] < Y[zminom] — 0,
and that for every i =1,2,...,n and every j =0,1,...,2™ we have

PROOF:

Clearly, —
P[fIx[L] = a(x].) < W(x) = V[x]

forallx € G.
For every X = (Z¢, 21, ...,&n), such that (Z1,Zo,...,Z,) € PS(Z") N 0D, we have by (6.2) that

VIR = W(%) < B(I%].) <8 = a(wh,) =0 < a(@mmorm) =8 = Uftminon] — 6.

Finally, note that di = —d; = d = 2™™™ for all i = 1,2,...,n, which implies that for every
1=1,2,...,nand j =0,1,...,2™ we have
V[PSo(j)eo + PS(d; )ei] = V[PSo(j)eo + a2~ ™ ej]
= W(tj, a2*m*ei)
< B(a27™ leil))
< Ya2™™
=T PS,(d)

and

V[PSo(j)eo + PS(d; )e;] = V[PSo(j)eo — a2 ™ ;]
= W(tj, —a2_m*ei)
< B(a27™ |leil])
< Ya2™™
=-—T-PS(d;).

6.5 The constraints LC3 are fulfilled

We must show that for every {x,y} € V:

—CHx ¥} X =¥l VX =V < CHX I} - X = Ylloo T+ [[X = ¥ loo-
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PROOF:
Let {xX,y} € V. Then thereisani € {0,1,...,n} such that x—y = +€;||X—¥||o. By the Mean-value
theorem there is a ¥ €]0, 1] such that

1% = ¥l 1% = ¥l o;
Hence, by the definition of the constants C' and T,
X =¥l |~ 7
which implies that the constraints LC3 are fulfilled. n

6.6 The constraints LC4 are fulfilled

Let pe P, (z,J) € Z, 0 € Perm[{0,1,...,n}|, and i € {0,1,...,n + 1} be arbitrary. We have to
show that

C[ly% 7] >

. V[yc(TL'J)] V[yc(TZJ)l] r (2,0 (z,7) z,7) (2,0
Z( ; (z,J) (i—;) fp" <yUZ ))+Epoz [{y( 7yg]+)1 ] . (63)

j=0 \€o(j) yO’j O’,j+1)

PROOF:
With the values we have assigned to the variables and the constants of the linear programming
problem we have for every p € P, every (z,J) € Z, every 0 € Perm[{0,1,...,n}], every i,j =
0,1,...,n, and with h := a*2™™, that

A= < p

o, — 'Y

PZU{) ' Z B AS‘ZTZ AS‘ZSZ + A((TZS{ ) S (n + 1)2Bh27
r,s=0

and
Z Oy, y&IH < (n+1)C.

Hence, inequality (6.3) follows if we can prove that

J) (2,T)
z,J z,J yo ) W(ya 1) z,J %
—T[lys"l] = = llys ). > Z e Jre e )+ O (6.4)
7=0 eU(]) YO'] o‘]—i—l)

Now, by the Cauchy-Schwarz inequality and inequality (6.1),

n z,J

5 Wy - Wyl

=0 €s(j) (yo',j - yo‘]Jrl)
B Z ( o) = Wyei) oW

zj z,J - 7 .
: y P ) yg,j+)1) 0o ;)

i (vv(yﬁf;”) Wy ow (z,m))

Fooiy (7))

(y&” )> Fooy 72 + VW (v &) - £, (v57))

z,J (z,T
L)+ £, (v 7).

2

(Hy (z,7) (z, j)> - ai,g(j) (ya,i

eo‘(j) ’ (ya,j yog+1

J=0



6.6. THE CONSTRAINTS LC4 ARE FULFILLED

By the Mean-value theorem there is an y on the line-segment between the vectors y
such that

0.7j

117 z,J 17 z,J g
Wy - wyssh)  ow ,
z,J z7)\ 95 .
(y&T —yBDy 0T

€o(j)

and an y* on the line-segment between the vectors y and y((;lfj) such that

oW W wn oW
0oy 0Zag) Dy Yo ) = [V 0Zo(j)

] y") - (y -y,

Because y and y((fﬂ?j) are both elements of the simplex PS(R7(z + S,)), we have

ly = y55 " ll2 < h/n+1

and because

8W aQW
V== * 1- <
[ 8%(]»)] &) " T,SEE},?%-’ 8%(%5( '
2 xe[T!, T x[—a,a]"
we obtain o R N
<W(ya,j" ) - W(yJ]’—i-l) N (9W (y(z’j)>) ej < hB*
z,J z,J s~ o) = .
i\ eo ) —yED) 9 ,
Finally, by the definition of A*,
z,J %
16, (557l < A”.
Putting the pieces together delivers the inequality
L Wlye) = Wiyeih) - * .
e e 7o) < hBTAT = w(llygs )
= ey (v vy T

From this inequality and because w(z) > 2w*x for all z > x* and because of the fact that ||y,

x*, inequality (6.4) holds true if
~wllyei "l 2 hATB* — 20"y |+ H2C".

But, this last inequality follows from

a* < V (A*B*)? + da*w*C* — A*B*

h =
m 20~ ’

\)

which implies
0> hA*B* — w'a* + h?C* > hA*B* — w*|y%7||. + h2C™.

Because p € P, (z,J) € Z, 0 € Perm[{0,1,...,n}],and i € {0,1,...,n+ 1} were arbitrary, we have
|

finished the proof.

In the last proof we took care of that the second order polynomial

P(2) := 2°C* + 2A*B* — w'x

has two distinct real-valued roots, one smaller than zero and one larger then zero. Further, because
h :=a*2™™ > 0 is not larger than the positive root, we have P(h) < 0, which is exactly what we

need in the proof so that everything adds up.

(2,7)
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6.7 Summary of the results

In this chapter we have, among other things, delivered a proof of the following theorem :

Theorem 6.1 (Constructive converse theorem for arbitrary switched systems) Consider
the Switched System 1.9 where P is a finite set, let a > 0 be a real-valued constant such that
[—a,a|™ CU, and assume that at least one of the following two assumptions holds true:

i) There exists a Lyapunov function W € C*(Rsq X [—a, a|") for the Switched System 1.9.

i) The functions f, are all Lipschitz on the set Rsq x [—a,a|", the origin is a uniformly asymp-
totically stable equilibrium point of the Switched System 1.9, and the set [—a,a]™ is contained
in its region of attraction.

Then, for every constants 0 < T" < T" < +oo and every neighborhood N C [—a, a|™ of the origin,
no matter how small, it is possible to parameterize a Lyapunov function V¥ of class CPWA,

VEive (1, T % ([~a,a]"\N) — R,

for the Switched System 1.9 by using the linear programming problem defined in Definition 5.1.

More concrete: Let m be a positive integer and define the piecewise scaling function PS : R — R",
the set D, and the vector t of the linear programming problem through

PS(j17j27 e 7jn> = a2_m(j17j27 e aj’fl)7

D =] —2k2im,2k21m[”c N,

for some integer 1 < k < m, and
t:= (to,t1,...,tar), where t; =T + j27™(T" =T") for all j=0,1,...,2™.

Then, the linear programming problem LP({f,|p € P},[~a,a]",PS,t,D,| - ||) in Definition 5.1
possesses a feasible solution, whenever m is large enough.

PROOF:
Note that by Theorem 3.10 assumption 7i) implies assumption i). But then, by the arguments already
delivered in this section, the propositions of the theorem follow.

Note that we have, in this chapter, actually proved substantially more than stated in Theorem 6.1.
Namely, we did derive formulae for the values of the parameters that are needed to initialize the
linear programming problem in Definition 5.1. These formulae do depend on the unknown Lyapunov
function W, so we cannot extract the numerical values. However, these formulae are concrete enough
to derive the promised algorithm to generate a CPWA Lyapunov function. This will be done in the
next chapter.
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6.8 The autonomous case

Theorem 6.2 (Constructive converse theorem for autonomous switched systems)
Consider the Switched System 1.9 where P is a finite set and assume that it is autonomous. Let
a > 0 be a real-valued constant such that [—a,a]™ C U, and assume that at least one of the following
two assumptions holds true:

i) There exists a Lyapunov function W € C?([—a, a]™) for the Switched System 1.9.

ii) The functions £, are all locally Lipschitz, the origin is an asymptotically stable equilibrium point
of the Switched System 1.9, and the set [—a,a|" is contained in its region of attraction.

Then, for every neighborhood N° C [—a,a|™ of the origin, no matter how small, it is possible to
parameterize a time-invariant Lyapunov function V¥ of class CPWA,

Vi —a,a" \ N — R,

for the Switched System 1.9 by using the linear programming problem from Definition 5.5.

More concrete: Let m be a positive integer and define the piecewise scaling function PS : R® — R"
and the set D of the linear programming problem through

PS(jhqu <o 7.]n) = azim(.jhj% s 7]”)

and a u
Di=]-2F 2k —["Cc \/
=25 25l ’
for some integer 1 < k < m.
Then, the linear programming problem LP({fp|p € P}, [—a,a]”,PS,D,| - ||) in Definition 5.5 pos-
sesses a feasible solution, whenever m is large enough.

The proof is essentially a slimmed down version of the proof in the last section, so we will not go
very thoroughly into details.

PROOF:

First, note that by Theorem 3.10 assumption ) implies assumption i), so in both cases there are
class K functions «, 3, and w, and a function W € C?([—a, a]”) — R, such that

a(llx])) < W(x) < (/=)
and
VIV (x) - £,(x) < —w([|x]])

for all x €| —a,a[™ and all p € P. Further, by Lemma 2.13, we can assume without loss of generality
that a and w are convex functions. With

*

min = Hllrl ||X”
l[%[lcc=a
we set .
5 — a(xmin)
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and let m* be a strictly positive integer, such that

a a

e " € {x € R7[B(x]) < 6} NV
Set
x¥:=  min x|l
oo =a2"
1
w* = §w(m*),

€= min{w*, O‘(yl)/yl}7
where 3, is the second smallest element of X ”'H,

ow

C = max
=1,2,...,n
x€[—a,a]™

and determine a constant B such that

Assign

B*:=n

C* :=n*BC,

and let m > m* be an integer such that

a V (A*B*)? + da*w*C* — A*B*
2m = 20
and set )
d.=2"""",
With y := a27™(0,1,...,2™) we assign the following values to the variables and the remaining

constants of the linear programming problem LP({f,|p € P}, [~a,a]",PS, D, | - ||):

B9 .= B, forall (z,J) € Z, and all r,s =1,2,...,n,
U,lz] := afz), forall z e Xl

[plz] == wz, forall x e Xl

Va[x] :=W(x) for all x € G,,

Col{x,y}] :=C, forall {x,y} € V,.
Now, that the linear constraints LC1la, LC2a, and LC3a are all satisfied follows very similarly to

how the linear constraints LC1, LC2, and LC3 follow in the nonautonomous case, so we only show
that the constraints LC4a are fulfilled.
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Let (z,J) € Z,, 0 € Perm[{1,2,...,n}],and i € {1,2,...,n+ 1} be arbitrary, but fixed throughout
the rest of the proof. We have to show that

" Valy T - Valy &)
z,J o o (z,7) z,7)
Calllyss” 0 = ](( 7 ;}i)fpa WD) + BT E:C {y®D y=D3). (6.5)
€o(j) -

j=1 yo’] Yo+l

With the values we have assigned to the variables and the constants of the linear programming
problem, inequality (6.5) holds true if

"Wy - wiys )]

z,7) o, o,j+1 *
~llyes " 2 Y e e e+ HEC
j=1 ea(]) (yo] a']—l—l)

with h := a2~™. Now, by the Mean-value theorem and because w(z) > 2w*x for all z > x*,

n z,J z,7)
Wiy — wiy ]

zJ)  (2,J)
j=1 €s(j) (yg'] ajJrl)

(W1 - Wyl ow . z : :
) ( e~ e Wei ) | fei v + YWY £y ) + h2C
J eo'(j) (yaj ya j+1) a(j)

& <W%é;4—wvwgﬂj mv(<L70
z,J z,J
j=1 €s(5) (y(()'] : - ycg']—l-)l) 850-

< B*hA* — 2 |y 7| + h2C.

fot (vo") + 2"

<

G — @y 1) + w2C

Hence, if
Y5 > hA B — 2y + 2O,

inequality (6.5) follows. But, this last inequality follows from

a _ V (A*B*)? + da*w*C* — A*B*

hi=om 20 :

which implies
0> hA*B* — w'z* + h*C* > hA*B* — w*|ly%7|| + h*C*. -

In the next chapter we will use Theorem 6.1 to derive an algorithm to parameterize a CPWA Lya-
punov function for the Switched System 1.9 and, if the Switched System 1.9 is autonomous, we will
use Theorem 6.2 to derive an algorithm to parameterize a time-invariant CPWA Lyapunov function
for the system.
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Chapter 7

Algorithms to construct Lyapunov functions

In this chapter we use the results from Theorem 6.1 and Theorem 6.2 to prove that the systematic
scan of the parameters of the linear programming problem from Definition 5.1 in Procedure 7.1 is an
algorithm to construct Lyapunov functions for the Switched System 1.9, whenever one exists, and
that Procedure 7.3 is an algorithm to construct time-invariant Lyapunov functions for the Switched
System 1.9 if it is autonomous, again, whenever one exists. However, first we will give a short
discussion on algorithms, because we intend to prove that our procedure to generate Lyapunov
functions is concordant with the concept of an algorithm, whenever the system in question possesses
a Lyapunov function.

7.1 What is an algorithm?

Donald Knuth writes in his classic work The Art of Computer Programming on algorithms [25]:

The modern meaning for algorithm is quite similar to that of recipe, process, method, tech-
nique, procedure, routine, rigmarole, except that the word “algorithm" connotes something
just a little different. Besides merely being a finite set of rules that gives a sequence of
operations for solving a specific type of problem, an algorithm has five important features:

1) Finiteness. An algorithm must always terminate in a finite number of steps. |[.. .|

2) Definiteness. Each step of an algorithm must be precisely defined; the actions to
be carried out must be be rigorously and unambiguously specified for each case. |. . .|

3) Input. An algorithm has zero or more inputs: quantities that are given to it initially
before the algorithm begins, or dynamically as the algorithm runs. These inputs are
taken from specified sets of objects. |...]

4) Qutput. An algorithm has one or more outputs: quantities that have a specified
relation to the inputs. |...]

5) Effectiveness. An algorithm is also generally expected to be effective, in the sense
that its operations must all be sufficiently basic that they can in principle be done
exactly and in a finite length of time by someone using pencil and paper.

127
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The construction scheme for a Lyapunov function we are going to derive here does comply to all
of these features whenever the equilibrium at the origin is uniformly asymptotically stable, and is
therefore an algorithm to construct Lyapunov functions for arbitrary switched systems possessing a
uniformly asymptotically stable equilibrium.

7.2 The algorithm in the nonautonomous case

We begin by defining a procedure to construct Lyapunov functions and then we prove that it is an
algorithm to construct Lyapunov functions for arbitrary switched systems possessing a uniformly
asymptotically stable equilibrium.

Procedure 7.1 Consider the Switched System 1.9 where P s a finite set, let a > 0 be a constant
such that [—a,a]™ C U, and let N C U be an arbitrary neighborhood of the origin. Further, let T' and
T" be arbitrary real-valued constants such that 0 < T <T" and let || - || be an arbitrary norm on R™.

First, we have to determine a constant B such that

fi
B Z max # X) .
P
i,r,sgg,l,...n ‘rr xs

)
%€[T/, T"]x[—a,a]™

The procedure has two integer variables that have to be initialized, namely m and N. They should be
wnitialized as follows: Set N := 0 and assign the smallest possible positive integer to m such that

| —a27™ a27™[" C N.
The procedure consists of the following steps:

i) Define the piecewise scaling function PS : R" — R™ and the vector t := (to,t1,...,tam),
through
PS<j17j27 s 7]71) = a27m<j17j27 B ,jn)7 fOT all (j17j27 s 7]“) S/
and

T _ T
tl’ = T/ ) y
+1 om

fori=0,1,...,2™.

ii) For every N* =0,1,..., N we do the following:
Generate the linear programming problem

LP({fP|p € P}? [—CL, a]n7 PSatv] - azN*_mJ CLQN*_mL H ' H)

as defined in Definition 5.1 and check whether it possesses a feasible solution or not. If one of
the linear programming problems possesses a feasible solution, then go to step iii). If none of
them possesses a feasible solution, then assign m :=m+1 and N := N +1 and go back to step

i).

ii1) Use the feasible solution to parameterize a CPWA Lyapunov function for the Switched System

1.9 as described in Section 5.2.
O
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After all the preparation we have done, the proof that Procedure 7.1 is an algorithm to construct
Lyapunov functions for arbitrary switched systems possessing a uniformly asymptotically stable
equilibrium is remarkably short.

Theorem 7.2 (Procedure 7.1 is an algorithm) Consider the Switched System 1.9 where P is a
finite set, let a > 0 be a constant such that [—a,a]™ CU, and assume further, that at least one of the
following two assumptions holds true:

i) There exists a Lyapunov function W € C*(Rsqy X [—a,a|") for the Switched System 1.9.

i) The functions £, are all Lipschitz on the set R>g X [—a,a]”, the origin is a uniformly asymp-
totically stable equilibrium point of the Switched System 1.9, and the set [—a,a]™ is contained
in its region of attraction.

Then, for every constants 0 < T" < T" < +oo and every neighborhood N C [—a,a|™ of the origin,
no matter how small, the Procedure 7.1 delivers, in a finite number of steps, a CPWA Lyapunov
function Ve,

Vi [T, T" x ([—a,a]" \N) — R,

for the Switched System 1.9.

PROOF:
Follows directly from what we have shown in the last chapter. With the same notations as there, the

linear programming problem
LP({fp|p € P}7 [—CL, a]n7 PSutv] - a2N*7m7 azN*imL “ : H)

possesses a feasible solution, when m is so large that

max{7T" — 1", a} < V/ (A*B*)? + 4z*w*C* — A*B*
2m - 20~

and N*, 0 < N* < N, is such that

a2V q2N*

S ) C {x e RY|(Ixll) < 5} N A

Because we have already proved in Theorem 2.16 and Theorem 3.10 that the Switched System 1.9
possesses a Lyapunov function, if and only if an equilibrium of the system is uniformly asymptotically
stable, this is equivalent to the statement:

It is always possible, in a finite number of steps, to construct a Lyapunov function for
the Switched System 1.9 with the methods presented in this thesis, whenever one exists.
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7.3 The algorithm in the autonomous case

The procedure to construct Lyapunov functions for autonomous systems mimics Procedure 5.1.

Procedure 7.3 Consider the Switched System 1.9 where P is a finite set, let a > 0 be a constant
such that [—a,a]™ C U, and let N C U be an arbitrary neighborhood of the origin. Further, assume
that the system is autonomous and let || - || be an arbitrary norm on R™.

First, we have to determine a constant B such that

82 fp,z’
01,01 () ’ '

The procedure has two integer variables that have to be initialized, namely m and N. They should be
initialized as follows: Set N := 0 and assign the smallest possible positive integer to m such that

| —a27™ a27™[" C N.
The procedure consists of the following steps:

i) Define the piecewise scaling function PS : R" — R" through
PS(j17j27 s 7jn) = a2_m(.j1aj27 s ajn)a fOT' all (jlaj?a S 7.]n) ezZ".

ii) For every N* =0,1,..., N we do the following:
Generate the linear programming problem

LP({fplp € P}7 [_a’ a]n> PS?] - a2N*—m7 GQN*_m[v H ’ ”)

as defined in Definition 5.5 and check whether it possesses a feasible solution or not. If one of
the linear programming problems possesses a feasible solution, then go to step iii). If none of
them possesses a feasible solution, then assign m :=m+1 and N := N +1 and go back to step

iii) Use the feasible solution to parameterize a CPWA Lyapunov function for the Switched System

1.9 as described in Definition 5.6.
O

The proof that Procedure 7.3 is an algorithm to construct time-invariant Lyapunov functions for
arbitrary switched systems possessing an asymptotically stable equilibrium is essentially identical to
the proof of Theorem 7.2, where the nonautonomous case is treated.

Theorem 7.4 (Procedure 7.3 is an algorithm) Consider the Switched System 1.9 where P is a
finite set and assume that it is autonomous. Let a > 0 be a constant such that [—a,a]™ C U, and
assume further, that at least one of the following two assumptions holds true:

i) There exists a time-invariant Lyapunov function W € C*([—a, a]™) for the Switched System 1.9.

i) The functions £, are all locally Lipschitz, the origin is a asymptotically stable equilibrium point
of the Switched System 1.9, and the set [—a,a]™ is contained in its region of attraction.
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Then, for every neighborhood N° C [—a,a|™ of the origin, no matter how small, the Procedure 7.3
delivers, in a finite number of steps, a time-invariant Lyapunov function V¥ of class CPWA,

Vi [—a,a* \ N — R,
for the autonomous Switched System 1.9.

PROOF:
Almost identical to the proof of Theorem 7.2. With the same notations as in the last chapter, the

linear programming problem
P({fp|p € P}, [~a,a],PS,] — a2V ™™ a2V 7 || - )

possesses a feasible solution, when m is so large that

a _ V/ (A*B*)? + dz*w*C* — A*B*
2m = 20

and N*, 0 < N* < N, is such that

a2V" q2N*

S ) C {x e RY|(Ixll) < 5} A

Because we have already proved in Theorem 2.16 and Theorem 3.10 that the autonomous Switched
System 1.9 possesses a time-invariant Lyapunov function, if and only if an equilibrium of the system
is asymptotically stable, this is equivalent to the statement:

It is always possible, in a finite number of steps, to construct a time-invariant Lyapunov
function for the autonomous Switched System 1.9 with the methods presented in this
thesis, whenever one exists.
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Part 111

Examples of Lyapunov functions generated
by linear programming

133
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In this part we will give some examples of the construction of Lyapunov functions by the linear
programming problem LP({f,|p € P}, N,PS,t,D, || -||) from Definition 5.1 and the linear program-
ming problem LP({f,|p € P}, N,PS,D,| - ||) from Definition 5.5. In all the examples we will use
the infinity norm, that is || - || := || - ||, in the linear programming problems. Further, we will use
piecewise scaling functions PS, whose components PS; are all odd functions, that is (recall that the
i-th component PS; of PS does only depend on the i-th variable x; of the argument x)

Because we will only be interested in the values of a piecewise scaling functions on compact subsets
[—m,m|" C R", m € Ny, this implies that we can define such a function by specifying n vectors
pPs; = (PS;1,PSi2, -+ PSim), @ = 1,2,...,n. If we say that the piecewise scaling function PS is
defined through the ordered vector tuple (ps;, pss, ..., Ps, ), we mean that PS(0) := 0 and that for
every 1 = 1,2, ... ,n and every j = 1,2,...,m, we have

PSi(j) := ps;; and PSi(—j) :== —DS; ;-

If we say that the piecewise scaling function PS is defined through the vector ps, we mean that it is
defined trough the vector tuple (ps,, ps,, ..., Ps,), where ps, ;= ps for alli =1,2,... n.

The linear programming problems were all solved by use of the GNU Linear programming kit
(GLPK), version 4.8, developed by Andrew Makhorin. It is a free software that is available for
download on the internet. The parameterized Lyapunov functions were drawn with gnuplot, version
3.7, developed by Thomas Williams and Colin Kelley. Just as GLPK, gnuplot is a free software that
is available for download on the internet. The author is indebted to these developers.
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Chapter 8

An autonomous system

As a fist example of the use of the linear programming problem from Definition 5.5 and Procedure
7.3 we consider the continuous system

% = f(x), where f(z,y) ;:( $34(y_1)y ) (8.1)

_—m _—
(1+22)2 1+y2

This system is taken from Example 65 in Section 5.3 in [56]. The Jacobian of f at the origin has
the eigenvalues 0 and —1. Hence, the origin is not an exponentially stable equilibrium point (see, for
example, Theorem 4.4 in [24] or Theorem 15 in Section 5.5 in [56]). We initialize Procedure 7.3 with

8 2 2.,
== and /\/.—]—1—5,E[ :
Further, with
T = |e1-PS(R7(z+e1)| and  yug) = |e2- PS(R7(z + &), (8.2)

we set (note that for the constants B}()’zg) the index p is redundant because the system is non-switched)

z,J
B = 62,0 (1 + Yiu))s

z,J
BE7) =342, ;.

6Y(z,7) SyE’z’J) )
- if <V2-1
BET) .— T )7~ T, 0 B Y@ S ,
1.46, else,

for all (z, J) € Z in the linear programming problems. This is more effective than using one constant
B larger than all BI(,,Z;;T) for all (z,J) € Z and all r,s = 1,2,...,n, as done to shorten the proof of
Theorem 6.1.

Procedure 7.1 succeeds in finding a feasible solution to the linear programming problem with m = 4
and D = 2. The corresponding Lyapunov function of class CPWA is drawn in Figure 8.1. We used
this Lyapunov function as a starting point to parameterize a CPWA Lyapunov function with a larger
domain and succeeded with N := [—1,1]% D :=]—0.133,0.133[%, and PS defined through the vector

ps := (0.033,0.067,0.1,0.133,0.18,0.25,0.3,0.38, 0.45, 0.55, 0.7, 0.85,0.93, 1)
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Figure 8.1: A Lyapunov function for the system (8.1) generated by Procedure 7.1.

as described at the beginning of this part. It is drawn in Figure 8.2.

Note that the domain of the Lyapunov function on Figure 8.1, where we used the Procedure 7.3 to
scan the parameters of the linear programming problem from Definition 5.5, is much smaller than
that of the Lyapunov function on Figure 8.2, where we used another trial-and-error procedure to
scan the parameters. This is typical! The power of Procedure 7.3 and Theorem 7.4 is that they tell
us that a systematic scan will lead to a success if there exists a Lyapunov function for the system.
However, as Procedure 7.3 will not try to increase the distance between the points in the grid G of
the linear programming problem far away from the equilibrium, it is not particularly well suited to
parameterize Lyapunov functions with large domains. To actually parameterize Lyapunov functions a
trial-and-error procedure that first tries to parameterize a Lyapunov function in a small neighborhood
of the equilibrium, and if it succeeds it tries to extend the grid with larger grid-steps farther away
from the equilibrium, is more suited.

In Figure 8.3 the sets D, 7, and A from Lemma 5.9 are drawn for this particular Lyapunov function.
The innermost square is the boundary of D, the outmost figure is the boundary of the set A, and in
between the boundary of 7 is plotted. Every solution to the system (8.1) with an initial value £ in
A will reach the square [—0.133,0.133]% in a finite time #' and will stay in the set 7 for all ¢ > ¢'.
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Vix,v)

Figure 8.2: A Lyapunov function for the system (8.1), parameterized with the linear pro-
gramming problem from Definition 5.5, with a larger domain than the Lyapunov
function on Figure 8.1.

T T T 1
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Figure 8.3: The sets D, 7, and A from Lemma 5.4 for the Lyapunov function on Figure
8.2 for the system (8.1).
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Chapter 9

An arbitrary switched autonomous system

Consider the autonomous systems

x = f(x), where fi(z,y):= (x 0 __xyg n 0.11:4)) : (9.1)

x =f5(x), where f3(x,y):

and

—1.5y

—y+a(a?+y* - 1)
z+y(?+y*—1)

> , (9.2)

x = f3(x), where f3(z,y):= <1z_5 +y ((%)2 by 1)) : (9.3)

The systems (9.1) and (9.2) are taken from Exercise 1.16 in [24] and from page 194 in [50] respectively.

First, we used the linear programming problem from Definition 5.5 to parameterize a Lyapunov
function for each of the systems (9.1), (9.2), and (9.3) individually. We define z(, 7y and y(, 7) as in

formula (8.2) and for the system (9.1) we set

B{fi{) = 2Y(5,7) + 1.2y(z,j)x%zyj),
B&) =224, 7) + 042}, 5,
By =0,
for the system (9.2) we set
B o= max{62,7), 2y(.7) }
Biiy = max{204,5), 2ya.) )+
Bé,zﬁg) = max{22(,7), Yz}

and for the system (9.3) we set

z,J 8
Bé,n) = §Z/(z,j)>
8
Z7J .
B§,12) = §$(z7.7),
z,J
B§,22 )= 6y(z,.7)
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We parameterized a CPWA Lyapunov function for the system (9.1) by use of the linear programming
problem from Definition 5.5 with A/ := [-1.337,1.337]?, D := (), and PS defined trough the vector

ps := (0.0906, 0.316, 0.569, 0.695, 0.909, 1.016, 1.163, 1.236, 1.337)

as described at the beginning of this part. The Lyapunov function is depicted on Figure 9.1. The
equilibrium’s region of attraction, secured by this Lyapunov function, is drawn on Figure 9.2.

Vix,v)

Figure 9.1: A Lyapunov function for the system (9.1) generated by the linear programming
problem from Definition 5.5.

We parameterized a CPWA Lyapunov function for the system (9.2) by use of the linear programming
problem from Definition 5.5 with N := [—0.818,0.818]%, D := (), and PS defined trough the vector

ps := (0.188,0.394,0.497,0.639, 0.8, 0.745,0.794, 0.806, 0.818)

as described in the description at the beginning of this part. The Lyapunov function is depicted on
Figure 9.3. The equilibrium’s region of attraction, secured by this Lyapunov function, is drawn on
Figure 9.4.

We parameterized a CPWA Lyapunov function for the system (9.3) by use of the linear programming
problem from Definition 5.5 with A := [—0.506,0.506]%, D :=] — 0.01,0.01[%, and PS defined trough

the vector
ps := (0.01,0.0325,0.0831,0.197,0.432,0.461, 0.506)
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y “\ 1 o

Figure 9.2: The region of attraction of the equilibrium at the origin secured by the Lya-
punov function on Figure 9.1. All solution that start in this set are asymptoti-
cally attracted to the origin.

as described at the beginning of this part. The Lyapunov function is depicted on Figure 9.5. The
equilibrium’s region of attraction, secured by this Lyapunov function, and the set D are drawn on
Figure 9.6. Every solution to the system (9.3) that starts in the larger set will reach the smaller set
in a finite time.

Finally, we parameterized a CPWA Lyapunov function for the switched system
x =f,(x), pe{l,2,3}, (9.4)

where the functions fi, fy, and f; are, of course, the functions from (9.1), (9.2), and (9.3), by use of
the linear programming problem from Definition 5.1 with A/ := [-0.612,0.612]?, D :=]—0.01, 0.01[?,
and PS defined trough the vector

ps := (0.01,0.0325,0.0831,0.197, 0.354, 0.432, 0.535, 0.586, 0.612)

as described at the beginning of this part. The Lyapunov function is depicted on Figure 9.7. Note,
that this Lyapunov function is a Lyapunov function for all of the systems (9.1), (9.2), and (9.3)
individually. The equilibrium’s region of attraction, secured by this Lyapunov function, and the set
D are drawn on Figure 9.8. Every solution to the system (9.4) that starts in the larger set will reach
the smaller set in a finite time.
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Vix,y)

Figure 9.3: A Lyapunov function for the system (9.2) generated by the linear programming
problem from Definition 5.5.

Figure 9.4: The region of attraction of the equilibrium at the origin secured by the Lya-
punov function on Figure 9.3. All solution that start in this set are asymptoti-
cally attracted to the origin.
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06

Figure 9.5: A Lyapunov function for the system (9.3) generated by the linear programming
problem from Definition 5.5.

0.6

- 04

\ 1 02

06 04 42 0 02 04 06

Figure 9.6: The region of attraction of the equilibrium at the origin secured by the Lya-
punov function on Figure 9.5. All solution that start in the larger set are asymp-
totically attracted to the smaller set at the origin.
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CHAPTER 9. AN ARBITRARY SWITCHED AUTONOMOUS SYSTEM

0g

Figure 9.7: A Lyapunov function for the arbitrary switched system (9.4) generated by the
linear programming problem from Definition 5.5.
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Figure 9.8: The region of attraction secured by the Lyapunov function in figure 9.7 for the
switched system. All solution that start in the larger set are asymptotically
attracted to the smaller set at the origin.



Chapter 10

A variable structure system

Consider the linear systems

. 0.1 -1

x = Ai1x, where A;:= ( 9 01 ) : (10.1)
and

. 0.1 -2

x = Ayx, where Aj:= ( 1 o1 ) : (10.2)

These systems are taken from [29]. It is easy to verify that the matrices A; and A both have the
eigenvalues Ay = 0.1 £ /2. Therefore, by elementary linear stability theory, the systems (10.1) and
(10.2) are both unstable. On Figure 10.1 and Figure 10.2 the trajectories of the systems (10.1) and

—

: \\ : .

TN \ ~ o

2 / \ \\ 2 e \
/ TN \ \\ /// S5 AN

1 / / \ \ \ 1 ya /’ﬂ\ N \\
[/ R /S o A\\ N

2 ( / \ ) wf [ V)
\ | \ \\ /’ /‘ //
\ \\ / / ) \ \ \\__// / /

A \ \ / / 1 \ . v /
RN /) N T~ —
N N L

: \ / : S e

. / o
. %
3 T~ 3
4 3 2 1 )gl 1 2 3 4 -4 3 2 1 )?l 1 2 3 4
Figure 10.1: The trajectory of the system Figure 10.2: The trajectory of the system
x = A;x starting at (1,0). x = Aox starting at (1,0).
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(10.2) with the initial value (1,0) are depicted. That the norm of the solutions is growing with ¢ in
the long run is clear. However, it is equally clear, that the solution to (10.1) is decreasing on the sets

Qs = {(Il,l'g)|l'1 <0and x5 >0} and @Q4:= {(1'1,1'2)‘1'1 >0 and xs > 0}
and that the solution to (10.2) is decreasing on the sets

Q= {(a:l,:cg)‘:cl >0and xo >0} and Q3 := {(xl,x2)|a:1 < 0 and x9 < 0},

Now, consider the switched system
x=Ax, pe{l,2}, (10.3)

where the matrices A; and Ay are the same as in (10.1) and (10.2). Obviously, this system is not
stable under arbitrary switching, but, if we only consider solution trajectories (¢, &) — ¢, (¢, &), such
that

¢, (t,€) € QU Qy, implies o(t) =1 (10.4)

and

¢, (t,€) € Q1 UQ3, implies o(t) = 2, (10.5)

then we would expect all trajectories under consideration to be asymptotically attracted to the
equilibrium. The switched system (10.3), together with the constraints (10.4) and (10.5), is said to
be a variable structure system. The reason is quite obvious, the structure of the right-hand side of
the system (10.3) depends on the current position in the state-space.

It is a simple task to modify the linear programming problem from Definition 5.5 to parameterize
a Lyapunov function for the variable structure system. Usually, one would include the constraint
LCA4a, that is,

n V[y( J)] V[y(z J)] _
z,J o o,j+1 z,J zj z,7)
F|:||yt(7,7, )H] Z Z ( > (2z,7) - pr(] (yf)'z )) +Epo‘z [{y 7Y¢(7]+1}]
j=1 \€o(j) " WYo, — ay+1)

for every p € P, every (z,J) € Z, every 0 € Perm[{1,2,...,n}|, and every i = 1,2,...,n+ 1. In
the modified linear programming problem however, we exclude the constraints for some values of p,
(z,J), o, and i. It goes as follows:

i) Whenever p = 2 and either J = {1} or J = {2}, we do not include the constraint LC4a, for
these particular values of p, (z,J), o, and i, in the linear programming problem.

ii) Whenever p = 1 and either J = () or J = {1, 2}, we do not include the constraints LC4a, for
these particular values of p, (z,J), o, and i, in the linear programming problem.

We parameterized a Lyapunov function for the variable structure system by use of this modified
linear programming problem with N := [-1.152,1.152)%, D :=]—0.01,0.01[%, and PS defined trough
the vector

= (0.00333,0.00667,0.01,0.0133,0.0166, 0.0242, 0.0410, 0.0790, 0.157, 0.319, 0.652, 1.152)
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as described at the beginning of this part. The Lyapunov function V¥ is depicted on Figure 10.3.

Now, one might wonder, what information we can extract from this function V¥ which is parame-
terized by our modified linear programming problem. Denote by 7, the function that is constructed
from the variables I';[y;] as in Definition 5.6. Then it is easy to see that for every

x€ (NM\D)N (21U Q3)

we have

Lya _ Lya
lim sup Ve (x 4+ hAsx) — VA% (x)

<_a X]|oo
msu . < —a(lxl)

and for every

x€ (M\D)N(QU Q)

we have

, VEive(x + hA;x) — VI (x
i s U O IA) ZVECD g,
h—0+
But this includes all trajectories of the system (10.3) that comply with the constraints (10.4) and
(10.5) so
Vv (g, (t 4 h,€)) — V(e (t
g V2 (505 1.8) = VP (9,(1.€)

h—0+ h

< —YalllP (£, €)lo0)

for all ¢, (¢, €) in the interior of N\ D and all trajectories under consideration and therefore V¥ is
a Lyapunov function for the variable structure system.

The equilibrium’s region of attraction, secured by this Lyapunov function, is drawn on Figure 10.4.

Vixl,x2)

Figure 10.3: A Lyapunov function for the variable structure system (10.3) generated by an
altered version of the linear programming problem from Definition 5.5.
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Figure 10.4: The region of attraction secured by the Lyapunov function in Figure 10.3
for the variable structure system. All solution that start in the larger set are
asymptotically attracted to the smaller set at the origin.



Chapter 11

A variable structure system with sliding
modes

Define the matrix A and the vector p through

01 1
A':(l O) and p.:(1>,

and consider the systems

x = fi(x), where fi(x):= Ax, (11.1)

% =f5(x), where f5(x):= —p, (11.2)
and

x = f3(x), where f3(x):=p. (11.3)

The eigenvalues of the matrix A in (11.1) are A = £1 and the equilibrium at the origin is therefore
a saddle point of the system and is not stable. The direction field of the system (11.1) is drawn on
Figure 11.1. The systems (11.2) and (11.3) do not even possess an equilibrium.

Let the sets @1, @2, @3, and ()4 be defined as in the last chapter and consider the variable structure
system where we use the system (11.1) in @2 and @4, the system (11.2) in @1, and the system (11.3)
in Q3. A look at Figure 11.1 suggests that this variable structure system might be stable, but the
problem is that the system does not possess a properly defined solution compatible with our solution
concept in Definition 1.8. The reason is that a trajectory, for example leaving ()4 to @)y, is sent
straight back by the dynamics in )1 to (04, where it will, of course, be sent straight back to (1. This
phenomena is often called chattering and the sets {x € R?*|z; = 0} and {x € R?|z, = 0} are called
the sliding modes of the dynamics. A solution concept for such variable structure systems has been
developed by Filippov and others, see, for example [7], [8], and [51], or, for a brief review, [63].

Even though Filippov’s solution trajectories are supposed to be close to the true trajectories if the
switching is fast, we will use a simpler and more robust technique here to prove the stability of the
system. Our approach is very simple, set h := 0.005 and define the sets

Si2 = {x €R"|z1| <h and x5 >0}
Sp3i={x €R" 21 <0 and |22] < h}
S34 = {x €R"||z1] <h and z; <0}
Sp1i={x €R" x>0 and |25] < h}
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Figure 11.1: The direction field of x = Ax, where A is the matrix in (11.1).

and
D' :=]— 2h,2h[.

We will generate a Lyapunov function for the variable structure system on [—0.957,0.957]% so we can
consider D to be a small neighborhood of the origin and the §;; to be thin stripes between @); and

Q;-
We parameterized a Lyapunov function V¥ for the variable structure system by use of a modified
linear programming problem with A := [—0,957,0,957)%, D := D', and PS defined trough the vector

ps := (0.005,0.01,0.015, 0.0263, 0.052,0.109, 0.237, 0.525, 0.957)

as described at the beginning of this part.

The modification we used to the linear programming problem in Definition 5.5, similar to the mod-
ification in the last chapter, was to only include the constraints LC4a in the linear programming
problem for some sets of parameters

pEP, (z,J)€ Z, 0 € Perm[{1,2,...,n}], and i € {1,2,...,n+1}.

Exactly, for every simplex S in the simplicial partition, SND = (3, we included the constraints LC4a
for every vertex of the simplex, if and only if:

SCQl\(51,2U34,1) and p = 2,
SCQQ\(5172U32,3)UQ4\(54,1U33,4) and p = 1,
SC s\ (S3US8;54) andp=3,

SC8&8,US; and (pzlorpzZ),
SC8&3USss and (p=1orp=3).
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This implies for the Lyapunov function V*¥¢, where the function v, € K is constructed from the
variables I';[y;] as in Definition 5.6, that :

V1) For every x in the interior of the set
(Q1USI2US1) \ D

we have

Lya _ Y/ Lya
lim sup Ve (x + hfy(x)) — V¥ (x)

< —Ya (1%l o0 ) -
msu ; < ~u(lxl)

V2) For every x in the interior of the set

(QQ UQiUSioUS3US34 U 34,1) \D

we have —_— e —_—
N G S YC) e

h—0+ h

< —Va([[X[]o0)-

V3) For every x in the interior of the set
(QsUSy3US34) \ D

we have —_— I —_—
I G S 1)

h—0+ h

< —Ya(l[X[]s0)-

Now, let f;, fy, and f5 be the functions from the systems (11.1), (11.2), and (11.3) and consider the
variable structure system
X:fp(x)v pE {17273}7 (114)

under the following constraints :

i) ¢, (t,€) e N\ D and ¢,(t,£) in the interior of Q; \ (81,2 U 8471) implies o(t) = 2.

i) ¢,(t,&) e N\ D and ¢,(t,€) in the interior of Qy \ (8172 U 8273) U Qs \ (8471 U 8374)
implies o(t) = 1.

iii) ¢,(t,€) € N\ D and ¢,(t,£) in the interior of Qs \ (Ss,3 U Ss4) implies o(t) = 3.

iii) ¢, (t,&) € N\ D and ¢,(t, &) in the interior of S; 2 U Sy implies o(t) € {1, 2}.

ii) ¢, (t,&) € N\ D and ¢,(t,&) in the interior of Sy 3 U S34 implies o(t) € {1, 3}.
One should make one self clear what these constraints imply. For example, if £ € Q, \ (@ U @),
then we must use the dynamics x = Ax untilt — @, (t, £) leaves Q5\ (S1,US,3). If then, for example,
¢, (', &) € Si2 for some ¢’ > 0, then every switching between the systems x = Ax and X = —p is

allowed as long as t — ¢, (¢, &) stays in Sy 2. However, if, for example, ¢, (t", &) € Oy \ ($ U ﬁ)
for some ¢ > ¢/, then we must use the dynamics x = —p until ¢ — ¢, (t,x) leaves Q; \ (S12USu1).

By V1, V2, and V3 we have for every trajectory t — ¢, (t,€) under consideration that

limsup Vi (p,(t+ h,£)) — Vv (g,(t,€))
h—0+ h

< —Yalll#s(t, €)llos),
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so the function V¥ is a Lyapunov function for this system.

The parameterized Lyapunov function V2% for the system (11.4) is depicted on Figure 11.2 and its
region of attraction on Figure 11.3. Because it is difficult to recognize the structure of the Lyapunov
function close to the origin, a Lyapunov function for the same system, but with a much smaller
domain, is depicted on Figure 11.4.

Vixl,x2) -

Figure 11.2: A Lyapunov function for the variable structure system (11.4) generated by an
altered version of the linear programming problem from Definition 5.5.
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Figure 11.3: The region of attraction secured by the Lyapunov function in Figure 11.2
for the variable structure system. All solution that start in the larger set are
asymptotically attracted to the smaller set at the origin.
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Figure 11.4: A Lyapunov function for the variable structure system (11.4) generated by an
altered version of the linear programming problem from Definition 5.5.
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Chapter 12

A one-dimensional nonautonomous switched
system

Consider the one-dimensional systems
x

= fi(t,z), where fi(t,z):=— T+ (12.1)
and . .
T = fo(t,x), where fo(t,x):=— s (12.2)

The system (12.1) has the closed-form solution
gb(t) tO; 5) - 5
and the system (12.2) has the closed-form solution
1+1
t,tg,&) = Ee~li7t0)
¢( ) 075) 56 1+ to

The origin in the state-space is therefore, for every fixed ty, an asymptotically stable equilibrium
point of the system (12.1) and, because

€le”

1+t
1+1

o) L < 2|§|6_%7

1+ t(] -
a uniformly exponentially stable equilibrium point of the system (12.2). However, as can easily be
verified, it is not a uniformly asymptotically stable equilibrium point of the system (12.1). This
implies that the system (12.1) cannot possess a Lyapunov function that is defined for all ¢ > 0.
Note however, that this does not imply that we cannot parameterize a Lyapunov-like function on a
compact time interval for the system (12.1).

We set - -
twy) =€ -PS(z) and w4 7 = e PS(R7(z+e)))]

and define the constants B]gﬁi;?) from the linear programming problem from Definition 5.1 by

B . @)
b, (1+t(z’j))3
1
B(Z’J) : ,
p,01 (1 + t(z,J))Q
z,J) .
B&% =0
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for p € {1,2}.

We parameterized a CPWA Lyapunov function for the system (12.1), the system (12.2), and the

switched system

&= f(t,z), pe {12} (12.3)

by use of the linear programming problem from Definition 5.1 with A :=]—1.1,1.1[, D :=|-0.11,0.11],
PS defined through the vector

ps := (0.11,0.22,0.33, 0.44, 0.55, 0.66, 0.77, 0.88, 0.99, 1.1)

as described at the beginning of this part, and the vector

t := (0,

0.194,0.444,0.75,1.111, 1.528, 2, 2.528, 3.111, 3.75, 4.444, 5.194, 6,

6.861,7.778,8.75,9.778,10.861, 12, 13.194, 14.444,15.75,17.111, 18.528, 20).

The Lyapunov function for the system (12.1) is depicted on Figure 12.1, the Lyapunov function for
the system (12.2) on Figure 12.1, and the Lyapunov function for the arbitrary switched system (12.3)

on Figure 12.3.

Figure 12.1:

. a5 B

Y i

-1.8

20

A Lyapunov function for the nonautonomous system (12.1) generated by the
linear programming problem from Definition 5.1.
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Figure 12.2: A Lyapunov function for the nonautonomous system (12.2) generated by the

linear programming problem from Definition 5.1.

Figure 12.3: A Lyapunov function for the switched nonautonomous system (12.3) generated
by the linear programming problem from Definition 5.1.
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Chapter 13

A two-dimensional nonautonomous switched
system

Consider the two-dimensional systems

x =fi(t,x), where fi(t,z,y):= (_332(?0;5 (i)z(;)) (13.1)
and .

x = fy(t,x), where fo(t,2,y) = (;2511—&? ng?) . (13.2)
We set

T = &1 - PS(RY(z+e1))| and yp.s) == |es- PS(RY (z + €y))]

and assign values to the constants BZ(),Z;;?) from the linear programming problem in Definition 5.1 as
follows:

By = max{2(,), Ya)}:
By =0,
By =0,
B =1,
B =1,
B;zl";) =0

for p € {1,2}.

We parameterized a Lyapunov function for the system (13.1), the system (13.2), and the switched
system
X = fp(ta)()a D€ {172} (133)

by use of the linear programming problem from Definition 5.1 with A :=] — 0.55,0.55%, D :=
] —0.11,0.11[%, PS defined through the vector

ps = (0.11,0.22,0.33,0.44,0.55)
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as described at the beginning of this part, and the vector

t := (0,0.3125,0.75, 1.3125, 2).

Because the Lyapunov functions are functions from R x R? into R it is hardly possible to draw them
in any sensible way on a two-dimensional sheet. Therefore, we draw them for the fixed time-values
t:=0,t:=0.3125 ¢t := 0.75, t := 1.3125, and ¢ := 2. From the definition of the function spaces
CPWA it should be clear how to interpolate the drawings to get the full Lyapunov functions.

On figures 13.1, 13.2, 13.3, 13.4, and 13.5 the state-space dependence of the parameterized Lyapunov
function for the system (13.1) for the times ¢ := 0, ¢ := 0.3125, t := 0.75, ¢t := 1.3125, and ¢ := 2
respectively is depicted.

On figures 13.6, 13.7, 13.13, 13.14, and 13.15 the state dependence of the parameterized Lyapunov
function for the system (13.2) for the times ¢ := 0, ¢ := 0.3125, t := 0.75, ¢t := 1.3125, and ¢ := 2
respectively is depicted.

On figures 13.11, 13.12, 13.13, 13.14, and 13.15 the state dependence of the parameterized Lyapunov
function for the switched system (13.3) for the times ¢ := 0, ¢ := 0.3125, ¢ := 0.75, ¢ := 1.3125, and
t := 2 respectively is depicted.

Vi{0,x,v)

LINET
/P

Figure 13.1: The function (z,y) — V(0,z,y), where V(¢,z,y) is the parameterized Lya-
punov function for the nonautonomous system (13.1).
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Figure 13.2: The function (z,y) +— V(0.3125,z,y), where V(t,z,y) is the parameterized
Lyapunov function for the nonautonomous system (13.1).
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Figure 13.3: The function (z,y) — V(0.75, z,y), where V (¢, z,y) is the parameterized Lya-
punov function for the nonautonomous system (13.1).
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Figure 13.4: The function (z,y) — V(1.3125,x,y), where V (¢, z,y) is the parameterized
Lyapunov function for the nonautonomous system (13.1).
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Figure 13.5: The function (z,y) — V(2,z,y), where V(¢,z,y) is the parameterized Lya-
punov function for the nonautonomous system (13.1).
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Figure 13.6: The function (z,y) — V(0,z,y), where V(¢,z,y) is the parameterized Lya-
punov function for the nonautonomous system (13.2).

Figure 13.7: The function (z,y) — V(0.3125,x,y), where V (¢, z,y) is the parameterized
Lyapunov function for the nonautonomous system (13.2).
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Figure 13.8: The function (z,y) — V(0.75, z,y), where V (¢, z,y) is the parameterized Lya-
punov function for the nonautonomous system (13.2).
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Figure 13.9: The function (z,y) — V(1.3125,x,y), where V (¢, z,y) is the parameterized
Lyapunov function for the nonautonomous system (13.2).
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Figure 13.10: The function (z,y) — V(2,z,y), where V (¢, x,y) is the parameterized Lya-
punov function for the nonautonomous system (13.2).

Figure 13.11: The function (z,y) — V(0,z,y), where V (¢, z,y) is the parameterized Lya-

punov function for the nonautonomous system (13.3).
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Figure 13.12: The function (z,y) — V(0.3125, z,y), where V (¢, x,y) is the parameterized
Lyapunov function for the nonautonomous system (13.3).
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Figure 13.13: The function (z,y) — V(0.75,z,y), where V(¢,z,y) is the parameterized
Lyapunov function for the nonautonomous system (13.3).
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Figure 13.14: The function (z,y) — V(1.3125, z,y), where V (¢, x,y) is the parameterized
Lyapunov function for the nonautonomous system (13.3).
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Figure 13.15: The function (z,y) — V(2,z,y), where V (¢, x,y) is the parameterized Lya-
punov function for the nonautonomous system (13.3).
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Chapter 14

Final words

Because we have already thoroughly discussed the reasons for and the usefulness of the results of
this thesis in Historical background and The contributions of this work at the beginning, there is no
reason to repeat it here. Therefore, we let a very short review suffice.

In this work we developed an algorithm to construct Lyapunov functions for nonlinear, nonau-
tonomous, arbitrary switched continuous systems. The necessary stability theory of switched sys-
tems, including a converse Lyapunov theorem for uniformly asymptotically stable arbitrary switched
nonlinear, nonautonomous, Lipschitz systems (Theorem 3.10), was developed in Part I. In Part II we
presented a linear programming problem in Definition 5.1 that can be constructed from a finite set
of nonlinear and nonautonomous differential equations x = f,(¢,x), p € P, where the components
of the f, are C?, and we proved that every feasible solution to the linear programming problem can
be used to parameterize a common Lyapunov function for the systems. Further, we proved that if
the origin in the state-space is a uniformly asymptotically stable equilibrium of the switched system
x = f,(t,x), p € P, then Procedure 7.1, which uses the linear programming problem from Definition
5.1, is an algorithm to construct a Lyapunov function for the switched system. Finally, in Part III,
we gave several examples of Lyapunov functions that we generated by use of the linear programming
problem. Especially, we generated Lyapunov functions for variable structure systems with sliding
modes.

It is the belief of the author that this work is a considerable advance in the Lyapunov stability theory
of dynamical systems and he hopes to have convinced the reader that the numerical construction
of Lyapunov functions, even for arbitrary switched, nonlinear, nonautonomous, continuous systems,
is not only a theoretical possibility, but is capable of being developed to a standard tool in system
analysis software in the future.

Thus, the new algorithm presented in this work should give system engineers a considerable advantage
in comparison to the traditional approach of linearization and pure local analysis.
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