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Abstract: In this thesis a converse theorem on arbitrary switched nonlinear, nonau-
tonomous, continuous systems is proved. Then an algorithm to construct Lyapunov func-
tions for such systems is presented and it is proved, that the algorithm always succeeds in
generating a Lyapunov function if one exists. These results together imply, that the algo-
rithm always succeeds if the equilibrium is uniformly asymptotically stable. The size of the
domain of the Lyapunov function generated is only limited by the size of the equilibrium’s
region of attraction. Note, that the systems ẋ = f(x) and ẋ = f(t,x), where f is not
necessarily linear, fall under the class of arbitrary switched systems.
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Algrím til smíði Lyapunov-falla fyrir ólínuleg skiptikerfi
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Útdráttur: Í þessari ritgerð er fyrst sannað, að aðfellustöðugleiki jafnvægispunkts
ólínulegs skiptikerfis er jafngildur tilvist Lyapunov falls fyrir kerfið. Síðan er algrím til smíði
slíkra Lyapunov falla sett fram og sannað, að algríminu tekst ávallt að stika Lyapunov fall
fyrir kerfið ef slíkt fall er til. Saman þýðir þetta að algríminu tekst alltaf að finna Lyapunov
fall fyrir kerfið ef jafnvægispunktur þess er aðfellustöðugur. Stærð skylgreiningarmengis Lya-
punov fallsis er einungis takmörkuð af stærð aðdráttarmengis jafnvægispunktisins. Athuga
ber, að ẋ = f(x) og ẋ = f(t,x), þar sem f er ekki nauðsynlega línulegt fall, falla undir flokk
skiptikerfa.
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Symbols

R the real-numbers
R≥0 the real-numbers larger than or equal to zero
R>0 the real-numbers larger than zero
Z the integers
Z≥0 the integers larger than or equal to zero
Z>0 the integers larger than zero
An set of n-tuples of elements belonging to a set A
Rn the n-dimensional Euclidean space, n ∈ N>0

A the topological closure of a set A ⊂ Rn

R := R ∪ {−∞} ∪ {+∞}
∂A the boundary of a set A
dom(f) the domain of a function f
f(U) the image of a set U under a mapping f
f−1(U) the preimage of a set U with respect to a mapping f
C(U) continuous real-valued functions with domain U
Ck(U) k-times continuously differentiable real-valued functions with domain U
[Ck(U)]n vector fields f = (f1, f2, . . . , fn) of which fi ∈ Ck(U) for i = 1, 2, . . . , n
K strictly monotonically increasing functions on [0,+∞[ vanishing at the origin
L strictly monotonically decreasing functions on [0,+∞[ approaching zero at infinity
P(A) the power set of a set A
Perm[A] the permutation group of A, i.e., the set of all bijective functions A −→ A
conA the convex hull of a set A
graph(f) the graph of a function f
ei the i-th unit vector
x · y the inner product of vectors x and y

‖x‖p p-norm of a vector x, ‖x‖p :=
(∑

i |xi|p
) 1

p if 1 ≤ p < +∞ and ‖x‖∞ := maxi |xi|
f ′ the derivative of a function f
ẋ the time-derivative of a vector-valued function x
∇f the gradient of a scalar field f : Rn −→ R
∇f the Jacobian of a vector field f : Rm −→ Rn

χA the characteristic function of a set A
δij the Kronecker delta, equal to 1 if i = j and equal to 0 if i 6= j
[a, b] := {x ∈ R|a ≤ x ≤ b}
]a, b] := {x ∈ R|a < x ≤ b}
[a, b[ := {x ∈ R|a ≤ x < b}
]a, b[ := {x ∈ R|a < x < b}
supp(f) := {x ∈ Rn

∣∣f(x) 6= 0}
A∆B := (A ∪ B) \ (A ∩ B)
RJ reflection function with respect to the set J ⊂ {1, 2, . . . , n}, see Definition 4.9
PS piecewise scaling function, see Definition 4.12
S[PS,N ] a simplicial partition of a the set PS(N ) ⊂ Rn, see Definition 4.13
fp,i the i-th component of the vector field fp
B‖·‖,R := {x ∈ Rn

∣∣‖x‖ < R}
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Historical background

[The universe] cannot be be read until we have learnt the language and become familiar
with the characters in which it is written. It is written in the mathematical language, and
the letters are triangles, circles and other geometrical figures, without which means it is
humanly impossible to comprehend a single word.

Galileo Galilei (1564 - 1642)

Mathematics is not only real, but it is the only reality. That is that entire universe is
made of matter, obviously. And matter is made of particles. It’s made of electrons and
neutrons and protons. So the entire universe is made out of particles. Now what are the
particles made out of? They’re not made out of anything. The only thing you can say
about the reality of an electron is to cite its mathematical properties. So there’s a sense in
which matter has completely dissolved and what is left is just a mathematical structure.

Martin Gardner (born 1914)

In classical mechanics every state of a physical system is associated with a real-number known as
its energy. Energy of a system is an extremely powerful concept, just like momentum and angular
momentum, because it obeys a conservation law. However, this was not discovered until at the end
of the 17th century trough Sir Isaac Newton’s (1642 - 1727) monumental work Philosophiae naturalis
principia mathematica and to some extent due to Galileo Galilei’s (1564 - 1642) and Renés Descartes’
(1596 - 1650) earlier work. Before this time it was assumed, in accordance with Aristotelian (384 BC -
322 BC) physics, that a physical system without external forces would come to rest. The late insight
in the true nature of the energy is not particularly surprising because every-day experience indicates
that terrestrial objects actually do eventually come to rest. A century later this discrepancy was
satisfactory resolved by Rudolf Clausius (1822 - 1888), who adopted the concept of entropy. In physical
processes energy does not disappear, but as the entropy of the system inevitable increases, the quality
of the energy decreases. For example, it is a simple task to transform mechanical work into heat with
100% efficiency, however, gaining work from heat is much more difficult, a temperature difference is
needed, and the efficiency has clear theoretical bounds. Thus, the useful energy (for example kinetic
energy, potential energy, or electrical energy) of a physical system, that is, the energy assessable by
the system to move macroscopic objects or to do some useful work, actually does decrease, whenever
the state of the system changes. If we identify physical systems states with points in their state-
spaces, this means that the useful energy of a particular system decreases along every trajectory of
it in its state-space. This implies that such a system must come to rest at a local minimum of the
useful energy and this fact can be very useful for the analysis of physical systems because it is in
general a formidable task to integrate the equations of motion.

In the 19th century Sir William Hamilton (1805 - 1865) developed a new mathematical framework for
mechanical systems. In the so-called Hamiltonian dynamics the equations of motion are first-order
ordinary differential equations ẋ = f(t,x), which are often better suited for mathematical analysis
than previous attempts by Joseph Lagrange (1736 - 1813) and others. If a physical system ẋ = f(t,x)
is at rest at the state-space point y the dynamical variables do not change in the course of time,
which obviously implies that f(t,y) = 0 for all t ≥ 0. Such a state-space point is called an equilibrium



of the differential equation ẋ = f(t,x). Thus, a necessary condition for a state y in the state-space
of the system ẋ = f(t,x) to asymptotically attract trajectories of a physical system is that it is an
equilibrium and that the useful energy of the system has a local minimum at y. Further, one can
conclude that an equilibrium is stable, in the sense that small perturbations are ironed out by the
dynamics of the system, if and only if the equilibrium is at a local minimum of the useful energy of
the system.

In 1892 the Russian mathematician and engineer Alexandr Mikhailovich Lyapunov (1857 - 1918, also
found in the literature as Liapunov, Liapunoff, Lyapunoff, Ljapunov, and Ljapunoff) published a
revolutionary work on the stability of motion. For an English translation of his work we refer to [32].
The ingenuity of his work was to generalize the concept of energy to arbitrary differential equations
of the form ẋ = f(t,x). Thus, if y is an equilibrium of the system ẋ = f(t,x) and, additionally, there
exists a continuous function V that has a local minimum at y and that is strictly monotonically
decreasing along any trajectory of the system, then every trajectory of the system that starts close
enough to the equilibrium is asymptotically attracted to it 1. The function V is then said to be a
Lyapunov function for the system. At first glance it might seem that the Lyapunov theory is purely
of theoretical interest, because one seemingly still needs to know the trajectories of the system
ẋ = f(t,x) to verify that the Lyapunov function is decreasing along the trajectories. It is not! The
reason is that by the use of the chain rule one can easily verify that if the Lyapunov function V and
the function f are differentiable, then V is decreasing along every trajectory of the system if

[∇xV ](t,x) · f(t,x) +
∂V

∂t
(t,x) < 0

for all x 6= y in a neighborhood of y, and this can be verified without solving the differential equation.

A Lyapunov function is traditionally denoted by the same alphabet as the potential energy of a phys-
ical system, namely V , which is somewhat confusing because a Lyapunov function is a generalization
of the energy, traditionally denoted by E or H for Hamiltonian. Maybe this inconsistence is due to
the fact, proved by Dirichlet in 1848, that an equilibrium y of a conservative, holonomic-skleronomic
2 mechanical system is stable, if and only if the potential energy V of the system, traditionally de-
noted by V or U , has a local minimum at y. However, it has become widely accepted to denote a
Lyapunov function by the alphabet V and we will follow that tradition in most cases.

A Lyapunov function V for a differential equation ẋ = f(t,x) not only guaranties the stability, as
a local property, of an equilibrium y, but we can also take advantage of the fact that the system,
initially in a state (t0, ξ0), can never reach a state (t1, ξ1), in which V (t1, ξ1) > V (t0, ξ0). Thus, the
state of the system is bound to stay in the set {(t, ξ)

∣∣V (t, ξ) ≤ V (t0, ξ0)} and this can be used to
derive a lower bound on the region (domain, basin) of attraction of the equilibrium y, that is, the
set of those ξ that are attracted to y in the course of time by the dynamics of the system.

The original Lyapunov theory did not secure the existence of Lyapunov functions for nonlinear sys-
tems with uniformly asymptotically stable equilibrium points, the arguably most important stability
concept. The first results on this subject are due to K. Perdeskii in 1933 [14]. The general case
was resolved somewhat later, mainly by J. Massera in 1949 and 1956 [38, 39] and I. Malkin in
1977 [33]. Theorems, which secure the existence of a Lyapunov or a Lyapunov-like function for a
system possessing an equilibrium, stable in some sense, are called converse theorems in the theory

1Those familiar with the Lyapunov theory might note that we are oversimplifying. However, we do this so we can
concentrate on the essentials of the theory in this historical discussion.

2Holonomic-skleronomic means that the dynamical variables x obey constraints of the form g(x) = 0 for some
smooth function g.



of dynamical systems. The converse theorems have in the past been proved by constructing by a
finite or a transfinite procedure a Lyapunov(-like) function using the trajectories of the respective
equations of motion. Because the trajectories are, of course, not known, these converse theorems are
pure existence theorems and do not help in the search for a Lyapunov function. This has been the
main drawback of the Lyapunov theory so far and is probably the main reason why it has proved so
difficult to extend the practical use of Lyapunov functions to systems, that do not feature a canonical
energy function, like systems in economics, biology, or basically any non-physical system. The aim of
this thesis is to present methods to automatically generate Lyapunov functions with computers for
arbitrary ordinary differential equations.





The contributions of this work

It is a profoundly erroneous truism, repeated by all copy books and by eminent people
when they are making speeches, that we should cultivate the habit of thinking of what we
are doing. The precise opposite is the case. Civilization advances by extending the number
of important operations which we can perform without thinking about them.

Alfred Whitehead (1861 - 1947)

As the title of this work suggests, we will establish an algorithm that is able to generate Lyapunov
functions for switched systems of the form

ẋ = fp(t,x), p ∈ P , P 6= ∅ finite,

under arbitrary switching. Further, we will prove that the algorithm is always able to construct a
Lyapunov function for a particular system, whenever the system possesses a Lyapunov function at
all, and we will prove that this is exactly the case, when the system has an uniformly asymptotically
stable equilibrium. Without loss of generality, we can assume that the equilibrium in question is at
the origin.

The author (Hafstein / Marinósson) has recently used non-constructive converse Lyapunov theorems
to prove that his linear programming problem, presented 2002 in [35, 36], is capable of parameterizing
Lyapunov functions for autonomous systems ẋ = f(x) with an exponentially stable equilibrium [11],
and more generally, with asymptotically stable equilibrium [10, 13]. These results, however, will turn
out to be special cases of a much more general theorem, namely Theorem 6.1 in this work. In this
novel theorem the assumption that the system is autonomous is no more needed and further we
even prove that we can always generate numerically a common Lyapunov function for a finite set
of ordinary differential equations ẋ = fp(t,x), p ∈ P , P 6= ∅ finite, whenever such a Lyapunov
function exists. Further, in Theorem 3.10, we prove that if an arbitrary switched system possesses a
uniformly asymptotically stable equilibrium, then there exists a common Lyapunov function for the
systems. Thus, because the existence of a common Lyapunov function is a sufficient condition for the
uniform asymptotic stability of an equilibrium, we have proved that an arbitrary switched nonlinear,
nonautonomous system possesses a uniformly asymptotically stable equilibrium, exactly then when
there exist a common Lyapunov functions for the systems ẋ = fp(t,x), p ∈ P , and we can construct
such a Lyapunov function numerically whenever the set P 6= ∅ is finite and the functions fp, p ∈ P
are two-times continuously differentiable.

Switched systems will be defined and discussed in Section 1.2. Here we let it suffice to point out,
that a function V is a Lyapunov function for the switched system, if and only if it is, for each p ∈ P ,
a Lyapunov function for the system ẋ = fp(t,x). Especially, if P contains exactly one element p∗,
then V is a Lyapunov function for the ordinary differential equation ẋ = fp∗(t,x). The concept of a
Lyapunov function for a switched system under arbitrary switching is thus a non-trivial extension of
the concept of a Lyapunov function for an ordinary differential equation.

The functions fp are assumed to be mappings from R≥0×U into Rn, where U is a domain in Rn that
contains the origin. The components fp,i of the functions fp are assumed to be two-times continuously
differentiable and we assume that we can give local upper bounds on their derivatives up to the second
order. These bounds do not need to be tight (every upper bound will do the job) so these assumptions



must be considered very weak. No further assumptions about the systems ẋ = fp(t,x) are needed, in
particular, we do not assume that the functions fp are of some specific structural form, like linear,
piecewise affine, rational, algebraic, real holomorphic, etc.
We will present a linear programming problem (Definition 5.1) and give an algorithmic scheme of
how to construct it from the original data, that is, the functions fp. We will prove that if the linear
programming problem possesses a feasible solution, then this solution parameterizes a Lyapunov
function V ∈ C([T ′, T ′′] × V) for the switched system (Theorem 5.2). The constants 0 ≤ T ′ < T ′′ <
+∞ and the compact set V ⊂ U can be chosen at will.
We will prove that if the switched system ẋ = fp(t,x) possesses a two-times continuously differentiable
Lyapunov function W : R≥0 ×W −→ R, where {0} ⊂ W ⊂ U , then, for every 0 ≤ T ′ < T ′′ < +∞
and any compact set V ⊂ W \ {0}, we can use the linear programming problem to generate a
Lyapunov function V ∈ C([T ′, T ′′]×V) for the system. The condition that V ⊂ W \{0} is necessary,
because if the Lyapunov function V is defined in a neighborhood of the origin, then the equilibrium
at the origin is uniformly exponentially stable. Because the existence of W merely secures uniform
asymptotic stability of the origin, which is a weaker property than exponential stability, this would
lead to a contradiction. Therefore, we have to cut out an open neighborhood of the origin from the
domain of the Lyapunov function V . However, this neighborhood can be as small as one wishes, so
this cannot be considered to be a major drawback.
Those, who merely have a rudimentary knowledge of the Lyapunov stability theory, might think
that the construction of Lyapunov functions was in essence a solved problem. This is entirely wrong!
The only case that can be considered to have been completely solved is for autonomous linear
systems, that is, systems of the form ẋ = Ax. By linearizing exponentially stable nonlinear systems
at the equilibrium at the origin, one can actually construct a quadratic function that is a Lyapunov
function for the nonlinear system in some neighborhood of the origin. However, this neighborhood
is in general small so the only implication such a local Lyapunov function secures, is that there are
perturbations that are so small that they cannot affect the asymptotic behavior of the system. The
Lyapunov functions we will be discussing in this work are not just defined in some arbitrary small
neighborhood of the equilibrium, but are defined on a much larger set, whose size is only limited
by the size of the equilibriums region of attraction. Our Lyapunov functions can therefore give us
a reasonable estimate on the size of the equilibriums region of attraction and then, of course, the
magnitude of the disturbances the system can withstand. The fact that we even prove our results for
nonautonomous switched systems can be considered a substantial added bonus.
Practically everyone will assert that her / his work is of greatest importance. Because of this it seems
quite pointless to the author to expatiate upon the value of his own work. Quoting others is more
trustworthy and because there is a passage in almost every book on differential equations, dynamical
systems, or stability, that confirms the relevance of the results presented in this work, we leave the
affirmation to others.
J.Willems writes on page 38 in his book Stability Theory of Dynamical Systems [61]:

The main drawback of Liapunov’s method for the study of stability of dynamic systems
is that there exists no systematic procedure for constructing Liapunov functions.

M.Vidyasagar writes some concluding remarks on the Lyapunov theory on page 190 in his book
Nonlinear System Analysis [56]:

In this section, several theorems in Lyapunov stability theory have been presented. The
favorable aspects of these theorems are:



1. They enable one to draw conclusions about the stability status of an equilibrium
without solving the system equations.

2. Especially in the theorems on stability and asymptotic stability, the Lyapunov func-
tion V has an intuitive appeal as the total energy of the system.

The unfavorable aspects of these theorems are:

1. They represent only sufficient conditions for the various forms of stability. Thus, if a
particular Lyapunov function candidate fails to satisfy the hypothesis on V̇ 3, then
no conclusions can be drawn, and one has to begin anew with another Lyapunov
function candidate.

2. In a general system of nonlinear equations, which do not have the structure of
Hamiltonian equations of motion or some other such structure, there is no systematic
procedure for generating Lyapunov function candidates.

and further he writes on pages 235-236 on the converse theorems:

Since the function V is constructed in terms of the solution trajectories of the system, the
converse theorems cannot really be used to construct an explicit formula for the Lyapunov
function, except in special cases (e.g., linear systems; see Section 5.4).

H.Khalil writes on page 104 in his book Nonlinear systems [24]:

Lyapunov’s theorem can be applied without solving the differential equation ẋ = f(x). On
the other hand, there is no systematic method for finding Lyapunov functions. In some
cases, there are natural Lyapunov function candidates, like energy functions in electrical
or mechanical systems. In other cases, it is basically a matter of trial and error.

and on page 180 he writes on the converse theorems:

Most of these converse theorems are provided by actually constructing auxiliary functions
that satisfy the conditions of the respective theorems. Unfortunately, almost always this
construction assumes the knowledge of the solutions of the differential equation. There-
fore, these theorems do not help in the practical search for an auxiliary function. The
mere knowledge that a function exists is, however, better than nothing. At least we know
that our search is not hopeless.

J. Slotline and W.Li write on page 120 in their book Applied Nonlinear Control [54]:

A number of interesting results concerning the existence of Lyapunov functions, called
converse Lyapunov theorems, have been obtained in this regard. For many years, these
theorems were thought to be of no practical value because, like the previously described
theorems, they do not tell us how to generate Lyapunov functions for a system to be
analyzed.

W.Walter writes on page 320 in his book Ordinary Differential Equations [59]:

3That the Lyapunov function V is decreasing along system trajectories.



There is no general recipe for constructing Lyapunov functions. In specific cases one may
relay on experience and examples; some imagination is also helpful.

and on page 325 he writes:

Determining, or at least estimating, the domain of attraction is a problem of great prac-
tical importance.

M.Hirsch, S. Smale, and R.Devaney write on page 195 in their book Differential Equations, Dynam-
ical Systems, and an Introduction to Chaos [15]:

Note that Liapunov’s theorem can be applied without solving the differential equation;
all we need to compute is DLX(F (X)) 4. This is a real plus! On the other hand, there is
no cut-and-dried method of finding Liapunov functions; it is usually a matter of ingenuity
or trial and error in each case.

The author hopes to have convinced the potential readers of this work, that studying the theory that
is laid down in this thesis is worth the efforts. It should further be pointed out, that it is of course
possible to use the algorithm to construct Lyapunov functions without understanding in detail how it
works. Those that are not interested in the mathematics, but still want to use the results to construct
Lyapunov functions, for example for engineering applications, can move directly to Chapter 5.

4Here DLX(F (X)) denotes the derivative of the Lyapunov function L along trajectories of the ordinary differential
equation Ẋ = F (X).



Outline of this thesis

Science is built up with facts, as a house is with stones. But a collection of facts is no
more a science than a heap of stones is a house.

Jules Pointcaré (1854 - 1912)

This work is divided into three parts. In Part I, which consists of the chapters 1, 2, and 3, we develop
a stability theory for arbitrary switched systems. In Chapter 1 we introduce switched dynamical
systems ẋ = fp(t,x), p ∈ P , and discuss some elementary properties of their solutions. Switched
systems have gained much interest recently. For an overview see, for example, [29] and [27].

In Chapter 2 we consider the stability of isolated equilibria of arbitrary switched systems and we prove
that if such a system possesses a Lyapunov function, then the equilibrium is uniformly asymptotically
stable. These results are quite straightforward if one is familiar with the Lyapunov stability theory
for ordinary differential equations, but, because we consider Lyapunov functions that are merely
continuous and not necessarily differentiable in this work, we establish the most important results.

In Chapter 3 we prove a converse theorem on uniform asymptotic stability for arbitrary switched
nonlinear, nonautonomous, continuous systems. In the literature there are numerous results regarding
the existence of Lyapunov functions for switched systems. A short non-exhaustive overview follows:
In [44] K. Narendra and J.Balakrishnan consider the problem of common quadratic Lyapunov func-
tions for a set of autonomous linear systems, in [9], in [42], in [28], and in [2] the results were
considerably improved by I.Gurvits; Y.Mori, T.Mori, and Y.Kuroe; D. Liberzon, J.Hespanha, and
A.Morse; and A.Agrachev and D. Liberzon respectively. H. Shim, D.Noh, and J. Seo in [53] and L. Vu
and D. Liberzon in [57] generalized the approach to commuting autonomous nonlinear systems. The
resulting Lyapunov function is not necessarily quadratic. W. Dayawansa and C.Martin proved in
[37] that a set of linear autonomous systems possesses a common Lyapunov function, whenever the
corresponding arbitrary switched system is asymptotically stable, and they proved that even in this
simple case there might not exist any quadratic Lyapunov function. The same authors generalized
their approach to exponentially stable nonlinear, autonomous systems in [5]. J.Mancilla-Aguilar and
R. García used results from Y. Lin, E. Sontag, and Y.Wang in [31] to prove a converse Lyapunov
theorem on asymptotically stable nonlinear, autonomous switched systems in [34].

In this work we prove a converse Lyapunov theorem for uniformly asymptotically stable nonlinear
switched systems and we allow the systems to depend explicitly on the time t, that is, we work
the nonautonomous case out. We proceed as follows: If the functions fp, of the switched system
ẋ = fp(t,x), p ∈ P, are locally Lipschitz in the state-space argument with a common Lipschitz
constant L > 0, that is, ‖fp(t,x) − fp(t,y)‖2 ≤ L‖x − y‖2 for all p ∈ P , all t ≥ 0, and all x,y in
some compact neighborhood of the origin. Then, by combining a Lyapunov function construction
method by J.Massera for ordinary differential equations, see, for example, [38] or Section 5.7 in
[56], with the construction method presented by W. Dayawansa and C.Martin in [5], it is possible
to construct a Lyapunov function V that is Lipschitz in the state-space. However, we need V to
be smooth so we prove that if the functions fp, p ∈ P , are Lipschitz with a common Lipschitz
constant L, that is ‖fp(t,x) − fp(s,y)‖2 ≤ L(|t − s| + ‖x − y‖2) for all p ∈ P , all s, t ≥ 0, and
all x,y in some compact neighborhood of the origin in the state-space, then we can smooth the
Lipschitz Lyapunov function to be an infinitely differentiable Lyapunov function. A proof of this
needs a lot of efforts, partially because we have to prove that if N ⊂ Rn is a neighborhood of the



origin and W ∈ C(N ) ∩ C∞(N \ {0}) is Lipschitz at the origin, then W exp(−W−1) ∈ C∞(N ). This
fact was used by F.Wilson in [62] without any justification. In [43] T.Nadzieja repairs some other
parts of Wilson’s proof and notices this problem too. He argues that this must hold true because
W exp(−W−1) converges faster to zero than any polynomial. However, this argument does not seem
satisfactory to the author because some arbitrary derivative of W might still diverge to fast at the
origin. Therefore we deliver a rigid proof of this fact. Surprisingly enough it is about 6 pages long of
quite technical mathematics.

In Part II of this work, which consists of the chapters 4, 5, 6, and 7, we give an algorithmic construction
scheme of a linear programming problem for the switched system ẋ = fp(t,x), p ∈ P 6= ∅ finite, where
the fp are assumed to be C2 functions. Further, we prove that if this linear programming problem
possesses a feasible solution, then such a solution can be used to parameterize a function that is a
Lyapunov function for all of the individual systems and then a Lyapunov function for the arbitrary
switched system. We then use this fact to derive an algorithm to construct Lyapunov functions for
nonlinear, nonautonomous, arbitrary switched systems that possess a uniformly asymptotically stable
equilibrium.

In Chapter 4 we introduce the function space CPWA, a set of continuous functions Rn −→ R that
are piecewise affine (often called piecewise linear in the literature) with a certain simplicial boundary
configuration. The spaces CPWA are essentially the function spaces PWL, presented by P. Julian,
A.Desages, and O.Agamennoni in [22], P. Julian, J. Guivant, and A.Desages in [23], and by P. Julian
in [21], with variable grid sizes. A function space CPWA defined on a compact domain is a finite
dimensional vector space over R, which makes it particularly well suited as the foundation for the
search of a parameterized Lyapunov function. Another property which renders them appropriate as
a search space, is that a function in C2 can be neatly approximated by a function in CPWA as shown
in Lemma 4.14.

In Chapter 5 we define our linear programming problem in Definition 5.1 and then we show how
to use a feasible solution to it to parameterize a Lyapunov function for the corresponding switched
system. We discuss the autonomous case separately, because in this case it is possible to parameterize
an autonomous Lyapunov function with a simpler linear programming problem, which is defined
in Definition 5.5. These results are generalizations of former results by the author, presented in
[35, 36, 11, 10, 12, 13].

In Chapter 6 we prove, that if we construct a linear programming problem as in Definition 5.1 for a
switched system that possesses a uniformly asymptotically stable equilibrium, then, if the boundary
configuration of the function space CPWA is sufficiently closely meshed, there exist feasible solutions
to the linear programming problem. There are algorithms, for example the simplex algorithm, that
always find a feasible solution to a linear programming problem, provided there exists at least one.
This implies that we have reduced the problem of constructing a Lyapunov function for the arbitrary
switched system to a simpler problem of choosing an appropriate boundary configuration for the
CPWA space. If the systems ẋ = fp(t,x), p ∈ P , are autonomous and exponentially stable, then it
follows by [11] that it is even possible to calculate the mesh-sizes directly from the original data, that
is, the functions fp. This, however, is much more restrictive than necessary, because a systematic scan
of boundary configurations is considerably more effective, will lead to success for merely uniformly
asymptotically stable nonautonomous systems, and delivers a boundary configuration that is more
coarsely meshed. Just as in Chapter 5 we consider the more simple autonomous case separately.

In Chapter 7 we use the results from Chapter 6 to define our algorithm in Procedure 7.1 to construct
Lyapunov functions and we prove in Theorem 7.2 that it always delivers a Lyapunov function, if the
arbitrary switched system possesses a uniformly asymptotically stable equilibrium. For autonomous



systems we do the same in Procedure 7.3 and Theorem 7.4. These procedures and theorems are
generalizations of results presented by the author in [11, 10, 13].

In the last decades there have been several proposals of how to numerically construct Lyapunov
functions. For comparison to the construction method presented in this work some of these are listed
below. This list is by no means exhaustive.

In [55] L.Vandenberghe and S.Boyd present an interior-point algorithm to construct a common
quadratic Lyapunov function for a finite set of autonomous linear systems and in [30] D. Liberzon
and R.Tempo took a somewhat different approach to do the same and introduced a gradient decreas-
ing algorithm. Booth methods are numerically efficient, but unfortunately, limited by the fact that
there might exist Lyapunov functions for the system, non of which is quadratic. In [19], [20], and
[18] M. Johansson and A.Rantzer proposed construction methods for piecewise quadratic Lyapunov
functions for piecewise affine autonomous systems. Their construction scheme in based on continuity
matrices for the partition of the respective state-space. The generation of these continuity matrices
remains, to the best knowledge of the author, an open problem. R.Brayton and C.Tong in [3] and
[4], Y.Ohta, H. Imanishi, L.Gong, and H. Haneda in [45], A.Michel, N. Sarabudla, and R.Miller in
[41], and A.Michel, B. Nam, and V. Vittal in [40] reduced the Lyapunov function construction for a
set of autonomous linear systems to the design of a balanced polytope fulfilling certain invariance
properties. A. Polanski in [48] and X.Koutsoukos and P.Antsaklis in [26] consider the construction
of a Lyapunov function of the form V (x) := ‖Wx‖∞, where W is a matrix, for autonomous lin-
ear systems by linear programming. P. Julian, J.Guivant, and A.Desages in [23] and P. Julian in
[21] presented a linear programming problem to construct piecewise affine Lyapunov functions for
autonomous piecewise affine systems. This method can be used for autonomous, nonlinear systems
if some a posteriori analysis of the generated Lyapunov function is done. The difference between
this method and our (autonomous) method is described in Section 6.2 in [36]. In [17] T. Johansen
uses linear programming to parameterize Lyapunov functions for autonomous nonlinear systems.
His results are, however, only valid within an approximation error, which is difficult to determine.
P. Parrilo in [47] and A. Papachristodoulou and S. Prajna in [46] consider the numerical construction
of Lyapunov functions that are presentable as sums of squares for autonomous polynomial systems
under polynomial constraints.

In Part III of this thesis, which consists of the chapters 8 -14, we give several examples of Lya-
punov functions that we generated by the linear programming problems from Definition 5.1 (nonau-
tonomous) and Definition 5.5 (autonomous). Further, in Chapter 14, we give some final words. The
examples are as follows: In Chapter 8 we generate a Lyapunov function for a two-dimensional, au-
tonomous, nonlinear ordinary differential equation, of which the equilibrium is asymptotically stable
but not exponentially stable. In Chapter 9 we consider three different two-dimensional, autonomous,
nonlinear ordinary differential equations and we generate a Lyapunov function for each of them. Then
we generate a Lyapunov function for the corresponding arbitrary switched system. In Chapter 10 we
generate a Lyapunov function for a two-dimensional, autonomous, piecewise linear variable structure
system without sliding modes. Variable structure systems are switched systems, where the switching
is not arbitrary but is performed in dependence of the current state-space position of the system. Such
systems are not discussed in Part I and Part II of this work (the theoretical part), but as explained
in the example such an extension is straight forward. For variable structure systems, however, one
cannot use the theorems that guarantee the success of the linear programming problem in parame-
terizing a Lyapunov function. In Chapter 11 we generate a Lyapunov function for a two-dimensional,
autonomous, piecewise affine variable structure system with sliding modes. In Chapter 12 we gen-
erate Lyapunov functions for two different one-dimensional, nonautonomous, nonlinear systems. We
then parameterize a Lyapunov function for the corresponding arbitrary switched system. Finally, in



Chapter 13, we parameterize Lyapunov functions for two different two-dimensional, nonautonomous,
nonlinear systems. Then we generate a Lyapunov function for the corresponding arbitrary switched
system.



Part I

Stability theory of dynamical systems under
arbitrary switching
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In this first part of the thesis we introduce arbitrary switched dynamical systems and prove some
elementary properties of their solutions. Thereafter we derive the direct method of Lyapunov for
these systems. The Lyapunov function is required to be continuous but not necessarily differentiable.
Finally, the main contribution of this part is presented, namely Theorem 3.10, a converse Lyapunov
theorem on uniform asymptotic stability for arbitrary switched nonautonomous, nonlinear, contin-
uous dynamical systems. These results are more general than the converse theorems found in the
literature (see Outline of this work) and because these results are needed later on we give a rigid
proof.
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Chapter 1

Switched dynamical systems

In this thesis we will consider arbitrary switched nonautonomous, nonlinear, continuous dynamical
systems. In order to define exactly what is meant by these concepts and to introduce the notations
used throughout this thesis, we will start by discussing continuous dynamical systems and some
elementary, but useful, properties of them and their solutions. Then we introduce switching signals
and switched systems.

1.1 Continuous dynamical systems

A continuous dynamical system is a system, of which the dynamics can be modeled by an ordinary
differential equation of the form

ẋ = f(t,x). (1.1)

This equation is called the state equation of the dynamical system. We refer to x as the state of
the system and to the set of all possible states as the state-space of the system. Further, we refer
to t as the time of the system. If the mapping f in (1.1) does not depend explicitly on the time t,
that is f(t1,x) = f(t2,x) for all times t1 and t2 and all states x, then the system (1.1) is said to be
autonomous. A system that is not autonomous it is said to be nonautonomous.

In order to define the solution to a continuous dynamical system, we first need to define what we
mean by a solution to an initial value problem of the form

ẋ = f(t,x), x(t0) = ξ,

and we have to assure, that a unique solution exists for every ξ in the state-space. In order to define
a solution to such an initial value problem, it is advantageous to assume that the state-space of the
system is a domain in Rn, that is, an open and connected subset1. The set U ⊂ Rn is said to be
connected, if and only if for every points a,b ∈ U there is a continuous mapping γ : [0, 1] −→ U such
that γ(0) = a and γ(1) = b.

The definition of a solution to an initial value problem is somewhat involved because we want it to
be a solution, of which the domain cannot be extended in a self-evident way. By a solution to an
initial value problem we exactly mean:

1The term domain has several meanings in mathematics and it has to be deduced from the context what is meant.
If we, for example, say that a function g has the domain D ⊂ Rn, it means that the function value of g is properly
defined at x ∈ Rn, if and only if x ∈ D. The set D does not necessarily have to be a domain in Rn.
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Definition 1.1 (Solution to an initial value problem) Let U be a domain in Rn, let ξ ∈ U , let
−∞ < a < b < +∞, let I ⊂ R be an interval, of which the interior is the interval ]a, b[, let t0 ∈ I,
and let f : I × U −→ Rn be a function.

We call y : ]a′, b′[−→ Rn, a ≤ a′ < b′ ≤ b, a solution to the initial value problem

ẋ = f(t,x), x(t0) = ξ,

if and only if y(t0) = ξ, graph(y) ⊂ ]a′, b′[×U , ẏ(t) = f(t,y(t)) for all t ∈ ]a′, b′[ , and neither the
closure of graphy[t0,b′[ nor the closure of graphy]a′,t0] is a compact subset of ]a, b[×U .

Further, if a ∈ I and the limit limt→a+ y(t) exists and is in U , then we define y(a) to be this limit
(continuous extension), and, if b ∈ I and the limit limt→b− y(t) exists and is in U , then we define
y(b) to be this limit

2

The condition that the closure of graphy[t0,b′[ is not a compact subset of ]a, b[×U implies that one
of the following applies:

i) b′ = +∞ so the solution y exists for all t ≥ t0.

ii) b′ < +∞ and lim supt→b′− ‖y(t)‖2 = +∞.

iii) b′ < +∞ and limt→b′−
(
infz∈Rn\U ‖z− y(t)‖2

)
= 0.

For y restricted to ]a′, t0] analogous propositions apply. For a proof of this fact see, for example,
II.§6.VII in [59]. Together these requirements secure, that y is a solution, of which the domain
cannot be extended in any sensible way. For a more detailed discussion on this we refer to [59] again.

One possibility to secure the existence and uniqueness of a solution for any initial state ξ in the
state-space of a system, is given by the Lipschitz condition.

The function f : R≥0 × U −→ Rn, where U ⊂ Rm, is said to be Lipschitz, with a Lipschitz constant
L > 0 with respect to the norms ‖·‖ on R×Rm and ‖·‖∗ on Rn, if and only if the Lipschitz condition

‖f(s,x)− f(t,y)‖∗ ≤ L‖(s,x)− (t,y)‖

holds true for all (s,x), (t,y) ∈ R≥0 × U .

It is said to be Lipschitz on U , with a Lipschitz constant L > 0, if and only if the Lipschitz condition

‖f(t,x)− f(t,y)‖∗ ≤ L‖x− y‖

holds true for all x,y ∈ U and all t ∈ R≥0.

It is said to be locally Lipschitz on U , if and only if its restriction f |[t1,t2]×C to any compact set
[t1, t2]× C ⊂ R≥0 × U is Lipschitz on [t1, t2]× C.

Still another concept that we will use in this work is locally Lipschitz uniformly in the first argument.
It is defined as follows: the function f is said to be locally Lipschitz uniformly in the first argument
on U , if and only if its restriction f |R≥0×C to any set R≥0 × C, where C is a compact subset of U , is
Lipschitz on R≥0 × C. That is, there is a constant L > 0 such that

‖f(t,x)− f(t,y)‖∗ ≤ L‖x− y‖
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for all x,y ∈ C and all t ∈ R≥0.

Note, that because all norms on Rk are equivalent, the properties Lipschitz, locally Lipschitz, and
locally Lipschitz uniformly in the first argument do not depend on the norms. However, the numerical
values of the Lipschitz constants might.

Further note, that if the components of f : R≥0 × U −→ Rn, where U ⊂ Rm, are all differentiable,
then

sup
i=1,2,...,n
t≥0,x∈U

∣∣∣∣∂fi

∂t
(t,x)

∣∣∣∣ < +∞ and sup
i=1,2,...,n
j=1,2,...,m
t≥0,x∈U

∣∣∣∣ ∂fi

∂xj

(t,x)

∣∣∣∣ < +∞

implies that f is Lipschitz,

sup
i=1,2,...,n
j=1,2,...,m
t≥0,x∈U

∣∣∣∣ ∂fi

∂xj

(t,x)

∣∣∣∣ < +∞

implies that f is Lipschitz on U ,

sup
i=1,2,...,n
j=1,2,...,m

t∈I,x∈C

∣∣∣∣ ∂fi

∂xj

(t,x)

∣∣∣∣ < +∞ for every compact I × C ⊂ R≥0 × U ,

implies that f is locally Lipschitz on U , and

sup
i=1,2,...,n
j=1,2,...,m

t≥0,x∈C

∣∣∣∣ ∂fi

∂xj

(t,x)

∣∣∣∣ < +∞ for every compact C ⊂ U ,

implies that f is locally Lipschitz on U uniformly in the first argument.

The next theorem states the arguably two most important results in the theory of ordinary differential
equations. It gives sufficient conditions for the existence and the uniqueness of solutions of initial
value problems. These conditions are not the most general known, but they are intuitive and usually
more easy to affirm than more abstract ones. For more general conditions see, for example, III.§12.VII
in [59].

Theorem 1.2 (Peano / Picard-Lindelöf) Let U ⊂ Rn be a domain, f : R≥0 × U −→ Rn be a
continuous function, t0 ≥ 0 be a constant, and ξ ∈ U . Then there exists a solution to the initial value
problem

ẋ = f(t,x), x(t0) = ξ.

If f is locally Lipschitz on U , then there are no further solutions.

Proof:
See, for example, Theorems VI and IX in III.§10 in [59].

�

In this thesis we will only consider continuous dynamical systems, of which the dynamics are modeled
by an ordinary differential equation

ẋ = f(t,x), (1.2)

where f : R≥0 × U −→ Rn is a locally Lipschitz function on the domain U ⊂ Rn. The last theorem
allows us to define the solution to the state equation of such a dynamical system.
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Definition 1.3 (Solution to an ordinary differential equation) Let U ⊂ Rn be a domain and
let f : R≥0 × U −→ Rn be locally Lipschitz on U . For every ξ ∈ U and every t0 ∈ R≥0 let y(t0,ξ) be
the solution to the initial value problem

ẋ = f(t,x), x(t0) = ξ.

Let the function

φ : {(t, t0, ξ)
∣∣t0 ∈ R≥0 , ξ ∈ U , and t ∈ dom(y(t0,ξ))} −→ Rn

be defined by φ(t, t0, ξ) := y(t0,ξ)(t) for all t0 ∈ R≥0, all ξ ∈ U , and all t ∈ dom(y(t0,ξ)). The function
φ is called the solution to the state equation

ẋ = f(t,x).
2

In this thesis we will use the functions spaces Cm of m-times continuously differentiable functions,
m = 0, 1, . . . ,∞. The characterization of these spaces is most conveniently done by the use of so-called
multiindices.

Definition 1.4 (Multiindex) An n-dimensional multiindex β is an n-tuple of nonnegative integers,
β := (β1, β2, . . . , βn). The length |β| of the multiindex β is defined as the sum of the βi, that is

|β| :=
n∑

i=1

βi.

The differential operator ∂β is defined for sufficiently smooth functions f : U −→ R, where U ⊂ Rn

is a domain, by

∂βf(x) :=
∂|β|f

∂xβ1

1 ∂x
β2

2 · · · ∂xβn
n

(x).

2

It is a well known fact, that if ∂βf is properly defined and continuous on U , then the order of the
differentiations does not matter.

Let m ∈ N≥0. A function f : U −→ R, such that ∂βf is properly defined and a continuous function
on U for all multiindices β satisfying |β| ≤ m, is said to be of class Cm(U). We usually write C(U)
instead of C0(U) and a function f : U −→ R that is of class Cm(U) for all m ∈ N≥0 is said to be of
class C∞(U).

A vector valued mapping f : U −→ Rk, f := (f1, f2, . . . , fk), of which each component fi is of class
Cm(U), is said to be of class Cm(U) too and we write f ∈ [Cm(U)]k.

It is a remarkable fact, that if f in (1.2) is a [Cm(R≥0 × U)]n function for some m ∈ N≥0, then its
solution φ and the time-derivative φ̇ of the solution are Cm functions on their domains as well. This
follows, for example, by the corollary at the end of III.§13 in [59]. We need this fact later so we state
it as a theorem.

Theorem 1.5 Let U ⊂ Rn be a domain, f : R≥0×U −→ Rn be locally Lipschitz on U , and φ be the
solution to the state equation ẋ = f(t,x). Let m ∈ N≥0 and assume that f ∈ [Cm(R≥0 × U)]n, then
φ, φ̇ ∈ [Cm(dom(φ))]n.

�
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We end this discussion on continuous dynamical systems with a well know theorem, that gives an
upper bound on the difference of solutions to differential equations.

Theorem 1.6 Let I ⊂ R be a nonempty interval and let U be a domain in Rn. Let f ,g : I×U −→ Rn

be continuous mappings and assume that f is Lipschitz on U with a Lipschitz constant L > 0 with
respect to the norm ‖ · ‖ on Rn. Let t0 ∈ I and let ξ,η ∈ U and denote the unique solution to the
initial value problem

ẋ = f(t,x), x(t0) := ξ,

by y : Iy −→ Rn and let z : Iz −→ Rn be any solution to the initial value problem

ẋ = g(t,x), x(t0) = η.

Set J := Iy ∩ Iz and let γ and δ be constants, such that

‖ξ − η‖ ≤ γ and ‖f(t, z(t))− g(t, z(t))‖ ≤ δ

for all t ∈ J . Then the inequality

‖y(t)− z(t)‖ ≤ γeL|t−t0| +
δ

L
(eL|t−t0| − 1)

holds true for all t ∈ J .

Proof:
Follows, for example, by Theorem III.§12.V in [59].

�

1.2 Switched systems

A switched system is basically a family of dynamical systems and a switching signal, where the
switching signal determines which system in the family describes the dynamics at what times or
states. As we will be concerned with the stability of switched systems under arbitrary switchings,
the following definition of a switching signal is sufficient for our needs.

Definition 1.7 (Switching signal) Let P be a nonempty set and equip it with the discrete metric
d(p, q) := 1 if p 6= q. A switching signal σ : R≥0 −→ P is a right-continuous function, of which the
discontinuity-points are a discrete subset of R≥0. The discontinuity-points are called switching times.
For technical reasons it is convenient to count zero with the switching times, so we agree upon that
zero is a switching time as well. We denote the set of all switching signals R≥0 −→ P by SP .

2

With the help of the switching signal in the last definition we can define the concept of a switched
system and its solution.

Definition 1.8 (Solution to a switched system) Let U ⊂ Rn be a domain, let P be a nonempty
set, and let

{fp : R≥0 × U −→ Rn
∣∣p ∈ P}
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be a family of mappings, each locally Lipschitz on U . For every switching signal σ ∈ SP we define
the solution t 7→ φσ(t, s, ξ) to the initial value problem

ẋ = fσ(t,x), x(s) = ξ, (1.3)

in the following way:

Denote by t0, t1, t2, . . . the switching points of σ in an increasing order. If there is a largest switching
point tk we set tk+1 := +∞ and if there is no switching time besides zero we set t1 := +∞. Let
s ∈ R≥0 and let k ∈ N≥0 be such that tk ≤ s < tk+1. Then φσ is defined by gluing together the
trajectories of the systems

ẋ = fp(t,x), p ∈ P ,

using p := σ(s) between s and tk+1, p := σ(tk+1) between tk+1 and tk+2, and in general p := σ(ti)
between ti and ti+1, i ≥ k + 1. Mathematically this can be expressed inductively as follows :

Forward solution :

i) φσ(s, s, ξ) = ξ for all s ∈ R≥0 and all ξ ∈ U .

ii) Denote by y the solution to the initial value problem

ẋ = fσ(s)(t,x), x(s) = ξ,

on the interval [s, tk+1[, where k ∈ N≥0 is such that tk ≤ s < tk+1. Then we define φσ(t, s, ξ)
on the domain of t 7→ y(t) by φσ(t, s, ξ) := y(t). If the closure of graph(y) is a compact subset
of [s, tk+1]×U , then the limit limt→tk+1− y(t) exists and is in U and we define φσ(tk+1, s, ξ) :=
limt→tk+1− y(t).

iii) Assume φσ(ti, s, ξ) ∈ U is defined for some integer i ≥ k + 1 and denote by y the solution to
the initial value problem

ẋ = fσ(ti)(t,x), x(ti) = φσ(ti, s, ξ),

on the interval [ti, ti+1[ . Then we define φσ(t, s, ξ) on the domain of t 7→ y(t) by φσ(t, s, ξ) :=
y(t). If the closure of graph(y) is a compact subset of [ti, ti+1]×U , then the limit limt→ti+1− y(t)
exists and is in U and we define φσ(ti+1, s, ξ) := limt→ti+1− y(t).

Backward solution :

i) φσ(s, s, ξ) = ξ for all s ∈ R≥0 and all ξ ∈ U .

ii) Denote by y the solution to the initial value problem

ẋ = fσ(tk)(t,x), x(s) = ξ,

on the interval ]tk, s], where k ∈ N≥0 is such that tk ≤ s < tk+1. Then we define φσ(t, s, ξ)
on the domain of t 7→ y(t) by φσ(t, s, ξ) := y(t). If the closure of graph(y) is not empty and
a compact subset of [tk, s] × U , then the limit limt→tk+ y(t) exists and is in U and we define
φσ(tk, s, ξ) := limt→tk+ y(t).
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iii) Assume φσ(ti, s, ξ) ∈ U is defined for some integer i, 0 < i ≤ k and denote by y the solution
to the initial value problem

ẋ = fσ(ti)(t,x), x(ti) = φσ(ti, s, ξ),

on the interval ]ti−1, ti]. Then we define φσ(t, s, ξ) on the domain of t 7→ y(t) by φσ(t, s, ξ) :=
y(t). If the closure of graph(y) is a compact subset of [ti−1, ti]×U , then the limit limt→ti−1+ y(t)
exists and is in U and we define φσ(ti−1, s, ξ) := limt→ti−1+ y(t).

Thus, for every σ ∈ SP we have defined the solution φσ to the differential equation

ẋ = fσ(t,x).
2

Now, that we have defined the solution to (1.3) for every σ ∈ SP , we can define the switched system
and its solution.

Switched System 1.9 Let U ⊂ Rn be a domain, let P be a nonempty set, and let

{fp : R≥0 × U −→ Rn
∣∣p ∈ P}

be a family of mappings, each locally Lipschitz on U .

The arbitrary switched system
ẋ = fσ(t,x), σ ∈ SP ,

is simply the collection of all the differential equations

{ẋ = fσ(t,x)
∣∣σ ∈ SP},

whose solutions we defined in Definition 1.8.

The solution φ of the arbitrary switched system is the collection of all the solutions φσ to the individual
switched systems.

2

Note, that if σ, ς ∈ SP , σ 6= ς, then in general φσ(t, t0, ξ) is not equal to φς(t, t0, ξ).

Because the trajectories of the Switched System 1.9 are defined by gluing together trajectory-pieces
of the corresponding continuous systems, the remarks after Definition 1.1 about the solution to a
continuous dynamical system apply equally to the switched system. That is, for every σ ∈ SP , every
s ∈ R≥0, and every ξ ∈ U the closure of the graph of t 7→ φσ(t, s, ξ), t ≥ s, is not a compact subset
of R≥0×U and the closure of the graph of t 7→ φσ(t, s, ξ), t ≤ s, is not a compact subset of R>0×U .

Note, that if the system 1.9 is autonomous, that is, fp(t,x) = fp(s,x) for all p ∈ P , all s, t ≥ 0 and
all x ∈ U , then

φσ(t, t′,x) = φγ(t− t′, 0, ξ), where γ(s) := σ(s+ t′) for all s ≥ 0,

for all t ≥ t′ ≥ 0 and all ξ ∈ U . Therefore, we often suppress the middle argument of the solution to
an autonomous system and simply write φσ(t, ξ).

We end this introduction on switched systems with a generalization of Theorem 1.6 to switched
systems.
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Theorem 1.10 Consider the Switched System 1.9 and assume that the functions fp are all Lipschitz
on U and have a common Lipschitz constant L > 0 with regard to some norm ‖ · ‖ on Rn. That is,

‖fp(t,x)− fp(t,y)‖ ≤ L‖x− y‖

for all t ≥ 0, all x,y ∈ U , and all p ∈ P. Let t0 ≥ 0, let ξ,η ∈ U , let σ, ς ∈ SP , and assume there is
a constant δ ≥ 0 such that

‖fσ(t)(t,x)− fς(t)(t,x)‖ ≤ δ

for all t ≥ 0 and all x ∈ U .

Denote the solution to the initial value problem

ẋ = fσ(t,x), x(t0) = ξ,

by y : Iy −→ Rn and denote the solution to the initial value problem

ẋ = fς(t,x), x(t0) = η,

by z : Iz −→ Rn. Set J := Iy ∩ Iz and set γ := ‖ξ − η‖. Then the inequality

‖y(t)− z(t)‖ ≤ γeL|t−t0| +
δ

L
(eL|t−t0| − 1) (1.4)

holds true for all t ∈ J .

Proof:
We only prove inequality (1.4) for t ≥ t0, the case t < t0 follows similarly. Let t1 be the smallest real
number larger than t0 that is a switching time of σ or a switching time of ς. If there is no such a
number, then set t1 := supx∈J x. By Theorem 1.6 inequality (1.4) holds true for all t, t0 ≤ t < t1.
If t1 = supx∈J x we are finished with the proof, otherwise t1 ∈ J and inequality (1.4) holds true for
t = t1 too. In the second case, let t2 be the smallest real number larger than t1 that is a switching
time of σ or a switching time of ς. If there is no such a number, then set t2 := supx∈J x. Then, by
Theorem 1.6,

‖y(t)− z(t)‖ ≤
(
γeL(t1−t0) +

δ

L
(eL(t1−t0) − 1)

)
eL(t−t1) +

δ

L
(eL(t−t1) − 1)

= γeL(t−t0) +
δ

L
eL(t−t0) − δ

L
eL(t−t1) +

δ

L
eL(t−t1) − δ

L

= γeL(t−t0) +
δ

L
(eL(t−t0) − 1)

for all t such that t1 ≤ t < t2.

As this argumentation can, if necessary, be repeated ad infinitum, inequality (1.4) holds true for all
t ≥ t0 such that t ∈ J .

�



Chapter 2

Stability and Lyapunov functions for
switched systems

In this chapter we will discuss the stability of equilibrium points for switched systems. Further, we
will carry over the Lyapunov stability theory of continuous dynamical systems to switched systems
under arbitrary switching. Differentiable Lyapunov functions are too restrictive for our purposes so
we develop the theory for merely continuous Lyapunov functions.

We will make use of Dini derivatives and we need to smooth functions in our proofs, so a short
discussion on these subjects is given for completeness.

2.1 Equilibrium points and stability

The concepts equilibrium point and stability are motivated by the desire to keep a dynamical system
in, or at least close to, some desirable state. The term equilibrium or equilibrium point of a dynamical
system, is used for a state of the system that does not change in the course of time, that is, if the
system is at an equilibrium at time t = 0, then it will stay there for all times t > 0.

Definition 2.1 (Equilibrium point) A state y in the state-space of the Switched System 1.9 is
called an equilibrium or an equilibrium point of the system, if and only if fp(t,y) = 0 for all p ∈ P
and all t ≥ 0.

2

If y is an equilibrium point of Switched System 1.9, then obviously the initial value problem

ẋ = fσ(t,x), x(0) = y

has the solution x(t) = y for all t ≥ 0 regardless of the switching signal σ ∈ S. The solution with y
as an initial value in the state-space is thus a constant vector and the state does not change in the
course of time. By a translation in the state-space one can always reach that y = 0 without affecting
the dynamics. Hence, there is no loss of generality in assuming that a particular equilibrium point is
at the origin.

A real-world system is always subject to some fluctuations in the state. There are some external
effects that are unpredictable and cannot be modeled, some dynamics that have (hopefully) very little
impact on the behavior of the system are neglected in the modeling, etc. Even if the mathematical

33
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model of a physical system would be perfect, which hardly seems possible, the system state would
still be subject to quantum mechanical fluctuations. The concept of local stability in the theory
of dynamical systems is motivated by the desire, that the system state stays at least close to an
equilibrium point after small fluctuations in the state. Any system that is expected to do something
useful must have a predictable behavior to some degree. This excludes all equilibria that are not
locally stable as usable working points for a dynamical system. Local stability is thus a minimum
requirement for an equilibrium. It is, however, not a very strong property. It merely states, that
there are disturbances that are so small, that they do not have a great effect on the system in the
long run. In this thesis we will concentrate on uniform asymptotic stability on a set containing the
equilibrium. This means that we are demanding that the uniform asymptotic stability property of the
equilibrium is not merely valid for some, possibly arbitrary small, neighborhood of the origin, but
this property must hold on a a priori defined neighborhood of the origin. This is a much more robust
and powerful concept. It denotes, that all disturbances up to a certain known degree are ironed out
by the dynamics of the system, and, because the domain of the Lyapunov functions is only limited
by the size of the equilibriums’ region of attraction, that we can get a reasonable lower bound on the
region of attraction.
The common stability concepts are most practically characterized by the use of so-called K, L, and
KL functions.

Definition 2.2 (Comparison functions K, L, and KL) The function classes K, L, and KL of
comparison functions are defined as follows :

i) A continuous function α : R≥0 −→ R≥0 is said to be of class K, if and only if α(0) = 0, it is
strictly monotonically increasing, and limr→+∞ α(r) = +∞.

ii) A continuous function β : R≥0 −→ R≥0 is said to be of class L, if and only if it is strictly
monotonically decreasing and lims→+∞ β(s) = 0.

iii) A continuous function ς : R≥0×R≥0 −→ R≥0 is said to be of class KL, if and only if for every
fixed s ∈ R≥0 the mapping r 7→ ς(r, s) is of class K and for every fixed r ∈ R≥0 the mapping
s 7→ ς(r, s) is of class L. 2

Note that some experts make a difference between strictly monotonically increasing functions that
vanish at the origin and strictly monotonically increasing functions that vanish at the origin and
additionally asymptotically approach infinity at infinity. They usually denote the functions of the
former type as class K functions and the functions of the latter type as class K∞ functions. We are not
interested in functions of the former type and in this work α ∈ K always implies limr→+∞ α(r) = +∞.
We now define various stability concepts for equilibrium points of switched dynamical systems with
help of the comparison functions.

Definition 2.3 (Stability concepts for equilibria) Assume that the origin is an equilibrium
point of the Switched System 1.9, denote by φ the solution to the system, and let ‖ · ‖ be an ar-
bitrary norm on Rn.

i) The origin is said to be a uniformly stable equilibrium point of the Switched System 1.9 on a
neighborhood N ⊂ U of the origin, if and only if there exists an α ∈ K such that for every
σ ∈ SP , every t ≥ t0 ≥ 0, and every ξ ∈ N the inequality

‖φσ(t, t0, ξ)‖ ≤ α(‖ξ‖)

holds true.
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ii) The origin is said to be a uniformly asymptotically stable equilibrium point of the Switched
System 1.9 on the neighborhood N ⊂ U of the origin, if and only if there exists a ς ∈ KL such
that for every σ ∈ SP , every t ≥ t0 ≥ 0, and every ξ ∈ N the inequality

‖φσ(t, t0, ξ)‖ ≤ ς(‖ξ‖, t− t0) (2.1)

holds true.

iii) The origin is said to be a uniformly exponentially stable equilibrium point of the Switched System
1.9 on the neighborhood N ⊂ U of the origin, if and only if there exist constants k > 0 and
γ > 0, such that for every σ ∈ SP , every t ≥ t0 ≥ 0, and every ξ ∈ N the inequality

‖φσ(t, t0, ξ)‖ ≤ ke−γ(t−t0)‖ξ‖

holds true.
2

The stability definitions above imply, that if the origin is a uniformly exponentially stable equilibrium
of the Switched System 1.9 on the neighborhood N , then the origin is a uniformly asymptotically
stable equilibrium on N as well, and, if the origin is a uniformly asymptotically stable equilibrium of
the Switched System 1.9 on the neighborhood N , then the origin is a uniformly stable equilibrium
on N .
If the Switched System 1.9 is autonomous, then the stability concepts presented above for the systems
equilibria are uniform in a canonical way, that is, independent of t0, and the definitions are somewhat
simpler.

Definition 2.4 (Stability concepts for equilibria of autonomous systems) Assume that the
origin is an equilibrium point of the Switched System 1.9, denote by φ the solution to the system, let
‖ · ‖ be an arbitrary norm on Rn, and assume that the system is autonomous.

i) The origin is said to be a stable equilibrium point of the autonomous Switched System 1.9 on
a neighborhood N ⊂ U of the origin, if and only if there exists an α ∈ K such that for every
σ ∈ SP and every ξ ∈ N the inequality

‖φσ(t, ξ)‖ ≤ α(‖ξ‖)

holds true.

ii) The origin is said to be an asymptotically stable equilibrium point of the autonomous Switched
System 1.9 on the neighborhood N ⊂ U of the origin, if and only if there exists a ς ∈ KL such
that for every σ ∈ SP and every ξ ∈ N the inequality

‖φσ(t, ξ)‖ ≤ ς(‖ξ‖, t)

holds true.

iii) The origin is said to be an exponentially stable equilibrium point of the Switched System 1.9 on
the neighborhood N ⊂ U of the origin, if and only if there exist constants k > 0 and γ > 0,
such that for every σ ∈ SP and every ξ ∈ N the inequality

‖φσ(t, ξ)‖ ≤ ke−γt‖ξ‖

holds true.
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2

The set of those points in the state-space of a dynamical system, that are attracted to an equilibrium
point by the dynamics of the system, is of great importance. It is called the region of attraction of the
equilibrium. Some experts prefer domain, basin, or even bassin instead of region. For nonautonomous
systems it might depend on the initial time.

Definition 2.5 (Region of attraction) Assume that y = 0 is an equilibrium point of the Switched
System 1.9 and let φ be the solution to the system. For every t0 ∈ R≥0 the set

Rt0
Att := {ξ ∈ U

∣∣ lim sup
t→+∞

φσ(t, t0, ξ) = 0 for all σ ∈ SP}

is called the region of attraction with respect to t0 of the equilibrium at the origin.

The region of attraction RAtt of the equilibrium at the origin is defined by

RAtt :=
⋂
t0≥0

Rt0
Att .

2

Thus, for the Switched System 1.9 ξ ∈ RAtt implies limt→+∞ φσ(t, t0, ξ) = 0 for all σ ∈ SP and all
t0 ≥ 0. The next theorem confirms the usefulness of the definition of uniform asymptotic stability
from Definition 2.3.

Theorem 2.6 Assume that the origin is a uniformly asymptotically stable equilibrium point of the
Switched System 1.9 on the neighborhood N ⊂ U of the origin and let ‖ · ‖ be a norm on Rn. Then
N ⊂ RAtt . Further, if N is bounded, there exists a constant C > 0 such that

sup
σ∈SP

t≥t0≥0
ξ∈N

‖φσ(t, t0, ξ)‖ ≤ C.

Proof:
Obvious from the definition of the set RAtt and the definition of uniform asymptotic stability, just
set

C := sup
y∈N

ς(‖y‖, 0),

where ς ∈ KL is a comparison function as in Definition 2.3 ii) with respect to the norm ‖ · ‖.
�

Before we come to the Lyapunov stability theory of switched dynamical systems we shortly discuss
Dini derivatives and the smoothing of functions by convolutions with C∞ functions having a compact
support as a preparation for the forthcoming.
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2.2 Dini derivatives

The Italian mathematician Ulisse Dini introduced in 1878 in his textbook [6] on analysis the so-called
Dini derivatives. They are a generalization of the classical derivative and inherit some important
properties from it. Because the Dini derivatives are point-wise defined, they are more suited for
our needs than some more modern approaches to generalize the concept of a derivative like Sobolev
Spaces (see, for example, [1]) or distributions (see, for example, [60]). The Dini derivatives are defined
as follows:

Definition 2.7 (Dini derivatives) Let I ⊂ R, g : I −→ R be a function, and y ∈ I.

i) Assume y is a limit point of I ∩ ]y,+∞[. Then the right-hand upper Dini derivative D+ of g
at the point y is defined by

D+g(y) := lim sup
x→y+

g(x)− g(y)

x− y
:= lim

ε→0+

 sup
x∈I∩ ]y,+∞[

0<x−y≤ε

g(x)− g(y)

x− y


and the right-hand lower Dini derivative D+ of g at the point y is defined by

D+g(y) := lim inf
x→y+

g(x)− g(y)

x− y
:= lim

ε→0+

(
inf

x∈I∩ ]y,+∞[
0<x−y≤ε

g(x)− g(y)

x− y

)
.

ii) Assume y is a limit point of I ∩ ]−∞, y[. Then the left-hand upper Dini derivative D− of g at
the point y is defined by

D−g(y) := lim sup
x→y−

:= lim
ε→0−

 sup
x∈I∩ ]−∞,y[

ε≤x−y<0

g(x)− g(y)

x− y


and the left-hand lower Dini derivative D− of g at the point y is defined by

D−g(y) := lim inf
x→y−

g(x)− g(y)

x− y
:= lim

ε→0−

(
inf

x∈I∩ ]−∞,y[
ε≤x−y<0

g(x)− g(y)

x− y

)
.

2

The four Dini derivatives defined in Definition 2.7 are sometimes called the derived numbers of g at
y, or more exactly the right-hand upper derived number, the right-hand lower derived number, the
left-hand upper derived number, and the left-hand lower derived number respectively.

It is clear from elementary calculus, that if g : I −→ R is a function from a nonempty open subset
I ⊂ R into R and y ∈ I, then all four Dini derivatives D+g(y), D+g(y), D−g(y), and D−g(y)
of g at the point y exist. This means that if I is a nonempty open interval, then the functions
D+g,D+g,D

−g,D−g : I −→ R defined in the canonical way, are all properly defined. It is not
difficult to see that if this is the case, then the classical derivative g′ : I −→ R of g exists, if and
only if the Dini derivatives are all real-valued and D+g = D+g = D−g = D−g.

Using lim sup and lim inf instead of the usual limit in the definition of a derivative has the advantage,
that they are always properly defined. The disadvantage is, that because of the elementary

lim sup
x→y+

[g(x) + h(x)] ≤ lim sup
x→y+

g(x) + lim sup
x→y+

h(x),
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a derivative defined in this way is not a linear operation anymore. However, when the right-hand
limit of the function h exists, then it is easy to see that

lim sup
x→y+

[g(x) + h(x)] = lim sup
x→y+

g(x) + lim
x→y+

h(x).

This leads to the following lemma, which we will need later.

Lemma 2.8 Let g and h be real-valued functions, the domains of which are subsets of R, and let
D∗ ∈ {D+, D+, D

−, D−} be a Dini derivative. Let y ∈ R be such, that the Dini derivative D∗g(y) is
properly defined and h is differentiable at y in the classical sense. Then

D∗[g + h](y) = D∗g(y) + h′(y).

�

The reason why Dini derivatives are so useful for the applications in this thesis, is the following
generalization of the Mean-value theorem of differential calculus and its corollary.

Theorem 2.9 (Mean-value theorem for Dini derivatives) Let I be an interval of strictly pos-
itive measure in R, let C be a countable subset of I, and let g : I −→ R be a continuous function.
Let D∗ ∈ {D+, D+, D

−, D−} be a Dini derivative and let J be an interval, such that D∗f(x) ∈ J
for all x ∈ I \ C. Then

g(x)− g(y)

x− y
∈ J

for all x, y ∈ I, x 6= y.

Proof:
See, for example, Theorem 12.24 in [58].

�

This theorem has an obvious corollary.

Corollary 2.10 Let I be an interval of strictly positive measure in R, let C be a countable subset of
I, let g : I −→ R be a continuous function, and let D∗ ∈ {D+, D+, D

−, D−} be a Dini derivative.
Then :

D∗g(x) ≥ 0 for all x ∈ I \ C implies that g is monotonically increasing on I.
D∗g(x) > 0 for all x ∈ I \ C implies that g is strictly monotonically increasing on I.
D∗g(x) ≤ 0 for all x ∈ I \ C implies that g is monotonically decreasing on I.
D∗g(x) < 0 for all x ∈ I \ C implies that g is strictly monotonically decreasing on I.

�

Theses results on Dini derivatives will suffice for our needs.
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2.3 Use of convolution to smooth functions

The support of a function g : Rn −→ R, denoted by supp(g), is defined as the closure of the set
{x ∈ Rn

∣∣g(x) 6= 0}. A common and convenient method to smooth a locally integrable function
f : Rn −→ Rn is given by a convolution with a nonnegative C∞ function g, that has a compact
support and whose integral is equal to one. The so constructed function

f̃(x) :=

∫
Rn

g(x− y)f(y)dny =

∫
Rn

g(y)f(x− y)dny

inherits the smoothness from the function g. If, additionally, f is continuous, we have

f̃i(x) = fi(zi)

for some zi ∈ x+supp(g) for every i = 1, 2, . . . , n, so f̃ has similar function values to f if the support
of g is small enough. A basic example of such a nonnegative C∞ function with a compact support is
the Sobolev function.

Definition 2.11 (Sobolev function) On Rn the Sobolev function ρn : Rn −→ R≥0 is defined by

ρn(x) :=

{
C−1

n exp
(

−1
1−‖x‖22

)
, if ‖x‖2 < 1,

0, else,

where
Cn :=

∫
‖x‖2<1

exp

(
−1

1− ‖x‖2
2

)
dnx.

2

Because

lim
y→1−

exp
(

−1
1−y2

)
(1− y2)k

= 0

for any k ∈ N≥0, we have ρn ∈ C∞(Rn) and obviously supp(ρn) = B‖·‖2,1(0). Further, by the definition
of the constant Cn, we clearly have

∫
Rn ρn(x)dnx = 1.

We will use convolutions with nonnegative C∞ functions that have a compact support later on to
smooth functions. The first results of this kind, which we will use later in this thesis, are delivered
by the next lemma.

Lemma 2.12 Let f : R>0 −→ R≥0 be a monotonically decreasing function. Then there exists a
function g : R>0 −→ R>0 with the following properties :

i) g ∈ C∞(R>0).

ii) g(x) > f(x) for all x ∈ R>0.

iii) g is strictly monotonically decreasing.

iv) limx→0+ g(x) = +∞ and limx→+∞ g(x) = limx→+∞ f(x).

v) g is invertible and g−1 ∈ C∞(g(R>0)).
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Proof:
We define the function h̃ : R>0 −→ R>0 by,

h̃(x) :=

{
f
(

1
n+1

)
+ 1

x
, if x ∈ [ 1

n+1
, 1

n
[ for some n ∈ N>0,

f(n) + 1
x
, if x ∈ [n, n+ 1[ for some n ∈ N>0,

and the function h : R>0 −→ R>0 by

h(x) := h̃(x− tanh(x)).

Then h is a strictly monotonically decreasing measurable function and because h̃ is, by its definition,
strictly monotonically decreasing and larger than f , we have

h(x+ tanh(x)) = h̃(x+ tanh(x)− tanh(x+ tanh(x))) > h̃(x) > f(x)

for all x ∈ R>0.

We claim that the function g : R>0 −→ R>0,

g(x) :=

∫ x+tanh(x)

x−tanh(x)

ρ1

(
x− y

tanh(x)

)
h(y)

tanh(x)
dy =

∫ 1

−1

ρ1(y)h(x− y tanh(x))dy,

where ρ1 is the one-dimensional Sobolev function, fulfills the properties i) - v).

Proposition i) follows from elementary Lebesgue integration theory. Proposition ii) follows from

g(x) =

∫ 1

−1

ρ1(y)h(x− y tanh(x))dy >

∫ 1

−1

ρ1(y)h(x+ tanh(x))dy >

∫ 1

−1

ρ1(y)f(x)dy = f(x).

To see that g is strictly monotonically decreasing let t > s > 0 and consider that

t− y tanh(t) > s− y tanh(s) (2.2)

for all y in the interval [−1, 1]. Inequality (2.2) follows from

t− y tanh(t)− [s− y tanh(s)] = t− s− y[tanh(t)− tanh(s)]

= t− s− y(t− s)(1− tanh2(s+ ϑt,s(t− s)))

> 0,

for some ϑt,s ∈ [0, 1], where we used the Mean-value theorem. But then

h(t− y tanh(t)) < h(s− y tanh(s))

for all y ∈ [−1, 1] and the definition of g implies that g(t) < g(s). Thus, proposition iii) is fulfilled.

Proposition iv) is obvious from the definition of g. Clearly g is invertible and by the chain rule

[g−1]′(x) =
1

g′(g−1(x))
,

so it follows by mathematical induction that g−1 ∈ C∞(g(R>0)), that is, proposition v).
�
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We will use the last lemma to give a relatively short proof of Massera’s lemma later on (Lemma 3.1).
Another useful results implied by Lemma 2.12 is given by the next lemma.

Lemma 2.13 Let α ∈ K. Then, for every R > 0, there is a function βR ∈ K, such that :

i) βR is a convex function.

ii) βR restricted to R>0 is infinitely differentiable.

iii) For all 0 ≤ x ≤ R we have βR(x) ≤ α(x).

Proof:
By Lemma 2.12 there is a function g, such that g ∈ C∞(R>0), g(x) > 1/α(x) for all x > 0,
limt→0+ g(x) = +∞, and g is strictly monotonically decreasing. Then βR : R≥0 −→ R≥0, defined
through

βR(x) :=
1

R

∫ x

0

dτ

g(τ)
,

is the desired function.

First, βR(0) = α(0) = 0 and for every 0 < x ≤ R we have

βR(x) =
1

R

∫ x

0

dτ

g(τ)
≤ 1

g(x)
< α(x).

Second, to prove that βR is a convex K function is suffices to prove that the second derivative of βR

is strictly positive. But this follows immediately because for every x > 0 we have g′(x) < 0, which
implies

d 2βR

dx2
(x) =

−g′(x)
R[g(x)]2

> 0.

�

Another results we will take advantage of later on is given in the following lemma.

Lemma 2.14 Let m ≥ 2 be an integer and let −∞ =: t1 < t2 < . . . < tm−1 < tm := +∞ be elements
of the compactified real-line. Let ai,bi, i = 1, 2, . . . ,m − 1, be vectors in Rn such that the piecewise
affine function

p(t) := ait+ bi if ti < t ≤ ti+1

for all i = 1, 2, . . . ,m− 2, and

p(t) := am−1t+ bm−1 if tm−1 < t < tm

is continuous. Then, for every nonnegative function ρ ∈ C∞(R) with a compact support and such that∫
R ρ(τ)dτ = 1, we have for any norm ‖ · ‖ on Rn that

‖ d
dt

∫
R
ρ(t− τ)p(τ)dτ‖ ≤

m−1∑
i=1

‖ai‖.
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Proof:
By partial integration

d

dt

∫
R
ρ(t− τ)p(τ)dτ =

m−1∑
i=1

∫ ti+1

ti

ρ′(t− τ)(aiτ + bi)dτ

=
m−1∑
i=1

(
−ρ(t− τ)(aiτ + bi)

∣∣∣ti+1

τ=ti
+

∫ ti+1

ti

ρ(t− τ)aidτ

)
.

Because p is continuous we have aiti + bi = ai+1ti + bi+1 for all i = 2, 3, . . . ,m − 2 and because ρ
has a compact support ρ(t− t1) = ρ(t− tm) = 0. Therefore

‖ d
dt

∫
R
ρ(t− τ)p(τ)dτ‖ ≤

m−1∑
i=1

‖ai‖
∫ ti+1

ti

ρ(t− τ)dτ ≤
m−1∑
i=1

‖ai‖.
�

2.4 Direct method of Lyapunov

The Russian mathematician and engineer Alexandr Mikhailovich Lyapunov published a revolutionary
work in 1892 on the stability of motion, where he introduced two methods to study the stability of
general continuous dynamical systems. An English translation of this work can be found in [32].

The more important of these two methods, known as Lyapunov’s second method or Lyapunov’s direct
method, enables one to prove the stability of an equilibrium of (1.2) without integrating the differential
equation. It states, that if y = 0 is an equilibrium point of the system, V ∈ C1(R≥0×U) is a positive
definite function, that is, there exist functions α1, α2 ∈ K such that

α1(‖x‖2) ≤ V (t,x) ≤ α2(‖x‖2)

for all x ∈ U and all t ∈ R≥0, and φ is the solution to the ordinary differential equation (1.2). Then
the equilibrium is uniformly asymptotically stable, if there is an ω ∈ K such that the inequality

d

dt
V (t,φ(t, t0, ξ)) = [∇xV ](t,φ(t, t0, ξ)) · f(t,φ(t, t0, ξ)) +

∂V

∂t
(t,φ(t, t0, ξ)) (2.3)

≤ −ω(‖φ(t, t0, ξ)‖2)

holds true for all φ(t, t0, ξ) in an open neighborhood N ⊂ U of the equilibrium y. In this case the
equilibrium is uniformly asymptotically stable on a neighborhood, which depends on V , of the origin.
The function V satisfying (2.3) is said to be a Lyapunov function for (1.2). The direct method of
Lyapunov is covered in practically all modern textbooks on nonlinear systems and control theory.
Some good examples are [14], [15], [24], [50], [56], and [61].

In this section we are going to prove, that if the time-derivative in the inequalities above is replaced
with a Dini derivative with respect to t, then the assumption V ∈ C1(R≥0×U) can be replaced with
the less restrictive assumption, that V is merely continuous. The same is done in Theorem 42.5 in
[14], but a lot of details are left out. Further, we generalize the results to arbitrary switched systems
of the form Switched System 1.9.

Before we state and proof the direct method of Lyapunov for switched systems, we proof a lemma
that we use in its proof.
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Lemma 2.15 Assume that the origin is an equilibrium of the Switched System 1.9 and let ‖ · ‖ be
a norm on Rn. Further, assume that there is a function α ∈ K, such that for all σ ∈ SP and all
t ≥ t0 ≥ 0 the inequality

‖φσ(t, t0, ξ)‖ ≤ α(‖ξ‖) (2.4)

holds true for all ξ in some bounded neighborhood N ⊂ U of the origin.

Under these assumptions the following two propositions are equivalent :

i) There exists a function β ∈ L, such that

‖φσ(t, t0, ξ)‖ ≤
√
α(‖ξ‖)β(t− t0)

for all σ ∈ SP , all t ≥ t0 ≥ 0, and all ξ ∈ N .

ii) For every ε > 0 there exists a T > 0, such that for every t0 ≥ 0, every σ ∈ SP , and every
ξ ∈ N the inequality

‖φσ(t, t0, ξ)‖ ≤ ε

holds true for all t ≥ T + t0.

Proof:
Let R > 0 be so large that N ⊂ B‖·‖,R and set C := max{1, α(R)}.
Proposition i) implies proposition ii) :

For every ε > 0 we set T := β−1(ε/
√
α(R)) and proposition ii) follows immediately.

Proposition ii) implies proposition i) :

For every ε > 0 define T̃ (ε) as the infimum of all T > 0 with the property, that for every t0 ≥ 0,
every σ ∈ SP , and every ξ ∈ N the inequality

‖φσ(t, t0, ξ)‖ ≤ ε

holds true for all t ≥ T + t0.

Then T̃ is a monotonically decreasing function R>0 −→ R≥0 and, because of (2.4), T̃ (ε) = 0 for
all ε > α(R). By Lemma 2.12 there exists a strictly monotonically decreasing C∞(R>0) bijective
function g : R>0 −→ R>0, such that g(ε) > T̃ (ε) for all ε > 0. Now, for every pair t > t0 ≥ 0 set
ε′ := g−1(t− t0) and note that because t = g(ε′) + t0 ≥ T̃ (ε′) + t0 we have

g−1(t− t0) = ε′ ≥ ‖φσ(t, t0, ξ)‖.

But then

β(s) :=

{√
2C − C/g(1) · s, if s ∈ [0, g(1)],√
Cg−1(s), if s > g(1),

is an L function such that √
‖φσ(t, t0, ξ)‖ ≤ β(t− t0),

for all t ≥ t0 ≥ 0 and all ξ ∈ N , and therefore

‖φσ(t, t0, ξ)‖ ≤
√
α(‖ξ‖)β(t− t0).

�
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We come to the main theorem of this chapter, the direct method of Lyapunov for arbitrary switched
systems.

Theorem 2.16 (Direct Method of Lyapunov for arbitrary switched systems) Assume
that the Switched System 1.9 has an equilibrium at the origin. Let ‖ · ‖ be a norm on Rn and let
R > 0 be a constant such that the closure of the ball B‖·‖,R is a subset of U . Let V : R≥0×B‖·‖,R −→ R
be a continuous function and assume that there exist functions α1, α2 ∈ K such that

α1(‖ξ‖) ≤ V (t, ξ) ≤ α2(‖ξ‖)

for all t ≥ 0 and all ξ ∈ U . Denote the solution to the Switched System 1.9 by φ and set d :=
α−1

2 (α1(R)). Finally, let D∗ ∈ {D+, D+, D
−, D−} be a Dini derivative with respect to the time t,

which means, for example with D∗ = D+, that

D+[V (t,φσ(t, t0, ξ))] := lim sup
h→0+

V (t+ h,φσ(t+ h, t0, ξ))− V (t,φσ(t, t0, ξ))

h
.

Then the following propositions are true :

i) If for every σ ∈ SP , every ξ ∈ U , and every t ≥ t0 ≥ 0, such that φσ(t, t0, ξ) ∈ B‖·‖,R, the
inequality

D∗[V (t,φσ(t, t0, ξ))] ≤ 0 (2.5)

holds true, then the origin is a uniformly stable equilibrium of the Switched System 1.9 on B‖·‖,d.

ii) If there exists a function ψ ∈ K, with the property that for every σ ∈ SP , every ξ ∈ U , and
every t ≥ t0 ≥ 0, such that φσ(t, t0, ξ) ∈ B‖·‖,R, the inequality

D∗[V (t,φσ(t, t0, ξ))] ≤ −ψ(‖φσ(t, t0, ξ)‖) (2.6)

holds true, then the origin is a uniformly asymptotically stable equilibrium of the Switched
System 1.9 on B‖·‖,d.

Proof:
Proposition i) :
Let t0 ≥ 0, ξ ∈ B‖·‖,d, and σ ∈ SP all be arbitrary but fixed. By the note after Definition 1.8 either
φσ(t, t0, ξ) ∈ B‖·‖,R for all t ≥ t0 or there is a t∗ > t0 such that φσ(s, t0, ξ) ∈ B‖·‖,R for all s ∈ [t0, t

∗[
and φσ(t∗, t0, ξ) ∈ ∂B‖·‖,R. Assume that the second possibility applies. Then, by inequality (2.5) and
Corollary 2.10

α1(R) ≤ V (t∗,φσ(t∗, t0, ξ)) ≤ V (t0, ξ) ≤ α2(‖ξ‖) < α2(d),

which is contradictory to d = α−1
2 (α1(R)). Therefore φσ(t, t0, ξ) ∈ B‖·‖,R for all t ≥ t0.

But then it follows by inequality (2.5) and Corollary 2.10 that

α1(‖φσ(t, t0, ξ)‖) ≤ V (t,φσ(t, t0, ξ)) ≤ V (t0, ξ) ≤ α2(‖ξ‖),

for all t ≥ t0, so
‖φσ(t, t0, ξ)‖ ≤ α−1

1 (α2(‖ξ‖))
for all t ≥ t0. Because α−1

1 ◦ α2 is a class K function, it follows, because t0 ≥ 0, ξ ∈ B‖·‖,d, and
σ ∈ SP were arbitrary, that the equilibrium at the origin is a uniformly stable equilibrium point of
the Switched System 1.9 on B‖·‖,d.
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Proposition ii) :
Inequality (2.6) implies inequality (2.5) so Lemma 2.15 applies and it suffices to show that for every
ε > 0 there is a finite T > 0, such that

t ≥ T + t0 implies ‖φσ(t, t0, ξ)‖ ≤ ε (2.7)

for all t0 ≥ 0, all ξ ∈ B‖·‖,d, and all σ ∈ SP . To prove this choose an arbitrary ε > 0 and set

δ∗ := min{d, α−1
2 (α1(ε))} and T :=

α2(d)

ψ(δ∗)
.

We first prove that for every σ ∈ SP ,

ξ ∈ B‖·‖,d and t0 ≥ 0 implies ‖φσ(t∗, t0, ξ)‖ < δ∗ (2.8)

for some t∗ ∈ [t0, T + t0]. We prove (2.8) by contradiction. Assume that

‖φσ(t, t0, ξ)‖ ≥ δ∗ (2.9)

for all t ∈ [t0, T + t0]. Then

0 < α1(δ
∗) ≤ α1(‖φσ(T + t0, t0, ξ)‖) ≤ V (T + t0,φσ(T + t0, t0, ξ)). (2.10)

By Theorem 2.9 and the assumption (2.9), there is an s ∈ [t0, T + t0], such that

V (T + t0,φσ(T + t0, t0, ξ))− V (t0, ξ)

T
≤ [D∗V ](s,φ(s, t0, ξ))]

≤ −ψ(‖φσ(s, t0, ξ)‖)
≤ −ψ(δ∗),

that is

V (T + t0,φσ(T + t0, t0, ξ)) ≤ V (t0, ξ)− Tψ(δ∗)

≤ α2(‖ξ‖)− Tψ(δ∗)

< α2(d)− Tψ(δ∗)

= α2(d)−
α2(d)

ψ(δ∗)
ψ(δ∗)

= 0,

which is contradictory to (2.10). Therefore proposition (2.8) is true.
Now, let t∗ be as in (2.8) and let t > T + t0 be arbitrary. Then, because

s 7→ V (s,φσ(s, t0, ξ)), s ≥ t0,

is strictly monotonically decreasing by inequality (2.6) and Corollary 2.10, we get by (2.8), that

α1(‖φσ(t, t0, ξ)‖) ≤ V (t,φσ(t, t0, ξ))

≤ V (t∗,φσ(t∗, t0, ξ))

≤ α2(‖φσ(t∗, t0, ξ)‖)
< α2(δ

∗)

= min{α2(d), α1(ε)}
≤ α1(ε),

and we have proved (2.7). The proposition ii) follows.
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�

The function V in the last theorem is called a Lyapunov function for the Switched System 1.9.
Because of its importance, we spend it a definition.

Definition 2.17 (Lyapunov function) Assume that the Switched System 1.9 has an equilibrium
at the origin. Denote the solution to the Switched System 1.9 by φ and let ‖ · ‖ be a norm on Rn. Let
R > 0 be a constant such that the closure of the ball B‖·‖,R is a subset of U . A continuous function
V : R≥0 × B‖·‖,R −→ R is called a Lyapunov function for the Switched System 1.9 on B‖·‖,R, if and
only if there exists a Dini derivative D∗ ∈ {D+, D+, D

−, D−} with respect to the time t and functions
α1, α2, ψ ∈ K with the properties that :

(L1)
α1(‖ξ‖) ≤ V (t, ξ) ≤ α2(‖ξ‖)

for all t ≥ 0 and all ξ ∈ B‖·‖,R.

(L2)
D∗[V (t,φσ(t, t0, ξ))] ≤ −ψ(‖φσ(t, t0, ξ)‖)

for every σ ∈ SP , every ξ ∈ U , and every t ≥ t0 ≥ 0, such that φσ(t, t0, ξ) ∈ B‖·‖,R.
2

The Direct Method of Lyapunov (Theorem 2.16) can thus, by Definition 2.17, be rephrased as follows:

Assume that the Switched System 1.9 has an equilibrium point at the origin and that
there exists a Lyapunov function defined on the ball B‖·‖,R, of which the closure is a subset
of U , for the system. Then there is a d, 0 < d < R, such that the origin is a uniformly
asymptotically stable equilibrium point of the system on the ball B‖·‖,d. If the comparison
functions α1 and α2 in the condition (L1) for a Lyapunov function are known, then we
can take d = α−1

2 (α1(R)).



Chapter 3

A converse theorem for switched systems

In the last chapter we proved, that the existence of a Lyapunov function V for the Switched System
1.9 is a sufficient condition for the uniform asymptotic stability of an equilibrium at the origin. In
this chapter we prove the converse of this theorem. That is, if the origin of the Switched System 1.9
is uniformly asymptotically stable, then there exists a Lyapunov function for the system. Because
the algorithm we present in Chapter 7 to actually construct Lyapunov functions for switched systems
demands the second-order derivatives of the Lyapunov functions to be bounded, we have to prove
that there exists a Lyapunov function that complies with these requirements. As an added bonus
we even prove that there exists a Lyapunov function for the switched system that is continuously
differentiable up to any order.

3.1 Some notes on converse theorems

There are several theorems known, similar to Theorem 2.16, where one either uses more or less
restrictive assumptions regarding the Lyapunov function than in Theorem 2.16. Such theorems are
often called Lyapunov-like theorems. An example for less restrictive assumptions is Theorem 46.5 in
[14] or equivalently Theorem 4.10 in [24], where the solution to a continuous system is shown to be
uniformly bounded, and an example for more restrictive assumptions is Theorem 5.17 in [50], where
an equilibrium is proved to be uniformly exponentially stable. The Lyapunov-like theorems all have
the form :

If one can find a function V for a dynamical system, such that V satisfies the properties
X, then the system has the stability property Y .

A natural question awakened by any Lyapunov-like theorem is whether its converse is true or not,
that is, if there is a corresponding theorem of the form :

If a dynamical system has the stability property Y , then there exists a function V for the
dynamical system, such that V satisfies the properties X.

Such theorems are called converse theorems in the Lyapunov stability theory. For nonlinear systems
they are more complicated than the direct method of Lyapunov and the results came rather late
and did not stem from Lyapunov himself. The converse theorems are covered quite thoroughly in

47
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Chapter VI in [14]. Some further general references are Section 5.7 in [56] and Section 4.3 in [24].
More specific references were given in Outline of this thesis.
About the techniques to prove such theorems Hahn writes on page 225 in his book Stability of Motion
[14] :

In the converse theorems the stability behavior of a family of motions p(t, a, t0)
1 is as-

sumed to be known. For example, it might be assumed that the expression ‖p(t, a, t0)‖ is
estimated by known comparison functions (secs. 35 and 36). Then one attempts to con-
struct by means of a finite or transfinite procedure, a Lyapunov function which satisfies
the conditions of the stability theorem under consideration.

In this chapter we will proof a converse theorem on uniform asymptotic stability of an arbitrary
switched system’s equilibrium, where the functions fp, p ∈ P , of the systems ẋ = fp(t,x), are Lipschitz
on R≥0 × B‖·‖,R with a common Lipschitz constant L > 0. To construct a Lyapunov function that
is merely Lipschitz in its state-space argument, it suffices that the functions fp, p ∈ P , are locally
Lipschitz in the state-space argument uniformly in their first arguments (time) with a common
Lipschitz constant Lx > 0 on B‖·‖,R, as shown in Theorem 3.3. Our procedure to smooth it to a C∞
function, as done in Theorem 3.10, does not necessarily work if (t, s) 7→ ‖fp(t,x)− fp(s,x)‖/|t− s|,
s 6= t, is unbounded. Therefore we additionally have to assume that there exists a constant Lt > 0
such that ‖fp(t,x)− fp(s,x)‖ ≤ Lt|t−s| for all p ∈ P , all t, s ∈ R≥0 and all x ∈ B‖·‖,R. Note, that this
additional assumption does not affect the “growth" of the functions fp, p ∈ P , but merely excludes
“infinitely fast oscillations" in the temporal domain. The “locally Lipschitz in the state-space argument
uniformly in the time argument" assumption already takes care of that ‖fp(t,x)‖p ≤ Lx‖x‖ ≤ LxR
for all t ≥ 0 and all x ∈ B‖·‖,R because fp(t,0) = 0.

3.2 A converse theorem for arbitrary switched systems

The construction here of a smooth Lyapunov function for the Switched System 1.9 is long, compli-
cated, and technical. We will therefore arrange the proof in a series of lemmas and theorems. As a
preparation for the construction of a concrete Lipschitz Lyapunov function (Definition 3.2) for the
Switched System 1.9 (it is proved in Theorem 3.3 and Lemma 3.4 that it actually is a Lipschitz
Lyapunov function) we state and prove the next lemma.

Lemma 3.1 (Massera’s lemma) Let f ∈ L and λ ∈ R>0. Then there is a function g ∈ C1(R≥0),
such that g, g′ ∈ K, g restricted to R>0 is a C∞(R>0) function,∫ +∞

0

g(f(t))dt < +∞, and
∫ +∞

0

g′(f(t))eλtdt < +∞.

Proof:
By Lemma 2.12 there is a strictly monotonically decreasing C∞(R>0) bijective function h : R>0 −→
R>0 such that h(x) > f(x) for all x > 0 and h−1 ∈ C∞(R>0). We define the function g : R≥0 −→ R≥0

by

g(t) :=

∫ t

0

e−(1+λ)h−1(τ)dτ

and prove that it fulfills all the claimed properties.
1In our notation p(t,a, t0) = φ(t, t0,a).
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i) Clearly g ∈ C1(R≥0), g, g′ ∈ K, and g is continuously differentiable up to any order at every
point larger than zero.

ii) We have∫ +∞

1

g(f(t))dt =

∫ +∞

1

∫ f(t)

0

e−(1+λ)h−1(τ)dτdt ≤
∫ +∞

1

∫ h(t)

0

e−(1+λ)h−1(τ)dτdt

and because for 0 < τ ≤ h(t) we have h−1(τ) ≥ t, we get∫ h(t)

0

e−(1+λ)h−1(τ)dτ ≤
∫ h(t)

0

e−(1+λ)tdτ = h(t)e−(1+λ)t ≤ h(1)e−(1+λ)t

for all t ≥ 1. Hence∫ +∞

0

g(f(t))dt ≤
∫ 1

0

g(f(t))dt+

∫ +∞

1

h(1)e−(1+λ)tdt < +∞

and the the first integral of the lemma is bounded.

iii) Because h−1(f(t)) > h−1(h(t)) = t for all t > 0, we have

g′(f(t)) = e−(1+λ)h−1(f(t)) < e−(1+λ)t

for all t ≥ 0. Hence, ∫ +∞

0

g′(f(t))eλtdt <

∫ +∞

0

e−tdt < +∞,

so the second integral of the lemma is bounded too.
�

Note, that because g, g′ ∈ K in Massera’s lemma above, we have for every measurable function
u : R≥0 −→ R≥0, such that u(t) ≤ f(t) for all t ∈ R≥0, that∫ +∞

0

g(u(t))dt ≤
∫ +∞

0

g(f(t))dt and
∫ +∞

0

g′(u(t))eλtdt ≤
∫ +∞

0

g′(f(t))eλtdt.

We now use the results from Massera’s lemma (Lemma 3.1) to define the functions Wσ, σ ∈ SP , and
them in turn to define the function W , and after that we prove that the function W is a Lipschitz
Lyapunov function for the Switched System 1.9.

Definition 3.2 (The functions Wσ and W ) Assume that the origin is a uniformly asymptotically
stable equilibrium point of the Switched System 1.9 on the ball B‖·‖,R ⊂ U , where ‖·‖ is a norm on Rn

and R > 0, and let ς ∈ KL be such that ‖φσ(t, t0, ξ)‖ ≤ ς(‖ξ‖, t− t0) for all σ ∈ SP , all ξ ∈ B‖·‖,R,
and all t ≥ t0 ≥ 0. Assume further, that there exists a constant L > 0 for the functions fp, such that

‖fp(t,x)− fp(t,y)‖ ≤ L‖x− y‖

for all t ≥ 0, all x,y ∈ B‖·‖,R, and all p ∈ P. By Massera’s lemma (Lemma 3.1) there exists a
function g ∈ C1(R≥0), such that g, g′ ∈ K, g is infinitely differentiable on R>0,∫ +∞

0

g(ς(R, τ))dτ < +∞, and
∫ +∞

0

g′(ς(R, τ))eLτdτ < +∞.
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i) For every σ ∈ SP we define the function Wσ for all t ≥ 0 and all ξ ∈ B‖·‖,R by

Wσ(t, ξ) :=

∫ +∞

t

g(‖φσ(τ, t, ξ)‖)dτ.

ii) We define the function W for all t ≥ 0 and all ξ ∈ B‖·‖,R by

W (t, ξ) := sup
σ∈SP

Wσ(t, ξ).

Note, that if the Switched System 1.9 is autonomous, then W does not depend on t, that is, it
is time-invariant.

2

The function W from the definition above (Definition 3.2) is a Lipschitz Lyapunov function for the
Switched System 1.9 used for its construction. This is proved in the next theorem.

Theorem 3.3 (W is a Lipschitz Lyapunov function) The function W in Definition 3.2 is a
Lyapunov function for the Switched System 1.9 used for its construction. Further, there exists a
constant LW > 0 such that

|W (t, ξ)−W (t,η)| ≤ LW‖ξ − η‖ (3.1)

for all t ≥ 0 and all ξ,η ∈ B‖·‖,R,

where the norm ‖ · ‖ and the constant R are the same as in Definition 3.2.

Proof:
We have to show that the function W complies to the conditions (L1) and (L2) of Definition 2.17.
Because

φσ(u, t, ξ) = ξ +

∫ u

t

fσ(τ)(τ,φσ(τ, t, ξ))dτ,

and ‖fσ(s)(s,y)‖ ≤ LR for all s ≥ 0 and all y ∈ B‖·‖,R, we conclude ‖φσ(u, t, ξ)‖ ≥ ‖ξ‖ − (u− t)LR
for all u ≥ t ≥ 0, ξ ∈ B‖·‖,R, and all σ ∈ SP . Therefore,

‖φσ(u, t, ξ)‖ ≥ ‖ξ‖
2

whenever t ≤ u ≤ t+
‖ξ‖
2LR

,

which implies

Wσ(t, ξ) :=

∫ +∞

t

g(‖φσ(τ, t, ξ)‖)dτ ≥ ‖ξ‖
2LR

g(‖ξ‖/2)

and then α1(‖ξ‖) ≤ W (t, ξ) for all t ≥ 0 and all ξ ∈ B‖·‖,R, where α1(x) := x/(2LR)g(x/2) is a K
function.

By the definition of W ,

W (t, ξ) ≥
∫ t+h

t

g(‖φσ(τ, t, ξ)‖)dτ +W (t+ h,φσ(t+ h, t, ξ))

(reads: supremum over all trajectories emerging from ξ

at time t is not less than over any particular trajectory
emerging from ξ at time t)
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for all ξ ∈ B‖·‖,R, all t ≥ 0, all h > 0, and all σ ∈ SP , from which

lim sup
h→0+

W (t+ h,φσ(t+ h, t, ξ))−W (t, ξ)

h
≤ −g(‖ξ‖)

follows. Because g ∈ K this implies that the condition (L2) from Definition 2.17 holds true for the
function W .

Now, assume that there is an LW > 0 such that inequality (3.1) holds true. Then W (t, ξ) ≤ α2(‖ξ‖)
for all t ≥ 0 and all ξ ∈ B‖·‖,R, where α2(x) := LWx is a class K function. Thus, it only remains to
proof inequality (3.1). However, as this inequality is a byproduct of the next lemma, we spare us the
proof here.

�

Then results of the next lemma are needed in the proof of our converse theorem on uniform asymptotic
stability of a switched system’s equilibria and as a convenient side effect it completes the proof of
Theorem 3.3.

Lemma 3.4 The function W in Definition 3.2 satisfies for all t ≥ s ≥ 0, all ξ,η ∈ B‖·‖,R, and all
σ ∈ SP the inequality

W (t, ξ)−W (s,η) ≤ C‖ξ − φσ(t, s,η)‖ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ, (3.2)

where

C :=

∫ +∞

0

g′(ς(R, τ))eLτdτ < +∞.

Especially,
|W (t, ξ)−W (t,η)| ≤ C‖ξ − η‖ (3.3)

for all t ≥ 0 and all ξ,η ∈ B‖·‖,R.

The norm ‖·‖, the constants R,L, and the functions ς and g are, of course, the same as in Definition
3.2.

Proof:
By the Mean-value theorem and Theorem 1.10 we have

Wσ(t, ξ)−Wσ(s,η) =

∫ +∞

t

g(‖φσ(τ, t, ξ)‖)dτ −
∫ +∞

s

g(‖φσ(τ, s,η)‖)dτ (3.4)

≤
∫ +∞

t

∣∣g(‖φσ(τ, t, ξ)‖)− g(‖φσ(τ, s,η)‖)
∣∣dτ − ∫ t

s

g(‖φσ(τ, s,η)‖)dτ

=

∫ +∞

t

∣∣g(‖φσ(τ, t, ξ)‖)− g(‖φσ(τ, t,φσ(t, s,η))‖)
∣∣dτ − ∫ t

s

g(‖φσ(τ, s,η)‖)dτ

≤
∫ +∞

t

g′(ς(R, τ − t))‖φσ(τ, t, ξ)− φσ(τ, t,φσ(t, s,η))‖dτ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ

≤
∫ +∞

t

g′(ς(R, τ − t))eL(τ−t)‖ξ − φσ(t, s,η)‖dτ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ

≤ C‖ξ − φσ(t, s,η)‖ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ.
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We now show that we can replace Wσ(t, ξ) − Wσ(s,η) with W (t, ξ) − W (s,η) on the leftmost
side of inequality (3.4) without violating the ≤ relations. That this is possible might seem a little
surprising at first sight. However, a closer look reveals that this is not surprising at all because the
rightmost side of inequality (3.4) only depends on the values of σ(z) for s ≤ z ≤ t and because
Wσ(t, ξ) −W (s,η) ≤ Wσ(t, ξ) −Wσ(s,η), where the left-hand side only depends on the values of
σ(z) for z ≥ t, .

To rigidly prove the validity of this replacement let δ > 0 be an arbitrary constant and choose a
γ ∈ SP , such that

W (t, ξ)−Wγ(t, ξ) <
δ

2
, (3.5)

and a u > 0 so small that
ug(ς(‖ξ‖, 0)) + 2CR(eu − 1) <

δ

2
. (3.6)

We define θ ∈ SP by

θ(τ) :=

{
σ(τ), if 0 ≤ τ < t+ u,
γ(τ), if τ ≥ t+ u.

Then

W (t, ξ)−W (s,η) ≤ W (t, ξ)−Wθ(s,η) (3.7)
≤ [W (t, ξ)−Wγ(t, ξ)] + [Wγ(t, ξ)−Wθ(t, ξ)] + [Wθ(t, ξ)−Wθ(s,η)].

By the Mean-value theorem, Theorem 1.10, and inequality (3.6)

Wγ(t, ξ)−Wθ(t, ξ) =

∫ t+u

t

[g(‖φγ(τ, t, ξ)‖)− g(‖φθ(τ, t, ξ)‖)]dτ (3.8)

+

∫ +∞

t+u

[g(‖φγ(τ, t+ u,φγ(t+ u, t, ξ))‖)− g(‖φγ(τ, t+ u,φθ(t+ u, t, ξ))‖)]dτ

≤ ug(ς(‖ξ‖, 0))

+

∫ +∞

t+u

g′(ς(R, τ − t− u))‖φγ(τ, t+ u,φγ(t+ u, t, ξ))− φγ(τ, t+ u,φθ(t+ u, t, ξ))‖dτ

≤ ug(ς(‖ξ‖, 0)) +

∫ +∞

t+u

g′(ς(R, τ − t− u))eL(τ−t−u)‖φγ(t+ u, t, ξ)− φθ(t+ u, t, ξ)‖dτ

≤ ug(ς(‖ξ‖, 0)) +

∫ +∞

t+u

g′(ς(R, τ − t− u))eL(τ−t−u)2RL
eLu − 1

L
dτ

= ug(ς(‖ξ‖, 0)) + 2R(eu − 1)

∫ +∞

0

g′(ς(R, τ))eLτdτ.

<
δ

2
.

Because θ and σ coincide on [s, t], we get by (3.4), that

Wθ(t, ξ)−Wθ(s,η) ≤ C‖ξ − φθ(t, s,η)‖ −
∫ t

s

g(‖φθ(τ, s,η)‖)dτ (3.9)

= C‖ξ − φσ(t, s,η)‖ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ.



3.2. A CONVERSE THEOREM FOR ARBITRARY SWITCHED SYSTEMS 53

Hence, by (3.7), (3.5), (3.8), and (3.9) we conclude that

W (t, ξ)−W (s,η) < δ + C‖ξ − φσ(t, s,η)‖ −
∫ t

s

g(‖φσ(τ, s,η)‖)dτ

and because δ > 0 was arbitrary we have proved inequality (3.2).

Inequality (3.3) is a trivial consequence of inequality (3.2), just set s = t and note that ξ and η can
be reversed.

�

For our proof of the converse theorem on uniform asymptotic stability for the Switched System 1.9
we need the fact, that if N ⊂ Rn is a neighborhood of the origin and f ∈ C(N ) ∩ C1(N \ {0}), then

lim
x→0

‖x‖2
2‖∇f(x)‖2 = 0. (3.10)

For n = 1 this is very easy to prove by the use of l’Hospital’s rule. For n > 1 it is possible to prove
this in a similar manner, however, we first need an alternate characterization of convergence in Rn,
using smooth paths rather that sequences or open sets. The next theorem proves the validity of this
alternate characterization of convergence, but first we prove a technical lemma as a preparation for
the proof of the theorem and the proof of the limit (3.10).

Lemma 3.5 Let (xk)k∈N>0 and (yk)k∈N>0 be sequences in Rn with the properties that :

a) limk→+∞ xk = 0.

b) ‖yk‖2 = 1 for every k ∈ N>0.

c) xk · yk ≥ 0 for every k ∈ N>0.

Then there exists a path s : ]0, a[−→ Rn, a > 0, with the following properties :

i) s ∈ [C∞(]0, a[)]n.

ii) limt→0+ s(t) = 0.

iii) supt∈ ]0,a[ ‖s(t)‖2‖s′(t)‖2 < +∞.

iv) The set {k ∈ N>0

∣∣s(‖xk‖2) = xk and s′(‖xk‖2) = yk} has an infinite number of elements.

Proof:
Set X := {xk

∣∣k ∈ N>0}, that is, X is the set that contains exactly all the elements of the sequence
(xk)k∈N>0 .

For all z ∈ Rn with ‖z‖2 = 1 we define

Kz :=

{
x ∈ Rn

∣∣∣∣‖x− rz‖2 ≤
r√
3

for some r ≥ 0

}
.

Then Kz is a right circular cone with the vertex at the origin and the opening angle at the vertex is
π/3. Because there is a finite number Kz1 , Kz2 , . . . ,Kzm of these cones
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such that 2

B‖·‖2,1 ⊂
m⋃

i=1

Kzi
,

there is a z∗ such that X ∩ Kz∗ contains infinitely many elements. Define the sets

Kz∗,k :=

{
x ∈ Kz∗

∣∣∣∣ 1

k + 1
< ‖x‖2 ≤

1

k

}
for all k ∈ N>0. Then at least one of the sets

X ∩
+∞⋃
k=1

Kz∗,2k and X ∩
+∞⋃
k=1

Kz∗,2k−1

contains an infinite number of elements. Without loss of generality we assume that X ∩
⋃+∞

k=1Kz∗,2k

is infinite. The rest of the proof would be almost identical under the alternate assumption.

We construct sequences (an)n∈N>0 and (bn)n∈N>0 in Kz∗ in the following way: For every k ∈ N>0

consider the intersection X ∩ Ky∗,2k. If it is not empty there is an i ∈ N>0 such that xi from the
sequence (xn)n∈N>0 is in Ky∗,2k and in this case we set ak := xi and bk := yi. If the intersection is
empty we set ak equal to an arbitrary element of Ky∗,2k and set bk := ak/‖ak‖2. By this construction
there are infinitely many k ∈ N>0 such that ak = xi and bk = yi for some i ∈ N>0.

We now have everything we need to construct the claimed path s. First, we construct a piecewise
affine path s̃ ∈ C(]0, ‖a1‖2]) and then we round out the corners to get s.

For every k ∈ N>0 we define for m = 0, 1, 2 the constants tk,m by

tk,m := ‖ak‖2 −
m

3

(
1

2k + 1
− 1

2k + 2

)
.

We define s̃ for every k ∈ N>0 on the interval ]tk+1,0, tk,0] := ]tk+1,0, tk,2]∪ ]tk,2, tk,1]∪ ]tk,1, tk,0], by:

For every t ∈ ]tk+1,0, tk,2] we set

s̃(t) := ak+1 + (t− tk+1,0)bk+1.

For every t ∈ ]tk,2, tk,1] we set

s̃(t) := ak+1 + (tk,2 − tk+1,0)bk+1 + (t− tk,2)
ak − ak+1 + (tk,1 − tk,0)bk − (tk,2 − tk+1,0)bk+1

tk,1 − tk,2

and, for every t ∈ ]tk,1, tk,0] we set

s̃(t) := ak + (t− tk,0)bk.

Then
s̃(‖ak‖2) = s̃(tk,0) = ak and s̃′(‖ak‖2) = s̃′(tk,0) = bk for all k ∈ N>0. (3.11)

2Let the set Sn := {x ∈ Rn
∣∣‖x‖2 = 1} be equipped with its usual topology (see, for example, ğ8-8 in [16]). For

every ‖z‖2 = 1 define Oz to be the interior of Kz ∩ Sn in the Sn topology. Because Sn is compact, a finite number of
the Oz s, say Oz1 ,Oz2 , . . . ,Ozm

, suffice to cover Sn. But then, because Kzi
=
⋃

r≥0 rOzi
, the sets Kz1 , Kz2 , . . . ,Kzm

cover Rn.
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Further, s̃ is continuous on ]0, t1,0] and smooth with a possible exception of the points tk,i, k ∈ N>0

and i = 1, 2.

Let ρ ∈ C∞(R) be a nonnegative function with supp(ρ) ⊂ [−1, 1] and
∫

R ρ(τ)dτ = 1. We define the
smooth path s : ]0, t1,0[−→ Rn by setting, whenever

tk+1,0 + tk,2

2
≤ t ≤ tk,1 + tk,0

2

for some k ∈ N>0,

s(t) :=

∫ t+
tk,0−tk,1

4

t−
tk,0−tk,1

4

ρ

(
4(t− τ)

tk,0 − tk,1

)
4 s̃(τ)

tk,0 − tk,1

dτ =

∫ 1

−1

ρ(τ) s̃

(
t− τ

tk,0 − tk,1

4

)
dτ,

and we set s(t) := s̃(t) otherwise. Then, as discussed in Section 2.3, s fulfills the claimed property i).

Note that because tk,0 > (2k + 1)−1 and tk+1,0 ≤ (2k + 2)−1, which implies tk+1,0 − tk,2 ≥ tk,0 − tk,1,
the paths s and s̃ coincide for every t such that

tk+1,0 −
tk,0 − tk,1

4
< t < tk+1,0 +

tk,0 − tk,1

4

and this advisement holds true for every k ∈ N>0. Hence, by (3.11), the path s fulfills the claimed
property iv). For every k ∈ N>0 and every 0 < t < tk,0 we have the estimate

‖s(t)‖2 ≤
√
t2k,0 + (tk,0 − tk,1)2,

so, for every k ∈ N>0 and every 0 < t < (2k)−1 we have the crude estimate

‖s(t)‖2 ≤
1

k
(3.12)

and the claimed property ii) is fulfilled as well. We come to the claimed property iii). By Lemma
2.14 we have for every k ∈ N>0 and every tk+1,0 < t ≤ tk,0 the estimate

‖s′(t)‖2 ≤ ‖bk‖2 + ‖bk+1‖2 +

∥∥∥∥ak − ak+1 + (tk,1 − tk,0)bk − (tk,2 − tk+1,0)bk+1

tk,1 − tk,2

∥∥∥∥
2

≤ 2 + 3(2k + 1)(2k + 2)

(
k + 1

k(2k + 2)
+

1

k(2k + 2)
− 1

3(2k + 1)(2k + 2)

)
≤ 28k,

where we used
‖ak − ak+1‖2 =

√
‖ak‖2

2 + ‖ak+1‖2
2 − 2ak · ak+1,

which has a maximum with ‖ak‖2 = (2k)−1, ‖ak+1‖2 = (2k + 2)−1, and ak · ak+1 = ‖ak‖2‖ak+1‖2/2
for all k ≥ 2 (recall that the opening angle at the vertex of Kz∗ is π/3). But then

‖s(t)‖2‖s′(t)‖2 < +∞

for all t ∈ ]0, t1,0[ and we have finished the proof.
�

We come to the theorem that proves that the continuity of a function defined on a subset of Rn can
be characterized by the use of a convenient subset of smooth paths in Rn.
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Theorem 3.6 Let f : N −→ R be a real-valued function, defined on a neighborhood N ⊂ Rn of
the origin and such that f(0) = 0. Then f is continuous at the origin, if and only if for every path
s ∈ [C∞(]0, a[)]n, a > 0, such that

lim
t→0+

s(t) = 0 and sup
t∈ ]0,a[

‖s(t)‖2‖s′(t)‖2 < +∞, (3.13)

we have
lim

t→0+
f(s(t)) = 0.

Proof:
The only if part is obvious. We prove the if part by showing that if f is not continuous at the
origin, then there is a path s ∈ [C∞(]0, a[)]n, a > 0, that fulfills the properties (3.13), but for which
lim supt→0+ |f(s(t))| > 0.

Assume that f is not continuous at the origin. Then there is an ε > 0 and a sequence xk, k ∈ N>0,
such that limk→+∞ xk = 0 but |f(xk)| ≥ ε for all k. By Lemma 3.5 there is a path s ∈ [C∞(]0, a[)]n,
a > 0, with the properties that limt→0+ s(t) = 0, supt∈ ]0,a[ ‖s(t)‖2‖s′(t)‖2 < +∞, and s(‖xk‖2) = xk

for an infinite number of k ∈ N>0. But then |f(s(‖xk‖2))| ≥ ε for an infinite number of k ∈ N>0,
which implies lim supt→0+ |f(s(t))| ≥ ε and we have finished the proof.

�

We now have everything needed to give a reasonably short proof of the limit (3.10). This is done in
the next lemma.

Lemma 3.7 Let N ⊂ Rn be a neighborhood of the origin and let f ∈ C(N ) be continuously differ-
entiable on N \ {0}. Then

lim
x→0

‖x‖2
2‖∇f(x)‖2 = 0.

Proof:
Obviously, we can assume without loss of generality that f(x) = 0. By Theorem 3.6 we then have

lim
t→0+

f(s(t)) = 0

for every path s ∈ [C∞(]0, a[)]n, a > 0, that satisfies (3.13). Then, for every such path we obtain by
l’Hospital’s rule and partial integration

lim
t→0+

‖s(t)‖2
2[∇f ](s(t)) · s′(t) = lim

t→0+

1

t

∫ t

0

‖s(τ)‖2
2

d

dτ
f(s(τ))dτ (3.14)

= lim
t→0+

1

t

(
‖s(τ)‖2

2f(s(τ))
∣∣∣t
τ=0

− 2

∫ t

0

s(τ) · s′(τ)f(s(τ))dτ

)
= 0.

Just note that, with C ≥ supτ∈]0,a[ ‖s(τ)‖2‖s′(τ)‖2 and for every 0 < t < a, we have

‖s(t)‖2
2|f(s(t))| ≤ 2Ct|f(s(t))| and |

∫ t

0

s(τ) · s′(τ)f(s(τ))dτ | ≤ Ct sup
τ∈ ]0,t]

|f(s(τ))|.

Now, assume that lim supx→0 ‖x‖2
2‖∇f(x)‖2 > 0. Then there is a sequence (xk)N>0 and an ε > 0,

such that limk→+∞ xk = 0 and ‖xk‖2
2‖∇f(xk)‖2 ≥ ε for all k ∈ N>0. By Lemma 3.5 there is a path
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s ∈ [C∞(]0, a[)]n, a > 0, with the properties that limt→0+ s(t) = 0, supt∈ ]0,a[ ‖s(t)‖2‖s′(t)‖2 < +∞,
there are infinitely many k ∈ N>0 such that

‖s(‖xk‖2)‖2
2[∇f ](s(‖xk‖2)) = ‖xk‖2

2∇f(xk),

and
s′(‖xk‖2) = ± ∇f(xk)

‖∇f(xk)‖2

,

where the sign is chosen for each k such that ±xk · ∇f(xk) ≥ 0. But then

‖s(‖xk‖2)‖2
2[∇f ](s(‖xk‖2)) · s′(‖xk‖2) = ‖s(‖xk‖2)‖2

2‖[∇f ](s(‖xk‖2))‖2 ≥ ε

for all such k, which is contradictory to (3.14). Therefore limx→0 ‖x‖2
2‖∇f(x)‖2 = 0.

�

Even after we have proved the validity of the limit (3.10), it is still advantageous to source out some
parts of our main proof. The next lemma states the last result we use to prove the last lemma for
our proof of the main theorem, a converse Lyapunov theorem for a uniformly asymptotically stable
equilibrium of the arbitrary Switched System 1.9.

Lemma 3.8 Let U ⊂ Rn be a domain, let f ∈ C∞(U) be a strictly positive function on U , and
let β ∈ Nn

≥0 be any multiindex with |β| > 0. Define the set Ωβ, of which the elements are sets of
multiindices, by

{α1,α2, . . . ,αk} ∈ Ωβ, if and only if
k∑

i=1

αi = β and |αi| > 0 for all i = 1, 2, . . . , k.

Denote by ωm, m = 1, 2, . . . , |Ωβ|, the elements of Ωβ. Then there exists a positive integer dβ and
for every ωm := {αm,1,αm,2, . . . ,αm,|ωm|} ∈ Ωβ a polynomial

Pm(y) :=

dβ∑
i=0

am,iy
i,

such that x 7→ ∂β
[
f(x) exp

(
−1

f(x)

)]
has the representation

∂β

[
f(x) exp

(
−1

f(x)

)]
=

|Ωβ|∑
m=1

Pm(f(x))

(
1

f(x)

)2|β|

exp

(
−1

f(x)

) |ωm|∏
j=1

[∂αm,jf ](x) (3.15)

Proof:
The representation (3.15) can be proved by mathematical induction over the length of the multiindex
β. If |β| = 1, then β = ei for some i ∈ {1, 2, . . . , n} and because

d

dxi

[
f(x) exp

(
−1

f(x)

)]
=
(
[f(x)]2 + f(x)

)( 1

f(x)

)2

exp

(
−1

f(x)

)
df

dxi

(x),

the representation (3.15) holds true for all such β.



58 CHAPTER 3. A CONVERSE THEOREM FOR SWITCHED SYSTEMS

The induction-step is simple. For an arbitrary multiindex β′ with |β′| > 1 there is an i ∈ {1, 2, . . . , n}
such that β := β′ − ei is a multiindex with |β| > 0. For the multiindex β the representation (3.15)
holds true by the induction-hypothesis and one just has to calculate

d

dxi

 |Ωβ|∑
m=1

Pm(f(x))

(
1

f(x)

)2|β|

exp

(
−1

f(x)

) |ωm|∏
j=1

[∂αm,jf ](x)


and verify that it is of the expected form. The calculations are trivial and not particularly interest-
ing, however, quite long. Therefore, we omit them and leave the induction-step as an exercise for
disbelievers.

�

Now we come to the last technical results needed for the proof of the main theorem.

Lemma 3.9 Let U ⊂ Rn be a domain containing the origin and assume that U : R≥0×U −→ R≥0 is
a function, that is infinitely differentiable at every point in the set R≥0 × [U \ {0}]. Further, assume
that U(t,0) = 0 for all t ≥ 0, U(t,x) > 0 for all t ≥ 0 and x 6= 0, and that there exists a constant
L > 0 such that U(t,x) ≤ L‖x‖2 for all t ≥ 0. Then the function V : R≥0 × U −→ R,

V (t, ξ) :=

{
0, if ξ = 0,

U(t, ξ) exp
(

−1
U(t,ξ)

)
, if ξ 6= 0,

is a C∞(R≥0 × U) function.

Proof:
We first show that

lim
(t,ξ)→(s,0)

∂βV (t, ξ)

‖ξ‖k
2

= 0 (3.16)

for every multiindex β ∈ Nn+1
≥0 , every k ∈ N≥0, and every s ≥ 0.

Trivially we have for every k ∈ N≥0 and every s ≥ 0 that

lim
(t,ξ)→(s,0)

1

U(t, ξ)k
exp

(
−1

2U(t, ξ)

)
= 0. (3.17)

Further, because

exp

(
−1

2U(t, ξ)

)
≤ exp

(
−1

2L‖ξ‖2

)
,

we have for every k ∈ N≥0 and every s ≥ 0, that

lim
(t,ξ)→(s,0)

1

‖ξ‖k
2

exp

(
−1

2U(t, ξ)

)
= 0.

Therefore and by the representation (3.15) of

∂βV (t, ξ) = ∂β

[
U(t, ξ) exp

(
−1

U(t, ξ)

)]
,
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proved in Lemma 3.8, it suffices to show that for every multiindex β ∈ Nn+1
≥0 and every s ≥ 0 we

have
lim

(t,ξ)→(s,0)
‖ξ‖2|β|

2 ∂βU(t, ξ) = 0 (3.18)

to prove (3.16).

We prove (3.18) by mathematical induction. Clearly, it holds true for |β| :=
∑n+1

i=1 βi = 0. But then,
by Lemma 3.7, we have

lim
(t,ξ)→(s,0)

[(t− s)2 + ‖ξ‖2
2]

√√√√(∂U
∂t

(t, ξ)

)2

+
n∑

i=1

(
∂U

∂ξi
(t, ξ)

)2

= 0,

so equation (3.18) holds true for all s ≥ 0 and all multiindices β with |β| = 1.

Now, assume that for some k ∈ N>0 equation (3.18) holds true for all s ≥ 0 and all multiindices β
with |β| = k. But then, with U := U(t, ξ) to shorten the equation, we obtain

lim
(t,ξ)→(s,0)

[(t− s)2 + ‖ξ‖2
2]

√√√√‖ξ‖4|β|2
2 [∂t∂βU ]2 + ‖ξ‖(2|β|−2)2

2

n∑
i=1

[ξi∂βU + ‖ξ‖2
2∂ξi

∂βU ]
2

= 0,

by applying Lemma 3.7 on the function (t, ξ) 7→ ‖ξ‖2|β|
2 ∂βU(t, ξ). It follows that for every i =

1, 2, . . . , n we have
lim

(t,ξ)→(s,0)
‖ξ‖2|β|

2

[
ξi∂

βU(t, ξ) + ‖ξ‖2
2∂ξi

∂βU(t, ξ)
]

= 0

and because
lim

(t,ξ)→(s,0)
‖ξ‖2|β|

2 ξi∂
βU(t, ξ) = 0

by induction hypothesis, equation (3.18) holds true for all multiindices α with |α| = k+1. It follows
that equation (3.18) holds true for all s ≥ 0 and every multiindex β ∈ Nn+1

≥0 , which in turn implies
that equation (3.16) holds true for all s ≥ 0, every k ∈ N≥0, and every multiindex β ∈ Nn+1

≥0 .

Now, by definition, (t, ξ) 7→ ∂βV (t, ξ) is differentiable at (s,0), s ≥ 0, with the total derivative
0 ∈ Rn+1, if and only if

lim
(t,ξ)→(s,0)

∂βV (t, ξ)− ∂βV (s,0)√
(t− s)2 + ‖ξ‖2

2

= 0.

But ∣∣∂βV (t, ξ)− ∂βV (s,0)
∣∣√

(t− s)2 + ‖ξ‖2
2

≤
∣∣∂βV (t, ξ)

∣∣
‖ξ‖2

and it follows by equation (3.16) that (t, ξ) 7→ ∂βV (t, ξ) is differentiable at (s,0) for every s ≥ 0
and every β ∈ Nn+1

≥0 . Further, because differentiability implies continuity, we have proved that V ∈
C∞(R≥0 × U).

�

Finally, we come to the central theorem of this part. It is the promised converse Lyapunov theorem
for a uniformly asymptotically stable equilibrium of the Switched System 1.9.
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Theorem 3.10 (Converse theorem on uniform asymptotic stability of switched systems)
Assume that the origin is a uniformly asymptotically stable equilibrium point of the Switched System
1.9 on the ball B‖·‖,R ⊂ U , R > 0, where ‖ · ‖ is a norm on Rn. Assume further, that the functions
fp, p ∈ P, are all Lipschitz and that there exists a common Lipschitz constant for the functions, that
is, there exists a constant L > 0 such that

‖fp(t,x)− fp(s,y)‖ ≤ L(|t− s|+ ‖x− y‖) (3.19)

for all t, s ≥ 0, all x,y ∈ B‖·‖,R, and all p ∈ P.

Then, for every 0 < R∗ < R, there exists a smooth Lyapunov function V ∈ C∞(R≥0×B‖·‖,R∗) for the
system. Further, if the Switched System 1.9 is autonomous, then there exists a smooth time-invariant
Lyapunov function V ∈ C∞(B‖·‖,R∗) for the system.

Proof:
The proof is long and technical, even after all the preparation we have done, so we split it into three
parts. In part I we introduce some constants and functions that we will use in the rest of the proof. In
part II we define a function U ∈ C∞(R≥0 ×

[
B‖·‖,R∗ \ {0}

]
) and prove that it is a Lyapunov function

for the system. In part III we smooth U out at the origin to obtain the claimed Lyapunov function
V ∈ C∞(R≥0 × B‖·‖,R∗).
Part I:
Because the assumptions of the theorem imply the assumptions made in Definition 3.2, we can define
the functions Wσ : B‖·‖,R −→ R≥0, σ ∈ SP , and W : B‖·‖,R −→ R just as in the definition. As in
Definition 3.2, denote by g be the function from Massera’s lemma 3.1 in the definition of the functions
Wσ, and set

C :=

∫ +∞

0

g′(ς(R, τ))eLτdτ,

where, once again, ς is the same function as in Definition 3.2.

Let m,M > 0 be constants such that

‖x‖2 ≤ m‖x‖ and ‖x‖ ≤M‖x‖2

for all x ∈ Rn and let a be a constant such that

a > 2m and set y∗ :=
mR

a
.

Define

K :=
g(y∗)

a
L

(
C

[
m(1 +M)R +mR

(
4

3
LR +M

)]
+ g(4R/3)mR

)
,

and set

ε := min

{
a

3g(y∗)
,
a(R−R∗)

R∗g(y∗)
,

a

2mRLg(y∗)
,

1

K

}
. (3.20)

Note that ε is a real-valued constant that is strictly larger than zero.

We define the function ε : R≥0 −→ R≥0 by

ε(x) := ε

∫ x
a

0

g(z)dz. (3.21)
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The definition of ε implies

ε(x) ≤ εg(x/a)
x

a
≤ a

3g(y∗)
· g(x/a)x

a
≤ x

3
(3.22)

for all 0 ≤ x ≤ mR and
ε′(x) =

ε

a
g(x/a) (3.23)

for all x ≥ 0.

Define the function ϑ by ϑ(x) := g(2x/3)− g(x/2) for all x ≥ 0. Then ϑ(0) = 0 and for every x > 0
we have

ϑ′(x) =
2

3
g′(2x/3)− 1

2
g′(x/2) > 0

because g′ ∈ K, that is ϑ ∈ K.

Part II:
Let ρ ∈ C∞(R) be a nonnegative function with supp(ρ) ⊂ [−1, 0] and

∫
R ρ(x) = 1 and let % ∈ C∞(Rn)

be a nonnegative function with supp(%) ⊂ B‖·‖2,1 and
∫

Rn %(x)dnx = 1. Extend W on R × Rn by
setting it equal to zero outside of R≥0×B‖·‖,R. We claim that the function U : R≥0×B‖·‖,R∗ −→ R≥0,
U(t,0) := 0 for all t ≥ 0, and

U(t, ξ) :=

∫
R

∫
Rn

ρ

(
t− τ

ε(‖ξ‖2)

)
%

(
ξ − y

ε(‖ξ‖2)

)
W [t,y]

εn+1(‖ξ‖2)
dnydτ

=

∫
R

∫
Rn

ρ(τ)%(y)W [t− ε(‖ξ‖2)τ, ξ − ε(‖ξ‖2)y]dnydτ

for all t ≥ 0 and all ξ ∈ B‖·‖,R∗\{0}, is a C∞(R≥0×
[
B‖·‖,R∗ \ {0}

]
) Lyapunov function for the switched

system. Note, that if the Switched System 1.9 in question is autonomous, then W is time-invariant,
which implies that U is time-invariant too.

Because, for every ‖y‖2 ≤ 1 and every ‖ξ‖ < R∗, we have by (3.22) and (3.20), that

‖ξ − ε(‖ξ‖2)y‖ ≤
(

1 +
ε(‖ξ‖2)

‖ξ‖2

)
‖ξ‖

≤
(

1 +
εg(‖ξ‖2/a)

‖ξ‖2

· ‖ξ‖2

a

)
‖ξ‖

<

(
1 +

a(R−R∗)g(y∗)

R∗g(y∗)a

)
R∗

= R,

so U is properly defined on R≥0 ×B‖·‖,R∗ . But then, by construction, U ∈ C∞(R≥0 ×
[
B‖·‖,R∗ \ {0}

]
)

(see, for example, Section 2.3). It remains to be shown that U fulfills the conditions (L1) and (L2)
in Definition 2.17 of a Lyapunov function.

By Theorem 3.3 and Lemma 3.4 there is a function α1 ∈ K and a constant LW > 0, such that

α1(‖ξ‖) ≤ W (t, ξ) ≤ LW‖ξ‖

for all t ≥ 0 and all ξ ∈ B‖·‖,R. By inequality (3.22) we have for all ξ ∈ B‖·‖,R and all ‖y‖2 ≤ 1, that

‖ξ − ε(‖ξ‖2)y‖ ≥
∥∥∥∥ξ − ‖ξ‖2

3

ξ

‖ξ‖2

∥∥∥∥ =
2

3
‖ξ‖ (3.24)
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and

‖ξ − ε(‖ξ‖2)y‖ ≤
∥∥∥∥ξ +

‖ξ‖2

3

ξ

‖ξ‖2

∥∥∥∥ =
4

3
‖ξ‖. (3.25)

Hence

α1(2‖ξ‖/3) =

∫
R

∫
Rn

ρ(τ)%(y)α1(2‖ξ‖/3)dnydτ (3.26)

≤
∫

R

∫
Rn

ρ(τ)%(y)α1(‖ξ − ε(‖ξ‖2)y‖)dnydτ

≤
∫

R

∫
Rn

ρ(τ)%(y)W [t− ε(‖ξ‖2)τ, ξ − ε(‖ξ‖2)y]dnydτ

= U(t, ξ)

≤
∫

R

∫
Rn

ρ(τ)%(y)LW‖ξ − ε(‖ξ‖2)y‖dnydτ

≤ 4LW

3
‖ξ‖,

and the function U fulfills the condition (L1).

We now prove that U fulfills the condition (L2). To do this let t ≥ 0, ξ ∈ B‖·‖,R∗ , and σ ∈ SP be
arbitrary, but fixed throughout the rest of this part of the proof. Denote by I the maximum interval
in R≥0 on which s 7→ φσ(s, t, ξ) is defined and set

q(s, τ) := s− ε(‖φσ(s, t, ξ)‖2)τ

for all s ∈ I and all −1 ≤ τ ≤ 0 and define

D(h,y, τ) := W [q(t+ h, τ),φσ(t+ h, t, ξ)− ε(‖φσ(t+ h, t, ξ)‖2)y]−W [q(t, τ), ξ − ε(‖ξ‖2)y]

for all h such that t+ h ∈ I, all ‖y‖2 ≤ 1, and all −1 ≤ τ ≤ 0. Then

U(t+ h,φσ(t+ h, t, ξ))− U(t, ξ) =

∫
R

∫
Rn

ρ(τ)%(y)D(h,y, τ)dnydτ

for all h such that t + h ∈ I, especially this equality holds true for all h in an interval of the form
[0, h′[, where 0 < h′ ≤ +∞.

We are going to show that

lim sup
h→0+

D(h,y, τ)

h
≤ −ϑ(‖ξ‖). (3.27)

If we can prove that (3.27) holds true, then, by Fatou’s lemma,

lim sup
h→0+

U(t+ h,φσ(t+ h, t, ξ))− U(t, ξ)

h
≤
∫

R

∫
Rn

%(τ)%n(y) lim sup
h→0+

D(h,y, τ)

h
dnydτ ≤ −ϑ(‖ξ‖),

and we would have proved that the condition (L2) is fulfilled.

To proof inequality (3.27) observe that q(t, τ) ≥ 0 for all −1 ≤ τ ≤ 0 and, for every s > t that is
smaller than any switching-time (discontinuity-point) of σ larger than t, and because of (3.20) and



3.2. A CONVERSE THEOREM FOR ARBITRARY SWITCHED SYSTEMS 63

(3.19), we have

dq

ds
(s, τ) = 1− εg(‖φσ(s, t, ξ)‖2/a)

a

φσ(s, t, ξ)

‖φσ(s, t, ξ)‖2

· fσ(s)(s,φσ(s, t, ξ))τ

≥ 1− ε
g(y∗)LmR

a

≥ 1

2
,

so q(t+ h, τ) ≥ q(t, τ) ≥ 0 for all small enough h ≥ 0.

Now, denote by γ the constant switching signal σ(t) in SP , that is γ(s) := σ(t) for all s ≥ 0, and
consider that by Lemma 3.4

D(h,y, τ)

h
≤ C

h
‖φσ(t+ h, t, ξ)− ε(‖φσ(t+ h, t, ξ)‖2)y − φγ(q(t+ h, τ), q(t, τ), ξ − ε(‖ξ‖2)y)‖

− 1

h

∫ q(t+h,τ)

q(t,τ)

g(‖φγ(s, q(t, τ), ξ − ε(‖ξ‖2)y)‖)ds

= C

∥∥∥∥φσ(t+ h, t, ξ)− ξ

h
−

φγ(q(t+ h, τ), q(t, τ), ξ − ε(‖ξ‖2)y)− [ξ − ε(‖ξ‖2)y]

h

−ε(‖φσ(t+ h, t, ξ)‖2)− ε(‖ξ‖2)

h
y

∥∥∥∥− 1

h

∫ q(t+h,τ)

q(t,τ)

g(‖φγ(s, q(t, τ), ξ − ε(‖ξ‖2)y)‖)ds.

For the next calculations we need s 7→ q(s, τ) to be differentiable at t. If it is not, which might be
the case if t is a switching time of σ, we replace σ with σ∗ ∈ SP where

σ∗(s) :=

{
σ(t), if 0 ≤ s ≤ t,

σ(s), if s ≥ t.

Note that this does not affect the numerical value

lim sup
h→0+

D(h,y, τ)

h
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because σ∗(t + h) = σ(t + h) for all h ≥ 0. Hence, with p := σ(t), and by (3.19), the chain rule,
(3.24), and (3.25),

lim sup
h→0+

D(h,y, τ)

h

≤ C

∥∥∥∥fp(t, ξ)− fp(q(t, τ), ξ − ε(‖ξ‖2)y) · dq
dt′

(t′, τ)
∣∣∣
t′=t

− ε′(‖ξ‖2) ·
d

dt′
‖φσ(t′, t, ξ)‖2

∣∣∣
t′=t

y

∥∥∥∥
− g(‖φγ(q(t, τ), q(t, τ), ξ − ε(‖ξ‖2)y)‖) · dq

dt′
(t′, τ)

∣∣∣
t′=t

= C

∥∥∥∥fp(t, ξ)− fp(q(t, τ), ξ − ε(‖ξ‖2)y)

[
1− ε′(‖ξ‖2)

ξ

‖ξ‖2

· fp(t, ξ)τ

]
− ε′(‖ξ‖2)[

ξ

‖ξ‖2

· fp(t, ξ)]y

∥∥∥∥
− g(‖ξ − ε(‖ξ‖2)y‖)

[
1− ε′(‖ξ‖2)

ξ

‖ξ‖2

· fp(t, ξ)

]
≤ C

[
‖fp(t, ξ)− fp(q(t, τ), ξ − ε(‖ξ‖2)y)‖+ ε′(‖ξ‖2)‖fp(t, ξ)‖2 {‖fp(q(t, τ), ξ − ε(‖ξ‖2)y)‖+ ‖y‖}

]
− g(2‖ξ‖/3) + g(4‖ξ‖/3)ε′(‖ξ‖2)‖fp(t, ξ)‖2

≤ C
[
L(|t− q(t, τ)|+ ε(‖ξ‖2)‖y‖) + ε′(‖ξ‖2)mLR {L‖ξ − ε(‖ξ‖2)y)‖+M‖y‖2}

]
− g(2‖ξ‖/3) + g(4‖ξ‖/3)ε′(‖ξ‖2)mLR

≤ C
[
L(1 +M)ε(‖ξ‖2) + ε′(‖ξ‖2)mLR

{
L

4

3
‖ξ‖+M

}]
− g(2‖ξ‖/3) + g(4‖ξ‖/3)ε′(‖ξ‖2)mLR.
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Therefore, by (3.22), (3.23), and (3.20), and with x := ‖ξ‖, we can further simplify,

lim sup
h→0+

D(h,y, τ)

h
≤ −g(2x/3) +

ε

a
g(mx/a)L

(
C

[
m(1 +M)x+mR

(
4

3
Lx+M

)]
+ g(4x/3)mR

)
≤ −g(2x/3) +Kεg(x/2)

≤ −ϑ(x),

and because t ≥ 0, ξ ∈ B‖·‖,R∗ , and σ ∈ SP were arbitrary, we have proved that U is a Lyapunov
function for the system.
Part III:
We define the function V : R≥0 × B‖·‖,R∗ −→ R≥0 by V (t,0) = 0 for all t ≥ 0 and

V (t, ξ) := U(t, ξ) exp

(
−1

U(t, ξ)

)
for all t ≥ 0 and all ξ ∈ B‖·‖,R∗ \ {0}. We claim that the function V is a C∞(R≥0×B‖·‖,R∗) Lyapunov
function for the Switched System 1.9. Note, that if U is time-invariant, which is the case if the
Switched System 1.9 is autonomous, then so is V .
That V ∈ C∞(R≥0×B‖·‖,R∗) follows by Lemma 3.9 so it only remains to prove that V is a Lyapunov
function for the system. By (3.26) we get

α1(2‖ξ‖/3) exp

(
−1

α1(2‖ξ‖/3)

)
≤ V (t, ξ) ≤ 4

3
LW‖ξ‖ exp

(
−3

4LW‖ξ‖)

)
for all t ≥ 0 and all ξ ∈ B‖·‖,R∗ so V fulfills the condition (L1) in Definition 2.17 of a Lyapunov
function. The condition (L2) follows by

d

dt
V (t,φσ(t, s, ξ)) =

[
d

dt
U(t,φσ(t, s, ξ))

](
1 +

1

U(t,φσ(t, s, ξ))

)
exp

(
−1

U(t,φσ(t, s, ξ))

)
≤ −ϑ(‖φσ(t, s, ξ)‖) exp

(
−1

α1(2‖φσ(t, s, ξ)‖/3)

)
for all σ ∈ SP , all t ≥ s ≥ 0, and all ξ ∈ U , such that φσ(t, s, ξ) ∈ B‖·‖,R∗ . �

Now, we have proved the main theorem of this part of this thesis, our much wanted converse theorem
for the arbitrary Switched System 1.9. As a by-product of the proof, we observe, that by combining
Lemma 3.9 and the proof of Part III of the last theorem, the following results emerge.

Lemma 3.11 Let U ⊂ Rn be a domain containing the origin and assume that U : R≥0×U −→ R≥0

is a function, that is infinitely differentiable at every point in the set R≥0× [U \{0}]. Further, assume
that U(t,0) = 0 for all t ≥ 0 and that there exists a constant L > 0 such that U(t,x) ≤ L‖x‖2 for all
t ≥= 0. Finally, assume that U is a Lyapunov function for the arbitrary Switched System 1.9. Then
the function V : R≥0 × U −→ R,

V (t, ξ) :=

{
0, if ξ = 0,

U(t, ξ) exp
(

−1
U(t,ξ)

)
, if ξ 6= 0,

is a C∞(R≥0 × U) Lyapunov function for the arbitrary Switched System 1.9.

Proof:
Follows immediately by Lemma 3.9 and the proof of Part III of Theorem 3.10. �
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Part II

An algorithm based on linear programming
to generate Lyapunov functions for switched
systems and a proof that it always succeeds
if the equilibrium at the origin is uniformly

asymptotically stable

67
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In this part we will present an algorithm to construct Lyapunov functions for the Switched System
1.9. First, we give an algorithmic description of how to derive a linear programming problem from
the Switched System 1.9 (Definition 5.1), and we prove that if the linear programming problem
possesses a feasible solution, then it can be used to parameterize a Lyapunov function for the system.
Then we present an algorithm that systematically generates linear programming problems for the
Switched System 1.9 and we prove, that if the switched system possesses a Lyapunov function at
all, then the algorithm generates, in a finite number of steps, a linear programming problem that
has a feasible solution. Because there are algorithms that always find a feasible solution to a linear
programming problem if one exists, this implies that we will have derived an algorithm to construct
Lyapunov functions, whenever one exists. Further, we consider the case when the Switched System
1.9 is autonomous separately, because in this case it is possible to parameterize a time-independent
Lyapunov function for the system.

For completeness we spend a few words on linear programming problems. A linear programming
problem is a set of linear constraints, under which a linear function is to be minimized. There are
several equivalent possibilities to state a linear programming problem, one of them is

minimize g(x) := c · x, (∗)
given Cx ≤ b, x ≥ 0,

where r, s > 0 are integers, C ∈ Rs×r is a matrix, b ∈ Rs and c ∈ Rr are vectors, and x ≤ y denotes
xi ≤ yi for all i. The function g is called the objective of the linear programming problem and the
conditions Cx ≤ b and x ≥ 0 together are called the constraints. A feasible solution to the linear
programming problem is a vector x′ ∈ Rr that satisfies the constraints, that is, x′ ≥ 0 and Cx′ ≤ b.
There are numerous algorithms known to solve linear programming problems, the most commonly
used being the simplex method (see, for example, [52]) or interior point algorithms, for example, the
primal-dual logarithmic barrier method (see, for example, [49]). Both need a starting feasible solution
for initialization. A feasible solution to (∗) can be found by introducing slack variables y ∈ Rs and
solving the linear programming problem:

minimize g(

[
x
y

]
) :=

s∑
i=1

yi, (∗∗)

given
[
C −Is

] [x
y

]
≤ b,

[
x
y

]
≥ 0,

which has the feasible solution x = 0 and y = (|b1|, |b2|, . . . , |bs|). If the linear programming problem
(∗∗) has the solution g([x′ y′]) = 0, then x′ is a feasible solution to (∗), if the minimum of g is strictly
larger than zero, then (∗) does not have any feasible solution.

In order to construct a Lyapunov function with a linear programming problem, one needs a class
of continuous functions that are easily parameterized. That is, we need a class of functions that
is general enough to be used as a search-space for Lyapunov functions, but it has to be a finite-
dimensional vector space so that its functions are uniquely characterized by a finite number of real
numbers. The class of the continuous piecewise affine 3 functions CPWA is an obvious candidate, as
will become clear in the following chapter.

The algorithm to parameterize a Lyapunov function for the Switched System 1.9 consists roughly of
the following steps:

3Often called piecewise linear in the literature.
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i) Partition a neighborhood of the equilibrium under consideration in a family S of simplices.

ii) Limit the search for a Lyapunov function V for the system to the class of continuous functions
that are affine on any S ∈ S.

iii) State linear inequalities for the values of V at the vertices of the simplices in S, so that if they
can be fulfilled, then the function V , which is uniquely determined by its values at the vertices,
is a Lyapunov function for the system in the whole area.

In this part we will first partition Rn into n-simplices and use this partition to define the function
spaces CPWA of continuous piecewise affine functions Rn −→ R. A function in CPWA is uniquely
determined by its values at the vertices of the simplices in S. Then we will present a linear pro-
gramming problem, algorithmically derived from the Switched System 1.9, and prove that a CPWA
Lyapunov function for the system can be parameterized from any feasible solution to this linear
programming problem. Finally, we will prove that if the equilibrium of the Switched System 1.9 is
uniformly asymptotically stable, then any simplicial partition with small enough simplices leads to
a linear programming problem that does have a feasible solution. Because, by Theorem 2.16 and
Theorem 3.10, a Lyapunov function exists for the Switched System 1.9 exactly when the equilibrium
is uniformly asymptotically stable, and because it is always possible to algorithmically find a feasible
solution if at least one exists, this proves that the algorithm can parameterize a Lyapunov function
for the Switched System 1.9 if the system does possess a Lyapunov functions at all.



Chapter 4

Continuous piecewise affine functions

In order to construct a Lyapunov function by a linear programming problem, one needs a class of
continuous functions that are easily parameterized. Our approach is a simplicial partition of Rn, on
which we define the finite dimensional R-vector space CPWA of continuous functions, that are affine
on every of the simplices. In this chapter we are going to derive an appropriate simplicial partition
of Rn and then define the function space CPWA. Further, we will prove some important properties
of the space CPWA that we will use in the next chapter to define the linear programming problem,
of which every feasible solution parameterizes a CPWA Lyapunov function for the Switched System
1.9 if its equilibrium is uniformly asymptotically stable.

4.1 Preliminaries

Let U be a nonempty subset of Rn. A function p : U −→ Rm is said to be an affine function if there
is an m× n-matrix P and a vector c ∈ Rm such that p(x) = Px + c for all x ∈ U . A simplex is the
convex hull of affinely independent vectors in Rn, more exactly:

Definition 4.1 (Simplex) Let x1,x2, . . . ,xk be vectors in Rn. A vector x ∈ Rn is said to be a convex
combination of the vectors x1,x2, . . . ,xk if there are numbers λ1, λ2, . . . , λk, such that λi ∈ [0, 1] for
all i = 1, 2, . . . , k,

∑k
i=1 λi = 1, and

x =
k∑

i=1

λixi.

The set of all convex combinations of the vectors x1,x2, . . . ,xk is denoted by con{x1,x2, . . . ,xk} and
is called the convex hull of the vectors x1,x2, . . . ,xk.
If the vectors x1,x2, . . . ,xk are affinely independent, which means that the vectors

x1 − xj, x2 − xj, . . . , xj−1 − xj , xj+1 − xj , . . . , xk − xj

are linearly independent for any j = 1, 2, . . . , k, then the set con{x1,x2, . . . ,xk} is called a (k − 1)-
simplex and the vectors x1,x2, . . . ,xk are called the vertices of the simplex.

2

The convex hull of n+ 1 vectors x1,x2, . . . ,xn+1 in Rn has a non-zero volume (n-dimensional Borel
measure), if and only if it is an n-simplex. This follows from the well known facts, that the volume
of con{x1,x2, . . . ,xn+1} is the absolute value of

det(x1 − xj,x2 − xj, . . . ,xj−1 − xj,xj+1 − xj, . . . ,xn+1 − xj)

71



72 CHAPTER 4. CONTINUOUS PIECEWISE AFFINE FUNCTIONS

for any j = 1, 2, . . . , n+ 1, and that this determinant is non-zero, if and only if the vectors

x1 − xj, x2 − xj, . . . , xj−1 − xj , xj+1 − xj , . . . , xn+1 − xj

are linearly independent.

It is fairly easy to see that because the vertices of a simplex are affinely independent, an element of a
simplex has a unique representations as a convex combination of the vertices. This property implies
that a simplex suits exceptionally well as a domain for the definition of affine functions Rn −→ Rm.
The following lemma confirms this.

Lemma 4.2 Let con{x1,x2, . . . ,xk} be a (k−1)-simplex in Rn and let a1, a2, . . . , ak be vectors in Rm.
Then the following propositions about the function p : con{x1,x2, . . . ,xk} −→ Rm are equivalent :

i) The function p is affine and p(xi) := ai for all i = 1, 2, . . . , k.

ii) For every convex combination
∑k

i=1 λixi of the vertices x1,x2, . . . ,xk we have

p(
k∑

i=1

λixi) =
k∑

i=1

λiai.

Proof:
i) implies ii) : Just note that because p is affine we have

p(
k∑

i=1

λixi) =
k∑

i=1

λip(xi) =
k∑

i=1

λiai

for every convex combination of the vertices x1,x2, . . . ,xk.

ii) implies i) : Let P be an m× n - matrix such that P (xi − x1) = ai − a1 for all i = 2, 3, . . . , k and
define the vector c := a1 − Px1. Then p(x) = Px + c for all x in the simplex is an affine function
and p(xi) = ai for all i = 1, 2, . . . , k.

�

This lemma has an obvious corollary that is useful for the following, namely:

Corollary 4.3 Let n ∈ N>0 and let S1 = con{x1,x2, . . . ,xn+1} and S2 = con{y1,y2, . . . ,yn+1} be
n-simplices in Rn. Assume that S3 := S1∩S2 = con{z1, z2, . . . , zk+1} is a k-simplex, where 0 ≤ k ≤ n
and

{z1, z2, . . . , zk+1} ⊂ {x1,x2, . . . ,xn+1} ∩ {y1,y2, . . . ,yn+1}.

Then, if p1 : S1 −→ Rm and p2 : S2 −→ Rm are affine functions, the following propositions are
equivalent :

i) The function q : S1 ∪ S2 −→ Rm,

q(x) :=

{
p1(x), if x ∈ S1,
p2(x), if x ∈ S2,

is properly defined and continuous.
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ii) For every i = 1, 2, . . . , k + 1 we have p1(zi) = p2(zi).

Proof:
Follows immediately by Lemma 4.2. �

For every n ∈ N>0, we denote by Perm[{1, 2, . . . , n}] the permutation group of {1, 2, . . . , n}, that is,
Perm[{1, 2, . . . , n}] is the set of all one-to-one mappings from {1, 2, . . . , n} onto itself.
The simplices Sσ, where σ ∈ Perm[{1, 2, . . . , n}], will serve as the atoms of our partition of Rn. They
are defined in the following way:

Definition 4.4 (The simplices Sσ) For every σ ∈ Perm[{1, 2, . . . , n}] we define the set

Sσ := {y ∈ Rn
∣∣ 0 ≤ yσ(1) ≤ yσ(2) ≤ . . . ≤ yσ(n) ≤ 1},

where yσ(i) is the σ(i)-th component of the vector y.
2

For every σ ∈ Perm[{1, 2, . . . , n}] the set Sσ is an n-simplex with the volume 1/n!. That it is an n-
simplex follows by the next theorem. That its volume is 1/n! follows from straight forward integration∫

χ
Sσ

(x) dnx =

∫ 1

0

(∫ xσ(n)

0

(
. . .

(∫ xσ(2)

0

dxσ(1)

)
. . .

)
dxσ(n−1)

)
dxσ(n)

=

∫ 1

0

(∫ xσ(n)

0

(
. . .

(∫ xσ(3)

0

xσ(2)dxσ(2)

)
. . .

)
dxσ(n−1)

)
dxσ(n)

=

∫ 1

0

(∫ xσ(n)

0

(
. . .

(∫ xσ(4)

0

1

2
x2

σ(3)dxσ(3)

)
. . .

)
dxσ(n−1)

)
dxσ(n)

=

∫ 1

0

(∫ xσ(n)

0

(
. . .

(∫ xσ(5)

0

1

2 · 3
x3

σ(4)dxσ(4)

)
. . .

)
dxσ(n−1)

)
dxσ(n)

...

=
1

n!
.

Before stating and proving the next theorem we will first state a very simple, but useful lemma, that
will be used in its proof and later on.

Lemma 4.5 Let v1,v2, . . . ,vn ∈ Rm and µ1, µ2, . . . , µn ∈ R. Then
n∑

i=1

(
µi

n∑
j=i

vj

)
=

n∑
j=1

(
vj

j∑
i=1

µi

)
.

Proof:
Just calculate

n∑
i=1

µi

n∑
j=i

vj = µ1

n∑
j=1

vj + µ2

n∑
j=2

vj + . . . + µn−1(vn−1 + vn) + µnvn

= vn

n∑
i=1

µi + vn−1

n−1∑
i=1

µi + . . . + v2(µ1 + µ2) + v1µ1

=
n∑

j=1

vj

j∑
i=1

µi.

�
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The next theorem states that the set Sσ is an n-simplex and provides a formula for its vertices.

Theorem 4.6 For every σ ∈ Perm[{1, 2, . . . , n}] we have

Sσ = con

{
n∑

j=1

eσ(j),

n∑
j=2

eσ(j), . . . ,

n∑
j=n+1

eσ(j)

}
,

where eσ(i) is the σ(i)-th unit vector in Rn.

Proof:
We first show the inclusion

con

{
n∑

j=1

eσ(j),

n∑
j=2

eσ(j), . . . ,

n∑
j=n+1

eσ(j)

}
⊂ Sσ.

Let

y ∈ con

{
n∑

j=1

eσ(j),
n∑

j=2

eσ(j), . . . ,
n∑

j=n+1

eσ(j)

}
.

Then there are λ1, λ2, . . . , λn+1 ∈ [0, 1], such that

y =
n+1∑
i=1

λi

n∑
j=i

eσ(j) and
n+1∑
i=1

λi = 1.

Because

yσ(k) = y · eσ(k) =

(
n+1∑
i=1

λi

n∑
j=i

eσ(j)

)
· eσ(k) =

n+1∑
i=1

n∑
j=i

λiδjk =
k∑

i=1

λi,

it follows that yσ(k) ∈ [0, 1] and yσ(k) ≤ yσ(l) if k ≤ l, so y ∈ Sσ.

We now show the inclusion

Sσ ⊂ con

{
n∑

j=1

eσ(j),

n∑
j=2

eσ(j), . . . ,

n∑
j=n+1

eσ(j)

}
.

Let y ∈ Sσ. Then 0 ≤ yσ(1) ≤ yσ(2) ≤ . . . ≤ yσ(n) ≤ 1. Set λ1 := yσ(1), set λi := yσ(i) − yσ(i−1) for
i = 2, 3, . . . , n, and set λn+1 := 1− yσ(n). Then obviously

∑n+1
i=1 λi = 1 and by Lemma 4.5

y =
n∑

j=1

j∑
i=1

λieσ(j) =
n+1∑
i=1

λi

n∑
j=i

eσ(j),

that is,

y ∈ con

{
n∑

j=1

eσ(j),
n∑

j=2

eσ(j), . . . ,
n∑

j=n+1

eσ(j)

}
.

�

In the next theorem we show that for every α, β ∈ Perm[{1, 2, . . . , n}] the intersection Sα ∩ Sβ is a
simplex, whose vertices are exactly the vertices that are common to Sα and Sβ.
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Theorem 4.7 Let α, β ∈ Perm[{1, 2, . . . , n}]. Then

Sα ∩ Sβ = con{c1, c2, . . . , ck},

where the c1, c2, . . . , ck are the vertices that are common to Sα and Sβ, that is,

{c1, c2, . . . , ck} :=

{
x ∈ Rn

∣∣x =
n∑

j=a

eα(j) =
n∑

j=a

eβ(j) for some a ∈ {1, 2, . . . , n+ 1}

}
.

Proof:
The inclusion Sα ∩ Sβ ⊃ con{c1, c2, . . . , ck} is trivial, so we only have to prove

Sα ∩ Sβ ⊂ con{c1, c2, . . . , ck}. (4.1)

To do this define σ ∈ Perm[{1, 2, . . . , n}] by σ := β−1α and the set

Aσ := {x ∈ {1, 2, . . . , n+ 1}
∣∣σ({1, 2, . . . , x− 1}) = {1, 2, . . . , x− 1}}.

Clearly

Aσ := {x ∈ {1, 2, . . . , n+ 1}
∣∣σ({1, 2, . . . , x− 1}) = {1, 2, . . . , x− 1}}

= {x ∈ {1, 2, . . . , n+ 1}
∣∣σ({x, x+ 1, . . . , n}) = {x, x+ 1, . . . , n}}

= {x ∈ {1, 2, . . . , n+ 1}
∣∣α({x, x+ 1, . . . , n}) = β({x, x+ 1, . . . , n})}

and
n∑

j=a

eα(j) =
n∑

j=b

eβ(j),

if and only if a = b and α({a, a+ 1, . . . , n}) = β({b, b+ 1, . . . , n}).
Hence

{c1, c2, . . . , ck} =

{
n∑

j=a1

eα(j),
n∑

j=a2

eα(j), . . . ,
n∑

j=ak

eα(j)

}
,

where 1 = a1 < a2 < . . . < ak = n+ 1 are the elements of Aσ in an increasing order.

Let x be an arbitrary element in Sα ∩ Sβ. Then there are µi, λi ∈ [0, 1], for i = 1, 2, . . . , n + 1, such
that

n+1∑
i=1

µi =
n+1∑
i=1

λi = 1

and

x =
n+1∑
i=1

µi

n∑
j=i

eα(j) =
n+1∑
i=1

λi

n∑
j=i

eβ(j).

We prove (4.1) by showing by mathematical induction, that µi = λi for all i ∈ {1, 2, . . . , n+ 1} and
that µi = λi = 0 for all i ∈ {1, 2, . . . , n+ 1} \ Aσ.

Lemma 4.5 implies

x =
n∑

j=1

eα(j)

j∑
i=1

µi =
n∑

j=1

eβ(j)

j∑
i=1

λi.
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By comparing the components of the vectors on the left-hand and the right-hand side of this equation,
we see that for every pair (r, s) ∈ {1, 2, . . . , n}2, such that α(r) = β(s), we must have

r∑
i=1

µi =
s∑

i=1

λi,

that is,
m∑

i=1

µi =

σ(m)∑
i=1

λi and
m∑

i=1

λi =

σ−1(m)∑
i=1

µi (4.2)

for all m = 1, 2, . . . , n.

Denote by P (r) the following proposition, in which the number r ∈ N>0 is a variable :
“µi = λi for all i ∈ {1, 2, . . . , ar − 1} and µi = λi = 0 for all i ∈ {1, 2, . . . , ar − 1} \ {a1, a2, . . . , ar−1}"
From the definition of Aσ it follows that a1 = 1, so the proposition P (1) is obviously true. There is
indeed nothing to prove. We now show that for r < k, P (r) implies P (r + 1).

Assume that P (r) is true for some 1 ≤ r < k. Then µi = λi for all i = 1, 2, . . . , ar − 1 and σ(ar) and
σ−1(ar) must be greater than or equal to ar. If σ(ar) = σ−1(ar) = ar, then trivially ar +1 ∈ Aσ, that
is, ar+1 = ar + 1, and it follows from (4.2) that µar = λar , which implies that P (r + 1) is true.

Suppose σ(ar) and σ−1(ar) are greater that ar. Then it follows from (4.2), that

ar∑
i=1

µi =

σ(ar)∑
i=1

λi =
ar−1∑
i=1

µi + λar +

σ(ar)∑
i=ar+1

λi,

that is,

µar = λar +

σ(ar)∑
i=ar+1

λi,

and similarly

λar = µar +

σ−1(ar)∑
i=ar+1

µi.

By adding the two last equation, we see that

σ(ar)∑
i=ar+1

λi +

σ−1(ar)∑
i=ar+1

µi = 0

and because µi, λi ∈ [0, 1] for all i = 1, 2, . . . , n, this implies that

µar+1 = µar+2 = . . . = µσ−1(ar) = 0, λar+1 = λar+2 = . . . = λσ(ar) = 0, and µar = λar .

Define the integers a and b by

a := max{s < ar+1

∣∣µar+1 = µar+2 = . . . = µs = 0}

and
b := max{s < ar+1

∣∣λar+1 = λar+2 = . . . = λs = 0}.
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For all m ∈ {ar + 1, ar + 2, . . . , a} we have

σ(m)∑
i=1

λi =
m∑

i=1

µi =
ar∑
i=1

µi

and because µi = λi for all i = 1, 2, . . . , ar, this implies that

σ(m)∑
i=ar+1

λi = 0

and then
λar+1 = λar+2 = . . . = λσ(m) = 0.

Therefore and because σ(m) < ar+1 for all m = 1, 2, . . . , ar+1 − 1 we have

b ≥ max{σ(m)
∣∣m = ar + 1, ar + 2, . . . , a} = max{σ(m)

∣∣m = 1, 2, . . . , a},

where the equality on the right-hand side is a consequence of σ({1, 2, . . . , ar−1}) = {1, 2, . . . , ar−1}
and b ≥ σ(ar).

The set {σ(m)
∣∣m = 1, 2, . . . , a} is a subset of {1, 2, . . . , n} with a distinct elements, so

max{σ(m)
∣∣m = 1, 2, . . . , a} ≥ a,

that is b ≥ a. With similar reasoning, we can show that a ≥ b. Hence a = b.

We have shown that µar = λar , that there is a constant a, with ar < a < ar+1, such that

µar+1 = µar+2 = . . . = µa = λar+1 = λar+2 = . . . = λa = 0,

and that σ({1, 2, . . . , a}) = {1, 2, . . . , a}. This implies a + 1 = ar+1 ∈ Aσ and that the proposition
P (r + 1) is true, which completes the proof.

�

We now apply the last theorem to prove the general case. That the family of simplices

(z + Sσ)z∈Zn
≥0,σ∈Perm[{1,2,...,n}]

partitions Rn
≥0 such that for every pairs a,b ∈ Zn

≥0 and α, β ∈ Perm[{1, 2, . . . , n}] the intersection of
the sets a + Sα and b + Sβ is a simplex whose vertices are exactly those vertices that are common
to a + Sα and b + Sβ.

Theorem 4.8 Let α, β ∈ Perm[{1, 2, . . . , n}] and sα, sβ ∈ Zn. Let C = {c1, c2, . . . , ck} be the set of
the vertices that are common to the simplices sα + Sα and sβ + Sβ. Then (sα + Sα) ∩ (sβ + Sβ) = ∅
if C = ∅ and

(sα + Sα) ∩ (sβ + Sβ) = con{c1, c2, . . . , ck}

if C 6= ∅.
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Proof:
Obviously C = {c1, c2, . . . , ck} 6= ∅ implies

(sα + Sα) ∩ (sβ + Sβ) ⊃ con{c1, c2, . . . , ck},

and (sα +Sα)∩ (sβ +Sβ) = ∅ implies C = ∅, so we only have to prove that if (sα +Sα)∩ (sβ +Sβ) 6= ∅,
then C = {c1, c2, . . . , ck} 6= ∅ and

(sα + Sα) ∩ (sβ + Sβ) ⊂ con{c1, c2, . . . , ck}.

Assume that (sα + Sα) ∩ (sβ + Sβ) 6= ∅. Because

(sα + Sα) ∩ (sβ + Sβ) = sα + Sα ∩ (z + Sβ),

with z := sβ − sα we consider an arbitrary x ∈ Sα ∩ (z + Sβ). Then there are µi, λi ∈ [0, 1] for
i = 1, 2, . . . , n+ 1, such that

n+1∑
i=1

µi =
n+1∑
i=1

λi = 1

and

x =
n+1∑
i=1

µi

n∑
j=i

eα(j) =
n+1∑
i=1

λi

n∑
j=i

eβ(j) + z =
n+1∑
i=1

λi

(
n∑

j=i

eβ(j) + z

)
. (4.3)

Because Sα, Sβ ⊂ [0, 1]n the components of z must all be equal to −1, 0, or 1.

If zi = −1, then the i-th component of the vectors

n∑
j=1

eβ(j) + z,
n∑

j=2

eβ(j) + z, . . . ,
n∑

j=β−1(i)

eβ(j) + z

is equal to 0 and the i-th component of the vectors

n∑
j=β−1(i)+1

eβ(j) + z,
n∑

j=β−1(i)+2

eβ(j) + z, . . . ,

n∑
j=n+1

eβ(j) + z

is equal to −1. Because xi ≥ 0, this implies that

λβ−1(i)+1 = λβ−1(i)+2 = . . . = λn+1 = 0.

If zi = 1, then the i-th component of the vectors

n∑
j=1

eβ(j) + z,
n∑

j=2

eβ(j) + z, . . . ,
n∑

j=β−1(i)

eβ(j) + z

is equal to 2 and the i-th component of the vectors

n∑
j=β−1(i)+1

eβ(j) + z,
n∑

j=β−1(i)+2

eβ(j) + z, . . . ,

n∑
j=n+1

eβ(j) + z
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is equal to 1. Because xi ≤ 1, this implies that

λ1 = λ2 = . . . = λβ−1(i) = 0.

It follows that there are integers 1 ≤ r ≤ s ≤ n + 1 such that λ1 = λ2 = . . . = λr−1 = 0,
λs+1 = λs+2 = . . . = λn+1 = 0, and the components of the vectors

n∑
j=r

eβ(j) + z,
n∑

j=r+1

eβ(j) + z, . . . ,

n∑
j=s

eβ(j) + z

are all equal to 0 or 1. Let a1, a2, . . . , at−1 be the indices of those components of

n∑
j=r

eβ(j) + z

that are equal to 0. By defining the permutation γ ∈ Perm[{1, 2, . . . , n}] as follows,

γ(i) := ai, for all i = 1, 2, . . . , t− 1,

γ(i) := β(r + i− t), for all i = t, t+ 1, . . . , t+ s− r,

and with {bt+s−r+1, bt+s−r+2, . . . , bn} := {1, 2, . . . , n} \ γ({1, 2, . . . , t+ s− r}),

γ(i) := bi, for all i = t+ s− r + 1, t+ s− r + 2, . . . , n,

we obtain,
n∑

i=t+j

eγ(i) =
n∑

i=r+j

eβ(i) + z. (4.4)

for all j = 0, 1, . . . , s− r. To see this, note that

n∑
i=t

eγ(i)

has all components equal to 1, except for those with an index from the set γ({1, 2, . . . , t− 1}), which
are equal to 0. But from γ({1, 2, . . . , t− 1}) = {a1, a2, . . . , at−1} and the definition of the indices ai,
it follows that

n∑
i=t

eγ(i) =
n∑

i=r

eβ(i) + z.

The equivalence for all j = 0, 1, . . . , s− r then follows from

n∑
i=t+j

eγ(i) =
n∑

i=t

eγ(i) −
t+j−1∑

i=t

eγ(i) =
n∑

i=r

eβ(i) + z−
t+j−1∑

i=t

eβ(r+i−t)

=
n∑

i=r

eβ(i) + z−
r+j−1∑

i=r

eβ(i) =
n∑

i=r+j

eβ(i) + z.

Because of
x ∈ Sα ∩ (z + Sβ)
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and

x =
s∑

i=r

λi

(
n∑

j=i

eβ(j) + z

)
=

t+s−r∑
i=t

λi+r−t

n∑
j=i

eγ(j)

we have
x ∈ Sα ∩ Sγ.

By Theorem 4.7 and equation (4.3), it follows that

x =
l∑

i=1

µui

n∑
j=ui

eα(j) =
l∑

i=1

µui

n∑
j=ui

eγ(j),

where

{u1, u2, . . . , ul} := {y ∈ {1, 2, . . . , n+ 1}
∣∣α({1, 2, . . . , y − 1}) = γ({1, 2, . . . , y − 1})}.

Because the representation of an element of a simplex as a convex sum of its vertices is unique,
some of the u1, u2, . . . , ul must be larger than or equal to t and less than or equal to t + s − r, say
u1, u2, . . . , uk, and we have

n∑
j=ui

eα(j) =
n∑

j=ui+r−t

eβ(j) + z

for all i = 1, 2, . . . , k, that is

C := {c1, c2, . . . , ck} = {sα +
n∑

j=u1

eα(j), sα +
n∑

j=u2

eα(j), . . . , sα +
n∑

j=uk

eα(j)}

and
(sα + Sα) ∩ (sβ + Sβ) = sα + Sα ∩ (z + Sβ) ⊂ con{c1, c2, . . . , ck}.

�

We will use a simplicial partition of Rn, invariable with respect to reflections through the hyperplanes
ei ·x = 0, i = 1, 2, . . . , n, as a domain for the function space of continuous piecewise affine functions.
We will construct such a partition by first partitioning Rn

≥0 into the family (z+Sσ)z∈Zn
≥0, σ∈Perm[{1,2,...,n}]

and then we will extend this partition on Rn by use of the reflection functions RJ , where J ∈
P({1, 2, . . . , n}).

Definition 4.9 (Reflection functions RJ ) For every J ∈ P({1, 2, . . . , n}), we define the reflec-
tion function RJ : Rn −→ Rn,

RJ (x) :=
n∑

i=1

(−1)χJ (i)xiei

for all x ∈ Rn, where χJ : {1, 2, . . . , n} −→ {0, 1} is the characteristic function of the set J .
2

Clearly RJ , where J := {j1, j2, . . . , jk}, represents reflections through the hyperplanes ej1 · x = 0,
ej2 · x = 0, . . . , ejk

· x = 0 in succession.

We now finally have derived a simplicial partition of Rn that qualifies as a definition domain for
continuous piecewise affine functions.
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Theorem 4.10 Let (qz)z∈Zn be a collection of vectors in Rm. Then there is exactly one continuous
function p : Rn −→ Rm with the following properties:

i) p(z) = qz for every z ∈ Zn.

ii) For every J ∈ P({1, 2, . . . , n}), every σ ∈ Perm[{1, 2, . . . , n}], and every z ∈ Zn
≥0, the restric-

tion of the function p to the simplex

RJ (z + Sσ) = con

{
RJ (z +

n∑
j=1

eσ(j)), RJ (z +
n∑

j=2

eσ(j)), . . . , RJ (z +
n∑

j=n+1

eσ(j))

}

is affine.

Proof:
By Corollary 4.3 there is only one candidate for the function p, namely, if

x =
n+1∑
i=1

λiRJ (z +
n∑

j=i

eσ(j))

for some J ∈ P({1, 2, . . . , n}), some σ ∈ Perm[{1, 2, . . . , n}], and some z ∈ Zn
≥0, we must have

p(x) =
n+1∑
i=1

λip(RJ (z +
n∑

j=i

eσ(j))) =
n+1∑
i=1

λiqRJ (z+
∑n

j=i eσ(j))
.

That the function p is properly defined and continuous by this formula is a direct consequence of
Theorem 4.8, Lemma 4.2, Corollary 4.3, and the fact that if x ∈ RI(z + Sα) ∩RJ (z + Sα) for some
I,J ∈ P({1, 2, . . . , n}), some σ ∈ Perm[{1, 2, . . . , n}], and some z ∈ Zn

≥0, then i ∈ I∆J implies
xi = 0, where I∆J denotes the symmetric difference (:= [I ∪ J ] \ [I ∩ J ]) of the sets I and J .

�

After this preparation we have everything we need to define the function spaces CPWA. This will be
done in the next section.

4.2 The function spaces CPWA

In this section we will introduce the function spaces CPWA and derive some results regarding the
functions in these spaces, that will be useful when we prove that a feasible solution to the linear
programming problem we specify in the next chapter can be used to define a CPWA Lyapunov
function.

A CPWA space is a set of continuous affine functions from a subset of Rn into R with a given
boundary configuration. If the subset is compact, then the boundary configuration makes it possible
to parameterize the functions in the respective CPWA space with a finite number of real-valued
parameters. Further, the CPWA spaces are vector spaces over R in the canonical way. They are thus
well suited as a foundation, in the search of a Lyapunov function with a linear programming problem.

We first define the function spaces CPWA for subsets of Rn that are the unions of n-dimensional
cubes.
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Definition 4.11 (CPWA function on a simple grid) Let Z ⊂ Zn, Z 6= ∅, be such that the inte-
rior of the set

N :=
⋃
z∈Z

(z + [0, 1]n),

is connected. The function space CPWA[N ] is then defined as follows.
A function p : N −→ R is in CPWA[N ], if and only if :

i) p is continuous.

ii) For every simplex RJ (z + Sσ) ⊂ N , where z ∈ Zn
≥0, J ∈ P({1, 2, . . . , n}), and σ ∈

Perm[{1, 2, . . .}], the restriction p|RJ (z+Sσ) is affine.
2

It follows by Theorem 4.10 that the set CPWA[N ] is not empty and that its elements are uniquely
determined by their values on the set N ∩ Zn.
We will need continuous piecewise affine functions, defined by their values on grids with smaller grid
steps than one, and we want to use grids with variable grid steps. We achieve this by using images
of Zn under mappings Rn −→ Rn, of which the components are continuous and strictly increasing
functions R −→ R, affine on the intervals [m,m+ 1] for all integers m, and map the origin on itself.
We call such Rn −→ Rn mappings piecewise scaling functions.

Definition 4.12 (Piecewise scaling function) A function PS : Rn −→ Rn is called a piecewise
scaling function, if and only if PS(0) = 0 and

PS(x) := (PS1(x),PS2(x), . . . ,PSn(x)) = (P̃S1(x1), P̃S2(x2), . . . , P̃Sn(xn))

for all x ∈ Rn, where P̃Si ∈ CPWA[R] and is strictly increasing on R for all i = 1, 2, . . . , n. Because
the i-th component of PS only depends on the i-th component of the argument, we will often write
PSi(xi) instead of PSi(x).

2

Note that if yi,j, i = 1, 2, . . . , n and j ∈ Z, are real numbers such that yi,j < yi,j+1 and yi,0 = 0 for
all i = 1, 2, . . . , n and all j ∈ Z, then we can define a piecewise scaling function PS : Rn −→ Rn by
P̃Si(j) := yi,j for all i = 1, 2, . . . , n and all j ∈ Z. Moreover, the piecewise scaling functions Rn −→ Rn

are exactly the functions, that can be constructed in this way.
In the next definition we use piecewise scaling functions to define general CPWA spaces.

Definition 4.13 (CPWA function, general) Let PS : Rn −→ Rn be a piecewise scaling function
and let Z ⊂ Zn, Z 6= ∅, be such that the interior of the set

N :=
⋃
z∈Z

(z + [0, 1]n)

is connected.
The function space CPWA[PS,N ] is defined as

CPWA[PS,N ] := {p ◦PS−1
∣∣ p ∈ CPWA[N ]}

and we denote by S[PS,N ] the set of the simplices in the family

(PS(RJ (z + Sσ)))z∈Zn
≥0, J∈P({1,2,...,n}), σ∈Perm[{1,2,...,n}]

that are contained in the image PS(N ) of N under PS.
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2

Clearly
{x ∈ Rn

∣∣ x is a vertex of a simplex in S[PS,N ]} = PS(N ∩ Zn)

and every function in CPWA[PS,N ] is continuous and is uniquely determined by its values on the
grid PS(N ∩ Zn).
We will use functions from CPWA[PS,N ] to approximate functions in C2(PS(N )), that have
bounded second order derivatives. The next lemma gives an upper bound of the approximation
error of such a linearization.

Lemma 4.14 Let σ ∈ Perm[{1, 2, . . . , n}], let J ∈ P({1, 2, . . . , n}), let z ∈ Zn
≥0, let RJ be a

reflection function, and let PS be a piecewise scaling function. Denote by S the n-simplex that is the
convex combination of the vertices

yi := PS(RJ (z +
n+1∑
j=i

eσ(j))), i = 1, 2, . . . , n+ 1,

and let f ∈ C2(U) be a function defined on a domain S ⊂ U ⊂ Rn. For every i = 1, 2, . . . , n+ 1 and
every k = 1, 2, . . . , n define the constant

Ak,i := |ek · (yi − yn+1)|

and for every r, s = 1, 2, . . . , n let Brs be a constant, such that

Brs ≥ max
x∈S

∣∣∣∣ ∂2f

∂xr∂xs

(x)

∣∣∣∣ .
Define for every i = 1, 2, . . . , n+ 1 the constant

Ei :=
1

2

n∑
r,s=1

BrsAr,i(As,1 + As,i).

Then for every convex combination

y :=
n+1∑
i=1

λiyi, (4.5)

of the vertices of the simplex S we have∣∣∣∣∣f(y)−
n+1∑
i=1

λif(yi)

∣∣∣∣∣ ≤
n+1∑
i=1

λiEi.

Proof:
Let y be as in equation (4.5). Then, by Taylor’s theorem, there is a vector yx on the line-segment
between yn+1 and y, such that

f(y) = f(yn+1) +∇f(yn+1) · (y − yn+1) +
1

2

n∑
r,s=1

[er · (y − yn+1)][es · (y − yn+1)]
∂2f

∂xr∂xs

(yx)

=
n+1∑
i=1

λi

(
f(yn+1) +∇f(yn+1) · (yi − yn+1)

+
1

2

n∑
r,s=1

[er · (yi − yn+1)][es · (y − yn+1)]
∂2f

∂xr∂xs

(yx)
)
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and for every i = 1, 2, . . . , n there is a vector yi,x on the line-segment between yi and yn+1 such that

f(yi) = f(yn+1) +∇f(yn+1) · (yi − yn+1) +
1

2

n∑
r,s=1

[er · (yi − yn+1)][es · (yi − yn+1)]
∂2f

∂xr∂xs

(yi,x) .

Further, because a simplex is a convex set, the vectors yx and y1,x,y2,x, . . . ,yn,x are all in S. But
then∣∣∣∣∣f(y)−

n+1∑
i=1

λif(yi)

∣∣∣∣∣ ≤ 1

2

n+1∑
i=1

λi

n∑
r,s=1

|er · (yi − yn+1)| (|es · (y − yn+1)|+ |es · (yi − yn+1)|)Brs

=
1

2

n+1∑
i=1

λi

n∑
r,s=1

BrsAr,i (|es · (y − yn+1)|+ As,i)

and because

|es · (y − yn+1)| ≤
n+1∑
i=1

λi|es · (yi − yn+1)| ≤ |es · (y1 − yn+1)| = As,1

it follows that ∣∣∣∣∣f(y)−
n+1∑
i=1

λif(yi)

∣∣∣∣∣ ≤ 1

2

n+1∑
i=1

λi

n∑
r,s=1

BrsAr,i(As,1 + As,i) =
n+1∑
i=1

λiEi.

�

An affine function p, defined on a simplex S ⊂ Rn and with values in R, has the algebraic form
p(x) = w ·x+ q, where w is a constant vector in Rn and q is constant in R. Another characterization
of p is given by specifying its values at the vertices as stated by Lemma 4.2. The next lemma gives a
formula for the components of the vector w when the values of p at the vertices of S are known and
S is a simplex in S[PS,N ].

Lemma 4.15 Let PS : Rn −→ Rn be a piecewise scaling function, let z ∈ Zn
≥0, let J ∈

P({1, 2, . . . , n}), let σ ∈ Perm[{1, 2, . . . , n}], and let p(x) := w · x + q be an affine function de-
fined on the n-simplex with the vertices

yi := PS(RJ (z +
n∑

j=i

eσ(j))), i = 1, 2, . . . , n.

Then

w =
n∑

i=1

p(yi)− p(yi+1)

eσ(i) · (yi − yi+1)
eσ(i).

Proof:
For any i ∈ {1, 2, . . . , n} we have

p(yi)− p(yi+1) = w · (yi − yi+1) =
n∑

k=1

wσ(k)[eσ(k) · (yi − yi+1)] = wσ(i)[eσ(i) · (yi − yi+1)]

because the components of the vectors yi and yi+1 are all equal with except of the σ(i)-th one. But
then

wσ(i) =
p(yi)− p(yi+1)

eσ(i) · (yi − yi+1)

and we have finished the proof.
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�

In this chapter we have defined the function spaces CPWA and we have proved some important
properties of the functions in these spaces. In the next chapter we will state our linear programming
problem, of which every feasible solution parameterizes a CPWA Lyapunov function for the Switched
System 1.9 used in the derivation of its linear constraints.
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Chapter 5

A linear programming problem to construct
Lyapunov functions for arbitrary switched
systems

In this chapter we define a linear programming problem, of which every feasible solution parameterizes
a Lyapunov function for the Switched System 1.9. The Lyapunov function is of class CPWA. In the
first section we define the linear programming problem in Definition 5.1. In the definition the linear
constraints are grouped into four classes, LC1, LC2, LC3, and LC4, for linear constraints 1, 2, 3,
and 4 respectively. In the sections thereafter we show how the variables of the linear programming
problem that fulfill these constraints can be used to parameterize functions that meet the conditions
(L1) and (L2) of Definition 2.17, the definition of a Lyapunov function. Then we state and discuss
the results in Section 5.7 and in Section 5.8 we consider a simpler linear programming, defined in
Definition 5.5, for autonomous systems and we show that it is equivalent to the linear programming
problem in Definition 5.1 with additional constraints that force the parameterized CPWA Lyapunov
function to be time-invariant.

5.1 The definition of the linear programming problem

The next definition plays a central role in this work. It is generalization of the linear programming
problems presented in [36], [35], [11], and [10] to serve the nonautonomous Switched System 1.9.

Definition 5.1 (Linear programming problem LP({fp
∣∣p ∈ P},N ,PS, t,D, ‖ · ‖)) Consider

the Switched System 1.9 and assume that there are real-valued constants 0 ≤ T ′ < T ′′ such that the
functions fp, p ∈ P, are all in [C2([T ′, T ′′]×U)]n. Let PS : Rn −→ Rn be a piecewise scaling function
and N ⊂ U be such that the interior of the set

M :=
⋃
z∈Zn

PS(z+[0,1]n)⊂N

PS(z + [0, 1]n)

is a connected set that contains the origin. Let ‖ · ‖ be an arbitrary norm on Rn and let

D := PS( ]d−1 , d
+
1 [× ]d−2 , d

+
2 [× . . . × ]d−n , d

+
n [ )

87
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be a set, of which the closure is contained in the interior of M, and either D = ∅ or d−i and d+
i are

integers such that d−i ≤ −1 and 1 ≤ d+
i for every i = 1, 2, . . . , n. Finally, let t := (t0, t1, . . . , tM) ∈

RM+1, M ∈ N>0, be a vector such that T ′ =: t0 < t1 < . . . < tM := T ′′.
Before we go on, it is very practical to introduce an alternate notation for the vectors (t,x) ∈ R×Rn,
because it considerably shortens the formulae in the linear programming problem. We identify the time
t with the zeroth component x̃0 of the vector

x̃ := (x̃0, x̃1, . . . , x̃n)

and x with the components 1 to n, that is t := x̃0 and x̃i := xi for all i = 1, 2, . . . , n. Then, the
systems

ẋ = fp(t,x), p ∈ P ,
can be written in the equivalent form

d

dx̃0

x̃ = f̃p(x̃), p ∈ P ,

where

f̃p(x̃) :=
[
f̃p,0(x̃), f̃p,1(x̃), f̃p,2(x̃), . . . , f̃p,n(x̃)

]
:= [1, fp,1(t,x), fp,2(t,x), . . . , fp,n(t,x)] ,

(Recall that fp,i denotes the i-th component of the function fp.)

that is, f̃p,0 := 1 and f̃p,i(x̃) := fp,i(t,x), where x̃ = (t,x), for all p ∈ P and all i = 1, 2, . . . , n.

Further, let PS0 : R −→ R be a piecewise scaling function such that PS0(i) := ti for all i = 0, 1, . . . ,M
and define the piecewise scaling function

P̃S : R× Rn −→ R× Rn

through
P̃S(x̃) :=

[
PS0(x̃0),PS1(x̃1), . . . ,PSn(x̃n))

]
,

that is,
P̃S(x̃) =

[
PS0(t),PS(x)

]
,

where x̃ = (t,x).
We will use the standard orthonormal basis in Rn+1 = R × Rn, but start the indexing at zero (use
e0, e1, . . . , en), that is,

x̃ :=
n∑

i=0

x̃iei = te0 +
n∑

i=1

xiei.

Because we do not have to consider negative time-values t = x̃0 < 0, it is more convenient to use
reflection functions that do always leave the zeroth-component of x̃ = (t,x) unchanged. Therefore,
we define for every reflection function RJ : Rn −→ Rn, where J ⊂ {1, 2, . . . , n}, the function
R̃
J

: R× Rn −→ R× Rn through

R̃
J
(x̃) :=

[
x̃0,RJ (x)

]
:= te0 +

n∑
i=1

(−1)χJ (i)xiei.
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We define the mapping ‖ · ‖∗ : R× Rn −→ R≥0 through

‖(x̃0, x̃1, . . . , x̃n)‖∗ := ‖(x̃1, x̃2, . . . , x̃n)‖.

Then, obviously, ‖x̃‖∗ = ‖x‖ for all x̃ = (t,x) ∈ R× Rn.

The linear programming problem LP({fp
∣∣p ∈ P},N ,PS, t,D, ‖·‖) is now constructed in the following

way :

i) Define the sets

G := {x̃ ∈ R× Rn
∣∣x̃ ∈ P̃S(Z× Zn) ∩

(
[T ′, T ′′]× (M\D)

)
}

and
X ‖·‖ := {‖x‖

∣∣ x ∈ PS(Zn) ∩M}.

The set G is the grid, on which we will derive constraints on the values of the CPWA Lyapunov
function, and X ‖·‖ is the set of distances of all relevant points in the state-space to the origin
with respect to the norm ‖ · ‖.

ii) Define for every σ ∈ Perm[{0, 1, . . . , n}] and every i = 0, 1, . . . , n+ 1 the vector

xσ
i :=

n∑
j=i

eσ(j),

where, of course, the empty sum is interpreted as 0 ∈ R× Rn.

iii) Define the set Z through :
The tuple (z,J ), where z := (z0, z1, . . . , zn) ∈ Z≥0×Zn

≥0 and J ∈ P({1, 2, . . . , n}, is an element
of Z, if and only if

P̃S(R̃
J
(z + [0, 1]n+1)) ⊂ [T ′, T ′′]×

(
M\D

)
.

Note that this definition implies that⋃
(z,J )∈Z

P̃S(R̃
J
(z + [0, 1]n+1)) = [T ′, T ′′]×

(
M\D

)
.

iv) For every (z,J ) ∈ Z, every σ ∈ Perm[{0, 1, . . . , n}], and every i = 0, 1, . . . , n+ 1 we set

y
(z,J )
σ,i := P̃S(R̃

J
(z + xσ

i )).

The vectors y
(z,J )
σ,i are the vertices of the simplices in our simplicial partition of the set [T ′, T ′′]×(

M\D
)
. The position of the simplex is given by (z,J ), where z0 specifies the position in time

and (z1, z2, . . . , zn) specifies the position in the state-space. Further, σ specifies the simplex and
i specifies the vertex of the simplex.

v) Define the set

Y :=
{
{y(z,J )

σ,k ,y
(z,J )
σ,k+1}

∣∣∣σ ∈ Perm[{0, 1, . . . , n}], (z,J ) ∈ Z, and k ∈ {0, 1, . . . , n}
}
.

The set Y is the set of all pairs of neighboring grid points in the grid G.
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vi) For every p ∈ P, every (z,J ) ∈ Z, and every r, s = 0, 1, . . . , n let B(z,J )
p,rs be a real-valued

constant, such that

B(z,J )
p,rs ≥ max

i=1,2,...,n
sup

x̃∈P̃S(R̃
J

(z+[0,1]n+1))

∣∣∣∣∣ ∂2f̃p,i

∂x̃r∂x̃s

(x̃)

∣∣∣∣∣ .
The constants B(z,J )

p,rs are local bounds on the second-order derivatives of the functions f̃p, p ∈ P,
with regard to the infinity norm ‖ · ‖∞, similar to the constants Brs in Lemma 4.14. Note, that
because f̃p,0 := 1, the zeroth-components can be left out in the definition of the B(z,J )

p,rs because
they are identically zero anyways. Further, for every r, s = 0, 1, . . . , n and every x̃ = (t,x),

∂2f̃p,i

∂x̃r∂x̃s

(x̃) =
∂2fp,i

∂xr∂xs

(t,x)

if we read ∂x0 as ∂t on the right-hand side of the equation. Finally, note that if B is real-valued
constant such that

B ≥ sup
x̃∈[T ′,T ′′]×(M\D)

‖ ∂2fp
∂x̃r∂x̃s

(x̃)‖∞, for all p ∈ P and all r, s = 0, 1, . . . , n,

then, of course, we can set B(z,J )
p,rs = B for all p ∈ P, all (z,J ) ∈ Z, and all r, s = 0, 1, . . . , n.

Tighter bounds, however, might save a lot of computational efforts in a search for a feasible
solution to the linear programming problem.

vii) For every (z,J ) ∈ Z, every i, k = 0, 1, . . . , n, and every σ ∈ Perm[{0, 1, . . . , n}], define

A
(z,J )
σ,k,i :=

∣∣∣ek · (y(z,J )
σ,i − y

(z,J )
σ,n+1)

∣∣∣ .
The A(z,J )

σ,k,i are constants similar to the constants Ak,i in Lemma 4.14.

viii) Define the constant
xmin,∂M := min{‖x‖

∣∣x ∈ PS(Zn) ∩ ∂M},
where ∂M is the boundary of the set M.

ix) For every p ∈ P, every (z,J ) ∈ Z, every σ ∈ Perm[{0, 1, . . . , n}], and every i = 0, 1, . . . , n+ 1
set

E
(z,J )
p,σ,i :=

1

2

n∑
r,s=0

B(z,J )
p,rs A

(z,J )
σ,r,i (A

(z,J )
σ,s,i + A

(z,J )
σ,s,0 ). (5.1)

ix) Let ε > 0 and δ > 0 be arbitrary constants.

The variables of the linear programming problem are :

Υ,

Ψ[y], for all y ∈ X ‖·‖,

Γ[y], for all y ∈ X ‖·‖,

V [x̃], for all x̃ ∈ G,
C[{x̃, ỹ}], for all {x̃, ỹ} ∈ Y .
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Considering Definition 2.17, the definition of a Lyapunov function, the variables Ψ[y] correspond to
the function α1, the variables Γ[y] to the function ψ, and the variables V [x̃] to the Lyapunov function
V , the x̃0 component representing the time t. The variables C[{x̃, ỹ}] are local bounds on the gradient
∇x̃V

Lya of the Lyapunov function V Lya to be constructed and Υ is a corresponding global bound.

The linear constraints of the linear programming problem are :

LC1) Let y0, y1, . . . , yK be the elements of X ‖·‖ in an increasing order. Then

Ψ[y0] = Γ[y0] = 0,

εy1 ≤ Ψ[y1],

εy1 ≤ Γ[y1],

and for every i = 1, 2, . . . , K − 1 :

Ψ[yi]−Ψ[yi−1]

yi − yi−1

≤ Ψ[yi+1]−Ψ[yi]

yi+1 − yi

and
Γ[yi]− Γ[yi−1]

yi − yi−1

≤ Γ[yi+1]− Γ[yi]

yi+1 − yi

.

LC2) For every x̃ ∈ G :
Ψ[‖x̃‖∗] ≤ V [x̃].

If D = ∅, then, whenever ‖x̃‖∗ = 0 :
V [x̃] = 0.

If D 6= ∅, then, whenever (x̃1, x̃2, . . . , x̃2) ∈ PS(Zn) ∩ ∂D :

V [x̃] ≤ Ψ[xmin,∂M]− δ.

Further, if D 6= ∅, then for every i = 1, 2, . . . , n and every j = 0, 1, . . . ,M :

V [PS0(j)e0 + PSi(d
−
i )ei] ≤ −Υ · PSi(d

−
i ) and V [PS0(j)e0 + PSi(d

+
i )ei] ≤ Υ · PSi(d

+
i ).

LC3) For every {x̃, ỹ} ∈ Y :

−C[{x̃, ỹ}] · ‖x̃− ỹ‖∞ ≤ V [x̃]− V [ỹ] ≤ C[{x̃, ỹ}] · ‖x̃− ỹ‖∞ ≤ Υ · ‖x̃− ỹ‖∞.

LC4) For every p ∈ P, every (z,J ) ∈ Z, every σ ∈ Perm[{0, 1, . . . , n}], and every i = 0, 1, . . . , n+1 :

−Γ
[
‖y(z,J )

σ,i ‖∗
]
≥

n∑
j=0

(
V [y

(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)
.

As the objective of the linear programming problem is not needed to parameterize a CPWA
Lyapunov function we do not define it here.

2
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Note that the values of the constants ε > 0 and δ > 0 do not affect whether there is a feasible solution
to the linear program or not. If there is a feasible solution for ε := ε′ > 0 and δ := δ′ > 0, then there
is a feasible solution for all ε := ε∗ > 0 and δ := δ∗ > 0. Just multiply the numerical values of all
variables of the feasible solution with

max{ε
∗

ε′
,
δ∗

δ′
}.

Further note that if ‖y(z,J )
σ,i ‖∗ = 0, then f̃p,σ(j)(y

(z,J )
σ,i ) = 0 for all j ∈ {0, 1, . . . , n} such that σ(j) 6= 0

and if σ(j) = 0, then V [y
(z,J )
σ,j ]− V [y

(z,J )
σ,j+1] = 0. Thus, the constraints LC4 reduce to

0 ≥
n∑

j=0

E
(z,J )
p,σ,i C[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}],

which looks contradictory at first glance. However, if ‖y(z,J )
σ,i ‖∗ = 0 then necessarily i = n + 1 and

then

E
(z,J )
p,σ,n+1 :=

1

2

n∑
r,s=0

B(z,J )
p,rs A

(z,J )
σ,r,n+1(A

(z,J )
σ,s,n+1 + A

(z,J )
σ,s,0 ) = 0

because A(z,J )
σ,r,n+1 = 0 for all r = 0, 1, . . . , n.

Finally, if the Switched System 1.9 is autonomous, then we know by Theorem 3.10 that there exists
a time-invariant Lyapunov function for the system. To reflect this fact one is tempted to additionally
include the constraints V [x] = V [y] for every x,y ∈ G such that ‖x − y‖∗ = 0 in the linear
programming problem to limit the search to time-invariant Lyapunov functions. However, as we will
show in Theorem 5.7, this is equivalent to a more simple linear programming problem if the Switched
System 1.9 is autonomous, namely, the linear programming problem defined in Definition 5.5.

In the next sections we prove that a feasible solution to the linear programming problem defined in
Definition 5.1 parameterizes a CPWA Lyapunov function for the Switched System 1.9 used for its
construction. For this proof the variable Υ is not needed. However, it will be needed for the analysis
in Section 5.7.

5.2 Definition of the functions ψ, γ, and V Lya

Let y0, y1, . . . , yK be the elements of X ‖·‖ in an increasing order. We define the piecewise affine
functions ψ, γ : R≥0 −→ R,

ψ(y) := Ψ[yi] +
Ψ[yi+1]−Ψ[yi]

yi+1 − yi

(y − yi)

and
γ(y) := Γ[yi] +

Γ[yi+1]− Γ[yi]

yi+1 − yi

(y − yi),

for all y ∈ [yi, yi+1] and all i = 0, 1, . . . , K − 1. The values of ψ and γ on ]yK ,+∞[ do not really
matter, but to have everything properly defined, we set

ψ(y) := Ψ[yK−1] +
Ψ[yK ]−Ψ[yK−1]

yK − yK−1

(y − yK−1)
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and

γ(y) := Γ[yK−1] +
Γ[yK ]− Γ[yK−1]

yK − yK−1

(y − yK−1)

for all y > yK . Clearly the functions ψ and γ are continuous.

The function V Lya ∈ CPWA[P̃S, P̃S
−1(

[T ′, T ′′]×
(
M\D

))
] is defined by assigning

V Lya(x̃) := V [x̃]

for all x̃ ∈ G. We will sometimes write V Lya(t,x) for V Lya(x̃) and V [t,x] for V [x̃]. It is then to be
understood that t := x̃0 and x := (x̃1, x̃2, . . . , x̃n).

In the next four sections we will successively derive the implications the linear constraints LC1,
LC2, LC3, and LC4 have on the functions ψ, γ, and V Lya .

5.3 Implications of the constraints LC1

Let y0, y1, . . . , yK be the elements of X ‖·‖ in an increasing order. We are going to show that the
constraints LC1 imply, that the functions ψ and γ are convex and strictly increasing on [0,+∞[ .
Because y0 = 0, ψ(y0) = Ψ[y0] = 0, and γ(y0) = Γ[y0] = 0, this means that they are convex K
functions. The constraints are the same for Ψ and Γ, so it suffices to show this for the function ψ.

From the definition of ψ, it is clear that it is continuous and that

ψ(x)− ψ(y)

x− y
=

Ψ[yi+1]−Ψ[yi]

yi+1 − yi

(5.2)

for all x, y ∈ [yi, yi+1] and all i = 0, 1, . . . , K − 1. From y0 = 0, Ψ[y0] = 0, and εy1 ≤ Ψ[y1] we get

ε ≤ Ψ[y1]−Ψ[y0]

y1 − y0

≤ Ψ[y2]−Ψ[y1]

y2 − y1

≤ . . . ≤ Ψ[yK ]−Ψ[yK−1]

yK − yK−1

.

But then D+ψ is a positive and increasing function on R≥0 and it follows from Corollary 2.10, that
ψ is a strictly increasing function.

The function ψ is convex, if and only if for every y ∈ R>0 there are constants ay, by ∈ R, such that

ayy + by = ψ(y) and ayx+ by ≤ ψ(x)

for all x ∈ R≥0 (see, for example, Section 17 in Chapter 11 in [58]). Let y ∈ R>0. Because the function
D+ψ is increasing, it follows by Theorem 2.9, that for every x ∈ R≥0, there is a cx,y ∈ R, such that

ψ(x) = ψ(y) + cx,y(x− y)

and cx,y ≤ D+ψ(y) if x < y and cx,y ≥ D+ψ(y) if x > y. This means that

ψ(x) = ψ(y) + cx,y(x− y) ≥ D+ψ(y)x+ ψ(y)−D+ψ(y)y

for all x ∈ R≥0. Because y was arbitrary, the function ψ is convex.
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5.4 Implications of the constraints LC2

Define the constant
V Lya

∂M,min := min
x∈∂M

t∈[T ′,T ′′]

V Lya(t,x)

and if D 6= ∅ the constant
V Lya

∂D,max := max
x∈∂D

t∈[T ′,T ′′]

V Lya(t,x).

We are going to show that the constraints LC2 imply, that

ψ(‖x‖) ≤ V Lya(t,x) (5.3)

for all t ∈ [T ′, T ′′] and all x ∈M \D and that

V Lya
∂D,max ≤ V Lya

∂M,min − δ

if D 6= ∅.
We first show that they imply, that

ψ(‖x̃‖∗) ≤ V Lya(x̃)

for all x̃ ∈ G, which obviously implies (5.3). Let x̃ ∈ G. Then there is a (z,J ) ∈ Z, a
σ ∈ Perm[{0, 1, . . . , n}], and constants λ0, λ1, . . . , λn+1 ∈ [0, 1], such that

x̃ =
n+1∑
i=0

λiy
(z,J )
σ,i and

n+1∑
i=0

λi = 1.

Then

ψ(‖x̃‖∗) = ψ(‖
n+1∑
i=0

λiy
(z,J )
σ,i ‖∗) ≤ ψ(

n+1∑
i=0

λi‖y(z,J )
σ,i ‖∗)

≤
n+1∑
i=0

λiψ(‖y(z,J )
σ,i ‖∗) =

n+1∑
i=0

λiΨ[‖y(z,J )
σ,i ‖∗] ≤

n+1∑
i=0

λiV [y
(z,J )
σ,i ]

=
n+1∑
i=0

λiV
Lya(y

(z,J )
σ,i ) = V Lya(

n+1∑
i=0

λiy
(z,J )
σ,i ) = V Lya(x̃).

Now consider the case D 6= ∅. From the definition of V Lya and the constants V Lya
∂D,max and V Lya

∂M,min it
is clear, that

V Lya
∂D,max = max

x∈∂D∩PS(Zn)
u=0,1,...,M

V [tu,x]

and
V Lya

∂M,min = min
x∈∂M∩PS(Zn)

u=0,1,...,M

V [tu,x].

Let x ∈ ∂M∩PS(Zn) and u ∈ {0, 1, . . . ,M} be such that V [tu,x] = V Lya
∂M,min, then

V Lya
∂D,max ≤ Ψ[xmin,∂M]− δ = ψ(xmin,∂M)− δ

≤ ψ(‖x‖)− δ ≤ V [tu,x]− δ

= V Lya
∂M,min − δ.
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5.5 Implications of the constraints LC3

The constraints LC3 imply that ∣∣∣∣V [x̃]− V [ỹ]

‖x̃− ỹ‖∞

∣∣∣∣ ≤ C[{x̃, ỹ}] ≤ Υ

for every {x̃, ỹ} ∈ Y and these local bounds C[{x̃, ỹ}] on the gradient ∇x̃V
Lya will be used in the

next section.

5.6 Implications of the constraints LC4

We are going to show that the constraints LC4 and LC3 together imply that

−γ(‖φς(t, t
′, ξ)‖) ≥ lim sup

h→0+

V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t,φς(t, t
′, ξ))

h
(5.4)

for all ς ∈ SP and all (t,φς(t, t
′, ξ)) in the interior of [T ′, T ′′]× (M\D).

Let ς ∈ SP and x̃ := (t,φς(t, t
′, ξ)) in the interior of [T ′, T ′′] × (M \ D) be arbitrary, but fixed

throughout this section, and set x := φς(t, t
′, ξ) and p := ς(t).

We claim that there is a (z,J ) ∈ Z, a σ ∈ Perm[{0, 1, . . . , n}], and constants λ0, λ1, . . . , λn+1 ∈ [0, 1],
such that

x̃ =
n+1∑
i=0

λiy
(z,J )
σ,i ,

n+1∑
i=0

λi = 1, and x̃ + hf̃p(x̃) ∈ con{y(z,J )
σ,0 ,y

(z,J )
σ,1 , . . . ,y

(z,J )
σ,n+1} (5.5)

for all h ∈ [0, a], where a > 0 is some constant.

We prove this claim by a contradiction. Assume that it does not hold true. The vector x̃ is contained
in some of the simplices in the simplicial partition of [T ′, T ′′]×

(
M\D

)
, say S1, S2, . . . , Sk. Simplices

are convex sets so we necessarily have{
x̃ +

1

j
f̃p(x̃)

∣∣j ∈ N>0

}
∩ Si = ∅

for every i = 1, 2, . . . , k. But then there must be a simplex S in the simplicial partition, different to
the simplices S1, S2, . . . , Sk, such that the intersection{

x̃ +
1

j
f̃p(x̃)

∣∣ j ∈ N>0

}
∩ S

contains an infinite number of elements. This implies that there is a sequence in S that converges to
x̃, which is a contradiction, because S is a closed set and x̃ /∈ S. Therefore (5.5) holds true.

Because γ is a convex function, we have

−γ(‖x̃‖∗) ≥ −
n+1∑
i=0

λiΓ
[
‖y(z,J )

σ,i ‖∗
]

(5.6)



96 CHAPTER 5. THE LINEAR PROGRAMMING PROBLEM

as was shown in Section 5.4. From the definition of V Lya it follows, that there is a vector w ∈ R×Rn,
such that

V Lya(ỹ) = w · (ỹ − y
(z,J )
σ,n+1) + V Lya(y

(z,J )
σ,n+1) (5.7)

for all ỹ ∈ con{y(z,J )
σ,0 ,y

(z,J )
σ,1 , . . . ,y

(z,J )
σ,n+1}.

It follows by Hölder’s inequality, that

w · f̃p(x̃) = w ·
n+1∑
i=0

λif̃p(y
(z,J )
σ,i ) + w ·

(
f̃p(x̃)−

n+1∑
i=0

λif̃p(y
(z,J )
σ,i )

)
(5.8)

≤
n+1∑
i=0

λiw · f̃p(y(z,J )
σ,i ) + ‖w‖1‖f̃p(x̃)−

n+1∑
i=0

λif̃p(y
(z,J )
σ,i )‖∞

and by Lemma 4.14 and the assignment in (5.1),

‖f̃p(x̃)−
n+1∑
i=0

λif̃p(y
(z,J )
σ,i )‖∞ = max

j=0,1,...,n

∣∣∣∣∣f̃p,j(x̃)−
n+1∑
i=0

λif̃p,j(y
(z,J )
σ,i )

∣∣∣∣∣
≤ 1

2

n+1∑
i=0

λi

n∑
r,s=0

B(z,J )
p,rs A

(z,J )
σ,r,i (A

(z,J )
σ,s,0 + A

(z,J )
σ,s,i )

≤
n+1∑
i=0

λiE
(z,J )
p,σ,i ,

which implies that we have derived the inequality

w · f̃p(x̃) ≤
n+1∑
i=0

λi

(
w · f̃p(y(z,J )

σ,i ) + ‖w‖1E
(z,J )
p,σ,i

)
. (5.9)

We come to the vector w. By Lemma 4.15, the constraints LC3, and because∣∣∣eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

∣∣∣ = ‖y(z,J )
σ,j − y

(z,J )
σ,j+1‖∞

for all j = 0, 1, . . . , n, we obtain the inequality

‖w‖1 =
n∑

j=0

∣∣∣∣∣V [y
(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

‖y(z,J )
σ,j − y

(z,J )
σ,j+1‖∞

∣∣∣∣∣ ≤
n∑

j=0

C[{y(z,J )
σ,j ,y

(z,J )
σ,j+1}].

This inequality combined with (5.9) gives

w · f̃p(x̃) ≤
n+1∑
i=0

λi

n∑
j=0

(
V [y

(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)
.

(5.10)

We are going to show that inequality (5.10) together with the constraints LC4 imply that inequality
(5.4) holds true. First, note that because V Lya is Lipschitz with a Lipschitz constant, say LV > 0
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with respect to the norm ‖ · ‖, we have

lim sup
h→0+

∣∣∣∣V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t+ h,x + hfp(t,x))

h

∣∣∣∣
≤ lim sup

h→0+
LV

∥∥∥∥φς(t+ h, t′, ξ)− x

h
− fp(t,x)

∥∥∥∥
= LV ‖fp(t,x)− fp(t,x)‖
= 0.

Hence, by Lemma 2.8 and the representation (5.7) of V Lya ,

lim sup
h→0+

V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t,φς(t, t
′, ξ))

h

= lim sup
h→0+

V Lya(x̃ + hf̃p(x̃))− V Lya(x̃)

h

= lim sup
h→0+

hw · f̃p(x̃)

h

= w · f̃p(x̃),

and we obtain by (5.10), LC4, and (5.6) that

lim sup
h→0+

V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t,φς(t, t
′, ξ))

h

= w · f̃p(x̃)

≤
n+1∑
i=0

λi

n∑
j=0

(
V [y

(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)

≤ −
n+1∑
i=1

λiΓ
[
‖y(z,J )

σ,i ‖
]

≤ −γ(‖φς(t, t
′, ξ)‖).

Hence, inequality (5.4) holds true for all ς ∈ SP and all (t,φς(t, t
′, ξ)) in the interior of [T ′, T ′′] ×

(M\D).

5.7 Summary of the results and their consequences

We start by summing up the results in the previous sections in this chapter in a theorem.

Theorem 5.2 (Parametrization of a CPWA Lyapunov function by linear programming)
Consider the linear programming problem LP({fp

∣∣p ∈ P},N ,PS, t,D, ‖ · ‖) in Definition 5.1 and
assume that it possesses a feasible solution. Let the functions ψ, γ, and V Lya be defined as in Section
5.2 from the numerical values of the variables Ψ[x], Γ[x], and V [x̃] from a feasible solution. Then
the inequality

ψ(‖x‖) ≤ V Lya(t,x)
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holds true for all x ∈ M \ D and all t ∈ [T ′, T ′′]. If D = ∅ we have ψ(0) = V Lya(t,0) = 0 for all
t ∈ [T ′, T ′′]. If D 6= ∅ we have, with

V Lya
∂M,min := min

x∈∂M
t∈[T ′,T ′′]

V Lya(t,x)

and
V Lya

∂D,max := max
x∈∂D

t∈[T ′,T ′′]

V Lya(t,x),

that
V Lya

∂D,max ≤ V Lya
∂M,min − δ.

Further, with φ as the solution to the Switched System 1.9 that we used in the construction of the
linear programming problem, the inequality

−γ(‖φς(t, t
′, ξ)‖) ≥ lim sup

h→0+

V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t,φς(t, t
′, ξ))

h
(5.11)

hold true for all ς ∈ SP and all (t,φς(t, t
′, ξ)) in the interior of [T ′, T ′′]× (M\D).

�

We now come to the important question:

Which information on the stability behavior of the Switched System 1.9 can we extract
from the Lyapunov-like function V Lya defined in Section 5.2 ?

Before we answer this question we discuss the implications secured by a continuously differentiable
Lyapunov function on the stability behavior of a non-switched system to get an idea what we can
expect. To do this consider the system

ẋ = f(t,x),

where f ∈ [C1(R≥0 × V)]n and V is a bounded domain in Rn containing the origin, and assume that
there is a function W ∈ C1(R≥0 × V) and functions a, b, c ∈ K, such that

a(‖ξ‖) ≤ W (t, ξ) ≤ b(‖ξ‖)

for all ξ ∈ V and all t ≥ 0 and

d

dt
W (t,φ(t, t′, ξ)) = [∇xW ](t,φ(t, t′, ξ)) · f(t,φ(t, t′, ξ)) +

∂W

∂t
(t,φ(t, t′, ξ))

≤ −c(‖φ(t, t′, ξ)‖)

for all (t,φ(t, t′, ξ)) ∈ R≥0 × V , where φ is the solution to the differential equation ẋ = f(t,x).

For our analysis we let (t′, ξ) ∈ R≥0 × V be arbitrary but constant and set y(t) := W (t,φ(t, t′, ξ)).
Then y(t′) = W (t′, ξ) and y satisfies the differential inequality

ẏ(t) ≤ −c(b−1(y(t)))

for all t such that φ(t, t′, ξ) ∈ V . Now, assume that there are constants b∗ > 0 and c∗ > 0, such that
b(‖x‖) ≤ b∗‖x‖ and c∗‖ξ‖ ≤ c(‖x‖) for all x ∈ V . In this simple case it is quite simple to derive the
inequality

y(t) ≤ y(t′) exp

(
−c

∗

b∗
(t− t′)

)
,
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which is valid for all t ≥ t′ if
W (t′, ξ) < inf

s≥t′
y∈∂V

W (s,y).

We are going to show that a very similar analysis can be done for a switched system and the
corresponding Lyapunov-like function V Lya if the arbitrary norm ‖ · ‖ used in Definition 5.1 of the
linear programming problem is a p-norm ‖ · ‖p, 1 ≤ p ≤ +∞, but first we prove a technical lemma
that will be used in the proof of the theorem.

Lemma 5.3 Let [a, b[ be an interval in R, −∞ < a < b ≤ +∞, and let y, z : [a, b[−→ R be functions
such that y(a) ≤ z(a), y is continuous, and z is differentiable. Assume that there is a locally Lipschitz
function s : R −→ R such that

D+y(t) ≤ −s(y(t)) and ż(t) = −s(z(t))

for all t ∈ [a, b[ . Then y(t) ≤ z(t) for all t ∈ [a, b[ .

Proof:
Assume that the proposition of the lemma does not hold true. Then there is a t0 ∈ [a, b[ such that
y(t) ≤ z(t) for all t ∈ [a, t0] and an ε > 0 such that y(t) > z(t) for all t ∈ ]t0, t0 + ε]. Let L > 0 be a
local Lipschitz constant for s on the interval [y(t0), y(t0 + ε)]. Then, by Lemma 2.8,

D+(y − z)(t) = D+y(t)− ż(t) ≤ −s(y(t)) + s(z(t)) ≤ L(y(t)− z(t))

for every t ∈ [t0, t0 + ε]. But then, with w(t) := y(t)− z(t) for all t ∈ [a, b[ , we have

lim sup
h→0+

w(t+ h)e−L(t+h) − w(t)e−Lt

h

≤ e−Lt lim sup
h→0+

w(t+ h)(e−Lh − 1)

h
+ e−Lt lim sup

h→0+

w(t+ h)− w(t)

h

= −Le−Ltw(t) + e−LtD+w(t)

≤ −Le−Ltw(t) + Le−Ltw(t)

= 0,

for all t ∈ [t0, t0+ε], which implies, by Corollary 2.10, that the function t 7→ e−Ltw(t) is monotonically
decreasing on the same interval. Because w(t0) = 0 this is contradictory to y(t) > z(t) for all
t ∈ ]t0, t0 + ε] and therefore the proposition of the lemma must hold true. �

We come to the promised theorem, where the implications of the function V Lya on the stability
behavior of the Switched System 1.9 are specified.

Theorem 5.4 (Implications of the Lyapunov function V Lya) Make the same assumptions and
definitions as in Theorem 5.2 and assume additionally that the arbitrary norm ‖ · ‖ in the linear
programming problem LP({fp

∣∣p ∈ P},N ,PS, t,D, ‖ · ‖) is a k-norm 1, 1 ≤ k ≤ +∞. Define the set
T through T := {0} if D = ∅ and

T := D ∪
{

x ∈M \D
∣∣∣ max

t∈[T ′,T ′′]
V Lya(t,x) ≤ V Lya

∂D,max

}
, if D 6= ∅,

1With k-norm we mean the norm ‖x‖k :=
(∑n

i=1 |xi|k
)1/k if 1 ≤ k < +∞ and ‖x‖∞ := maxi=1,2,...,n |xi|.

Unfortunately, these norms are usually called p-norms, which is inappropriate in this context because the alphabet p
is used to index the functions fp, p ∈ P.
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and the set A through

A :=

{
x ∈M \D

∣∣∣ max
t∈[T ′,T ′′]

V Lya(t,x) < V Lya
∂M,min

}
.

Set q := k · (k − 1)−1 if 1 < k < +∞, q := 1 if k = +∞, and q := +∞ if k = 1, and define the
constant

Eq := ‖
n∑

i=1

ei‖q.

Then the following propositions hold true :

i) If φς(t, t
′, ξ) ∈ T for some particular ς ∈ SP , T ′′ ≥ t ≥ T ′, t′ ≥ 0, and ξ ∈ U , then φς(s, t

′, ξ) ∈
T for all s ∈ [t, T ′′].

ii) If φς(t, t
′, ξ) ∈ M \ D for some particular ς ∈ SP , T ′′ ≥ t ≥ T ′, t′ ≥ 0, and ξ ∈ U , then the

inequality

V Lya(s,φς(s, t
′, ξ)) ≤ V Lya(t,φς(t, t

′, ξ)) exp

(
− Υ

εEq

(s− t)

)
(5.12)

holds true for all s such that φς(s
′, t′, ξ) ∈M \D for all t ≤ s′ ≤ s ≤ T ′′.

iii) If φς(t, t
′, ξ) ∈ A for some particular ς ∈ SP , T ′′ ≥ t ≥ T ′, t′ ≥ 0, and ξ ∈ U , then the solution

φς either fulfills inequality (5.12) for all t ≤ s ≤ T ′′, or there is a T ∗ ∈ ]t, T ′′], such that the
solution φς fulfills inequality (5.12) for all t ≤ s ≤ T ∗, φς(T

∗, t′, ξ) ∈ ∂D, and φς(s, t
′, ξ) ∈ T

for all T ∗ ≤ s ≤ T ′′.

Proof:
Proposition i) is trivial if D = ∅. To prove proposition i) when D 6= ∅ define for every κ > 0 the set

Tκ := {x ∈ Rn
∣∣‖x− y‖2 < κ for some y ∈ T }.

Because V Lya
∂D,max ≤ V Lya

∂M,min − δ by Theorem 5.2, it follows that Tκ ⊂ M for all small enough κ > 0.
For every such small κ > 0 notice, that inequality (5.11) and Corollary 2.10 together imply, that if
φς(t, t

′, ξ) ∈ Tκ for some particular ς ∈ SP , T ′′ ≥ t ≥ T ′, t′ ≥ 0, and ξ ∈ U , then φς(s, t
′, ξ) ∈ Tκ for all

s ∈ [t, T ′′]. But then the proposition i) follows, because if φς(t, t
′, ξ) ∈ T , then φς(t, t

′, ξ) ∈
⋂

κ>0 Tκ,
and therefore φς(s, t

′, ξ) ∈
⋂

κ>0 Tκ = T for all s ∈ [t, T ′′].

To prove proposition ii) first note that the linear constraints LC2 and LC3 imply that V Lya(t,x) ≤
Υ‖x‖1 for all t ∈ [T ′, T ′′] and all x ∈M. To see this just notice that at least for one i ∈ {1, 2, . . . , n}
we must have either

xi ≥ PSi(d
+
i ) or xi ≤ PSi(d

−
i )

because x /∈ D. But then either

V Lya(t, xiei) ≤ Υ · PSi(d
+
i ) + Υ · |x1 − PSi(d

+
i )| = Υ|xi|

or
V Lya(t, xiei) ≤ −Υ · PSi(d

−
i ) + Υ · |x1 − PSi(d

−
i )| = Υ|xi|,

so
V Lya(t, xiei) ≤ Υ|xi|,
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which in turn implies, for any j ∈ {1, 2, . . . , n}, j 6= i, that

V Lya(t, xiei + xjej) ≤ V Lya(t, xiei) + Υ|xj| ≤ Υ(|xi|+ |xj|)

and by mathematical induction V Lya(t,x) ≤ Υ‖x‖1.

But then, by Hölder’s inequality,

V Lya(t,x) ≤ Υ‖x‖1 = Υ

(
n∑

i=1

ei

)
·

(
n∑

i=1

|xi|ei

)
≤ ΥEq‖x‖k,

so by the linear constraints LC1 and inequality (5.11), we have for every ς ∈ SP , T ′′ ≥ t ≥ T ′, t′ ≥ 0,
and ξ ∈ U , such that φς(t, t

′, ξ) ∈M \D, that

− ε

ΥEq

V Lya(t,φς(t, t
′, ξ)) ≥ −ε‖φς(t, t

′, ξ)‖k

≥ −γ(‖φς(t, t
′, ξ)‖k)

≥ lim sup
h→0+

V Lya(t+ h,φς(t+ h, t′, ξ))− V Lya(t,φς(t, t
′, ξ))

h
.

The solution to the differential equation ẏ(s) = −ΥEq/ε · y(s) is y(s) = exp[−ΥEq(s − t′)/ε] y(t′).
Hence, by Lemma 5.3,

V (s,φς(s, t
′, ξ)) ≤ V (t,φς(t, t

′, ξ)) exp

(
− Υ

εEq

(s− t)

)
and proposition ii) holds true.

Proposition iii) is a direct consequence of the propositions i) and ii) and the definition of the set A.
It merely states that if it is impossible for a solution to exit the set M\ D at the boundary ∂M,
then it either exits at the boundary ∂D or it does not exit at all.

�

5.8 The autonomous case

As was discussed after Definition 5.1, one is tempted to try to parameterize a time-invariant Lyapunov
function for the Switched System 1.9 if it is autonomous. The reason for this is that we proved in
Theorem 3.10 that if it is autonomous, then there exists a time-invariant Lyapunov function. In the
next definition we present a linear programming problem that does exactly this. It is a generalization
of the linear programming problem presented in [36], [35], [11], and [10] to serve the Switched System
1.9 in the particular case that it is autonomous.

Definition 5.5 (Linear programming problem LP({fp
∣∣p ∈ P},N ,PS,D, ‖ · ‖)) Consider the

Switched System 1.9, assume that it is autonomous, and assume that the functions fp, p ∈ P, are all
in [C2(U)]n (because the fp do not depend on the time t we consider them to be functions U −→ Rn).
Let PS : Rn −→ Rn be a piecewise scaling function and N ⊂ U be such that the interior of the set

M :=
⋃
z∈Zn

PS(z+[0,1]n)⊂N

PS(z + [0, 1]n)
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is a connected set that contains the origin. Let ‖ · ‖ be an arbitrary norm on Rn and let

D := PS( ]d−1 , d
+
1 [× ]d−2 , d

+
2 [× . . . × ]d−n , d

+
n [ )

be a set, of which the closure is contained in the interior of M, and either D = ∅ or d−i and d+
i are

integers such that d−i ≤ −1 and 1 ≤ d+
i for all i = 1, 2, . . . , n.

The linear programming problem LP({fp
∣∣p ∈ P},N ,PS,D, ‖ · ‖) is now constructed in the following

way :

i) Define the sets
Ga := {x ∈ Rn

∣∣x ∈ PS(Zn) ∩
(
M\D

)
}

and
X ‖·‖ := {‖x‖

∣∣ x ∈ PS(Zn) ∩M}.

ii) Define for every σ ∈ Perm[{1, 2, . . . , n}] and every i = 1, . . . , n+ 1 the vector

xσ
i :=

n∑
j=i

eσ(j).

iii) Define the set Za through :

Za :=
{
(z,J ) ∈ Zn

≥0 ×P({1, 2, . . . , n})
∣∣PS(RJ (z + [0, 1]n)) ⊂M\D

}
.

iv) For every (z,J ) ∈ Za, every σ ∈ Perm[{1, 2, . . . , n}], and every i = 1, 2, . . . , n+ 1 we set

y
(z,J )
σ,i := PS(RJ (z + xσ

i )).

v) Define the set

Ya :=
{
{y(z,J )

σ,k ,y
(z,J )
σ,k+1}

∣∣∣σ ∈ Perm[{1, 2, . . . , n}], (z,J ) ∈ Za, and k ∈ {1, 2, . . . , n}
}
.

vi) For every p ∈ P, every (z,J ) ∈ Za, and every r, s = 1, 2, . . . , n let B(z,J )
p,rs be a real-valued

constant, such that

B(z,J )
p,rs ≥ max

i=1,2,...,n
sup

x∈PS(RJ (z+[0,1]n))

∣∣∣∣ ∂2fp,i

∂xr∂xs

(x)

∣∣∣∣ .
vii) For every (z,J ) ∈ Za, every i, k = 1, 2, . . . , n, and every σ ∈ Perm[{1, 2, . . . , n}], define

A
(z,J )
σ,k,i :=

∣∣∣ek · (y(z,J )
σ,i − y

(z,J )
σ,n+1)

∣∣∣ .
viii) Define the constant

xmin,∂M := min{‖x‖
∣∣x ∈ PS(Zn) ∩ ∂M},

where ∂M is the boundary of the set M.

ix) For every p ∈ P, every (z,J ) ∈ Za, every σ ∈ Perm[{1, 2, . . . , n}], and every i = 1, 2, . . . , n+1
set

E
(z,J )
p,σ,i :=

1

2

n∑
r,s=1

B(z,J )
p,rs A

(z,J )
σ,r,i (A

(z,J )
σ,s,i + A

(z,J )
σ,s,1 ). (5.13)
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ix) Let ε > 0 and δ > 0 be arbitrary constants.

The variables of the linear programming problem are :

Υa,

Ψa[y], for all y ∈ X ‖·‖,

Γa[y], for all y ∈ X ‖·‖,

Va[x], for all x ∈ Ga,

Ca[{x,y}], for all {x,y} ∈ Ya.

The linear constraints of the linear programming problem are :

LC1a) Let y0, y1, . . . , yK be the elements of X ‖·‖ in an increasing order. Then

Ψa[y0] = Γa[y0] = 0,

εy1 ≤ Ψa[y1],

εy1 ≤ Γa[y1],

and for every i = 1, 2, . . . , K − 1 :

Ψa[yi]−Ψa[yi−1]

yi − yi−1

≤ Ψa[yi+1]−Ψa[yi]

yi+1 − yi

and
Γa[yi]− Γa[yi−1]

yi − yi−1

≤ Γa[yi+1]− Γa[yi]

yi+1 − yi

.

LC2a) For every x ∈ Ga :
Ψa[‖x‖] ≤ Va[x].

If D = ∅, then :
Va[0] = 0.

If D 6= ∅, then, for every x ∈ PS(Zn) ∩ ∂D :

Va[x] ≤ Ψa[xmin,∂M]− δ.

Further, if D 6= ∅, then for every i = 1, 2, . . . , n :

Va[PSi(d
−
i )ei] ≤ −Υa · PSi(d

−
i ) and Va[PSi(d

+
i )ei] ≤ Υa · PSi(d

+
i ).

LC3a) For every {x,y} ∈ Ya :

−Ca[{x,y}] · ‖x− y‖∞ ≤ Va[x]− Va[y] ≤ Ca[{x,y}] · ‖x− y‖∞ ≤ Υa · ‖x− y‖∞.

LC4a) For every p ∈ P, every (z,J ) ∈ Za, every σ ∈ Perm[{1, 2, . . . , n}], and every i = 1, 2, . . . , n+1 :

−Γa

[
‖y(z,J )

σ,i ‖
]
≥

n∑
j=1

(
Va[y

(z,J )
σ,j ]− Va[y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

fp,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i Ca[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)
.

As the objective of the linear programming problem is not needed to parameterize a CPWA
Lyapunov function we do not define it here.
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2

Obviously, the two first comments after Definition 5.1 apply equally to the linear programming
problem from this definition. Further, if the functions fp, p ∈ P , in Definition 5.5 are linear, then
obviously we can set B(z,J )

p,rs := 0 for all p ∈ P , all (z,J ) ∈ Za, and all r, s = 1, 2, . . . , n, and then the
“error terms" E(z,J )

p,σ,i are all identically zero. Linear problems are thus the most easy to solve with the
linear programming problem because we can drop the variables C[{x,y}] and the constraints LC3
out of the linear programming problem altogether .
If the linear programming problem LP({fp

∣∣p ∈ P},N ,PS,D, ‖ · ‖) from Definition 5.5 possesses a
feasible solution, then we can use this solution to parameterize a time-invariant CPWA Lyapunov
function for the autonomous Switched System 1.9 used in the construction of the linear programming
problem. The definition of the parameterized CPWA Lyapunov function in the autonomous case is
in essence identical to the definition in the nonautonomous case.

Definition 5.6 Assume that

Υa,

Ψa[y], for all y ∈ X ‖·‖,

Γa[y], for all y ∈ X ‖·‖,

Va[x], for all x ∈ Ga,

Ca[{x,y}], for all {x,y} ∈ Ya.

is a feasible solution to the linear programming problem LP({fp
∣∣p ∈ P},N ,PS,D, ‖ · ‖) from Defi-

nition 5.5. Then we define the function V Lya
a trough V Lya

a ∈ CPWA[PS,PS−1
(
M\D

)
] and

V Lya
a (x) := Va[x] for all x ∈ Ga.

Further, we define the function ψa from the numerical values of the variables Ψa[y] and γa from the
numerical values of the variables Γa[y], just as the functions ψ and γ were defined in Section 5.2
from the numerical values of the variables Ψ[y] and Γ[y] respectively. 2

That V Lya
a in Definition 5.6 is a Lyapunov function for the autonomous Switched System 1.9, that is

equivalent to a time-invariant Lyapunov function parameterized by the linear programming problem
LP({fp

∣∣p ∈ P},N ,PS, t,D, ‖ · ‖) from Definition 5.1, is proved in the next theorem.

Theorem 5.7 Consider the Switched System 1.9 and assume that there are real-valued constants
0 ≤ T ′ < T ′′ such that the functions fp, p ∈ P, are all in [C2([T ′, T ′′]× U)]n. Let PS : Rn −→ Rn be
a piecewise scaling function and N ⊂ U be such that the interior of the set

M :=
⋃
z∈Zn

PS(z+[0,1]n)⊂N

PS(z + [0, 1]n)

is a connected set that contains the origin. Let ‖ · ‖ be an arbitrary norm on Rn and let

D := PS( ]d−1 , d
+
1 [× ]d−2 , d

+
2 [× . . . × ]d−n , d

+
n [ )

be a set, of which the closure is contained in the interior of M, and either D = ∅ or d−i and d+
i are

integers such that d−i ≤ −1 and 1 ≤ d+
i for all i = 1, 2, . . . , n. Finally, let t := (t0, t1, . . . , tM) ∈ RM+1,

M ∈ N>0 be a vector such that T ′ =: t0 < t1 < . . . < tM := T ′′.
Assume the the Switched System 1.9 is autonomous. Then, the linear programming problem
LP({fp

∣∣p ∈ P},N ,PS, t,D, ‖ · ‖) from Definition 5.1 with the additional linear constraints :
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LC-A) For every x̃, ỹ ∈ G such that ‖x̃− ỹ‖∗ = 0 :

V [x̃] = V [ỹ].

For every {x̃, ỹ} ∈ Y such that ‖x̃− ỹ‖∗ = 0 :

C[{x̃, ỹ}] = 0.

Is equivalent to the linear programming problem LP({fp
∣∣p ∈ P},N ,PS,D, ‖ · ‖) from Definition 5.5,

in the following sense :

i) If V Lya is a Lyapunov function, defined as in Section 5.2 from a feasible solution to the linear
programming problem LP({fp

∣∣p ∈ P},N ,PS, t,D, ‖ · ‖) from Definition 5.1 that additionally
satisfies the constraints LC-A, then V Lya does not depend on t and we can parameterize a
Lyapunov function W Lya with the linear programming problem LP({fp

∣∣p ∈ P},N ,PS,D, ‖ · ‖)
from Definition 5.5, such that

W Lya(x) = V Lya(T ′,x) for all x ∈M \D.

ii) If W Lya is a Lyapunov function, defined as the function V Lya
a in Definition 5.6, from a feasible

solution to the linear programming problem LP({fp
∣∣p ∈ P},N ,PS,D, ‖·‖) from Definition 5.5,

then we can parameterize a Lyapunov function V Lya by use of the linear programming problem
LP({fp

∣∣p ∈ P},N ,PS, t,D, ‖ · ‖) from Definition 5.1 with LC-A as additional constraints,
such that

V Lya(t,x) = W Lya(x) for all t ∈ [T ′, T ′′] and all x ∈M \D.

In both cases one should use the same numerical values for the bounds B(z,J )
p,rs on the second-order

derivatives of the functions fp, p ∈ P, and for the constants ε and δ.

Proof:
We start by proving proposition i) :

Assume that

Υa,

Ψa[y], for all y ∈ X ‖·‖,

Γa[y], for all y ∈ X ‖·‖,

Va[x], for all x ∈ Ga,

Ca[{x,y}], for all {x,y} ∈ Ya.

is a feasible solution to the linear programming problem LP({fp
∣∣p ∈ P},N ,PS,D, ‖ · ‖) from Defi-

nition 5.5, define Ca[{x,x}] := 0 for all x ∈ Ga, and set

Υ := Υa,

Ψ[y] := Ψa[y], for all y ∈ X ‖·‖,

Γ[y] := Γa[y], for all y ∈ X ‖·‖,

V [x̃] := Va[(x̃1, x̃2, . . . , x̃n)], for all x̃ ∈ G,
C[{x̃, ỹ}] := Ca[{(x̃1, x̃2, . . . , x̃n), (ỹ1, ỹ2, . . . , ỹn)}], for all {x̃, ỹ} ∈ Y .
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We claim that Υ, Ψ[y], Γ[y], V [x̃], and C[{x̃, ỹ}] is a feasible solution to the linear programming prob-
lem LP({fp

∣∣p ∈ P},N ,PS, t,D, ‖ · ‖) from Definition 5.1 that additionally satisfies the constraints

LC-A. If this is the case, then clearly V Lya ∈ CPWA[P̃S, P̃S
−1(

[T ′, T ′′]×
(
M\D

))
], defined through

V Lya(x̃) := V [x̃] for all x̃ ∈ G, is the promised Lyapunov function.

It is a simple task so confirm that they satisfy the constraints LC1, LC2, LC3, and LC-A, so we
only prove that they fulfill the constraints LC4, which is not as obvious.

Let p ∈ P, (z,J ) ∈ Z, σ ∈ Perm[{0, 1, . . . , n}], and i ∈ {0, 1, . . . , n + 1} be arbitrary, but fixed
throughout this part of the proof. We have to show that

−Γ
[
‖y(z,J )

σ,i ‖∗
]
≥

n∑
j=0

(
V [y

(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)
. (5.14)

We define the mapping lσ : {0, 1, . . . , n+ 1} −→ {1, . . . , n+ 1} through

lσ(k) :=

{
k + 1, if 0 ≤ k ≤ σ−1(0),
k, otherwise,

and ς ∈ Perm[{1, 2, . . . , n}] through

ς(k) :=

{
σ(k − 1), if 1 ≤ k ≤ σ−1(0),
σ(k), if σ−1(0) < k ≤ n.

Further, we set
z′ := (z1, z2, . . . , zn), where z = (z0, z1, . . . , zn).

Note that by these definitions and the definitions of y(z,J )
σ,j and y

(z′,J )
ς,j we have for all j = 0, 1, . . . , n+1

and all r = 1, 2, . . . , n, that

er · y(z,J )
σ,j = er · P̃S(R̃

J
(z +

n∑
k=j

eσ(k))) (5.15)

= er ·PS(RJ (z′ +
n∑

k=j
σ(k) 6=0

eσ(k)))

= er ·PS(RJ (z′ +
n∑

k=lσ(j)

eς(k)))

= er · y(z′,J )
ς,lσ(j).

Especially, because lσ(0) = 1, we have

er · y(z,J )
σ,0 = er · y(z′,J )

ς,1 for all r = 1, 2, . . . , n.

But then ‖y(z,J )
σ,i ‖∗ = ‖y(z′,J )

ς,lσ(i)‖ and for every r = 1, 2, . . . , n and every j = 0, 1, . . . , n we have

A
(z,J )
σ,r,j =

∣∣∣er · (y(z,J )
σ,j − y

(z,J )
σ,n+1)

∣∣∣ =
∣∣∣er · (y(z′,J )

ς,lσ(j) − y
(z′,J )
ς,n+1 )

∣∣∣ = A
(z′,J )
ς,r,lσ(j). (5.16)
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Further, because f̃p does not depend on the first argument,

f̃p,σ(j)(y
(z,J )
σ,i ) =

{
1, if σ(j) = 0,
fp,ς(lσ(j))(y

(z′,J )
ς,lσ(i)), if j ∈ {1, 2, . . . , n} \ {σ−1(0)},

(5.17)

and similarly

V [y
(z,J )
σ,j ] = Va[y

(z′,J )
ς,lσ(j)] for all j = 0, 1, . . . , n+ 1, (5.18)

and

C[{y(z,J )
σ,j ,y

(z,J )
σ,j+1}] = Ca[{y(z′,J )

ς,lσ(j),y
(z′,J )
ς,lσ(j+1)] for all j = 0, 1, . . . , n. (5.19)

Especially,

V [y
(z,J )
σ,j ]− V [y

(z,J )
σ,j+1] = C[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}] = 0 if σ(j) = 0. (5.20)

For the bounds B(z,J )
p,rs on the second-order derivatives of fp we demand,

B(z,J )
p,rs ≥ max

i=1,2,...,n
sup

x̃∈P̃S(R̃
J

(z+[0,1]n+1))

∣∣∣∣∣ ∂2f̃p,i

∂x̃r∂x̃s

(x̃)

∣∣∣∣∣ ,
which is compatible with

B(z,J )
p,rs := 0 if r = 0 or s = 0

and

B(z,J )
p,rs := B(z′,J )

p,rs for r, s = 1, 2, . . . , n.

This together with (5.16) implies that

E
(z,J )
p,σ,i :=

1

2

n∑
r,s=0

B(z,J )
p,rs A

(z,J )
σ,r,i (A

(z,J )
σ,s,i + A

(z,J )
σ,s,0 ) (5.21)

=
1

2

n∑
r,s=1

B(z′,J )
p,rs A

(z,J )
ς,r,lσ(i)(A

(z′,J )
ς,s,lσ(i) + A

(z′,J )
ς,s,1 )

= E
(z′,J )
p,ς,lσ(i).

Now, by assumption,

−Γa

[
‖y(z′,J )

ς,lσ(i)‖
]
≥

n∑
j=1

(
Va[y

(z′,J )
ς,j ]− Va[y

(z′,J )
ς,j+1 ]

eς(j) · (y(z′,J )
ς,j − y

(z′,J )
ς,j+1 )

fp,ς(j)(y
(z′,J )
ς,lσ(i)) + E

(z′,J )
p,ς,lσ(i)Ca[{y(z′,J )

ς,j ,y
(z′,J )
ς,j+1 }]

)
,
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so by (5.15), the definition of the function lσ, (5.21), (5.17), (5.18), (5.19), and (5.20), we have

−Γ
[
‖y(z,J )

σ,i ‖∗
]

= −Γa

[
‖y(z′,J )

ς,lσ(i)‖
]

≥
n∑

j=1

(
Va[y

(z′,J )
ς,j ]− Va[y

(z′,J )
ς,j+1 ]

eς(j) · (y(z′,J )
ς,j − y

(z′,J )
ς,j+1 )

fp,ς(j)(y
(z′,J )
ς,lσ(i)) + E

(z′,J )
p,ς,lσ(i)Ca[{y(z′,J )

ς,j ,y
(z′,J )
ς,j+1 }]

)

=
n∑

j=0
σ(j) 6=0

(
Va[y

(z′,J )
ς,lσ(j)]− Va[y

(z′,J )
ς,lσ(j+1)]

eς(lσ(j)) · (y(z′,J )
ς,lσ(j) − y

(z′,J )
ς,lσ(j+1))

fp,ς(lσ(j))(y
(z′,J )
ς,lσ(i)) + E

(z′,J )
p,ς,lσ(i)Ca[{y(z′,J )

ς,lσ(j),y
(z′,J )
ς,lσ(j+1)}]

)

=
n∑

j=0
σ(j) 6=0

(
V [y

(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)

=
n∑

j=0

(
V [y

(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)
and we have proved (5.14).
We now prove proposition ii) :
Assume that

Υ,

Ψ[y], for all y ∈ X ‖·‖,

Γ[y], for all y ∈ X ‖·‖,

V [x̃], for all x̃ ∈ G,
C[{x̃, ỹ}], for all {x̃, ỹ} ∈ Y .

is a solution to the linear programming problem LP({fp
∣∣p ∈ P},N ,PS, t,D, ‖ · ‖) from Definition

5.1 and set

Υa := Υ,

Ψa[y] := Ψ[y], for all y ∈ X ‖·‖,

Γa[y] := Γ[y], for all y ∈ X ‖·‖,

Va[x] := V [(T ′,x)], for all x ∈ Ga,

Ca[{x,y}] := C[{(T ′,x), (T ′,y)}], for all {x,y} ∈ Ya.

We claim that, with these numerical values, the variables Υa, Ψa[y], Γa[y], Va[x], and Ca[{x,y}] are
a solution to the linear programming problem LP({fp

∣∣p ∈ P},N ,PS,D, ‖ · ‖) from Definition 5.5,
that

V Lya ∈ CPWA[P̃S, P̃S
−1(

[T ′, T ′′]×
(
M\D

))
], defined through V Lya(x̃) := V [x̃] for all x̃ ∈ G,

does not depend on the first argument, and that W Lya ∈ CPWA[PS,PS−1,M\D], defined through
W Lya(x) := Va[x] for all x ∈ Ga, is the promised Lyapunov function.
First we prove that the function values of V Lya do not depend on the first argument. To do this
it is obviously enough to show that this holds true for every simplex in the simplicial partition of
[T ′, T ′′]×

(
M\D

)
. Let (z,J ) ∈ Z and σ ∈ Perm[{0, 1, . . . , n}] be arbitrary and let

x̃, ỹ ∈ con{y(z,J )
σ,0 ,y

(z,J )
σ,1 , . . . ,y

(z,J )
σ,n+1}
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such that
er · x̃ = er · ỹ for all r = 1, 2, . . . , n.

We are going to show that V Lya(x̃) = V Lya(ỹ).

Set k := σ−1(0) and let λ0, λ1, . . . , λn+1 ∈ [0, 1] and µ0, µ1, . . . , µn+1 ∈ [0, 1] be such that

x̃ =
n+1∑
i=0

λiy
(z,J )
σ,i , ỹ =

n+1∑
i=0

µiy
(z,J )
σ,i , and

n+1∑
i=0

λi =
n+1∑
i=0

µi = 1.

From the definition of the y
(z,J )
σ,i it follows that :

eσ(0) ·
n+1∑
i=0

λiy
(z,J )
σ,i = eσ(0) ·

n+1∑
i=0

µiy
(z,J )
σ,i from which λ0 = µ0 follows,

which implies

eσ(1) ·
n+1∑
i=1

λiy
(z,J )
σ,i = eσ(1) ·

n+1∑
i=1

µiy
(z,J )
σ,i from which λ1 = µ1 follows,

...

which implies

eσ(k−1) ·
n+1∑

i=k−1

λiy
(z,J )
σ,i = eσ(k−1) ·

n+1∑
i=k−1

µiy
(z,J )
σ,i from which λk−1 = µk−1 follows,

which implies

eσ(k+1) ·
n+1∑
i=k

λiy
(z,J )
σ,i = eσ(k+1) ·

n+1∑
i=k

µiy
(z,J )
σ,i from which λk + λk+1 = µk + µk+1 follows,

which implies

eσ(k+2) ·
n+1∑

i=k+2

λiy
(z,J )
σ,i = eσ(k+2) ·

n+1∑
i=k+2

µiy
(z,J )
σ,i from which λk+2 = µk+2 follows,

...

which implies

eσ(n) ·
n+1∑
i=n

λiy
(z,J )
σ,i = eσ(n) ·

n+1∑
i=n

µiy
(z,J )
σ,i from which λn = µn follows.
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But then λn+1 = µn+1 and because by LC-A we have V [y
(z,J )
σ,k ] = V [y

(z,J )
σ,k+1] we get

V Lya(x̃) = V Lya(
n+1∑
i=0

λiy
(z,J )
σ,i ) =

n+1∑
i=0

λiV [y
(z,J )
σ,i ]

=
n+1∑
i=0

i6=k,k+1

λiV [y
(z,J )
σ,i ] + (λk + λk+1)V [y

(z,J )
σ,k ]

=
n+1∑
i=0

i6=k,k+1

µiV [y
(z,J )
σ,i ] + (µk + µk+1)V [y

(z,J )
σ,k ]

=
n+1∑
i=0

µiV [y
(z,J )
σ,i ] = V Lya(

n+1∑
i=0

µiy
(z,J )
σ,i )

= V Lya(ỹ)

and we have proved that V Lya does not depend on the first argument.

Now, let p ∈ P , (z,J ) ∈ Za, σ ∈ Perm[{1, 2, . . . , n}], and i ∈ {1, 2, . . . , n+1} be arbitrary, but fixed
throughout the rest of the proof. To finish the proof we have to show that

−Γa

[
‖y(z,J )

σ,i ‖
]
≥

n∑
j=1

(
Va[y

(z,J )
σ,j ]− Va[y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

fp,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i Ca[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)
. (5.22)

We define ς ∈ Perm[{0, 1, 2, . . . , n}] trough

ς(k) :=

{
0, if k = 0,

σ(k), if k ∈ {1, 2, . . . , n},

and z′ ∈ G through

z′ := (T ′, z1, z2, . . . , zn), where z = (z1, z2, . . . , zn).

Then, for every r = 1, 2, . . . , n, one easily verifies that

er · y(z′,J )
ς,0 = er · y(z′,J )

ς,1

and, for all r = 1, 2, . . . , n and all j = 1, 2, . . . , n+ 1, that

er · y(z′,J )
ς,j = er · P̃S(R̃

J
(z′ +

n∑
k=j

eς(k))) = er ·PS(RJ (z +
n∑

k=j

eσ(k))) = er · y(z,J )
σ,j . (5.23)

But then ‖y(z′,J )
ς,i ‖∗ = ‖y(z,J )

σ,i ‖ and for every r = 1, 2, . . . , n

A
(z′,J )
ς,r,0 =

∣∣∣er · (y(z′,J )
ς,0 − y

(z′,J )
ς,n+1 )

∣∣∣ =
∣∣∣er · (y(z,J )

σ,1 − y
(z,J )
σ,n+1)

∣∣∣ = A
(z,J )
σ,r,1 . (5.24)

and for every every j, r = 1, 2, . . . , n we have

A
(z′,J )
ς,r,j =

∣∣∣er · (y(z′,J )
ς,j − y

(z′,J )
ς,n+1 )

∣∣∣ =
∣∣∣er · (y(z,J )

σ,j − y
(z,J )
σ,n+1)

∣∣∣ = A
(z,J )
σ,r,j . (5.25)
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For every k = 0, 1, . . . ,M define

zk := (tk, z1, z2, . . . , zn), where z := (z1, z2, . . . , zn),

and define for every r, s = 1, 2, . . . , n

B(z,J )
p,rs := min

k=0,1,...,n
B(zk,J )

p,rs .

Now set
B

(zk,J )
p,00 := 0 for all k = 0, 1, . . . ,M

and
B(zk,J )

p,rs := B(z,J )
p,rs for all k = 0, 1, . . . ,M and all r, s = 1, 2, . . . , n,

and consider, that with these possibly tighter bounds B(zk,J )
p,rs in the linear programming problem

LP({fp
∣∣p ∈ P},N ,PS, t,D, ‖ · ‖), the Υ, Ψ[y], Γ[y], V [x̃], and C[{x̃, ỹ}] are, of course, still a

solution. Therefore we can just as well assume that these were the bounds ab initio.

It follows by (5.25) that

E
(z′,J )
p,ς,i =

1

2

n∑
r,s=0

B(z′,J )
p,rs A

(z′,J )
ς,r,i (A

(z′,J )
ς,s,i + A

(z,J )
ς,s,0 ) (5.26)

=
1

2

n∑
r,s=1

B(z,J )
p,rs A

(z,J )
σ,r,i (A

(z,J )
σ,s,i + A

(z,J )
σ,s,1 )

= E
(z,J )
p,σ,i .

By assumption

−Γ
[
‖y(z′,J )

ς,i ‖∗
]
≥

n∑
j=0

(
V [y

(z′,J )
ς,j ]− V [y

(z′,J )
ς,j+1 ]

eς(j) · (y(z′,J )
ς,j − y

(z′,J )
ς,j+1 )

f̃p,ς(j)(y
(z′,J )
ς,i ) + E

(z′,J )
p,ς,i C[{y(z′,J )

ς,j ,y
(z′,J )
ς,j+1 }]

)
,

so, by (5.23), LC-A, because fp does not depend on the first argument, and (5.26), we get

−Γ
[
‖y(z,J )

σ,i ‖
]

= −Γ
[
‖y(z′,J )

ς,i ‖∗
]

≥
n∑

j=0

(
V [y

(z′,J )
ς,j ]− V [y

(z′,J )
ς,j+1 ]

eς(j) · (y(z′,J )
ς,j − y

(z′,J )
ς,j+1 )

f̃p,ς(j)(y
(z′,J )
ς,i ) + E

(z′,J )
p,ς,i C[{y(z′,J )

ς,j ,y
(z′,J )
ς,j+1 }]

)

=
n∑

j=1

(
Va[y

(z,J )
σ,j ]− Va[y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

fp,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i Ca[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)

and we have proved (5.22) and finished the proof.
�

An immediate consequence of Theorem 5.7 is a theorem, similar to Theorem 5.2, but for autonomous
systems with a time-invariant CPWA Lyapunov function.
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Theorem 5.8 (Parametrization of a CPWA Lyapunov function by linear programming)
Consider the linear programming problem LP({fp

∣∣p ∈ P},N ,PS,D, ‖ · ‖) from Definition 5.5 and
assume that it possesses a feasible solution. Let the functions ψa, γa, and V Lya

a be defined as in
Definition 5.6 from the numerical values of the variables Ψa[x], Γa[x], and Va[x̃] from a feasible
solution. Then the inequality

ψa(‖x‖) ≤ V Lya
a (x)

holds true for all x ∈M \D. If D = ∅ we have ψa(0) = V Lya
a (t,0) = 0. If D 6= ∅ we have, with

V Lya
∂M,min := min

x∈∂M
V Lya

a (x)

and
V Lya

∂D,max := max
x∈∂D

V Lya
a (x),

that
V Lya

∂D,max ≤ V Lya
∂M,min − δ.

Further, with φ as the solution to the Switched System 1.9 that we used in the construction of the
linear programming problem, the inequality

−γa(‖φς(t, ξ)‖) ≥ lim sup
h→0+

V Lya(φς(t+ h, ξ))− V Lya(φς(t, ξ))

h

hold true for all ς ∈ SP and all ξ in the interior of M\D.

Proof:
Follows directly by Theorem 5.2 and Theorem 5.7. �

We end this discussion with a theorem, that is the equivalent of Theorem 5.4 for autonomous systems
with a time-invariant CPWA Lyapunov function, parameterized by the linear programming problem
LP({fp

∣∣p ∈ P},N ,PS,D, ‖ · ‖) from Definition 5.5. It states some stability properties the system
must have, if it possesses such a Lyapunov function.

Theorem 5.9 (Implications of the Lyapunov function V Lya
a ) Make the same assumptions and

definitions as in Theorem 5.2 and assume additionally that the arbitrary norm ‖ · ‖ in the linear
programming problem LP({fp

∣∣p ∈ P},N ,PS,D, ‖ · ‖) is a k-norm 2, 1 ≤ k ≤ +∞. Define the set T
through T := {0} if D = ∅ and

T := D ∪
{
x ∈M \D

∣∣∣ V Lya
a (x) ≤ V Lya

∂D,max

}
, if D 6= ∅,

and the set A through
A :=

{
x ∈M \D

∣∣∣ V Lya(x) < V Lya
∂M,min

}
.

Set q := k · (k − 1)−1 if 1 < k < +∞, q := 1 if k = +∞, and q := +∞ if k = 1, and define the
constant

Eq := ‖
n∑

i=1

ei‖q.

Then the following propositions hold true :

2With k-norm we mean the norm ‖x‖k :=
(∑n

i=1 |xi|k
)1/k if 1 ≤ k < +∞ and ‖x‖∞ := maxi=1,2,...,n |xi|.

Unfortunately, these norms are usually called p-norms, which is inappropriate in this context because the alphabet p
is used to index the functions fp, p ∈ P.
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i) If ξ ∈ T , then φσ(t, ξ) ∈ T for all σ ∈ SP and all t ≥ 0.

ii) If ξ ∈M \D, the inequality

V Lya
a (φσ(t, ξ)) ≤ V Lya

a (ξ) exp

(
− Υa

εEq

t

)
(5.27)

holds true for all t such that φσ(t′, ξ) ∈M \D for all 0 ≤ t′ ≤ t.

iii) If ξ ∈ A \ T and D = ∅, then inequality (5.27) holds true for all t ≥ 0 and all σ ∈ SP . If
ξ ∈ A\T and D 6= ∅, then, for every σ ∈ SP there is a t′ ≥ 0, such that inequality (5.27) holds
true for all 0 ≤ t ≤ t′, φσ(t′, ξ) ∈ ∂T , and φσ(t, ξ) ∈ T for all t ≥ t′.

Proof:
Follows directly by Theorem 5.4.

�
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Chapter 6

Constructive converse theorems

Consider the Switched System 1.9 and assume that the set P is finite. In this chapter we will
prove that whenever this system possesses a two-times continuously differentiable Lyapunov function,
then it is always possible to parameterize a Lyapunov function for the system by use of the linear
programming problem in Definition 5.1. Further, we will prove that if the Switched System 1.9 is
autonomous, then we can alternatively use the linear programming problem from Definition 5.5 to
parameterize a time-invariant Lyapunov function for the system.

We will start by showing how to combine the results from Theorem 3.10, a non-constructive converse
Lyapunov theorem, and the linear programming problem from Definition 5.1, to prove a construc-
tive converse Lyapunov theorem. We will do this for the general, not necessarily autonomous, case.
Thereafter, we will do the same for autonomous switched systems and we will prove that in this
case, we can parameterize a time-invariant Lyapunov function by the use of the linear programming
problem from Definition 5.5.

The structure of this chapter is somewhat unconventional because we start with a proof of the yet
to be stated Theorem 6.1. In the proof we assign values to the constants and to the variables of
the linear programming problem such that a feasible solution results. By these assignments we will
use the numerical values of the Lyapunov function from Theorem 3.10. Note, that because Theorem
3.10 is a pure existence theorem, the numerical values of this Lyapunov function are not known.
However, our knowledge about these numerical values and their relations is substantial. Indeed, we
have enough information to prove that the linear constraints LC1, LC2, LC3, and LC4, of the
linear programming problem in Definition 5.1 are fulfilled by the numerical values we assign to the
variables and to the constants. Because there are well-known algorithms to find a feasible solution to
a linear programming problem if the set of feasible solutions is not empty, this implies that we can
always parameterize a Lyapunov function by the use of the linear programming problem in Definition
5.1, whenever the underlying system possesses a Lyapunov function at all.

6.1 The assumptions

Consider the Switched System 1.9 and assume that the set P is finite and that fp is a [C2(R≥0×U)]n

function for every p ∈ P. Further, assume that there is a constant a > 0 such that [−a, a]n ⊂ U
and W ∈ C2(R≥0 × [−a, a]n) is a Lyapunov function for the switched system. By Theorem 3.10, for
example, this is the case if the functions fp are globally Lipschitz in the time argument and locally
Lipschitz in the state-space argument, the origin is a uniformly asymptotically stable equilibrium of

115
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the Switched System 1.9, and [−a, a]n is a subset of its region of attraction. By Definition 2.17 there
exist, for an arbitrary norm ‖ · ‖ on Rn, class K functions α, β, and ω, such that

α(‖x‖) ≤ W (t,x) ≤ β(‖x‖)

and
[∇xW ](t,x) · fp(t,x) +

∂W

∂t
(t,x) ≤ −ω(‖x‖) (6.1)

for all (t,x) ∈ R>0× ] − a, a[n and all p ∈ P . Further, by Lemma 2.13, we can assume without loss
of generality that α and ω are convex functions. Now, let 0 ≤ T ′ < T ′′ < +∞ be arbitrary and
let D′ ⊂ [−a, a]n be an arbitrary neighborhood of the origin. Especially, the set D′ 6= ∅ can be
taken as small as one wishes. We are going to prove that we can parameterize a CPWA Lyapunov
function on the set [T ′, T ′′] ×

(
[−a, a]n \ D′). We will start by assigning values to the constants

and the variables of the linear programming problem LP({fp
∣∣p ∈ P}, ] − a, a[n,PS, t,D, ‖ · ‖) in

Definition 5.1. This includes that we define the piecewise scaling function PS, the vector t, and the
set D ⊂ D′. Thereafter, we will prove that the linear constraints of the linear programming problem
are all fulfilled by these values.

6.2 The assignments

First, we determine a constant B that is an upper bound on all second-order derivatives of the
components of the functions fp, p ∈ P . That is, with x̃ = (x̃0, x̃1, . . . , x̃n) := (t,x) and

f̃p(x̃) = (f̃p,0(x̃), f̃p,1(x̃), . . . , f̃p,n(x̃)) = (1, fp,1(t,x), fp,2(t,x), . . . , fp,n(t,x)),

we need a constant B < +∞ such that

B ≥ max
p∈P

i,r,s=0,1,...,n
x̃∈[T ′,T ′′]×[−a,a]n

∣∣∣∣∣ ∂2f̃p,i

∂x̃r∂x̃s

(x̃)

∣∣∣∣∣ .
We must, at least in principle, be able to assign a numerical value to the constant B. This is in
contrast to the rest of the constants and variables, where the mere knowledge of the existence of the
appropriate values suffices. However, because B is an arbitrary upper bound (no assumptions are
needed about its quality) on the second-order partial derivatives of the components of the functions
fp on the compact set [T ′, T ′′]× [−a, a]n, this should not cause any difficulties if the algebraic form of
the components is known. It might sound strange that the mere existence of the appropriate values
to be assigned to the other variables suffices in a constructive theorem. However, as we will prove in
this chapter, if they exist then the simplex algorithm, for example, will successfully determine valid
values for them.

With
x∗min := min

‖x‖∞=a
‖x‖

we set
δ :=

α(x∗min)

2

and let m∗ be a strictly positive integer, such that

[− a

2m∗ ,
a

2m∗ ]
n ⊂ {x ∈ Rn

∣∣β(‖x‖) ≤ δ} ∩ D′ (6.2)
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and set
D := ]− a

2m∗ ,
a

2m∗ [
n.

Note that we do not know the numerical values of the constants δ and m∗ because α and β are
unknown. However, their mere existence allows us to properly define δ and m∗. We will keep on
introducing constants in this way. Their existence is secured in the sense that there exists a constant
with the following property.

Set

x∗ := 2−m∗
x∗min,

ω∗ :=
1

2
ω(x∗),

ε := min{ω∗, α(y1)/y1},

where y1 is the second smallest element in X ‖·‖, and

A∗ := sup
p∈P

x̃∈[T ′,T ′′]×[−a,a]n

‖f̃p(x̃)‖2.

We define W̃ (x̃) := W (t,x), where x̃ := (t,x), and assign

C := max
r=0,1,...,n

x̃∈[T ′,T ′′]×[−a,a]n

∣∣∣∣∣∂W̃∂x̃r

(x̃)

∣∣∣∣∣ ,
B∗ := (n+ 1)

3
2 · max

r,s=0,1,...,n
x̃∈[T ′,T ′′]×[−a,a]n

∣∣∣∣∣ ∂2W̃

∂x̃r∂x̃s

(x̃)

∣∣∣∣∣ ,
and

C∗ := (n+ 1)3CB.

We set
a∗ := max{T ′′ − T ′, a}

and let m ≥ m∗ be an integer, such that

a∗

2m
≤
√

(A∗B∗)2 + 4x∗ω∗C∗ − A∗B∗

2C∗ ,

and set
d := 2m−m∗

.

We define the piecewise scaling function PS : Rn −→ Rn through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn)

for all (j1, j2, . . . , jn) ∈ Zn and the vector t,

t := (t0, t1, . . . , t2m),

where
tj := T ′ + 2−mj(T ′′ − T ′)
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for all j = 0, 1, . . . , 2m.

We assign the following values to the variables and the remaining constants of the linear programming
problem LP({fp

∣∣p ∈ P},N ,PS, t,D, ‖ · ‖):

B(z,J )
p,rs := B, for all p ∈ P , all (z,J ) ∈ Z, and all r, s = 0, 1, . . . , n,

Ψ[y] := α(y), for all y ∈ X ‖·‖,

Γ[y] := ω∗y, for all y ∈ X ‖·‖,

V [x̃] := W̃ (x̃) for all x̃ ∈ G,
C[{x̃, ỹ}] := C, for all {x̃, ỹ} ∈ Y ,

Υ := max

{
C, a−12m∗ · max

i=1,2,...,n
β(a2−m∗‖ei‖)

}
.

We now show that the linear constraints LC1, LC2, LC3, and LC4 of the linear programming
problem LP({fp

∣∣p ∈ P},N ,PS, t,D, ‖ · ‖) are satisfied by these values.

6.3 The constraints LC1 are fulfilled

Let y0, y1, . . . , yK be the elements of X ‖·‖ in an increasing order. We have to show that Ψ[y0] =
Γ[y0] = 0, εy1 ≤ Ψ[y1], εy1 ≤ Γ[y1], and that for every i = 1, 2, . . . , K − 1:

Ψ[yi]−Ψ[yi−1]

yi − yi−1

≤ Ψ[yi+1]−Ψ[yi]

yi+1 − yi

and
Γ[yi]− Γ[yi−1]

yi − yi−1

≤ Γ[yi+1]− Γ[yi]

yi+1 − yi

.

Proof:
Clearly Ψ[y0] = Γ[y0] = 0 because y0 = 0 and

εy1 ≤ ω∗y1 = Γ[y1] and εy1 ≤
α(y1)

y1

y1 = Ψ[y1].

Because α is convex we have for all i = 1, 2, . . . , K − 1 that

yi − yi−1

yi+1 − yi−1

α(yi+1) +
yi+1 − yi

yi+1 − yi−1

α(yi−1) ≥ α(yi),

that is
α(yi)− α(yi−1)

yi − yi−1

=
Ψ[yi]−Ψ[yi−1]

yi − yi−1

≤ Ψ[yi+1]−Ψ[yi]

yi+1 − yi

=
α(yi+1)− α(yi)

yi+1 − yi

.

Finally, we clearly have for every i = 1, 2, . . . , K − 1 that

ω∗

2
=

Γ[yi]− Γ[yi−1]

yi − yi−1

≤ Γ[yi+1]− Γ[yi]

yi+1 − yi

=
ω∗

2
.

�
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6.4 The constraints LC2 are fulfilled

We have to show that for every x̃ ∈ G we have

Ψ[‖x̃‖∗] ≤ V [x̃],

that for every x̃ = (x̃0, x̃1, . . . , x̃n), such that (x̃1, x̃2, . . . , x̃n) ∈ PS(Zn) ∩ ∂D we have

V [x̃] ≤ Ψ[xmin,∂M]− δ,

and that for every i = 1, 2, . . . , n and every j = 0, 1, . . . , 2m we have

V [PS0(j)e0 + PSi(d
−
i )ei] ≤ −ΥPS(d−i ) and V [PS0(j)e0 + PSi(d

−
i )ei] ≤ ΥPSi(d

+
i ).

Proof:

Clearly,
Ψ[‖x̃‖∗] = α(‖x̃‖∗) ≤ W̃ (x̃) = V [x̃]

for all x̃ ∈ G.

For every x̃ = (x̃0, x̃1, . . . , x̃n), such that (x̃1, x̃2, . . . , x̃n) ∈ PS(Zn) ∩ ∂D, we have by (6.2) that

V [x̃] = W̃ (x̃) ≤ β(‖x̃‖∗) ≤ δ = α(x∗min)− δ ≤ α(xmin,∂M)− δ = Ψ[xmin,∂M]− δ.

Finally, note that d+
i = −d−i = d = 2m−m∗ for all i = 1, 2, . . . , n, which implies that for every

i = 1, 2, . . . , n and j = 0, 1, . . . , 2m we have

V [PS0(j)e0 + PS(d+
i )ei] = V [PS0(j)e0 + a2−m∗

ei]

= W (tj, a2
−m∗

ei)

≤ β(a2−m∗‖ei‖)
≤ Υa2−m∗

= Υ · PSi(d
+
i )

and

V [PS0(j)e0 + PS(d−i )ei] = V [PS0(j)e0 − a2−m∗
ei]

= W (tj,−a2−m∗
ei)

≤ β(a2−m∗‖ei‖)
≤ Υa2−m∗

= −Υ · PS(d−i ).
�

6.5 The constraints LC3 are fulfilled

We must show that for every {x̃, ỹ} ∈ Y :

−C[{x̃, ỹ}] · ‖x̃− ỹ‖∞ ≤ V [x̃]− V [ỹ] ≤ C[{x̃, ỹ}] · ‖x̃− ỹ‖∞ ≤ Υ · ‖x̃− ỹ‖∞.
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Proof:
Let {x̃, ỹ} ∈ Y . Then there is an i ∈ {0, 1, . . . , n} such that x̃− ỹ = ±ei‖x̃− ỹ‖∞. By the Mean-value
theorem there is a ϑ ∈ ]0, 1[ such that∣∣∣∣V [x̃]− V [ỹ]

‖x̃− ỹ‖∞

∣∣∣∣ =

∣∣∣∣∣W̃ (x̃)− W̃ (ỹ)

‖x̃− ỹ‖∞

∣∣∣∣∣ =

∣∣∣∣∣∂W̃∂x̃i

(ỹ + ϑ(x̃− ỹ))

∣∣∣∣∣ .
Hence, by the definition of the constants C and Υ,∣∣∣∣V [x̃]− V [ỹ]

‖x̃− ỹ‖∞

∣∣∣∣ ≤ C ≤ Υ,

which implies that the constraints LC3 are fulfilled. �

6.6 The constraints LC4 are fulfilled

Let p ∈ P , (z,J ) ∈ Z, σ ∈ Perm[{0, 1, . . . , n}], and i ∈ {0, 1, . . . , n + 1} be arbitrary. We have to
show that

−Γ
[
‖y(z,J )

σ,i ‖∗
]
≥

n∑
j=0

(
V [y

(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)
. (6.3)

Proof:
With the values we have assigned to the variables and the constants of the linear programming
problem we have for every p ∈ P, every (z,J ) ∈ Z, every σ ∈ Perm[{0, 1, . . . , n}], every i, j =
0, 1, . . . , n, and with h := a∗2−m, that

A
(z,J )
σ,i,j ≤ h,

E
(z,J )
p,σ,i :=

1

2

n∑
r,s=0

B(z,J )
p,rs A

(z,J )
σ,r,i (A

(z,J )
σ,s,i + A

(z,J )
σ,s,1 ) ≤ (n+ 1)2Bh2,

and
n∑

j=0

C[{y(z,J )
σ,j ,y

(z,J )
σ,j+1}] ≤ (n+ 1)C.

Hence, inequality (6.3) follows if we can prove that

−Γ
[
‖y(z,J )

σ,i ‖∗
]

= −ω∗‖y(z,J )
σ,i ‖∗ ≥

n∑
j=0

W̃ (y
(z,J )
σ,j )− W̃ (y

(z,J )
σ,j+1)

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i ) + C∗h2. (6.4)

Now, by the Cauchy-Schwarz inequality and inequality (6.1),
n∑

j=0

W̃ (y
(z,J )
σ,j )− W̃ (y

(z,J )
σ,j+1)

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i )

=
n∑

j=0

(
W̃ (y

(z,J )
σ,j )− W̃ (y

(z,J )
σ,j+1)

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

− ∂W̃

∂x̃σ(j)

(y
(z,J )
σ,i )

)
f̃p,σ(j)(y

(z,J )
σ,i ) +∇x̃W̃ (y

(z,J )
σ,i ) · f̃p(y(z,J )

σ,i )

≤ −ω(‖y(z,J )
σ,i ‖∗) +

∥∥∥∥∥
n∑

j=0

(
W̃ (y

(z,J )
σ,j )− W̃ (y

(z,J )
σ,j+1)

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

− ∂W̃

∂x̃σ(j)

(y
(z,J )
σ,i )

)
ej

∥∥∥∥∥
2

‖f̃p(y(z,J )
σ,i )‖2.
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By the Mean-value theorem there is an y on the line-segment between the vectors y
(z,J )
σ,j and y

(z,J )
σ,j+1,

such that
W̃ (y

(z,J )
σ,j )− W̃ (y

(z,J )
σ,j+1)

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

=
∂W̃

∂x̃σ(j)

(y)

and an y∗ on the line-segment between the vectors y and y
(z,J )
σ,i such that

∂W̃

∂x̃σ(j)

(y)− ∂W̃

∂x̃σ(j)

(y
(z,J )
σ,i ) =

[
∇x̃

∂W̃

∂x̃σ(j)

]
(y∗) · (y − y

(z,J )
σ,i ).

Because y and y
(z,J )
σ,i are both elements of the simplex PS(RJ (z + Sσ)), we have

‖y − y
(z,J )
σ,i ‖2 ≤ h

√
n+ 1

and because ∥∥∥∥∥
[
∇x̃

∂W̃

∂x̃σ(j)

]
(y∗)

∥∥∥∥∥
2

≤
√
n+ 1 · max

r,s=0,1,...,n
x̃∈[T ′,T ′′]×[−a,a]n

∣∣∣∣∣ ∂2W̃

∂x̃r∂x̃s

(x̃)

∣∣∣∣∣ ,
we obtain ∥∥∥∥∥

n∑
j=0

(
W̃ (y

(z,J )
σ,j )− W̃ (y

(z,J )
σ,j+1)

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

− ∂W̃

∂x̃σ(j)

(y
(z,J )
σ,i )

)
ej

∥∥∥∥∥
2

≤ hB∗.

Finally, by the definition of A∗,
‖f̃p(y(z,J )

σ,i )‖2 ≤ A∗.

Putting the pieces together delivers the inequality
n∑

j=0

W̃ (y
(z,J )
σ,j )− W̃ (y

(z,J )
σ,j+1)

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i ) ≤ hB∗A∗ − ω(‖y(z,J )

σ,i ‖∗).

From this inequality and because ω(x) ≥ 2ω∗x for all x ≥ x∗ and because of the fact that ‖y(z,J )
σ,i ‖∗ ≥

x∗, inequality (6.4) holds true if

−ω∗‖y(z,J )
σ,i ‖∗ ≥ hA∗B∗ − 2ω∗‖y(z,J )

σ,i ‖∗ + h2C∗.

But, this last inequality follows from

h :=
a∗

2m
≤
√

(A∗B∗)2 + 4x∗ω∗C∗ − A∗B∗

2C∗ ,

which implies
0 ≥ hA∗B∗ − ω∗x∗ + h2C∗ ≥ hA∗B∗ − ω∗‖y(z,J )

σ,i ‖∗ + h2C∗.

Because p ∈ P , (z,J ) ∈ Z, σ ∈ Perm[{0, 1, . . . , n}], and i ∈ {0, 1, . . . , n+1} were arbitrary, we have
finished the proof. �

In the last proof we took care of that the second order polynomial

P (z) := z2C∗ + zA∗B∗ − ω∗x∗

has two distinct real-valued roots, one smaller than zero and one larger then zero. Further, because
h := a∗2−m > 0 is not larger than the positive root, we have P (h) ≤ 0, which is exactly what we
need in the proof so that everything adds up.
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6.7 Summary of the results

In this chapter we have, among other things, delivered a proof of the following theorem :

Theorem 6.1 (Constructive converse theorem for arbitrary switched systems) Consider
the Switched System 1.9 where P is a finite set, let a > 0 be a real-valued constant such that
[−a, a]n ⊂ U , and assume that at least one of the following two assumptions holds true :

i) There exists a Lyapunov function W ∈ C2(R≥0 × [−a, a]n) for the Switched System 1.9.

ii) The functions fp are all Lipschitz on the set R≥0 × [−a, a]n, the origin is a uniformly asymp-
totically stable equilibrium point of the Switched System 1.9, and the set [−a, a]n is contained
in its region of attraction.

Then, for every constants 0 ≤ T ′ < T ′′ < +∞ and every neighborhood N ⊂ [−a, a]n of the origin,
no matter how small, it is possible to parameterize a Lyapunov function V Lya of class CPWA,

V Lya : [T ′, T ′′]×
(
[−a, a]n \ N

)
−→ R,

for the Switched System 1.9 by using the linear programming problem defined in Definition 5.1.

More concrete : Let m be a positive integer and define the piecewise scaling function PS : Rn −→ Rn,
the set D, and the vector t of the linear programming problem through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn),

D := ]− 2k a

2m
, 2k a

2m
[n⊂ N ,

for some integer 1 ≤ k < m, and

t := (t0, t1, . . . , tM), where ti := T ′ + j2−m(T ′′ − T ′) for all j = 0, 1, . . . , 2m.

Then, the linear programming problem LP({fp
∣∣p ∈ P}, [−a, a]n,PS, t,D, ‖ · ‖) in Definition 5.1

possesses a feasible solution, whenever m is large enough.

Proof:
Note that by Theorem 3.10 assumption ii) implies assumption i). But then, by the arguments already
delivered in this section, the propositions of the theorem follow.

�

Note that we have, in this chapter, actually proved substantially more than stated in Theorem 6.1.
Namely, we did derive formulae for the values of the parameters that are needed to initialize the
linear programming problem in Definition 5.1. These formulae do depend on the unknown Lyapunov
function W , so we cannot extract the numerical values. However, these formulae are concrete enough
to derive the promised algorithm to generate a CPWA Lyapunov function. This will be done in the
next chapter.
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6.8 The autonomous case

Theorem 6.2 (Constructive converse theorem for autonomous switched systems)
Consider the Switched System 1.9 where P is a finite set and assume that it is autonomous. Let
a > 0 be a real-valued constant such that [−a, a]n ⊂ U , and assume that at least one of the following
two assumptions holds true :

i) There exists a Lyapunov function W ∈ C2([−a, a]n) for the Switched System 1.9.

ii) The functions fp are all locally Lipschitz, the origin is an asymptotically stable equilibrium point
of the Switched System 1.9, and the set [−a, a]n is contained in its region of attraction.

Then, for every neighborhood N ⊂ [−a, a]n of the origin, no matter how small, it is possible to
parameterize a time-invariant Lyapunov function V Lya of class CPWA,

V Lya : [−a, a]n \ N −→ R,

for the Switched System 1.9 by using the linear programming problem from Definition 5.5.

More concrete : Let m be a positive integer and define the piecewise scaling function PS : Rn −→ Rn

and the set D of the linear programming problem through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn)

and
D := ]− 2k a

2m
, 2k a

2m
[n⊂ N ,

for some integer 1 ≤ k < m.

Then, the linear programming problem LP({fp
∣∣p ∈ P}, [−a, a]n,PS,D, ‖ · ‖) in Definition 5.5 pos-

sesses a feasible solution, whenever m is large enough.

The proof is essentially a slimmed down version of the proof in the last section, so we will not go
very thoroughly into details.
Proof:
First, note that by Theorem 3.10 assumption ii) implies assumption i), so in both cases there are
class K functions α, β, and ω, and a function W ∈ C2([−a, a]n) −→ R, such that

α(‖x‖) ≤ W (x) ≤ β(‖x‖)

and

∇W (x) · fp(x) ≤ −ω(‖x‖)

for all x ∈ ]−a, a[ n and all p ∈ P . Further, by Lemma 2.13, we can assume without loss of generality
that α and ω are convex functions. With

x∗min := min
‖x‖∞=a

‖x‖

we set
δ :=

α(x∗min)

2
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and let m∗ be a strictly positive integer, such that

[− a

2m∗ ,
a

2m∗ ]
n ⊂ {x ∈ Rn

∣∣β(‖x‖) ≤ δ} ∩ N .

Set

x∗ := min
‖x‖∞=a2−m∗

‖x‖,

ω∗ :=
1

2
ω(x∗),

ε := min{ω∗, α(y1)/y1},

where y1 is the second smallest element of X ‖·‖,

C := max
i=1,2,...,n
x∈[−a,a]n

∣∣∣∣∂W∂xi

(x)

∣∣∣∣ ,
and determine a constant B such that

B ≥ max
p∈P

i,r,s=1,2,...,n
x∈[−a,a]n

∣∣∣∣ ∂2fp,i

∂xr∂xs

(x)

∣∣∣∣ .
Assign

A∗ := sup
p∈P

x∈[−a,a]n

‖fp(x)‖2,

B∗ := n
3
2 · max

r,s=1,2,...,n
x∈[−a,a]n

∣∣∣∣ ∂2W

∂xr∂xs

(x)

∣∣∣∣ ,
C∗ := n3BC,

and let m ≥ m∗ be an integer such that

a

2m
≤
√

(A∗B∗)2 + 4x∗ω∗C∗ − A∗B∗

2C∗

and set
d := 2m−m∗

.

With y := a2−m(0, 1, . . . , 2m) we assign the following values to the variables and the remaining
constants of the linear programming problem LP({fp

∣∣p ∈ P}, [−a, a]n,PS,D, ‖ · ‖):

B(z,J )
rs := B, for all (z,J ) ∈ Za and all r, s = 1, 2, . . . , n,

Ψa[x] := α(x), for all x ∈ X ‖·‖,

Γa[x] := ω∗x, for all x ∈ X ‖·‖,

Va[x] := W (x) for all x ∈ Ga,

Ca[{x,y}] := C, for all {x,y} ∈ Ya.

Now, that the linear constraints LC1a, LC2a, and LC3a are all satisfied follows very similarly to
how the linear constraints LC1, LC2, and LC3 follow in the nonautonomous case, so we only show
that the constraints LC4a are fulfilled.
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Let (z,J ) ∈ Za, σ ∈ Perm[{1, 2, . . . , n}], and i ∈ {1, 2, . . . , n+ 1} be arbitrary, but fixed throughout
the rest of the proof. We have to show that

−Γa[‖y(z,J )
σ,i ‖] ≥

n∑
j=1

Va[y
(z,J )
σ,j ]− Va[y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

fp,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i

n∑
j=1

Ca[{y(z,J )
σ,j ,y

(z,J )
σ,j+1}]. (6.5)

With the values we have assigned to the variables and the constants of the linear programming
problem, inequality (6.5) holds true if

−ω∗‖y(z,J )
σ,i ‖ ≥

n∑
j=1

W [y
(z,J )
σ,j ]−W [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

fσ(j)(y
(z,J )
σ,i ) + h2C∗

with h := a2−m. Now, by the Mean-value theorem and because ω(x) ≥ 2ω∗x for all x ≥ x∗,

n∑
j=1

W [y
(z,J )
σ,j ]−W [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

fσ(j)(y
(z,J )
σ,i ) + h2C∗

=
n∑

j=1

(
W [y

(z,J )
σ,j ]−W [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

− ∂W

∂ξσ(j)

(y
(z,J )
σ,i )

)
fσ(j)(y

(z,J )
σ,i ) +∇W (y

(z,J )
σ,i ) · f(y(z,J )

σ,i ) + h2C∗

≤

∥∥∥∥∥
n∑

j=1

(
W [y

(z,J )
σ,j ]−W [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

− ∂W

∂ξσ(j)

(y
(z,J )
σ,i )

)
ej

∥∥∥∥∥
2

‖fσ(j)(y
(z,J )
σ,i )‖2 − ω(‖y(z,J )

σ,i ‖) + h2C∗

≤ B∗hA∗ − 2ω∗‖y(z,J )
σ,i ‖+ h2C∗.

Hence, if
−ω∗‖y(z,J )

σ,i ‖ ≥ hA∗B∗ − 2ω∗‖y(z,J )
σ,i ‖+ h2C∗,

inequality (6.5) follows. But, this last inequality follows from

h :=
a

2m
≤
√

(A∗B∗)2 + 4x∗ω∗C∗ − A∗B∗

2C∗ ,

which implies
0 ≥ hA∗B∗ − ω∗x∗ + h2C∗ ≥ hA∗B∗ − ω∗‖y(z,J )

σ,i ‖+ h2C∗.
�

In the next chapter we will use Theorem 6.1 to derive an algorithm to parameterize a CPWA Lya-
punov function for the Switched System 1.9 and, if the Switched System 1.9 is autonomous, we will
use Theorem 6.2 to derive an algorithm to parameterize a time-invariant CPWA Lyapunov function
for the system.
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Chapter 7

Algorithms to construct Lyapunov functions

In this chapter we use the results from Theorem 6.1 and Theorem 6.2 to prove that the systematic
scan of the parameters of the linear programming problem from Definition 5.1 in Procedure 7.1 is an
algorithm to construct Lyapunov functions for the Switched System 1.9, whenever one exists, and
that Procedure 7.3 is an algorithm to construct time-invariant Lyapunov functions for the Switched
System 1.9 if it is autonomous, again, whenever one exists. However, first we will give a short
discussion on algorithms, because we intend to prove that our procedure to generate Lyapunov
functions is concordant with the concept of an algorithm, whenever the system in question possesses
a Lyapunov function.

7.1 What is an algorithm?

Donald Knuth writes in his classic work The Art of Computer Programming on algorithms [25]:

The modern meaning for algorithm is quite similar to that of recipe, process, method, tech-
nique, procedure, routine, rigmarole, except that the word “algorithm" connotes something
just a little different. Besides merely being a finite set of rules that gives a sequence of
operations for solving a specific type of problem, an algorithm has five important features:

1) Finiteness. An algorithm must always terminate in a finite number of steps. [. . . ]

2) Definiteness. Each step of an algorithm must be precisely defined; the actions to
be carried out must be be rigorously and unambiguously specified for each case. [. . . ]

3) Input. An algorithm has zero or more inputs : quantities that are given to it initially
before the algorithm begins, or dynamically as the algorithm runs. These inputs are
taken from specified sets of objects. [. . . ]

4) Output. An algorithm has one or more outputs : quantities that have a specified
relation to the inputs. [. . . ]

5) Effectiveness. An algorithm is also generally expected to be effective, in the sense
that its operations must all be sufficiently basic that they can in principle be done
exactly and in a finite length of time by someone using pencil and paper.
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The construction scheme for a Lyapunov function we are going to derive here does comply to all
of these features whenever the equilibrium at the origin is uniformly asymptotically stable, and is
therefore an algorithm to construct Lyapunov functions for arbitrary switched systems possessing a
uniformly asymptotically stable equilibrium.

7.2 The algorithm in the nonautonomous case

We begin by defining a procedure to construct Lyapunov functions and then we prove that it is an
algorithm to construct Lyapunov functions for arbitrary switched systems possessing a uniformly
asymptotically stable equilibrium.

Procedure 7.1 Consider the Switched System 1.9 where P is a finite set, let a > 0 be a constant
such that [−a, a]n ⊂ U , and let N ⊂ U be an arbitrary neighborhood of the origin. Further, let T ′ and
T ′′ be arbitrary real-valued constants such that 0 ≤ T ′ < T ′′ and let ‖ · ‖ be an arbitrary norm on Rn.

First, we have to determine a constant B such that

B ≥ max
p∈P

i,r,s=0,1,...,n
x̃∈[T ′,T ′′]×[−a,a]n

∣∣∣∣∣ ∂2f̃p,i

∂x̃r∂x̃s

(x̃)

∣∣∣∣∣ .
The procedure has two integer variables that have to be initialized, namely m and N . They should be
initialized as follows : Set N := 0 and assign the smallest possible positive integer to m such that

]− a2−m, a2−m[ n ⊂ N .

The procedure consists of the following steps :

i) Define the piecewise scaling function PS : Rn −→ Rn and the vector t := (t0, t1, . . . , t2m),
through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn), for all (j1, j2, . . . , jn) ∈ Zn

and
ti := T ′ + i

T ′′ − T ′

2m
, for i = 0, 1, . . . , 2m.

ii) For every N∗ = 0, 1, . . . , N we do the following :
Generate the linear programming problem

LP({fp
∣∣p ∈ P}, [−a, a]n,PS, t, ]− a2N∗−m, a2N∗−m[, ‖ · ‖)

as defined in Definition 5.1 and check whether it possesses a feasible solution or not. If one of
the linear programming problems possesses a feasible solution, then go to step iii). If none of
them possesses a feasible solution, then assign m := m+1 and N := N +1 and go back to step
i).

iii) Use the feasible solution to parameterize a CPWA Lyapunov function for the Switched System
1.9 as described in Section 5.2.

2
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After all the preparation we have done, the proof that Procedure 7.1 is an algorithm to construct
Lyapunov functions for arbitrary switched systems possessing a uniformly asymptotically stable
equilibrium is remarkably short.

Theorem 7.2 (Procedure 7.1 is an algorithm) Consider the Switched System 1.9 where P is a
finite set, let a > 0 be a constant such that [−a, a]n ⊂ U , and assume further, that at least one of the
following two assumptions holds true :

i) There exists a Lyapunov function W ∈ C2(R≥0 × [−a, a]n) for the Switched System 1.9.

ii) The functions fp are all Lipschitz on the set R≥0 × [−a, a]n, the origin is a uniformly asymp-
totically stable equilibrium point of the Switched System 1.9, and the set [−a, a]n is contained
in its region of attraction.

Then, for every constants 0 ≤ T ′ < T ′′ < +∞ and every neighborhood N ⊂ [−a, a]n of the origin,
no matter how small, the Procedure 7.1 delivers, in a finite number of steps, a CPWA Lyapunov
function V Lya ,

V Lya : [T ′, T ′′]×
(
[−a, a]n \ N

)
−→ R,

for the Switched System 1.9.

Proof:
Follows directly from what we have shown in the last chapter. With the same notations as there, the
linear programming problem

LP({fp
∣∣p ∈ P}, [−a, a]n,PS, t, ]− a2N∗−m, a2N∗−m[, ‖ · ‖)

possesses a feasible solution, when m is so large that

max{T ′′ − T ′, a}
2m

≤
√

(A∗B∗)2 + 4x∗ω∗C∗ − A∗B∗

2C∗

and N∗, 0 ≤ N∗ ≤ N , is such that

[−a2
N∗

2m
,
a2N∗

2m
]n ⊂ {x ∈ Rn

∣∣β(‖x‖) ≤ δ} ∩ N .

�

Because we have already proved in Theorem 2.16 and Theorem 3.10 that the Switched System 1.9
possesses a Lyapunov function, if and only if an equilibrium of the system is uniformly asymptotically
stable, this is equivalent to the statement:

It is always possible, in a finite number of steps, to construct a Lyapunov function for
the Switched System 1.9 with the methods presented in this thesis, whenever one exists.
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7.3 The algorithm in the autonomous case

The procedure to construct Lyapunov functions for autonomous systems mimics Procedure 5.1.

Procedure 7.3 Consider the Switched System 1.9 where P is a finite set, let a > 0 be a constant
such that [−a, a]n ⊂ U , and let N ⊂ U be an arbitrary neighborhood of the origin. Further, assume
that the system is autonomous and let ‖ · ‖ be an arbitrary norm on Rn.

First, we have to determine a constant B such that

B ≥ max
p∈P

i,r,s=1,2,...,n
x∈[−a,a]n

∣∣∣∣ ∂2fp,i

∂xr∂xs

(x)

∣∣∣∣ .
The procedure has two integer variables that have to be initialized, namely m and N . They should be
initialized as follows : Set N := 0 and assign the smallest possible positive integer to m such that

]− a2−m, a2−m[ n ⊂ N .

The procedure consists of the following steps :

i) Define the piecewise scaling function PS : Rn −→ Rn through

PS(j1, j2, . . . , jn) := a2−m(j1, j2, . . . , jn), for all (j1, j2, . . . , jn) ∈ Zn.

ii) For every N∗ = 0, 1, . . . , N we do the following :
Generate the linear programming problem

LP({fp
∣∣p ∈ P}, [−a, a]n,PS, ]− a2N∗−m, a2N∗−m[, ‖ · ‖)

as defined in Definition 5.5 and check whether it possesses a feasible solution or not. If one of
the linear programming problems possesses a feasible solution, then go to step iii). If none of
them possesses a feasible solution, then assign m := m+1 and N := N +1 and go back to step
i).

iii) Use the feasible solution to parameterize a CPWA Lyapunov function for the Switched System
1.9 as described in Definition 5.6.

2

The proof that Procedure 7.3 is an algorithm to construct time-invariant Lyapunov functions for
arbitrary switched systems possessing an asymptotically stable equilibrium is essentially identical to
the proof of Theorem 7.2, where the nonautonomous case is treated.

Theorem 7.4 (Procedure 7.3 is an algorithm) Consider the Switched System 1.9 where P is a
finite set and assume that it is autonomous. Let a > 0 be a constant such that [−a, a]n ⊂ U , and
assume further, that at least one of the following two assumptions holds true :

i) There exists a time-invariant Lyapunov function W ∈ C2([−a, a]n) for the Switched System 1.9.

ii) The functions fp are all locally Lipschitz, the origin is a asymptotically stable equilibrium point
of the Switched System 1.9, and the set [−a, a]n is contained in its region of attraction.
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Then, for every neighborhood N ⊂ [−a, a]n of the origin, no matter how small, the Procedure 7.3
delivers, in a finite number of steps, a time-invariant Lyapunov function V Lya of class CPWA,

V Lya : [−a, a]n \ N −→ R,

for the autonomous Switched System 1.9.

Proof:
Almost identical to the proof of Theorem 7.2. With the same notations as in the last chapter, the
linear programming problem

LP({fp
∣∣p ∈ P}, [−a, a]n,PS, ]− a2N∗−m, a2N∗−m[, ‖ · ‖)

possesses a feasible solution, when m is so large that

a

2m
≤
√

(A∗B∗)2 + 4x∗ω∗C∗ − A∗B∗

2C∗

and N∗, 0 ≤ N∗ ≤ N , is such that

[−a2
N∗

2m
,
a2N∗

2m
]n ⊂ {x ∈ Rn

∣∣β(‖x‖) ≤ δ} ∩ N .
�

Because we have already proved in Theorem 2.16 and Theorem 3.10 that the autonomous Switched
System 1.9 possesses a time-invariant Lyapunov function, if and only if an equilibrium of the system
is asymptotically stable, this is equivalent to the statement:

It is always possible, in a finite number of steps, to construct a time-invariant Lyapunov
function for the autonomous Switched System 1.9 with the methods presented in this
thesis, whenever one exists.
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Part III

Examples of Lyapunov functions generated
by linear programming

133
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In this part we will give some examples of the construction of Lyapunov functions by the linear
programming problem LP({fp

∣∣p ∈ P},N ,PS, t,D, ‖ · ‖) from Definition 5.1 and the linear program-
ming problem LP({fp

∣∣p ∈ P},N ,PS,D, ‖ · ‖) from Definition 5.5. In all the examples we will use
the infinity norm, that is ‖ · ‖ := ‖ · ‖∞, in the linear programming problems. Further, we will use
piecewise scaling functions PS, whose components PSi are all odd functions, that is (recall that the
i-th component PSi of PS does only depend on the i-th variable xi of the argument x)

PSi(xi) = −PSi(−xi).

Because we will only be interested in the values of a piecewise scaling functions on compact subsets
[−m,m]n ⊂ Rn, m ∈ N>0, this implies that we can define such a function by specifying n vectors
psi := (psi,1, psi,2, . . . , psi,m), i = 1, 2, . . . , n. If we say that the piecewise scaling function PS is
defined through the ordered vector tuple (ps1,ps2, . . . ,psn), we mean that PS(0) := 0 and that for
every i = 1, 2, . . . , n and every j = 1, 2, . . . ,m, we have

PSi(j) := psi,j and PSi(−j) := −psi,j.

If we say that the piecewise scaling function PS is defined through the vector ps, we mean that it is
defined trough the vector tuple (ps1,ps2, . . . ,psn), where psi := ps for all i = 1, 2, . . . , n.

The linear programming problems were all solved by use of the GNU Linear programming kit
(GLPK), version 4.8, developed by Andrew Makhorin. It is a free software that is available for
download on the internet. The parameterized Lyapunov functions were drawn with gnuplot, version
3.7, developed by Thomas Williams and Colin Kelley. Just as GLPK, gnuplot is a free software that
is available for download on the internet. The author is indebted to these developers.
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Chapter 8

An autonomous system

As a fist example of the use of the linear programming problem from Definition 5.5 and Procedure
7.3 we consider the continuous system

ẋ = f(x), where f(x, y) :=

(
x3(y − 1)

− x4

(1+x2)2
− y

1+y2

)
. (8.1)

This system is taken from Example 65 in Section 5.3 in [56]. The Jacobian of f at the origin has
the eigenvalues 0 and −1. Hence, the origin is not an exponentially stable equilibrium point (see, for
example, Theorem 4.4 in [24] or Theorem 15 in Section 5.5 in [56]). We initialize Procedure 7.3 with

a :=
8

15
and N := ]− 2

15
,

2

15
[ 2.

Further, with

x(z,J ) :=
∣∣e1 ·PS(RJ (z + e1))

∣∣ and y(z,J ) :=
∣∣e2 ·PS(RJ (z + e2))

∣∣ , (8.2)

we set (note that for the constants B(z,J )
p,rs the index p is redundant because the system is non-switched)

B
(z,J )
11 := 6x(z,J )(1 + y(z,J )),

B
(z,J )
12 := 3x2

(z,J ),

B
(z,J )
22 :=


6y(z,J )

(1+y2
(z,J )

)2
− 8y3

(z,J )

(1+y2
(z,J )

)3
, if y(z,J ) ≤

√
2− 1,

1.46, else,

for all (z,J ) ∈ Z in the linear programming problems. This is more effective than using one constant
B larger than all B(z,J )

p,rs for all (z,J ) ∈ Z and all r, s = 1, 2, . . . , n, as done to shorten the proof of
Theorem 6.1.

Procedure 7.1 succeeds in finding a feasible solution to the linear programming problem with m = 4
and D = 2. The corresponding Lyapunov function of class CPWA is drawn in Figure 8.1. We used
this Lyapunov function as a starting point to parameterize a CPWA Lyapunov function with a larger
domain and succeeded with N := [−1, 1]2, D := ]−0.133, 0.133[2, and PS defined through the vector

ps := (0.033, 0.067, 0.1, 0.133, 0.18, 0.25, 0.3, 0.38, 0.45, 0.55, 0.7, 0.85, 0.93, 1)
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Figure 8.1: A Lyapunov function for the system (8.1) generated by Procedure 7.1.

as described at the beginning of this part. It is drawn in Figure 8.2.

Note that the domain of the Lyapunov function on Figure 8.1, where we used the Procedure 7.3 to
scan the parameters of the linear programming problem from Definition 5.5, is much smaller than
that of the Lyapunov function on Figure 8.2, where we used another trial-and-error procedure to
scan the parameters. This is typical! The power of Procedure 7.3 and Theorem 7.4 is that they tell
us that a systematic scan will lead to a success if there exists a Lyapunov function for the system.
However, as Procedure 7.3 will not try to increase the distance between the points in the grid G of
the linear programming problem far away from the equilibrium, it is not particularly well suited to
parameterize Lyapunov functions with large domains. To actually parameterize Lyapunov functions a
trial-and-error procedure that first tries to parameterize a Lyapunov function in a small neighborhood
of the equilibrium, and if it succeeds it tries to extend the grid with larger grid-steps farther away
from the equilibrium, is more suited.

In Figure 8.3 the sets D, T , and A from Lemma 5.9 are drawn for this particular Lyapunov function.
The innermost square is the boundary of D, the outmost figure is the boundary of the set A, and in
between the boundary of T is plotted. Every solution to the system (8.1) with an initial value ξ in
A will reach the square [−0.133, 0.133]2 in a finite time t′ and will stay in the set T for all t ≥ t′.
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Figure 8.2: A Lyapunov function for the system (8.1), parameterized with the linear pro-
gramming problem from Definition 5.5, with a larger domain than the Lyapunov
function on Figure 8.1.

Figure 8.3: The sets D, T , and A from Lemma 5.4 for the Lyapunov function on Figure
8.2 for the system (8.1).
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Chapter 9

An arbitrary switched autonomous system

Consider the autonomous systems

ẋ = f1(x), where f1(x, y) :=

(
−y

x− y(1− x2 + 0.1x4)

)
, (9.1)

ẋ = f2(x), where f2(x, y) :=

(
−y + x(x2 + y2 − 1)
x+ y(x2 + y2 − 1)

)
, (9.2)

and

ẋ = f3(x), where f3(x, y) :=

(
−1.5y

x
1.5

+ y
((

x
1.5

)2
+ y2 − 1

))
. (9.3)

The systems (9.1) and (9.2) are taken from Exercise 1.16 in [24] and from page 194 in [50] respectively.
First, we used the linear programming problem from Definition 5.5 to parameterize a Lyapunov
function for each of the systems (9.1), (9.2), and (9.3) individually. We define x(z,J ) and y(z,J ) as in
formula (8.2) and for the system (9.1) we set

B
(z,J )
1,11 := 2y(z,J ) + 1.2y(z,J )x

2
(z,J ),

B
(z,J )
1,12 := 2x(z,J ) + 0.4x3

(z,J ),

B
(z,J )
1,22 := 0,

for the system (9.2) we set

B
(z,J )
2,11 := max{6x(z,J ), 2y(z,J )},

B
(z,J )
2,12 := max{2x(z,J ), 2y(z,J )},

B
(z,J )
2,22 := max{2x(z,J ), 6y(z,J )},

and for the system (9.3) we set

B
(z,J )
3,11 :=

8

9
y(z,J ),

B
(z,J )
3,12 :=

8

9
x(z,J ),

B
(z,J )
3,22 := 6y(z,J ).
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We parameterized a CPWA Lyapunov function for the system (9.1) by use of the linear programming
problem from Definition 5.5 with N := [−1.337, 1.337]2, D := ∅, and PS defined trough the vector

ps := (0.0906, 0.316, 0.569, 0.695, 0.909, 1.016, 1.163, 1.236, 1.337)

as described at the beginning of this part. The Lyapunov function is depicted on Figure 9.1. The
equilibrium’s region of attraction, secured by this Lyapunov function, is drawn on Figure 9.2.

Figure 9.1: A Lyapunov function for the system (9.1) generated by the linear programming
problem from Definition 5.5.

We parameterized a CPWA Lyapunov function for the system (9.2) by use of the linear programming
problem from Definition 5.5 with N := [−0.818, 0.818]2, D := ∅, and PS defined trough the vector

ps := (0.188, 0.394, 0.497, 0.639, 0.8, 0.745, 0.794, 0.806, 0.818)

as described in the description at the beginning of this part. The Lyapunov function is depicted on
Figure 9.3. The equilibrium’s region of attraction, secured by this Lyapunov function, is drawn on
Figure 9.4.
We parameterized a CPWA Lyapunov function for the system (9.3) by use of the linear programming
problem from Definition 5.5 with N := [−0.506, 0.506]2, D := ]− 0.01, 0.01[2, and PS defined trough
the vector

ps := (0.01, 0.0325, 0.0831, 0.197, 0.432, 0.461, 0.506)
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Figure 9.2: The region of attraction of the equilibrium at the origin secured by the Lya-
punov function on Figure 9.1. All solution that start in this set are asymptoti-
cally attracted to the origin.

as described at the beginning of this part. The Lyapunov function is depicted on Figure 9.5. The
equilibrium’s region of attraction, secured by this Lyapunov function, and the set D are drawn on
Figure 9.6. Every solution to the system (9.3) that starts in the larger set will reach the smaller set
in a finite time.

Finally, we parameterized a CPWA Lyapunov function for the switched system

ẋ = fp(x), p ∈ {1, 2, 3}, (9.4)

where the functions f1, f2, and f3 are, of course, the functions from (9.1), (9.2), and (9.3), by use of
the linear programming problem from Definition 5.1 with N := [−0.612, 0.612]2, D := ]−0.01, 0.01[2,
and PS defined trough the vector

ps := (0.01, 0.0325, 0.0831, 0.197, 0.354, 0.432, 0.535, 0.586, 0.612)

as described at the beginning of this part. The Lyapunov function is depicted on Figure 9.7. Note,
that this Lyapunov function is a Lyapunov function for all of the systems (9.1), (9.2), and (9.3)
individually. The equilibrium’s region of attraction, secured by this Lyapunov function, and the set
D are drawn on Figure 9.8. Every solution to the system (9.4) that starts in the larger set will reach
the smaller set in a finite time.



144 CHAPTER 9. AN ARBITRARY SWITCHED AUTONOMOUS SYSTEM

Figure 9.3: A Lyapunov function for the system (9.2) generated by the linear programming
problem from Definition 5.5.

Figure 9.4: The region of attraction of the equilibrium at the origin secured by the Lya-
punov function on Figure 9.3. All solution that start in this set are asymptoti-
cally attracted to the origin.
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Figure 9.5: A Lyapunov function for the system (9.3) generated by the linear programming
problem from Definition 5.5.

Figure 9.6: The region of attraction of the equilibrium at the origin secured by the Lya-
punov function on Figure 9.5. All solution that start in the larger set are asymp-
totically attracted to the smaller set at the origin.
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Figure 9.7: A Lyapunov function for the arbitrary switched system (9.4) generated by the
linear programming problem from Definition 5.5.

Figure 9.8: The region of attraction secured by the Lyapunov function in figure 9.7 for the
switched system. All solution that start in the larger set are asymptotically
attracted to the smaller set at the origin.



Chapter 10

A variable structure system

Consider the linear systems

ẋ = A1x, where A1 :=

(
0.1 −1
2 0.1

)
, (10.1)

and

ẋ = A2x, where A2 :=

(
0.1 −2
1 0.1

)
. (10.2)

These systems are taken from [29]. It is easy to verify that the matrices A1 and A2 both have the
eigenvalues λ± = 0.1±

√
2. Therefore, by elementary linear stability theory, the systems (10.1) and

(10.2) are both unstable. On Figure 10.1 and Figure 10.2 the trajectories of the systems (10.1) and

Figure 10.1: The trajectory of the system
ẋ = A1x starting at (1, 0).

Figure 10.2: The trajectory of the system
ẋ = A2x starting at (1, 0).
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(10.2) with the initial value (1, 0) are depicted. That the norm of the solutions is growing with t in
the long run is clear. However, it is equally clear, that the solution to (10.1) is decreasing on the sets

Q2 := {(x1, x2)
∣∣x1 ≤ 0 and x2 > 0} and Q4 := {(x1, x2)

∣∣x1 ≥ 0 and x2 > 0}

and that the solution to (10.2) is decreasing on the sets

Q1 := {(x1, x2)
∣∣x1 > 0 and x2 ≥ 0} and Q3 := {(x1, x2)

∣∣x1 < 0 and x2 ≤ 0}.

Now, consider the switched system

ẋ = Apx, p ∈ {1, 2}, (10.3)

where the matrices A1 and A2 are the same as in (10.1) and (10.2). Obviously, this system is not
stable under arbitrary switching, but, if we only consider solution trajectories (t, ξ) 7→ φσ(t, ξ), such
that

φσ(t, ξ) ∈ Q2 ∪Q4, implies σ(t) = 1 (10.4)

and

φσ(t, ξ) ∈ Q1 ∪Q3, implies σ(t) = 2, (10.5)

then we would expect all trajectories under consideration to be asymptotically attracted to the
equilibrium. The switched system (10.3), together with the constraints (10.4) and (10.5), is said to
be a variable structure system. The reason is quite obvious, the structure of the right-hand side of
the system (10.3) depends on the current position in the state-space.

It is a simple task to modify the linear programming problem from Definition 5.5 to parameterize
a Lyapunov function for the variable structure system. Usually, one would include the constraint
LC4a, that is,

−Γ
[
‖y(z,J )

σ,i ‖
]
≥

n∑
j=1

(
V [y

(z,J )
σ,j ]− V [y

(z,J )
σ,j+1]

eσ(j) · (y(z,J )
σ,j − y

(z,J )
σ,j+1)

f̃p,σ(j)(y
(z,J )
σ,i ) + E

(z,J )
p,σ,i C[{y(z,J )

σ,j ,y
(z,J )
σ,j+1}]

)
.

for every p ∈ P , every (z,J ) ∈ Z, every σ ∈ Perm[{1, 2, . . . , n}], and every i = 1, 2, . . . , n + 1. In
the modified linear programming problem however, we exclude the constraints for some values of p,
(z,J ), σ, and i. It goes as follows:

i) Whenever p = 2 and either J = {1} or J = {2}, we do not include the constraint LC4a, for
these particular values of p, (z,J ), σ, and i, in the linear programming problem.

ii) Whenever p = 1 and either J = ∅ or J = {1, 2}, we do not include the constraints LC4a, for
these particular values of p, (z,J ), σ, and i, in the linear programming problem.

We parameterized a Lyapunov function for the variable structure system by use of this modified
linear programming problem with N := [−1.152, 1.152]2, D := ]−0.01, 0.01[2, and PS defined trough
the vector

ps := (0.00333, 0.00667, 0.01, 0.0133, 0.0166, 0.0242, 0.0410, 0.0790, 0.157, 0.319, 0.652, 1.152)
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as described at the beginning of this part. The Lyapunov function V Lya is depicted on Figure 10.3.

Now, one might wonder, what information we can extract from this function V Lya , which is parame-
terized by our modified linear programming problem. Denote by γa the function that is constructed
from the variables Γa[yi] as in Definition 5.6. Then it is easy to see that for every

x ∈
(
N \ D

)
∩
(
Q1 ∪Q3

)
we have

lim sup
h→0+

V Lya(x + hA2x)− V Lya(x)

h
≤ −γa(‖x‖∞)

and for every
x ∈

(
N \ D

)
∩
(
Q2 ∪Q4

)
we have

lim sup
h→0+

V Lya(x + hA1x)− V Lya(x)

h
≤ −γa(‖x‖∞).

But this includes all trajectories of the system (10.3) that comply with the constraints (10.4) and
(10.5) so

lim sup
h→0+

V Lya(φσ(t+ h, ξ))− V Lya(φσ(t, ξ))

h
≤ −γa(‖φσ(t, ξ)‖∞)

for all φσ(t, ξ) in the interior of N \D and all trajectories under consideration and therefore V Lya is
a Lyapunov function for the variable structure system.

The equilibrium’s region of attraction, secured by this Lyapunov function, is drawn on Figure 10.4.

Figure 10.3: A Lyapunov function for the variable structure system (10.3) generated by an
altered version of the linear programming problem from Definition 5.5.
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Figure 10.4: The region of attraction secured by the Lyapunov function in Figure 10.3
for the variable structure system. All solution that start in the larger set are
asymptotically attracted to the smaller set at the origin.



Chapter 11

A variable structure system with sliding
modes

Define the matrix A and the vector p through

A :=

(
0 1
1 0

)
and p :=

(
1
1

)
,

and consider the systems

ẋ = f1(x), where f1(x) := Ax, (11.1)
ẋ = f2(x), where f2(x) := −p, (11.2)

and

ẋ = f3(x), where f3(x) := p. (11.3)

The eigenvalues of the matrix A in (11.1) are λ± = ±1 and the equilibrium at the origin is therefore
a saddle point of the system and is not stable. The direction field of the system (11.1) is drawn on
Figure 11.1. The systems (11.2) and (11.3) do not even possess an equilibrium.
Let the sets Q1, Q2, Q3, and Q4 be defined as in the last chapter and consider the variable structure
system where we use the system (11.1) in Q2 and Q4, the system (11.2) in Q1, and the system (11.3)
in Q3. A look at Figure 11.1 suggests that this variable structure system might be stable, but the
problem is that the system does not possess a properly defined solution compatible with our solution
concept in Definition 1.8. The reason is that a trajectory, for example leaving Q4 to Q1, is sent
straight back by the dynamics in Q1 to Q4, where it will, of course, be sent straight back to Q1. This
phenomena is often called chattering and the sets {x ∈ R2

∣∣x1 = 0} and {x ∈ R2
∣∣x2 = 0} are called

the sliding modes of the dynamics. A solution concept for such variable structure systems has been
developed by Filippov and others, see, for example [7], [8], and [51], or, for a brief review, [63].
Even though Filippov’s solution trajectories are supposed to be close to the true trajectories if the
switching is fast, we will use a simpler and more robust technique here to prove the stability of the
system. Our approach is very simple, set h := 0.005 and define the sets

S1,2 := {x ∈ Rn
∣∣|x1| < h and x2 > 0}

S2,3 := {x ∈ Rn
∣∣ x1 < 0 and |x2| < h}

S3,4 := {x ∈ Rn
∣∣|x1| < h and x2 < 0}

S4,1 := {x ∈ Rn
∣∣ x1 > 0 and |x2| < h}
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Figure 11.1: The direction field of ẋ = Ax, where A is the matrix in (11.1).

and

D′ := ]− 2h, 2h[2.

We will generate a Lyapunov function for the variable structure system on [−0.957, 0.957]2 so we can
consider D to be a small neighborhood of the origin and the Si,j to be thin stripes between Qi and
Qj.
We parameterized a Lyapunov function V Lya for the variable structure system by use of a modified
linear programming problem with N := [−0, 957, 0, 957]2, D := D′, and PS defined trough the vector

ps := (0.005, 0.01, 0.015, 0.0263, 0.052, 0.109, 0.237, 0.525, 0.957)

as described at the beginning of this part.
The modification we used to the linear programming problem in Definition 5.5, similar to the mod-
ification in the last chapter, was to only include the constraints LC4a in the linear programming
problem for some sets of parameters

p ∈ P , (z,J ) ∈ Z, σ ∈ Perm[{1, 2, . . . , n}], and i ∈ {1, 2, . . . , n+ 1}.

Exactly, for every simplex S in the simplicial partition, S∩D = ∅, we included the constraints LC4a
for every vertex of the simplex, if and only if:

S ⊂ Q1 \
(
S1,2 ∪ S4,1

)
and p = 2,

S ⊂ Q2 \
(
S1,2 ∪ S2,3

)⋃
Q4 \

(
S4,1 ∪ S3,4

)
and p = 1,

S ⊂ Q3 \
(
S2,3 ∪ S3,4

)
and p = 3,

S ⊂ S1,2 ∪ S4,1 and
(
p = 1 or p = 2

)
,

S ⊂ S2,3 ∪ S3,4 and
(
p = 1 or p = 3

)
.
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This implies for the Lyapunov function V Lya , where the function γa ∈ K is constructed from the
variables Γa[yi] as in Definition 5.6, that :

V1) For every x in the interior of the set(
Q1 ∪ S1,2 ∪ S4,1

)
\ D

we have

lim sup
h→0+

V Lya(x + hf2(x))− V Lya(x)

h
≤ −γa(‖x‖∞).

V2) For every x in the interior of the set(
Q2 ∪Q4 ∪ S1,2 ∪ S2,3 ∪ S3,4 ∪ S4,1

)
\ D

we have

lim sup
h→0+

V Lya(x + hf1(x))− V Lya(x)

h
≤ −γa(‖x‖∞).

V3) For every x in the interior of the set(
Q3 ∪ S2,3 ∪ S3,4

)
\ D

we have

lim sup
h→0+

V Lya(x + hf3(x))− V Lya(x)

h
≤ −γa(‖x‖∞).

Now, let f1, f2, and f3 be the functions from the systems (11.1), (11.2), and (11.3) and consider the
variable structure system

ẋ = fp(x), p ∈ {1, 2, 3}, (11.4)

under the following constraints :

i) φσ(t, ξ) ∈ N \ D and φσ(t, ξ) in the interior of Q1 \
(
S1,2 ∪ S4,1

)
implies σ(t) = 2.

ii) φσ(t, ξ) ∈ N \ D and φσ(t, ξ) in the interior of Q2 \
(
S1,2 ∪ S2,3

)⋃
Q4 \

(
S4,1 ∪ S3,4

)
implies σ(t) = 1.

iii) φσ(t, ξ) ∈ N \ D and φσ(t, ξ) in the interior of Q3 \
(
S2,3 ∪ S3,4

)
implies σ(t) = 3.

iii) φσ(t, ξ) ∈ N \ D and φσ(t, ξ) in the interior of S1,2 ∪ S4,1 implies σ(t) ∈ {1, 2}.

iii) φσ(t, ξ) ∈ N \ D and φσ(t, ξ) in the interior of S2,3 ∪ S3,4 implies σ(t) ∈ {1, 3}.

One should make one self clear what these constraints imply. For example, if ξ ∈ Q2 \
(
S1,2 ∪ S2,3

)
,

then we must use the dynamics ẋ = Ax until t 7→ φσ(t, ξ) leavesQ2\
(
S1,2∪S2,3

)
. If then, for example,

φσ(t′, ξ) ∈ S1,2 for some t′ > 0, then every switching between the systems ẋ = Ax and ẋ = −p is
allowed as long as t 7→ φσ(t, ξ) stays in S1,2. However, if, for example, φσ(t′′, ξ) ∈ Q1 \

(
S1,2 ∪ S4,1

)
for some t′′ > t′, then we must use the dynamics ẋ = −p until t 7→ φσ(t,x) leaves Q1 \

(
S1,2 ∪ S4,1

)
.

By V1, V2, and V3 we have for every trajectory t 7→ φσ(t, ξ) under consideration that

lim sup
h→0+

V Lya(φσ(t+ h, ξ))− V Lya(φσ(t, ξ))

h
≤ −γa(‖φσ(t, ξ)‖∞),
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so the function V Lya is a Lyapunov function for this system.

The parameterized Lyapunov function V Lya for the system (11.4) is depicted on Figure 11.2 and its
region of attraction on Figure 11.3. Because it is difficult to recognize the structure of the Lyapunov
function close to the origin, a Lyapunov function for the same system, but with a much smaller
domain, is depicted on Figure 11.4.

Figure 11.2: A Lyapunov function for the variable structure system (11.4) generated by an
altered version of the linear programming problem from Definition 5.5.
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Figure 11.3: The region of attraction secured by the Lyapunov function in Figure 11.2
for the variable structure system. All solution that start in the larger set are
asymptotically attracted to the smaller set at the origin.

Figure 11.4: A Lyapunov function for the variable structure system (11.4) generated by an
altered version of the linear programming problem from Definition 5.5.
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Chapter 12

A one-dimensional nonautonomous switched
system

Consider the one-dimensional systems

ẋ = f1(t, x), where f1(t, x) := − x

1 + t
(12.1)

and
ẋ = f2(t, x), where f2(t, x) := − tx

1 + t
. (12.2)

The system (12.1) has the closed-form solution

φ(t, t0, ξ) = ξ
1 + t0
1 + t

and the system (12.2) has the closed-form solution

φ(t, t0, ξ) = ξe−(t−t0) 1 + t

1 + t0
.

The origin in the state-space is therefore, for every fixed t0, an asymptotically stable equilibrium
point of the system (12.1) and, because

|ξ|e−(t−t0) 1 + t

1 + t0
≤ 2|ξ|e−

t−t0
2 ,

a uniformly exponentially stable equilibrium point of the system (12.2). However, as can easily be
verified, it is not a uniformly asymptotically stable equilibrium point of the system (12.1). This
implies that the system (12.1) cannot possess a Lyapunov function that is defined for all t ≥ 0.
Note however, that this does not imply that we cannot parameterize a Lyapunov-like function on a
compact time interval for the system (12.1).
We set

t(z,J ) := e0 · P̃S(z) and x(z,J ) := |e1 · P̃S(RJ (z + e1))|

and define the constants B(z,J )
p,rs from the linear programming problem from Definition 5.1 by

B
(z,J )
p,00 :=

2x(z,J )

(1 + t(z,J ))3
,

B
(z,J )
p,01 :=

1

(1 + t(z,J ))2
,

B
(z,J )
p,11 := 0
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for p ∈ {1, 2}.
We parameterized a CPWA Lyapunov function for the system (12.1), the system (12.2), and the
switched system

ẋ = fp(t, x), p ∈ {1, 2} (12.3)

by use of the linear programming problem from Definition 5.1 withN :=]−1.1, 1.1[,D :=]−0.11, 0.11[,
PS defined through the vector

ps := (0.11, 0.22, 0.33, 0.44, 0.55, 0.66, 0.77, 0.88, 0.99, 1.1)

as described at the beginning of this part, and the vector

t := (0, 0.194, 0.444, 0.75, 1.111, 1.528, 2, 2.528, 3.111, 3.75, 4.444, 5.194, 6,

6.861, 7.778, 8.75, 9.778, 10.861, 12, 13.194, 14.444, 15.75, 17.111, 18.528, 20).

The Lyapunov function for the system (12.1) is depicted on Figure 12.1, the Lyapunov function for
the system (12.2) on Figure 12.1, and the Lyapunov function for the arbitrary switched system (12.3)
on Figure 12.3.

Figure 12.1: A Lyapunov function for the nonautonomous system (12.1) generated by the
linear programming problem from Definition 5.1.
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Figure 12.2: A Lyapunov function for the nonautonomous system (12.2) generated by the
linear programming problem from Definition 5.1.

Figure 12.3: A Lyapunov function for the switched nonautonomous system (12.3) generated
by the linear programming problem from Definition 5.1.



160 CHAPTER 12. A ONE-DIMENSIONAL NONAUTONOMOUS SWITCHED SYSTEM



Chapter 13

A two-dimensional nonautonomous switched
system

Consider the two-dimensional systems

ẋ = f1(t,x), where f1(t, x, y) :=

(
−2x+ y cos(t)
x cos(t)− 2y

)
(13.1)

and

ẋ = f2(t,x), where f2(t, x, y) :=

(
−2x+ y sin(t)
x sin(t)− 2y

)
. (13.2)

We set
x(z,J ) := |e1 · P̃S(RJ (z + e1))| and y(z,J ) := |e2 · P̃S(RJ (z + e2))|

and assign values to the constants B(z,J )
p,rs from the linear programming problem in Definition 5.1 as

follows :

B
(z,J )
p,00 := max{x(z,J ), y(z,J )},

B
(z,J )
p,11 := 0,

B
(z,J )
p,22 := 0,

B
(z,J )
p,01 := 1,

B
(z,J )
p,02 := 1,

B
(z,J )
p,12 := 0

for p ∈ {1, 2}.

We parameterized a Lyapunov function for the system (13.1), the system (13.2), and the switched
system

ẋ = fp(t,x), p ∈ {1, 2} (13.3)

by use of the linear programming problem from Definition 5.1 with N := ] − 0.55, 0.55[2, D :=
]− 0.11, 0.11[2, PS defined through the vector

ps := (0.11, 0.22, 0.33, 0.44, 0.55)
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as described at the beginning of this part, and the vector

t := (0, 0.3125, 0.75, 1.3125, 2).

Because the Lyapunov functions are functions from R×R2 into R it is hardly possible to draw them
in any sensible way on a two-dimensional sheet. Therefore, we draw them for the fixed time-values
t := 0, t := 0.3125, t := 0.75, t := 1.3125, and t := 2. From the definition of the function spaces
CPWA it should be clear how to interpolate the drawings to get the full Lyapunov functions.

On figures 13.1, 13.2, 13.3, 13.4, and 13.5 the state-space dependence of the parameterized Lyapunov
function for the system (13.1) for the times t := 0, t := 0.3125, t := 0.75, t := 1.3125, and t := 2
respectively is depicted.

On figures 13.6, 13.7, 13.13, 13.14, and 13.15 the state dependence of the parameterized Lyapunov
function for the system (13.2) for the times t := 0, t := 0.3125, t := 0.75, t := 1.3125, and t := 2
respectively is depicted.

On figures 13.11, 13.12, 13.13, 13.14, and 13.15 the state dependence of the parameterized Lyapunov
function for the switched system (13.3) for the times t := 0, t := 0.3125, t := 0.75, t := 1.3125, and
t := 2 respectively is depicted.

Figure 13.1: The function (x, y) 7→ V (0, x, y), where V (t, x, y) is the parameterized Lya-
punov function for the nonautonomous system (13.1).
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Figure 13.2: The function (x, y) 7→ V (0.3125, x, y), where V (t, x, y) is the parameterized
Lyapunov function for the nonautonomous system (13.1).

Figure 13.3: The function (x, y) 7→ V (0.75, x, y), where V (t, x, y) is the parameterized Lya-
punov function for the nonautonomous system (13.1).
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Figure 13.4: The function (x, y) 7→ V (1.3125, x, y), where V (t, x, y) is the parameterized
Lyapunov function for the nonautonomous system (13.1).

Figure 13.5: The function (x, y) 7→ V (2, x, y), where V (t, x, y) is the parameterized Lya-
punov function for the nonautonomous system (13.1).
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Figure 13.6: The function (x, y) 7→ V (0, x, y), where V (t, x, y) is the parameterized Lya-
punov function for the nonautonomous system (13.2).

Figure 13.7: The function (x, y) 7→ V (0.3125, x, y), where V (t, x, y) is the parameterized
Lyapunov function for the nonautonomous system (13.2).
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Figure 13.8: The function (x, y) 7→ V (0.75, x, y), where V (t, x, y) is the parameterized Lya-
punov function for the nonautonomous system (13.2).

Figure 13.9: The function (x, y) 7→ V (1.3125, x, y), where V (t, x, y) is the parameterized
Lyapunov function for the nonautonomous system (13.2).
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Figure 13.10: The function (x, y) 7→ V (2, x, y), where V (t, x, y) is the parameterized Lya-
punov function for the nonautonomous system (13.2).

Figure 13.11: The function (x, y) 7→ V (0, x, y), where V (t, x, y) is the parameterized Lya-
punov function for the nonautonomous system (13.3).
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Figure 13.12: The function (x, y) 7→ V (0.3125, x, y), where V (t, x, y) is the parameterized
Lyapunov function for the nonautonomous system (13.3).

Figure 13.13: The function (x, y) 7→ V (0.75, x, y), where V (t, x, y) is the parameterized
Lyapunov function for the nonautonomous system (13.3).
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Figure 13.14: The function (x, y) 7→ V (1.3125, x, y), where V (t, x, y) is the parameterized
Lyapunov function for the nonautonomous system (13.3).

Figure 13.15: The function (x, y) 7→ V (2, x, y), where V (t, x, y) is the parameterized Lya-
punov function for the nonautonomous system (13.3).
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Chapter 14

Final words

Because we have already thoroughly discussed the reasons for and the usefulness of the results of
this thesis in Historical background and The contributions of this work at the beginning, there is no
reason to repeat it here. Therefore, we let a very short review suffice.

In this work we developed an algorithm to construct Lyapunov functions for nonlinear, nonau-
tonomous, arbitrary switched continuous systems. The necessary stability theory of switched sys-
tems, including a converse Lyapunov theorem for uniformly asymptotically stable arbitrary switched
nonlinear, nonautonomous, Lipschitz systems (Theorem 3.10), was developed in Part I. In Part II we
presented a linear programming problem in Definition 5.1 that can be constructed from a finite set
of nonlinear and nonautonomous differential equations ẋ = fp(t,x), p ∈ P , where the components
of the fp are C2, and we proved that every feasible solution to the linear programming problem can
be used to parameterize a common Lyapunov function for the systems. Further, we proved that if
the origin in the state-space is a uniformly asymptotically stable equilibrium of the switched system
ẋ = fp(t,x), p ∈ P , then Procedure 7.1, which uses the linear programming problem from Definition
5.1, is an algorithm to construct a Lyapunov function for the switched system. Finally, in Part III,
we gave several examples of Lyapunov functions that we generated by use of the linear programming
problem. Especially, we generated Lyapunov functions for variable structure systems with sliding
modes.

It is the belief of the author that this work is a considerable advance in the Lyapunov stability theory
of dynamical systems and he hopes to have convinced the reader that the numerical construction
of Lyapunov functions, even for arbitrary switched, nonlinear, nonautonomous, continuous systems,
is not only a theoretical possibility, but is capable of being developed to a standard tool in system
analysis software in the future.

Thus, the new algorithm presented in this work should give system engineers a considerable advantage
in comparison to the traditional approach of linearization and pure local analysis.
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