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ABSTRACT
 

The Llixha Elbasan hot springs are among the most important geothermal 
springs of Albania.  Balneological use dates back centuries, but the first modern 
usage started in 1937.  Unfortunately this water hasn’t been used for its 
energetic value yet.  The temperature of the water is above 60°C and the flow 
above 16 l/s, thus direct utilisation is possible, in particular for space heating.  
Three-dimensional temperature field calculations, a simple study of the 
dynamics of the hot springs, and engineering calculations on a heating system 
with heat exchangers are presented here.  The results show that the water 
temperature is expected to be stable, but considerably higher temperatures are 
expected through welldrilling.  The geothermal water of the Llixha hot springs 
fulfils all the requirements needed for a district heating system in the region. 

 
 
 
1.  INTRODUCTION 
 
Albania is a small country of only 28,800 km2 surface area and around 4,500,000 inhabitants, situated 
in the southwest part of the Balkan Peninsula.  Like the other Balkan countries, Albania is located next 
to the subduction boundary between the African plate and the Eurasian plate.  This setting makes the 
presence of geothermal resources possible.  Surface manifestations of geothermal resources are found 
throughout Albania, ranging from the region of Peshkopia in the northeast, where hot springs with 
water temperatures of about 43°C and discharge above 14 l/s are found, through the central part of the 
country with different sources (including the springs of Llixha-Elbasan) with temperatures above 
66°C, to the Peri-Adriatic depression (see Figure 1) with a number of wells (drilled for oil and gas 
research) producing water with temperatures around 40°C at variable flowrates.  The thermal waters in 
Albania are only used for balneology.  This form of use dates back to the time of the Roman Empire 
(e.g. Sarandaporo thermal baths).  So far, the geothermal resources have not been utilized for other 
purposes, such as space heating. 
 
The project presented in this report focuses on the Llixha-Elbasan hot-spring area.  Its main purpose is 
an evaluation of the temperature conditions of the hot springs, and at depth in the reservoir, as well as 
a preliminary design of a district heating system utilizing the hot springs.  Estimated temperature 
measurements based on different geothermometers indicate that the temperature of the waters in the 
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formation of the Llixha reservoir may be above 220°C.  The 
reservoir is believed to be at the depth interval of 4500-5000 
m.  The following is addressed in this report: 
 

• The general geological conditions in the area. 
• A review of the theoretical basis of heat transfer. 
• Three-dimensional modelling of variations in the 

temperature conditions in the surface region around 
the hot-springs, using the finite-element technique. 

• Finite-volume modelling of the whole geothermal 
system down to 5000 m depth, incorporating both 
thermal convection and conduction, based on simple 
conceptual boundary conditions. 

• A study of the temperature conditions of the hot 
springs and their up-flow channels on the basis of 
simple dynamic modelling.  Results are compared 
with the results of geothermometry water temperature 
estimates. 

• A basic engineering design of a district heating 
network, including tanks and heat exchangers 
(radiators). 

 
All these aim at demonstrating that the thermal water 
flowing from the Llixha springs is usable for direct 
utilisation.  This utilisation would mitigate the electricity 
supply for the region and help improve living conditions for 
the local community.   
 
 
 
2.  GEOLOGICAL BACKGROUND OF THE LLIXHA-ELBASAN REGION  
 
The Llixha region is situated southwest of Elbasan.  The region is well known for its thermal springs, 
appreciated since ancient times for their curative properties.  A geological map of the region and a 
representative cross-section (I-I) are presented in Figures 2 and 3. 
 

 

FIGURE 2:  Geological map of the Llixha-
Elbasan region (Hyseni and Kapllani, 1995) 

FIGURE 3:  Geological cross-section 
through the area (I-I in Figure 2) 

FIGURE 1:  Map of Albania 
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The region under study is south of the Shkumbini river valley.  The surface relief increases rapidly up 
to intermediate elevation (300-500 m).  In the western part of the region, a system of hills declines 
gradually in the Cërriku field.  The region has a rich hydrosystem of small streams and many 
underground water systems.  The flowrate for the underground waters varies from 100-200 l/h in 
Thanë up to 5000 l/h in Tregan.  Generally, the formations are composed of flysch with a diverse and 
chaotic morphology.  This is an inhabited area, with small villages clustered around the thermal 
waters, no more than 2-3 km from each other (Koçiaj, 1989).   
   
The region lies between two tectonic regions; the transversal Vlorë-Elbasan-Dibër and the longitudinal 
Leskovik-Drini river bay.  Both of these connect the lower part of the region with the northern and 
western parts of the country.  In the context of Albanian tectonics, the region represents the western 
part of the Kruja tectonic zone.  The formation represents the Llixha synclinal structure limited by the 
anticline structures of Elbasan-Valeshit in the east and Papri in the west.  The Elbasan-Valeshit 
structure rises at the surface through the calcareous formation of Creta-Paleogenit, while in Papri the 
calcareous formations are at greater depth.  The orientation of these structures is SW-NE as is the rest 
of the Albanides structure (Aliaj and Hyseni, 2000). 
 
The formations in the region are mainly composed of flysch (three Oligocene and lower Miocene 
sections) while calcareous formations with limited surface area are mainly composed of olystolit, 
through the overlaying terygen rocks.  The biggest part is composed of lower Oligocene (Pg3

1) rocks, 
consisting of 6 lithological units as shown in Figure 2 (Koçiaj, 2000).  The lowest part of the 
formation is composed of thinner flysch units intercalated by clays and sandstone, while the upper part 
is composed of thicker flysch with conglomerates.   
 
The lithology of the middle and upper Oligocene formation is mainly flysch with differently shaped 
packs.  Interesting is the lithological evidence of the upper packs of the middle Oligocene where 
among the flysches calcareous blocks are located with lengths up to 100 m.  They are organized in a 
chain, preserving the general orientation of the other strata.  Together with the conglomerate sandstone 
formation they form a chain alternating in relief.  The lithology of the lower Miocene (Acuitan-
Burdigalian) deposits is characterized by Margoles alternating with clays-sandstones along with the 
presence of sandstone-conglomerates.   
 
The Llixha syncline represents a depressed structure with eastern asymmetry filled in the central part 
with terygen, flysch and molasses deposits.  The eastern part is distinguished by an easterly drop.  The 
tectonics put the upper deposits in contact with the lower flysch Oligocene formation and has made the 
surface intrusion of the Eastern anticline calcareous formations possible.  This tectonic layout is 
regional and includes the western anticline chain of the Kruja tectonic zone (Hyseni and Melo, 2000).  
 
The Llixha system comprises a reservoir which feeds the southern part of the Shkumbini river.  The 
main hydrological characteristic of the region is the presence of several hot springs.  Their position is 
related to the Kruja geothermal zone and they are connected with the calcareous olystolits of the upper 
Oligocene conglomerate-sandstones.  The temperature of the hot springs varies, ranging from 50 to 
68°C while flowrates vary from one spring to another, without any seasonal characteristics. 
 
 
 
3.  HEAT TRANSFER THEORY 
 
3.1  Thermal properties of rocks 

 
The reservoir temperature field and the heat transfer between reservoir rocks and fluid, as well as 
between different reservoir layers, are highly dependent on the thermal properties of the rocks.  In 
order to determine the equilibrium status (mechanical or thermal), knowledge of three macroscopic 
properties: pressure P, volume V and temperature T, are needed.  The relationship between these 
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properties f (P,V,T) = 0, is the so-called equation of state.  Determination of temperature as a 
qualitative property of the system, which determines the thermal equilibrium, only allows a qualitative 
appreciation of it.  In order to determine the temperature in a quantitative way we can use its 
relationship with the kinetic energy of atoms.  It is generally accepted that (Plummer and McGeary, 
1988):  

     
323

2
3
2 22 mvmvETk k ===⋅       (1) 

 
where k is the Boltzmann constant, relating energy to temperature Kelvin (k = 1.380662×10-23 J/K). 
 
 
3.2  Specific heat 
 
Specific heat is defined as the energy needed to increase the temperature of a mass by certain amount.  
Its SI-units are J/kg·K.  The specific heat can be measured at constant pressure (Cp) or constant volume 
(Cv).  If the medium is considered to be incompressible, then they are equal (Plummer and McGeary, 
1988): 

CV = CP = C(T)      (2) 
 
In general, C(T) is a function of temperature so that in a given interval the temperature dependence can 
be approximated as follows: 
  

           C(T) = C(Ti)+β(T - Ti)     (3) 
 
For saturated rocks at high temperatures, their heat capacity may be calculated by (Plummer and 
McGeary, 1988): 
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and 
         ρm = ρro (1-Φ) + Φ (So ρo + Swρw + Sg ρg)       (6) 

 
 
3.3  Thermal conductivity 
 
Thermal conductivity describes the ability of a material to conduct heat.  Consider a wall with an 
infinite area and of arbitrary material.  Its width is one unit and the boundaries of the wall are kept at 
constant temperatures.  The temperature difference is assumed to be one degree.  Let’s assume that we 
are able to measure the amount of heat transferred through the wall in one unit of time.  This value is 
the coefficient of thermal conductivity for that material, λ.  The units are J/m·s·K.  Via 
experimentation, it has been found that the amount of heat conducted into the wall (ρA) is proportional 
to the area (A), temperature change (ΔT) and the wall thickness (ΔX).  This relationship is known as 
Fourier’s law:  

      X
Tq

∂
∂λ−=            (7) 

The negative sign is used because the heat flows from higher temperature to lower temperature.  
According to Birch and Clarck (1940), heat conductivity can be approximated by an inversely linear 
function of temperature: 
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     λ-1 = ao+a1T      (8) 
 
where ao and a1 can be determined for each formation using exponential relationships. 
 
To determine the thermal conductivity of sedimentary rocks at temperatures up to 300°C, the Kutas 
and Gordienko relationship (Plummer and McGeary, 1988) is used: 
 

                     ( ) 1
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−

+
−

−−= T
T

T eλλλ     (9) 
 
where λ20 is the thermal conductivity at T=20°C. 
 
 
3.4  Thermal diffusivity  
 
The thermal diffusivity depends on thermal conductivity and heat capacity and reflects the rate of 
temperature change in a solid media (Plummer and McGeary, 1988): 

          c
a
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λ

=             (10) 

 
 
3.5  The geothermal gradient and heat flux  
 
The temperature regime of sedimentary rocks is influenced by several factors: geological, 
topographical (sedimentary processes, erosion, groundwater movement, etc.), previous climatic 
changes and the heat flux from depth to the surface.  The time-dependent temperature field in 3-D 
space (x, y and z) is written as follows:  
 

      T = T(x, y, z, t)     (11) 
 
The time variations of temperature are because of climatic changes, which affect the mean annual 
temperature, and also because of changes in the Earth’s heat flux (q).   
  
Various model calculations have shown that the value of q hasn’t changed in some millions of years.  
Climatic changes do not affect temperature at depths greater than 300-500 m.  So in an undisturbed 
area we can neglect time-dependence and rewrite Equation 11 as follows: 
  

       T = T(x, y, z)          (12) 
   
It is a well known and accepted fact that temperature increases with depth (except in some rare cases 
near the oceans or in glacial areas).  Temperature conditions are controlled by the geothermal gradient 
(Γ).  In 3-D space, its value is calculated by (Plummer and McGeary, 1988): 
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The heat flux density q specifies the amount of heat passing through a unit surface area in one time 
unit based on the subsurface temperature distribution.  For homogenous and isotropic formations the 
thermal conduction coefficient is constant.  The heat flux density q can then be calculated through 
Fourier’s law: 
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→
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In anisotropic formations, this relationship takes the form: 

 

),,( zyx qqqq =
→

  ∇T = (Tx, Ty, Tz)   (16) 
 
So for homogenous and isotropic formations, the relationship between gradient and heat flux is: 
  

q = λΓ      (17) 
 

In order to calculate the heat flux density, it is enough to know the gradient (Γ) and the thermal 
conductivity of the formation.  There are two methods commonly used for this purpose, the so-called 
interval and the Bullardy methods.  In the interval method, the climatic change effect is admitted, and 
the underground change of heat conductivity, relief change, underground water flows, and the 
temperature gradient (G) are evaluated; the result was that both gradients are quite similar (G ≈ Γ).  In 
this method, the temperature gradient value is combined with the thermal conductivity of the rock 
values.  Bullardy’s method (Plummer and McGeary, 1988) is used only for 1-D heat conduction in 
layered materials: 
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Following measurements, experiments and several model studies, it was generally accepted that for a 
very long time the mean values of q over the continents and oceans was unchanged.  
 
The heat content of a geothermal reservoir at a certain moment in time can be determined using the 
volume model of the heat storage as follows (Frashëri et al., 2004): 
  

( ) ( ) ZATTCCQ otwwm ΔρΦρΦ −+−= )}1{      (19) 
 
where C is the specific heat capacity of rock matrix (kJ/kgK) 

Tt is the aquifer temperature (°C) 
To is surface temperature (°C)  
ΔZ is thickness of the aquifer (m) 
Φ is the porosity 

 
The heat production potential for a single well (with reinjection) is often calculated by the following 
equation (Frashëri et al., 2004):  

        op QRQ =       (20) 
 
The extraction coefficient (R0) can be estimated in several ways, also depending on whether 
reinjection is applied or not.  In the case of reinjection, its value can be estimated by (Frashëri et al., 
2004): 

   oT

rt
o TT

TTR
−
−

= 33.0      (21) 

 
The heat reserves for production wells can be estimated as follows: 

 

      pp QRQ 12 =            (22) 
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where  R1 is an extraction coefficient for production wells, which can be calculated by: 
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In general, there are only small pressure and flow changes for many geothermal wells and the 
dependence on rock properties can be estimated by the relationship (Frashëri et al., 2004): 
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The vertical and horizontal permeability can be determined by (Frashëri et al., 2004): 
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The thermal power FT (MW) from the well can also be estimated by (Frashëri et al., 2004): 
 

00184.0}{ ×−×= outinwMAXT TTQF     (26) 
 
The annual energy production, Eannual (J/year) is calculated by (Frashëri et al., 2004): 
 

             03154.0}{ ×−= outeinvMeanannual TTQE           (27) 
 
The thermal capacity is then calculated by: 
 

         
03171.0×=

T

annual
Thermal F

EK            (28) 

 
 
3.6  Temperature and lithological profiles 

 
For N different layers, with no heat exchange between them except by heat conduction, the product of 
geothermal gradient and thermal conductivity is constant: 
 

λ1  Γ1 =       λ2   Γ2 =  .........   = λN  ΓN    (29) 
 
This shows that the higher the thermal conductivity for the rocks, the lower the geothermal gradient is.  
The differential equation for steady vertical conductive heat flow, which gives the relationship 
between temperature, thermal conductivity λ(T) and heat transfer as a function of depth is (Shallo and 
Daja, 2000): 
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The boundary conditions are: 
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If  H = Ho and λ(T) = λo/(1+CT), then the solution is: 
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3.7  The regional characteristics of the heat influx 
 
The most important heat sources in the earth’s crust are the radioactive isotopes of Uranium, Thorium, 
and Potassium.  So the crustal thickness and the isotope distribution influence the heat flux from the 
interior of the Earth.  An analytical relationship between this flux and the radioactive heat is (Plummer 
and McGeary, 1988): 

    q = qr + DHo      (34) 
 
Three empirical equations are used to calculate the radioactive heat, H (μWm-3) (Plummer and 
McGeary, 1988): 

H = 10-5ρ (9 ≤ 2 Cu+2.56CTH + 3.48 Ck)    (35) 
 

ln H = 16.5 - 2.74vp     (36) 
 

ln H = 22.5 - 8.15ρ     (37) 
 
where CU, CTH, CK = Uranium, thorium, natural potassium concentrations;  

ρ is the rock density (kg/m3); and 
vp is the p-wave velocity (m/s). 

 
The measured values of H help in the estimation of Ho by using the above relationships. 
 
 
3.8  Annual temperature changes 
 
The annual ground temperature change can be simplified by this periodic relationship (Hyseni and 
Melo, 2000): 
 

 T(t) = To
a + Ao sinω t          (38) 

where   
dP
πω 2

=  

 
The temperature field T (Z, t) at depth in the area of the annual changes is obtained by solving the heat 
conduction equation for a homogenous semi-infinite medium, with the initial and boundary 
conditions: 
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     (39) 

 
T(Z, 0) = To + ΓZ ;  T(0, t) = T(t) ;   T(0, t) = To + ΓZ 

 
The solution for this equation is known (Carslaw and Jaeger, 1959): 
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where the temperature amplitude Az is given by: 
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3.9  Heat transfer mechanisms 
 
There are three heat transfer mechanisms; diffusion, convection and radiation.  If different parts of a 
“body” are at different temperatures then there is tendency to equalize them.  So part of the energy 
from the “hot molecules” will be transferred to the “cold” ones.  With time this causes the 
temperatures to equalize.  This process is called diffusion.  Convection is the process where the energy 
flows with moving fluid.  There are two types of convection: Free, caused by a non-uniform 
distribution of density resulting in buoyant forces and forced, caused by external factors.  Usually they 
can both occur at the same time, but in different quantities.  The relationship shows that the effect of 
thermal convection is a function of the diffusion/convection processes (Plummer and McGeary, 1988): 
 

   λ
λ

λ
λ

γ Ce
C +== 1      (43) 

 
In radiation processes heat is released through electromagnetic waves.  The amount of energy released 
per unit area is calculated by: 
 

          q = σ ε T4              (44) 
 
where σ = 5.67 × 10-8 Wm-2K-4 and 

ε is emissivity. 
 
 
3.10  The differential equation for heat transfer 
 
This equation is a mathematical expression of the first law of thermodynamics, the energy 
preservation law.  The heat increase of an elementary volume ΔV is equal to the thermal energy which 
crosses the surface S.  A solid medium is considered, which is not generating any energy (so the 
energy is only flowing through a surface S).  The temperature T at a point P (x, y, z) will be a 
continuous function of the position and time.  For a homogenous solid medium, in which the thermal 
volume heat capacity is independent of temperature, the equation is (conductivity and Plummer and 
McGeary, 1988): 
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with a = thermal diffusivity of the solid medium.   
 
In polar coordinates x = r cosα; y = sinα, hence: 
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Let’s assume that at point P (x, y, z) the energy input per unit of time and unit of volume is A(x, y, z, t), 
then Equation 45 is rewritten as: 
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If thermal conductivity depends on position and temperature, the equation can be written as: 
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Its solutions are often relatively simple and can be found for different functional forms of λ(x, y, z).  If 
the thermal properties are temperature dependent, the equation is non-linear and numerical methods 
need to be used for its solution. 
 
3.10.1  The basic hypothesis 
 
Let’s describe mathematically the heat exchange process between flowing fluids in a wellbore with 
appropriate boundary conditions.  Let’s assume: 
 

• The formation is homogenous and isotropic; 
• The flow is in axial direction only; 
• The heat flow is only by conduction; 
• There is no radial temperature gradient in the wellbore; 
• In the boundary zone of the wellbore the formation temperature is a known function of depth; 
• The thermal properties of the fluid and formation are constant; 
• The radial temperature in the wellbore is constant; 
• The yield from the wells is constant;  
• The flow in the wellbore is vertical (1D); 
• The vertical heat conduction -is much less than the horizontal one, i.e. negligible; 
 

Wu and Pruess (1990) used a numerical model to verify the last hypothesis.  In Figure 4 it can be seen 
that the ratio between the vertical and horizontal temperature gradients, η, is less than 1%.  To 
determine the value of η, the hypothesis that a constant linear source of heat could simulate the 
thermal effect of a drilling/production well is used:   
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where Φ  is the error function; 

2
4
z
atu =  is dimensionless time; 

a is the thermal diffusivity; 
z is the depth of the well; 
t is the drilling (or production) time; and 
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3.11  The Laplace equation 
 
For stable flow through a medium with constant thermal conductivity, without heat production, the 
form of the heat diffusion equation is: 
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In polar coordinates with x = r cosθ; y = r sinθ: 
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And for 1-D radial flow:   
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Using Equation 53, it is possible to calculate the temperature distribution through a cylindrical wall 
where the heat transfer is only radial in direction.  The solution is: 
 

T = C1 ln r + C2      (54) 
 
where the constants C1 and C2 depend on the initial and boundary conditions. 
 
 
  

FIGURE 4:  The vertical and horizontal temperature gradient ratio 
(Plummer and McGeary, 1988) 
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3.12  The Poisson equation 
 
For a medium with constant conductivity and internal heat production the following is used: 
 

   A(x,y,z) = H/λ     (55) 
 
For stable heat-flow conditions, the diffusion equation is: 
 

2
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2

2

2

2

z
T

y
T

x
T

∂
∂

∂
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∂
∂

++  + A(x, y, z) = 0    (56) 

 
In polar coordinates, this becomes: 
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r r

T
r r

T T
z
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3.13  Initial and boundary conditions 
 
In order to solve the thermal diffusion equation, let’s assume that the formation temperature is a 
function of position (x, y, z) and time (t) (Plummer and McGeary, 1988).  In addition, initial and 
boundary conditions must be specified.   
 
A specific moment in time is chosen as the origin of the time coordinate.  At that time the temperature 
distribution is: 
  
                      T(x, y, z, t = 0) = f(x, y, z)      or      T(r, θ, z, t = 0) = f(r, θ, z)      (58) 

 
If the radially symmetric case of a flowing wellbore is considered, as an example.  After a certain 
production time the well is shut down.  To determine the temperature distribution in the wellbore 
during the shutdown time, the end of production is considered as the origin of the time coordinate.  In 
this case, the temperature f(r, z) must be known, i.e. the initial conditions. 
 
To specify the temperature field of a medium, the boundary conditions must also be known 
beforehand.  Different kinds of boundary conditions can be specified: 
 

• Surface temperature is known, and is constant or a function of position and time, T = f(x, y, z, t); 
• The amount of energy flowing through the surface is known: 

 

( )
n
Ttzyxqs ∂

∂λ−=,,,
  

{
n∂

∂  = the derivation perpendicular to the surface}  (59)     

 
• Linear surface heat flow.  In such a case the amount of energy transmitted through a given 

surface is proportional to the temperature difference between the surfaces and the surroundings. 
 

       qs = α(Ts - To)       (60)  
 

where  Ts is the surface temperature 
To is the temperature of the surroundings 
α is the heat transfer coefficient, and  
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      {
∞→α

lim   Ts = To}     (61) 

• The connecting surface between two media has the conductivities λ1 and λ2, respectively.  If T1 
and T2 are the temperatures of the media, then: 
 

T1⎪s = T2⎪s  ;         
s

s n
T

n
T

∂
∂λ

∂
∂λ 2

2
1

1 −=−     (62) 

 
 
3.14  Dimensionless parameters 
 
In order to decrease the number of variables involved when solving heat conduction problems, a 
number of dimensionless parameters are used.  Let’s consider radial heat flow from a cylindrical 
source with radius rc (Plummer and McGeary, 1988): 
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With the initial and boundary conditions: 
 

T(r, o) = To;  T(rc, t) = TC; T(α, t) = To    (64) 
 
Then the dimensionless parameters for distance, rD, temperature, TD and time tD can be introduced as: 
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Then: 
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( )

0

0,
TT

TtT
C

D −
=α      (68) 

 
 
 
4.  THERMODYNAMICS OF THE HOT SPRINGS 
 
4.1  Temperature field modelling 

 
In order to create a physical model to enable the stable state of heat flow through a formation to be 
studied, the analogy principle may be used.  It is assumed that n dimensionless parameters I1, .......  In 
describe the heat conditions in the formation and surroundings.  In such a case, the model results 
should be expressed as n dimensionless parameters I’1, ...........  I’n.  The conditions that must be 
fulfilled in order to use the model in a real reservoir are I1 = I’1, .......  In = I’n.  For stable heat 
transmission, the analogy with the electrostatic field can be used.  For the 2D case and with the 
thermal conductivity as λ=λ(x,y), the boundary conditions are: 
 

         T(z1,x)=T1, T(z2,x)=T2, lxl ≤≤− ;   0),(),(
=

∂
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=
∂

∂
− ll x

xzT
x

xzT   (71) 
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TABLE 1:  The analogy between different physical fields (based on Plummer and McGeary, 1988) 
 

Hydrodynamics Heat transfer Electrostatics Electricity transmission
Pressure 

P 
Temperature 

T 
Electrostatic potential

Φ 
Potential 

U 

Pressure gradient (negat.) 
-∇ P 

Temperature gradient
(negat.) -∇ T 

Field vector 
E = -∇Φ 

Potential gradient 
(negat.)  -∇ U 

 

Permeability/viscosity 
k/μ 

Thermal conductivity
λ 

Dielectric constant 
ε/4π 

Specific resistance 
ρ 
 

Velocity vector 

pkv ∇−=
μ

v  

(Darcy law) 
 

Heat amount transfer.
 

( Fourier law) 
 

Dielectric displ. 

Φ
π
ε

π
ε

∇−=
44

E  

(Maxwell  law) 

Current 
UI −∇=  

(Ohm law) 
 

Isobaric surface 
p=C 

 

Isothermal surface 
T=C 

 

Surface with  
electrostatic potential

Φ=C 
 

Surface with potential  
s=C 

 

Impermeable layer 

0=
∂
∂

n
p  

Split surface 

0=
∂
∂

n
T  

Force line 

0=
∂
∂

n
Φ  

Potential line 

0=
∂
∂

n
U  

 
In Table 1, a summary of the analogies between hydrodynamic, heat transfer, electrostatic and 
electricity transmission fields is presented.  As can be seen from Table 1, temperature change ∆T is 
analogous to the potential difference ∆U.  Assuming a unit length, ls , the dimensionless coordinates 
are: 

sssss l
ll

l
zz

l
zz

l
zz

l
xx ===== ';;;';' 2'

2
1'

1

   
 (72) 

 

The relationship λ = λ(x,z) is analogous with ρ = ρ(x,z).  Particular care should be used in unstable 
field modelling.  Considering the hydrodynamics analogy with the thermal one, in particular the 
transitory flows of an incompressible fluid through a porous medium, then the main characteristics of 
this regime are the high value of the hydraulic diffusivity (Aliaj and Hyseni, 1996): 
 

       μΦ
η

tc
k

=
  

    (73) 

 

Its thermal field analogue is the thermal diffusion coefficient (a).  The analogies principle can only be 
used in a case where the dimensionless times are equal.  In thermal field modelling, the fact that the 
temperature is not affected by surface topography and groundwater flow is very important.  To 
determine the boundary conditions, temperatures maps at depth are widely used (Čermak and Haenel, 
1988). 
 
 
4.2  The unstable temperature field 
 
Before starting investment in a geothermal project, the stability of the temperature field involved, in 
space and time, needs to be confirmed as well as the project’s overall sustainability.  The methods that 
can be used to answer such questions are numerous, but here we will apply the finite element method 
(Osmani, 1997).  Considering the differential equation: 
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 (74) 

Tq −∇=
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The functional of this equation is (Osmani, 1997): 
     

   (75) 
 
 
Let’s divide this functional into two parts: 

 
      (76) 

 
 
The initial conditions are: T(x,y,z,t=0) = f(x,y,z) and the boundary conditions are (Osmani, 1997): 
 

 
 
where  m, n and l are the heading cosines of a vector perpendicular to the surface of volume Ω;  

q   = heat flow density of surface hot springs [q = α(T-Tg)]; with 
α  = convection heat transfer coefficient. 

 
This is a 3-D temperature field problem.  To integrate this equation it is assumed that the time interval 
(t,t+Δt) leads into dT/dt = C (Ti = temperature values in the nodes I = 1, 4). 
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The partial derivatives of the functional can be calculated as follows:  
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The following replacements are done: 
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where  [H] = Matrix of conductivity of the thermal field; 

[P]  = Matrix of instability of the thermal field; and 
[F] = Source vector. 

 
After these replacements the definitive form of Equation 78 becomes: 
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This matrix equation can be solved step by step.  Expanding it as a Taylor series we obtain: 
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At times t and t+Δt, this equation is written: 
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The temperature vector at time t will help to find the temperature at time (t+Δt), which will help to 
find the temperature at time (t+2Δt) and so on (see Appendix I). 
 
 
4.3  Pipe flow with heat addition 
 
The flow to hot springs can often be modelled by flow in a pipe surrounded by rock.  If the heat 
balance in a thin cylindrical shell of fluid in the pipe is considered, as shown in Figure 5, the thickness 
of the shell is δr and the length δx. 

If the flow is steady, the temperature of the fluid does not change with time and if axial heat 
conduction is unimportant compared with advection of heat by the flow, the net effects of radial heat 
conduction and heat advection must balance each other (Turcotte and Schubert, 2003): 
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The assumption of neglecting viscous dissipation, or frictional heating, is also made.  In a laminar 
case, the velocity as a function of mean velocity ū is calculated by (Turcotte and Schubert, 2003): 

 
 (86) 

 
 

The case in which the wall temperature of the pipe is Tw and the fluid temperature is changing linearly 
along the length as (Turcotte and Schubert, 2003) gives: 

 
(87) 

 
where  c1 and c2 are constants; and  

θ(r) is the temperature difference between the fluid and the walls. 
 
By putting this into Equation 85, the following equation is obtained: 
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FIGURE 5:  Heat balance in a small cylindrical shell in a pipe-flow model 
(Turcotte and Schubert, 2003).  
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The boundary conditions are: T=Tw at r=R and qr=0 at r=0.  The latter condition is required because 
there is no line source or sink along the axis of the pipe.  The first condition is satisfied if θr=R =0 while 
the second one becomes (dθ/dr)r=0=0, with the aid of Fourier’s law.  The solution of Equation 88 with 
these boundary conditions is: 

 
(89) 

 
 

Applying Fourier’s law at r = R, the heat flux through the wall qw is found to be as follows: 
 

(90) 
 

  
This flux is constant and independent of x.  If c1 is positive, the wall temperature increases in the 
direction of the flow, and heat flows through the wall of the pipe into the fluid.  If its value is negative, 
the wall temperature decreases in the direction of flow, and heat flows out of the fluid into the wall of 
the pipe.  The heat flux to the wall can be expressed through the coefficient of heat transfer h between 
the wall heat flux and the excess fluid temperature according to: 

 
 (91) 

  
The average flow of the excess fluid temperature (for unit area) is calculated by: 

 
 

(92) 
 

  
In order to calculate the value of the coefficient h, Equations 90 and 91 are combined: 

 
 (93) 

 
Equation 93 is valid only for Re < 2200 (laminar flow).  For pipe flow with heat addition, a 
dimensionless measure of the heat transfer coefficient is introduced, known as the Nusselt number, Nu, 
which is a measure of the efficiency of the process.  This coefficient is calculated by (Turcotte and 
Schubert, 2003): 

 
 (94) 

 
  

For the above difference in temperatures, fluid film thickness D and conductivity k, the conductive 
heat flux would be: 

 
  

(95) 
 

 
 
4.4  Aquifer model for hot springs 
 
The model of Figure 6 is considered.  If the heat 
convected along the aquifer is balanced against the heat 
lost or gained by conduction to the walls, it leads to 
(Turcotte and Schubert, 2003): 
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spring (Turcotte and Schubert, 2003) 
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(96) 

 
 
where  s is the distance measured along the aquifer; its relation with the angle is:  s=R’φ. 
 
It is assumed that the wall temperature of the aquifer depends on the local geothermal gradient β as 
follows: 

 
(97) 

 
Equation 97 can be simplified through the introduction of the Pèclet number (Pe = ρcūR/k) and the 
Prandtl number (Pr = ρcυ/k) and finally the introduction of the dimensionless temperature as follows 
(Turcotte and Schubert, 2003): 

 
(98) 

 
The solution of this linear first order differential equation with appropriate boundary conditions is: 
 

 
 

(99) 
 

  
 
The dimensionless temperature θe at the exit of the aquifer, at φ=π, is given by (Turcotte and Schubert, 
2003): 

 
 

(100) 
 
  

 
 

 
4.5  One dimensional advection of heat in a porous medium 
 
It is well known that geothermal systems develop above magma bodies, hot intrusions and hot crustal 
regions, which induce large scale motions of groundwater in the rocks above.  A substantial fraction of 
hot springs with exit temperatures of about 50°C is believed to be the direct result of this type of 
hydrothermal circulation.  The heat source heats the groundwater, which becomes less dense and rises.  
Near the Earth’s surface the water cools and becomes denser.  It can then sink and recharge the 
aquifers and porous rock in the vicinity of the heat source.  The water is then reheated, and the cycle 
repeats.  An analysis of the complete hydrothermal convection system requires the solution of a 
coupled set of nonlinear differential equations in at least 2-D. 
 
Here the upwelling flow above the heat source is studied.  An incompressible fluid flows through the 
rock-matrix (porous medium) with velocity components u (x-direction) and v (y-direction).  In this 
case (Turcotte and Schubert, 2003): 

 
(101) 
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The energy conservation equation can be written (Turcotte and Schubert, 2003): 
 

(102) 
 

  
For steady 1-D flow (dv/dy=0) Equation 102 can be simplified as follows (Turcotte and Schubert  
2003): 

 
(103) 

 
Integration of Equation 103 gives: 

 
(104) 

 
The value of the integration constant c1 can be determined from the conditions at great depth where 
upwelling fluid has the uniform reservoir temperature Tr.  Therefore y→∞ leads to (dT/dy→0 and 
T→Tr).  This gives c1 = ρfcpfvTr , and (Turcotte and Schubert, 2003): 

 
(105) 

 
This equation is rearranged as follows: 

 
(106) 

 
  

The integration of Equation 106 gives: 
 

(107) 
 
 

As (y→∞) the right side of Equation 107 approaches zero, because v < 0.  In order to evaluate the 
integration constant c2, T is set to T0 at the surface (y=0) and then c2=T0-Tr and also: 

 
(108) 

 
 

If the flow is driven by the buoyancy of the hot water, the Darcy velocity can be used to estimate the 
permeability of the system.  Darcy’s law can be written as: 

 
(109) 

 
  

Buoyancy forces are caused by a decrease in density (because of heating), described by (Turcotte and 
Schubert, 2003) as: 

 
(110) 

 
where  ρf0  = Water density at T0 

αf  = The coefficient of thermal expansion 
 
Inserting Equation 110 into Equation 109 gives: 
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By making the assumption that dp/dy≈0, Equation 111 can finally be written as (Turcotte and 
Schubert, 2003): 

 
(112) 

 
 
 
 
5.  DISTRICT HEATING SYSTEM USING THE GEOTHERMAL WATER 
 
In general, geothermal water for a district heating system is taken directly from low-temperature 
reservoirs.  Another way is to run the geothermal water through heat exchangers to heat up fresh 
water.  The hot water can be stored in tanks if appropriate.  This water is then transmitted to buildings 
and can be used for heating and tap water.  Heat flow to the buildings is controlled by the mass flow.  
A sketch of a geothermal district heating system is given in Figure 7.  
 

In the following the basic calculations for geothermal district heating are presented.  The main 
elements of geothermal district heating are radiators.  Such a system is affected by the water’s thermal 
energy, building heat loss, pipe heat loss and building energy storage.  A short description for each of 
them is given below. 
 
 
5.1  Radiators 
 
Radiators are heat exchangers that make it possible to transfer heat from geothermal water to the 
indoors surroundings.  The relative heat capacity of a radiator is given by the following relationship: 
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where the subscript 0 denotes design conditions. 
 
The temperature difference ΔTm is calculated (Nappa, 2000) by: 
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FIGURE 7:  A sketch showing the main elements of a geothermal district heating system 



Kodhelaj 178 Report 9 

5.2  Thermal energy of the water 
 
The water’s thermal energy which is transferred to the indoor surroundings through the radiators is: 

                ( )rsp
rad TTmcQ −=                      (115) 

 
where subscripts s and r denote supply and return, respectively.   
 
The relative thermal energy given by the geothermal water is (Nappa, 2000): 
 

                
( )
( )0000 rs

rs
rad

rad

TTm
TTm

Q
Q

−
−

=      (116) 

 
 
5.3  The building heat loss 
 
The biggest energy loss in a geothermal district heating system may come from the buildings.  These 
losses can be calculated as (Nappa, 2000): 
 

                  ( )0TTkQ illoss −=                      (117) 
 
where the building heat loss factor kl is assumed constant. 
 
The relative losses are (Nappa, 2000): 
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5.4.  Pipe heat loss 
 
Other heat losses in such system are through the pipes.  To determine the amount of loss in the pipes, 
it is necessary to know the pipe transmission effectiveness parameter τ.  Its value (Valdimarsson, 
1993) is given by: 
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The reference value τ can be calculated from the reference flow conditions as follows: 
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The values of Up and cp are assumed to be constant in the system.  By combining Equations 119 and 
120, the transmission effectiveness can be calculated: 
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The supply temperature to the house can be calculated as: 
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and the return water temperature at the pumping station is calculated as: 
 

               ( ) ( ) m
m

grggrg TTTTTTT
0

02 ττ −+=−+=     (123) 
 
 
5.5  Building heat storage 
 
A building’s heat storage (dependent on the amount of thermo-insulation) can be very helpful for the 
heating system.  Normally the buildings are like heat storage.  A building’s heat storage is calculated 
by (Nappa, 2000):           
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where C is the total heat capacity of the building. 
 
 
5.6  Pipe and distribution network design 
 
The network’s design is affected by a number of factors, the most important of which are: topology 
and route selection, pump station design, and pipe system, tanks and pressure vessels (structural 
design).  After all the necessary calculations are made, a cost evaluation process must be done, in 
order to optimise the design. 
 
 
5.7  Pipe design 
 
The pipe design is maybe the most important part of the network system and, at the same time, the 
most costly.  The standard design process for the pipelines is: 
 

• Topology and route selection; 
• Demand and flow analysis; 
• Pipe diameter optimisation; 
• Thickness and pressure classes; 
• Mechanical stress analysis (support, type and distance between them); 
• Thermal stress analysis (expansion loops, expansion units); 
• Pump size and arrangement. 

 
All these calculations are done with the purpose of minimising the total cost (to optimise the 
calculations and selections). 
 
 
5.8  Route selection 
 
The route selection is the first step of these calculations, including the process of identifying 
constraints, avoiding undesirable areas, etc.  In that phase, many factors are evaluated such as the 
integrity of the pipeline, environmental impacts, public safety, land-use efficiency, proximity from 
existing facilities, length of the path (attempting to select the shortest) and slopes.  There are many 
ways to make this selection, including cost modelling comparison or transformation of the variable 
topography distance.  
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5.9  Pipe diameter and wall thickness 
 
Deciding on the pipe diameter is another important step in the calculations.  Here, the maximum 
allowable velocity and of course the minimisation of the total cost (updated) are taken into account.  
Pressure is one of the most important design criteria.  The design pressure value should be higher than 
the pressure under the most severe conditions.  The pressure is calculated by taking into account the 
friction losses (Jónsson, 2007):  
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The friction factor depends on the flowing regime and can be calculated: 
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Now it is possible to calculate the pressure for the pump and the power of the motor through the 
relationship: 
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When all prices are known, including electricity, pipes, junctions, bends, valves and pump it is 
possible to calculate the costs (operative and capital costs).  The design process continues with 
calculations of thickness.  The thickness based on the pumping pressure can be calculated as (Jónsson, 
2007): 

( ) a
pumpa

opump

yPS
dP

δδ +
+

=
2

     (128) 

 
 
5.10  Thermal stress analysis 
 
The geothermal water pipeline is working under conditions of elevated values of pressure and 
temperature.  Because of the elevated temperature, the pipe is constrained and this movement should 
be controlled.  This control is realised between the expansion loops, expansion units or by using pre-
stressed pipes.  The thermal expansion, the stress and the force are calculated as follows: 
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And finally the expansion arms as (Jónsson, 2007): 
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5.11  The pressure vessels 
 
During the design phase of the pressure vessels, there are several constraints such as: classification, 
diameter and thickness, form, supports (type), saddle (size) and openings (reinforcement).  The 
classification of the pressure vessels is made on the basis of the maximum allowable pressure, their 
volume and the stored fluid.  The thickness is calculated again for the most severe conditions of 
differential pressure and temperature.  The first step in the calculation procedure for the tank consists 
of its optimisation (minimising the area).  The function to be minimised is (Jónsson, 2007): 
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The minimum is obtained by D = |H|. 
 
The plate and roof thickness can be calculated by: 
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6.  RESULTS OF SIMPLE HOT SPRING MODELLING   
 
The six hot water springs at Llixha in the Elbasan 
region have water temperatures up to 65°C and a 
flow-rate up to 23 l/s.  Estimated reservoir 
temperature at depth associated with the hot 
springs, based on the chemical composition using 
different geothermometers, is given in Table 2. 
 

These values indicate that the water is coming 
from a great depth where the average 
temperature is over 200°C.  The mineralisation of 
the water is 7.2 g/l, the H2S content 410 mg/l and 
free CO2 180 mg/l.  The high content of CO2 
makes the Na+Ka+Ca geothermometer unreliable 
so the reservoir temperature is likely to be in the 
range of 220-235°C (Arnórsson, 2000; 2007; 
Arnórsson and D’Amore, 2005).  This is in 
agreement with calculations based on the 
geothermal gradient and a depth of 4500-5000 m.  
Its value for the region is of the order of 30°C/km 
as is shown in Figure 8 (Frashëri et al., 2004).  
 

TABLE 2:  Estimated water temperature (°C) 
at depth based on different geothermometers  

(Frashëri et al., 2004) 
 

Geothermometer Spring  “Nosi” 
Llixha, Elbasan 

Fournier 254 
Truesdell 235 

Na+Ka+Ca 143 

FIGURE 8:  Temperature gradient map of 
Albania 
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The water contains < 1.2% tritium.  The absence 
of tritium shows that it originated as precipitation  
centuries ago.  The waters are chloro-magnesial 
and contain the cations Ca+, Mg+ and Na+ and the 
anions Cl-, SO4- and HCO3-.  The Ph is in the 
range 6.8-7 and the density 1000-1060 kg/m3.  As 
shown in Figure 9 (Frashëri et al., 2004), the hot 
springs are situated in the middle of the village.  
The hot water has only been used for balneology, 
but this has been done for many centuries, 
possibly since the time of the Roman Empire.  
The first modern use dates back to 1937 with the 
building of the “Hotel Park” medical centre.  The 
use of the water flowing from these springs can 
help to improve the economical effectiveness of 
district heating in the village.  The realisation of 
such a project will allow the utilization of 
geothermal water as an energy resource for the 
first time in Albania.  The purpose of the 
calculations presented in this chapter is to show 
that the water from these hot springs can be used 
for district heating of the village community. 
 
 
6.1  The 3-D modelling of the temperature 
       field of Llixha, Elbasan region 
 
A finite volume model was set up for a crustal 
volume with an area of 10 × 10 km and 5 km 
thickness to model the temperature, density and 
fluid velocity distribution in the Llixha region.  
The grid is shown in Figure 10.  Here, it is 
assumed that the medium is homogeneous and 
isotropic and that kx = ky = kz = 2 W/m°K 
(Osmani, 1987).  It is also known that Q = 20 l/s 
(corresponding to mi = Q/6 = 3.3 l/s or 3.224 
kg/s for each of the hot springs), cp =4180 
J/kg°C.  The temperature at depth in the 
formation is set at 221°C while the temperature 
of the water at the surface is in the range 60-
65°C.  The temperature gradient of the 
surroundings is assumed to be 12°C/km (see 
Figure 8). 
 
The modelling software FLUENT is used to solve the problem, providing calculated results for 
temperature, density and velocity for the volume modelled.  In the model, water flows with a velocity 
of 1.25×10-7 m/s.  The results for temperature, density and velocity, as well as velocity vectors, are 
shown in Figures 11, 12, 13 and 14.  More details on the modelling using FLUENT are presented in 
Appendix I. 
 
In conclusion, we can say that the results of finite element calculations (Section 4 and Appendix I) and 
the FLUENT modelling can help predicting the future temperature changes on the ground if the flow 
from the hot springs should change. 

FIGURE 10:  The finite volume grid used to 
model temperature and flow conditions 

in the Llixha region  

 
FIGURE 9:  Geomorphological map  

of the Llixha region 
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FIGURE 11:  The temperature magnitude 

FIGURE 13:  The velocity magnitude 

FIGURE 12:  The density magnitude 
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6.2  Calculation results for the hot spring dynamics 
 
The purpose of these calculations is to estimate 
the water temperature in the formation, to 
estimate formation properties and to find how the 
temperature changes in the upflow zone of the 
spring water.  The water table was assumed to 
move at a velocity of 4 m/year.  The temperature 
of the rocks is assumed to be about 230°C, the 
radius R’ = 14.4 m, the geothermal gradient β = 
30°C/km, the inflow 20 l/s, the value of the angle 
φ = π/6, the thermal diffusivity κ = 1.4×10-7 m2s-1 
and the convection coefficient heat transfer α= 
3×10-5 K-1 (Turcotte and Schubert, 2003). 
 
Solving the problem, shows the water temperature 
in the reservoir estimated at about 221°C (quite 
similar as indicated by the geothermometers), the 
permeability of the formation is about 8.8 mD, the 
drainage area of the formation is about 0.1575 
km2 and the temperature of the upflowing water 
changes as shown in Figure 15. 
 
 
 
7.  BASIC DISTRICT HEATING DESIGN 
 
7.1  Results for the network system  
 
The pipeline was assumed to be composed of two parts: part one being 2 km in length and part two 
being 3 km in length.  The flow baseline was assumed to be 20 l/s and the temperature of the water 
65°C, the pressure at consumption should be 2.31 bar. 
 
Calculations were made for 4 different diameters in the range 0.07-0.111 m.  The basic restriction was 
the water flow velocity.  If this value is greater than 3-4 m/s, noises level, corrosion and erosion ratios 

FIGURE 15:  The temperature change 
with the upflow of the water 

FIGURE 14:  The velocity vectors 
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are too high.  Under these conditions, pipeline optimisation, based on the total cost, shows that the 
optimal diameter is 0.090 m (see Figure 16).  The calculations for the tank are made for four different 
volumes in the range of 400-1000 m3.  The surface optimisation of the tank shows that the optimal 
diameter is in the range of 8.0-10.8 m (Figure 17).  The numerical results of the calculations are 
presented in Appendix II. 
 
 
7.2  Calculation for the radiators 
 
The steps used to calculate the radiator 
parameters are given in Sections 5.1-5.5.  In 
these calculations, it was assumed that the 
supply temperature of the water is 60°C, the 
reference temperature 65°C, and the ground 
temperature 6°C.  The calculations were done 
for 4 different scenarios: The indoor temperature 
was assumed to be in the range 18-20°C, the 
outdoor temperature in the range -10 to -4°C, the 
return water temperature in the range 33-40°C, 
the reference inflow in the range of 3.9-7 kg/s, 
and the reference system inflow 18-24 kg/s.  
Based on these data, the relative heating of the 
radiators was calculated as 0.83-0.92, the 
relative heating of the building as 0.87-0.88, and 
the transmissivity coefficient as τ = 0.94.  To be 
within these parameters, it is sufficient that the 
supply water temperature be 60°C, and the 
inflow of the system 16-27 kg/s.  The parameters 
for the Llixha thermal springs satisfy all these 
demands.  Figure 18 shows the results of calculations for the radiators supply and return water 
temperatures vs. indoor temperature.  The relevant calculations are done with EES (Engineering 
Equation Solver) and the results given in Appendix III.   
  

FIGURE 18:  Calculations for the radiators 
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8.  CONCLUSIONS 
 
Based on calculations presented in this report the following can be concluded regarding utilization of 
the hot springs of the Llixha-Elbasan hot-spring area in Albania: 
 

• The water temperature is expected to be stable in the future; 
 

• The  geothermal reservoir temperature at 4500-5000 m depth is thought to be about 220°C; 
 

• The water starts to cool down when it reaches 160 m depth; 
 

• The geothermal water from the Llixha hot springs fulfils all requirements for district heating in 
the region; 

 
• Considerably higher water temperature is expected through further well drilling. 
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NOMENCLATURE 
 

Ao = T-change amplitude of the ground 
bi = Fractures’ mean width [m] 
C = Heat capacity of the house [J/kg K] 
Ct = Total compression of the system 
Cu = Isobaric capacity of specific heat of the water  
c = Constant which takes into account the properties of the fluid and the rock 
cp  = Fluid specific heat [J/kg K] 
D  = Effective thickness 
Di = Fractures’ mean diameter 
DHo = Radioactive heat on the upper part of the earth’s crust 
di = Inner diameter of the pipeline 
do = Outer diameter of the pipeline 
f   = Volume of incondensable gas (gaseous phase) 
ff = Friction factor 
Ho = Constant 
Hf = Friction losses 
kv = Permeability [m2] 
kx, ky, kz = Thermal conductivity in ox, oy, oz [W/m K] 
L = Amount of energy for unit of mass 
Lanchor = Anchor length 
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Lpipe = Length of the pipeline 
Lwv  = Heat needed for water evaporation 
M = Isobaric volume heat capacity for the phases (ro  rock , o oil, w  water, g  gas) 
MR = Effective volume capacity 
m = Mass of particles [g] 
m = Water mass flow [kg/s] 
m0 = Reference water mass flow 
N = Number of fractures 
I = Installation cost for a single well 
I$ = Maintenance cost for a single well 
P = Price 
Pc = Pressure at the consumer 
Pd   = Periods 
Ph = Hydrostatic pressure 
p = Pressure [Pa] 
Q=Q(x, y, z)  = Volume density of the source  
Qrad = Heat capacity of the hot water 
Q0

rad = Heat capacity of the hot water at the reference conditions 
Qloss = Heat losses [W] 
Qloss0 = Heat losses at the reference conditions 
Qnet = Net heat 
Qw = Flowrate [m3/s] 
qo = Heat flow density (=cte) 
qr = Radioactive heat on the upper mantle 
R  = Drainage radius of the well 
Re = Reynolds number 
Ro = Exertion coefficient for the reinjection well 
r = Well radius 
S = Saturation of the formation 
Sa = Allowable stress [Pa] 
t = Time 
T=T(x, y, z)   = Temperature 
To = Ground extrapolated temperature 
To

a = Air temperature in a given time 
Tf , Td = Transitory temperatures (frost, dried) 
Tg = Ground temperature 
Ti = Initial temperature 
Ti = Indoor temperature 
Tr = Reinjection water temperature 
Tr = Return water temperature 
Tr0 = Reference return water temperature 
Ts = Water supply temperature (primary network) 
Ts0 = Reference water supply 
Up = Pipe heat loss factor 
v   = Velocity of particles [m/s] 
w = Ice amount for the dried zones 
y = Resultant movement 
 
Greek letters 
α = Coefficient of thermal expansion 
β = Coefficient which takes into account the formation composition (Btu/lb°F) 
δ = Pressure coefficient of the thermal conductivity 
Δt = Duration of the installations 
ε  = Surface radiation coefficient 
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ω  = Angular frequency 
Φ = Porosity 
Θ = Angle of the tanks roof 
λo = Conductivity in normal pressure 
λc = Thermal convection coefficient [W/m2 K] 
λe = Thermal diffusion coefficient  
γc = Effect of heat convection in its transfer 
λf , λd   = Thermal conductivity (frost, dried) [W/m K] 
λi = Thermal conductivity on the deep  ΔZi 
μ = Viscosity (dynamic) [kg/m s] 
ηm = Motor efficiency 
ηp = Pump efficiency 
ρ(ro, o, w, g) = Density of the (rock, oil, water, gas) [kg/m3] 
ρm = Average density 
ρv = Vapour density 
ρw = Water density 
τ0 = Pipe transmission effectiveness at reference conditions 
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APPENDIX I:  Modelling of the Llixha Elbasan reservoir 
 
Equation 74 in Section 4.2 is solved for the volumes shown in Figure 1.  In the figure, each node 
represents one of the hot springs.  For each of them we have all the data about coordinates and 
temperature as given in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 1: The finite volumes  
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Using the relationships given below, the value of the coefficient can be found and the value Δ for each 
volume.  These values are given in Table 2. 
 
 

TABLE 2:  The values of the coefficients 
 

Element 1  
a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4 Δ1      

3.2 0.8 5 10 0.8 0.4 0.5 0.05 2.2 1.15 0.9 0 6 9 3 0 21.1  
Element 2 

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4 Δ2

5.85 1.2 3.2 2.4 0.25 0.15 0.2 0.2 0.5 0.1 1.4 0 6 2 12 8  5 
Element 3 
a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4 Δ3

0 0 0 2.4 0.4 0.6 0.3 0.2 0.4 0.6 1.3 0.4 8 12 4 8  4.8 
 
 
The coefficients can be calculated using the following relationships: 
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TABLE 1:  The coordinates and 
the temperatures of the hot springs 

 
Spring 
(node) 

X 
(m) 

Y 
(m) 

Z 
(m) 

T 
(°C) 

1 (1) 0 0 0 60 
2 (3) 4 0 0.2 61 
3 (2) 4 2 0.3 62.5 
4 (4) 8 3 0.25 62 
5 (5) 10 5 0.35 63 
6 (6) 11 6 0.5 62 
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Using the above coefficient in Equation 77 gives: 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
The matrices [P], [H] at [F] are calculated using the respective values and Equation 79:   
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For element 2: 
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And for element 3: 
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The generalized matrixes are: 
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The problem consists of modelling one element 
with the dimensions 10x10x5 km.  The grid 
shown in Figure 2 will be used. 
 
Now it will be shown how to practically solve 
the equation for the unstable temperature field 
using finite volumes: 
 
 
 
 
 
 
 
The software FLUENT was used to obtain results.  The results for the temperature, density and 
velocity distributions are shown in the Figures below. 
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FIGURE 2:  The grid 

 FIGURE 3:  The temperature at the bottom 
  

FIGURE 4:  The temperature on the surface 
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FIGURE 5:  The temperature distribution 

  
 

FIGURE 6:  The temperature magnitude

 
 

FIGURE 7:  The density at the bottom 
  

FIGURE 8:  The density on the surface

 
FIGURE 11:  The velocity at the bottom 

  
 

 

FIGURE 12:  The velocity on the surface 

 
FIGURE 9:  The density distribution 

 
 

 

FIGURE 10:  The density magnitude 
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APPENDIX II:  Calculations for the Llixha-Elbasan-Albania network system.  
 
         

d_o_1 d_o_2 
l_bend_
1 l_bend_2 l_v_1 l_v_2 

L_equival
ent_1 

L_equival
ent_2 

L_equival
ent 

0.073 0.02667 1.46 0.5334 0.73 0.2667 2079 3549 5628 
0.0889 0.0733 1.778 1.466 0.889 0.733 2096 3634 5730 
0.1016 0.0889 2.032 1.778 1.016 0.889 2110 3663 5772 
0.1143 0.1016 2.286 2.032 1.143 1.016 2123 3686 5809 

         

delta_1 delta_2 d_i_1 d_i_2 A_1 A_2 
v_hotwat
er_1 

v_hotwat
er_2 R_e_1 

0.002108 0.001651 0.06878 0.02337 0.003716 0.000429 5.382 46.63 841395 
0.002108 0.002108 0.08468 0.06908 0.005632 0.003748 3.551 5.336 683417 
0.002108 0.002108 0.09738 0.08468 0.007448 0.005632 2.685 3.551 594292 
0.002108 0.002108 0.1101 0.09738 0.009518 0.007448 2.101 2.685 525732 

         

R_e_2 f_1 f_2 H_f_1 H_f_2 
P_hidrostati
c 

p_consu
mer 

P_pumpi
ng 

DELTAh_
pump 

2.48E+06 0.01192 0.0091 0.05117 14.74 4.808 2.31 8.54 88.81 
837741 0.01256 0.01193 0.01921 0.08763 4.808 2.31 7.128 74.13 
683417 0.013 0.01256 0.009958 0.03357 4.808 2.31 7.122 74.07 
594292 0.01341 0.013 0.005599 0.0174 4.808 2.31 7.12 74.05 

         

P_motor 
price_elec
tricity 

C_electr
icity 

C_electricity
_annual 

price_pip
es_1 

price_pipes
_2 

C_pipes_
1 

C_pipes_
2 C_pipes 

22326 0.07 1.563 13691 4.2 3.9 8400 13650 22050 
18636 0.07 1.304 11427 4.5 4.2 9000 14700 23700 
18620 0.07 1.303 11418 4.8 4.5 9600 15750 25350 
18615 0.07 1.303 11414 5 4.8 10000 16800 26800 

         
pr_bend_
1 pr_bend_2 

C_bend
s_1 C_bends_2 C_bends pr_junc_1 pr_junc_2 

C_junctio
ns_1 

C_junctio
ns_2 

2.45 1.89 61.25 82.69 143.9 1.8 1.38 48.6 63.14 
2.9 2.15 72.5 94.06 166.6 2.1 1.59 56.7 72.74 

3.54 2.45 88.5 107.2 195.7 2.34 1.8 63.18 82.35 
3.82 2.9 95.5 126.9 222.4 2.52 2.1 68.04 96.08 

         
C_junctio
ns 

C_valves_
1 

C_valve
s_2 C_valves pr_pump C_pump C_capital 

C_operati
v C_total 

111.7 158 129 287 1250 1250 22593 14367 36960 
129.4 174 136 310 1500 1500 24306 11992 36298 
145.5 202 158 360 1670 1670 26051 11982 38033 
164.1 230 174 404 2010 2010 27590 11979 39569 

FIGURE 13:  The velocity distribution 

 

 

FIGURE 14:  The velocity magnitude 
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R_m R_p_c R_p_h S Sc Sh f_c 
S_allowa
bl y 

340 235 140 93.33 113.3 93.33 1 165 0.4 
410 275 165 110 136.7 110 0.9 178.5 0.5 
490 355 195 130 163.3 130 0.8 189.3 0.7 
540 405 215 143.3 180 143.3 0.7 182.6 0.7 

         
         
th_prescl
ass_1 

th_prescla
ss_2 d_i_1_c d_i_2_c 

d_averag
e Z_1 Z_2 q_pipe_1 q_pipe_2 

2.901 1.726 0.0672 0.02322 0.04521 1.08E05 7.93E07 49180 10414 
2.79 2.485 0.08332 0.06833 0.07582 1.58E05 9.47E06 58111 42559 

2.912 2.679 0.09578 0.08354 0.08966 2.17E05 1.52E05 69502 55868 
3.219 2.978 0.1079 0.09564 0.1018 3.04E05 2.21E05 86491 71041 

         
q_pipe_to
tal d_ins_1 d_ins_2 

q_insulation_
1 

q_insulat
ion_2 q_ins_total 

q_sust_v
ertical v_win q_wind_1 

59593 0.083 0.03667 9973 4049 14022 73616 4 498 
100670 0.0989 0.0833 12006 10011 22017 122688 5 927.2 
125370 0.1116 0.0989 13630 12006 25636 151006 6 1507 
157532 0.1243 0.1116 15254 13630 28884 186416 7 2284 

         

q_wind_2 
q_wind_to
tal 

q_water
_1 q_water_2 

q_water_
total q_0 q_seismic q_d_h 

q_mediu
m_1 

220 718 70894 14447 85342 158958 38150 38150 34781 
780.9 1708 109890 128145 238035 360723 86573 86573 53471 
1335 2842 146156 193054 339210 490216 117652 117652 70655 
2051 4335 186571 254641 441213 627628 150631 150631 89610 

         
q_mediu
m_2 

q_medium
_total 

q_snow
_1 q_snow_2 

q_snow_t
otal 

q_seismic_
vertical q_d_v M_A M_B 

4152 38933 19.92 8.801 28.72 19075 58037 2.91E+11 2.75E+11 
35963 89434 23.74 19.99 43.73 43287 132764 5.04E+11 6.51E+11 
53757 124411 26.78 23.74 50.52 58826 183288 6.29E+11 9.07E+11 
70459 160069 29.83 26.78 56.62 75315 235441 7.86E+11 1.18E+12 

         
L_suppor
ts_1 

L_support
s_2 

DELTAL
_1 DELTAL_2 DELTAL sigma_x_1 

sigma_x_
2 Force_1 Force_2 

49.93 3.676 1.621 2.768 4.39 1.56E+08 1.56E+08 652920 87149 
43.81 26.32 1.635 2.835 4.47 1.56E+08 1.56E+08 968318 658298 
54.25 38.05 1.646 2.857 4.502 1.56E+08 1.56E+08 1.27E+06 968318 
66.36 48.34 1.656 2.875 4.531 1.56E+08 1.56E+08 1.60E+06 1.27E+06 

         

L_arm_1 L_arm_2 H_tank V_tank D_tank A_tank 
H_tank_r
m 

D_tank_r
m 

A_tank_r
m 

2.986 1.805 4 400 11.28 341.8 7.986 7.986 300.5 
3.295 2.992 6 600 11.28 412.7 9.142 9.142 393.8 
3.523 3.295 8 800 11.28 483.6 10.06 10.06 477.1 
3.736 3.523 9 1000 11.89 558.5 10.84 10.84 553.6 

         
P_tank_a
bs 

e_tank_mi
n e_a sigma_b_c 

sigma_b_
a e_roof    

1.643 7.298 6.248 1.85E+08 1.54E+07 5.087    
1.754 8.685 7.635 1.97E+08 1.64E+07 5.823    
1.842 9.878 8.828 2.07E+08 1.72E+07 6.409    
1.917 10.95 9.895 2.15E+08 1.79E+07 6.904    
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APPENDIX III:  Results of calculations for heat exchangers  
 

         
m T_r Q_hotwater m_o T_r_o Q_hotwater_o eta_hotwater T_i T_i_o 

3.92 30 491.6 17.64 33 2360 0.2083 18 18.5 
4.9 33 553 19.6 35 2458 0.225 18.5 19 

5.88 36 589.9 21.56 38 2433 0.2424 19 19.4 
6.86 40 573.5 23.52 40 2458 0.2333 19.8 20 

     
 
    

eta_radiator T_o T_o_0 k_l Q_loss_building eta_building tau U_p tau_o 
0.8331 4 6.7 93.63 2060 0.873 0.9474 0.8859 0.9881 
0.8739 5 8 91.03 2139 0.8704 0.9474 1.107 0.9866 
0.8759 6 9 85.68 2142 0.8803 0.9474 1.329 0.9854 
0.9243 10 13.5 73.37 2186 0.8896 0.9474 1.55 0.9844 

           

T_s_h T_s_h_r T_rwater T_rwater_r Q_building_capacity m_o_r    

60 60 28.74 28.74 6.137 16.43    

60 60 31.58 31.58 6.905 18.95    

60 60 34.42 34.42 7.366 21.35    

60 60 38.21 38.21 7.161 26.15 
 
   

 

 
 FIGURE 1:  The indoor temperature 

 
FIGURE 2:  The reference indoor temperature 
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