The Conservation of Arctic Flora and Fauna (CAFF) is a Working Group of the Arctic Council.

CAFF Designated Agencies:
- Directorate for Nature Management, Trondheim, Norway
- Environment Canada, Ottawa, Canada
- Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark)
- Finnish Ministry of the Environment, Helsinki, Finland
- Icelandic Institute of Natural History, Reykjavik, Iceland
- The Ministry of Domestic Affairs, Nature and Environment, Greenland
- Russian Federation Ministry of Natural Resources, Moscow, Russia
- Swedish Environmental Protection Agency, Stockholm, Sweden
- United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska

CAFF Permanent Participant Organisations:
- Aleut International Association (AIA)
- Arctic Athabaskan Council (AAC)
- Gwich’in Council International (GCI)
- Inuit Circumpolar Conference - ICC Greenland, Alaska and Canada
- Russian Indigenous Peoples of the North (RAIPON)
- Saami Council

Cover photo by Alexander Kuzmich

For more information please contact:
CAFF International Secretariat
Borgir, Nordurslod
600 Akureyri, Iceland
Phone: +354 462-3350
Fax: +354 462-3390
Email: caff@caff.is
Internet: http://www.caff.is

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Community based monitoring handbook</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Navigating the handbook</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Background</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Why now?</td>
<td>4</td>
</tr>
<tr>
<td>2. Selected basics</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Decision tree</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Summary table</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Community monitoring types</td>
<td>9</td>
</tr>
<tr>
<td>2.5 Community monitoring methods</td>
<td>11</td>
</tr>
<tr>
<td>3. Review of community based monitoring projects</td>
<td>13</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Project summary table</td>
<td>14</td>
</tr>
<tr>
<td>3.3 Projects</td>
<td>15</td>
</tr>
<tr>
<td>4. Recommendations for community based monitoring development</td>
<td>34</td>
</tr>
<tr>
<td>4.1 Advice from those who tried and succeeded</td>
<td>34</td>
</tr>
<tr>
<td>4.2 Community based monitoring project development</td>
<td>34</td>
</tr>
<tr>
<td>5. Conclusion</td>
<td>39</td>
</tr>
<tr>
<td>Conclusion</td>
<td>39</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>40</td>
</tr>
<tr>
<td>References</td>
<td>41</td>
</tr>
<tr>
<td>6. Resources</td>
<td>42</td>
</tr>
<tr>
<td>Appendices</td>
<td>42</td>
</tr>
<tr>
<td>List of Acronyms</td>
<td>47</td>
</tr>
</tbody>
</table>

Table of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Decision Tree: An example of decision making process in developing CBM activities</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Reporting Phase Communication Plan example</td>
<td>38</td>
</tr>
<tr>
<td>Table 1</td>
<td>CBM Types and Methods Summary Table</td>
<td>8</td>
</tr>
<tr>
<td>Table 2</td>
<td>CBM Projects Summary Table</td>
<td>14</td>
</tr>
<tr>
<td>Map 1</td>
<td>CBM Projects</td>
<td>13</td>
</tr>
<tr>
<td>Map 2</td>
<td>BSSN Communities</td>
<td>17</td>
</tr>
<tr>
<td>Map 3</td>
<td>ECORA Model Areas</td>
<td>22</td>
</tr>
<tr>
<td>Map 4</td>
<td>Marine Rangers Project Area</td>
<td>26</td>
</tr>
</tbody>
</table>
1. Community based monitoring handbook

1.1 Introduction

“No single way of knowing is better than the other, but both in union can be better than either. Our Elders teach that masculine and feminine must come into balance before harmony can be achieved, and in harmony comes understanding. The place of bringing the two together is the wisdom of the heart.”

Larry Merculieff,
“Indigenous Peoples and the Bering Sea: A marginalized ten thousand year legacy of Knowledge and Wisdom”

Community Based Monitoring is a complex research field that is becoming an essential and often required component in academic research and natural resource management. It is often used as a validation of results produced by conventional research methods. Community based monitoring enables researchers to reach beyond “Western” science by using the best available knowledge, be it academic, indigenous, traditional or local. Such an holistic approach improves understanding of ecological systems and how they interrelate with human societies.

This Handbook is written to enhance the role of community based observations of current and emerging research projects in the Arctic. The main principles of Community Based Monitoring activities, such as inclusiveness, respect for and recognition of knowledge holder rights and beneficence remain the same across disciplines and geographical areas. Thus, this information could be easily applied to broader monitoring efforts and in non-arctic regions.

The opinions and recommendations offered in the Handbook are based mainly on the shared experience of eight community based monitoring programs in North America, Scandinavia, Russia, and Australia. These projects’ leaders kindly agreed to be interviewed and shared their thoughts about challenges and successes in their work. The reviewed projects were selected to represent the cultural and methodological diversity of community based monitoring programs. Relevant papers and the author’s personal experience weighed in as well. Recommendations were compiled based on the analysis of this information.

This Handbook attempts to provide a broad assessment of community based monitoring. While it is not a comprehensive analysis, it explores the experiences of different community based monitoring programs in an effort to highlight the best and most successful practices of each. It is also designed for use as a framework for custom tailoring community based monitoring for a specific situation.

The Handbook is written for a diverse audience, including scientists, students, Arctic community residents, and government officials. It may help achieve the pursuit of knowledge with successful implementation of community based monitoring.
1.2 Navigating the handbook

The Handbook consists of six sections. The information is organized in such way that the content can be quickly scanned to find relevant material to meet specific needs. Note, that while it may be beneficial to read the Handbook in the sequence below, it is not necessary. While the content may be of interest to many audiences, such as novices considering community based monitoring, experienced scientists and local residents wishing to improve their community based monitoring practices and resource management agencies just to name a few, not all Sections are of equal value to all readers. The summary below is offered as an aid to navigation.

The Handbook is not intended as a step-by-step instruction manual and readers should use it as one of the many resources necessary for the successful development and implementation of community based monitoring activities.

Section 1: About the Handbook

This section contains general information that may be of interest to diverse audiences as it outlines the political and scientific context, in which this Handbook was written. It specifically addresses:

• Major developments that paved the way for community based monitoring
• Timing for developing the Handbook
• How this work was initiated
• How it relates to broader Arctic research.
• The importance of recognizing different knowledge types and their application in community based monitoring

Section 2: Selected community based monitoring basics

This section is intended for those who are developing or thinking about developing community based monitoring activities and covers terminology, methodologies, and the decision-making process:

• Community based monitoring Decision Tree as a tool for the selection of types and methods to meet project needs
• Process of selection of community based monitoring approaches
• Activities commonly described as community based monitoring
• Relationships between types of community based monitoring and their methods

Section 3: Review of community based monitoring basics

Eight projects employing various forms of community based monitoring are reviewed here. This Section could be of interest to community based monitoring practitioners wishing to learn from the experience of others. The review is in the form of interviews asking a suite of questions concerning the:

• Utility of community based monitoring in each specific project
• Role of geographical, cultural, and socioeconomic circumstances and their impact on community based monitoring outcome

Section 4: Review of community based monitoring basics

This section is especially important for those who are new to community based monitoring. It has some practical recommendations based on the experiences gained by the projects reviewed in Section 3, as well as by the author, such as:

• Summary of recommendations derived from the interviewed projects
• Planning, implementation, and reporting phases of community based monitoring

Section 5: Conclusions

Policy makers, natural resource managers, funding agencies, educational establishment and other interested parties are invited for a broader discussion on the issues raised in the Handbook. The Conclusion focuses on the:

• Main points presented in this Handbook that are of particular importance
• Broader challenges and opportunities that exist for community-based monitoring

Section 6: Resources

An array of helpful additional information and web links are listed.

1.3 Background

This Handbook was commissioned by the Circumpolar Biodiversity Monitoring Programme (CBMP) of the Conservation of the Arctic Flora and Fauna (CAFF) working group of the Arctic Council. The CBMP is an international network of scientists and local resource users working together to improve detection, understanding, reporting and response to significant trends in Arctic biodiversity. Due to the vast and complex Arctic system, it is critical that a coordinated effort be realized to facilitate better conservation and adaptation actions. A particular focus of the CBMP is on providing information that allows local communities in the Arctic to adapt to a rapidly changing environment.

Early in the development of CBMP, community based monitoring was emphasized as a preeminent component of the program. To foster increased use and recognition of community based monitoring approaches, the CBMP identified the development of training manuals as a vital step. The manuals would focus on specific community based monitoring methods, as well as highlight the full spectrum of successful and established community based monitoring programs, ranging from citizen science projects to the use of local and traditional knowledge to track change in the Arctic’s living resources. The goal would be to improve current community based monitoring programs and to guide the creation of new ones. To facilitate the discussion on the best application of community based monitoring for Arctic biodiversity monitoring and to encourage the development of community based monitoring projects, CAFF produced two white papers: “Community-based Monitoring – a discussion paper” (Fleener et al, 2004) and “A Strategy for Facilitating and Promoting Community Based Monitoring Approaches in Arctic Biodiversity Monitoring” (Huntington, 2008). The latter also recommended producing community based monitoring training manuals. This Handbook is developed in response to these recommendations.

As an additional benefit, this effort may spur the creation of formal or informal networks of community based monitoring practitioners to share experiences and collaborate on the future development of community based monitoring.

1 The Arctic Council is a high-level intergovernmental forum that provides a mechanism to address common concerns and challenges faced by Arctic peoples and governments. It is comprised of the eight Arctic nations (Member states: Canada, Denmark/Greenland/Foxe Islands, Finland, Iceland, Norway, Russia, Sweden, and the United States of America), six Indigenous Peoples’ organizations (Permanent Participants: Aleut International Association, Arctic Athabaskan Council, Gwich’in Council International, Inuit Circumpolar Council International, Inuit Circumpolar Council, Saami Council and Világos Sámi).
1.4 Why now?

The Arctic Climate Impact Assessment (ACIA 2004) highlighted the changes expected to occur in the Arctic as a result of climate change over the next century. It also showed that these changes have already begun and will have significant environmental, economic, social and cultural effects in the Arctic.

One of the key findings of the ACIA was that Arctic species’ diversity, ranges, and distribution are changing. Observations indicate range changes are already happening on a large scale. For example, a review of 143 studies involving range distribution of nearly 1,500 species indicated that 80 percent had shifted towards the poles (Root, et al 2003). A key recommendation for future Arctic research was the improvement of long-term monitoring, extending it to year-round record collection and expanding it spatially.

ACIA was one of the first major scientific reports that included observations of local indigenous peoples, as case studies, to support scientific findings and to give a human face to some of the impacts of climate change. A striking convergence of community based observations with scientific data helped validate local observations. They were elevated from “anecdotal evidence”, a term used to identify this type of information in scientific documents, to an invaluable building block of a holistic understanding of the Arctic environment. However, case studies can only convey personal perspectives. They may provide the basis for discussion and scientific enquiry, but they do not provide aggregate statistics or general trends (Huntington et al, 2004). Furthermore, community based monitoring employ methods that quantify data can be an invaluable component of any large scale monitoring effort. It is impossible to collect year-around data in the vast Arctic region without local residents. There are not enough scientists in the world to do this (Kuznetsov, in interview for this handbook, 2009).

The recognition of the validity of local observations coupled with the need for on-going monitoring created a perfect opportunity for a surge in interest in various forms of community based monitoring. This was amplified by another opportunity, which came in the form of the International Polar Year (IPY) 2007-2009.

The vision of the organizers expanded the notion of inclusiveness to a range never experienced in polar research before. Arctic residents, especially indigenous peoples, were recognized as important stakeholders, collaborators, and drivers of new research, and, for the first time, were explicitly called upon to participate in the IPY.

The energy generated in IPY 2007–2009 was a result of many years of struggle to achieve recognition of indigenous, local, and traditional knowledge as invaluable components in the understanding of physical, natural and social environments in the Arctic. Indigenous and local participation in IPY 2007-2009 was also a result of political changes that occurred in recent decades. The process of indigenous land settlement claims that began in the 1970’s in Alaska and a similar movement in the 1990’s in Canada resulted in the establishment of indigenous government bodies. That led, among other things, to the increase in capacities of local indigenous organizations and to new government regulations requiring consultations and sometimes approval of research planned on indigenous lands.

More than 160 projects were funded and implemented, out of which 12 projects were led by indigenous researchers or indigenous organizations, while an additional 25 projects had indigenous partners. Almost all of these projects had a substantial community based monitoring component. Two of the projects reviewed in this Handbook are IPY projects.

2The International Polar Year is a large scientific programme focused on the Arctic and the Antarctic from March 2007 to March 2009. IPY, organized through the International Council for Science (ICSU) and the World Meteorological Organization (WMO), is actually the fourth polar year, following those in 1882-3, 1932-3, and 1957-8. IPY 2007-8 involved over 200 projects, with thousands of scientists from over 60 nations examining a wide range of physical, biological and social research topics. It was an unprecedented opportunity to demonstrate, follow, and get involved with, cutting edge science.
2.1 Introduction

Community based monitoring is a relatively new scientific field. Obviously, in a broader sense, humans have been always ‘monitoring’ their environment but monitoring by local residents as an organized activity has only recently begun playing a role in research. In the last few decades, local and indigenous observations of the natural and physical environment have made substantial progress. At first, they were referenced as anecdotal evidence, then became case studies, and finally methods are being developed to utilize these observations in independent data sets.

What is community based monitoring? It most often refers to the gathering of information by local residents over a period of time. However, community based monitoring as a term has become a set phrase. It is often attributed to community based monitoring. Some agencies and researchers prefer the word “observing” to “monitoring” explaining that observing relates more to research, while monitoring is more of a regulatory function. There is no good equivalent term for community based monitoring in the Russian language and different projects use different translations. Careless use of the words “monitoring” and “observing”, and especially information collection in Russia, may unintentionally evoke associations with some Cold War-type suspicion. In Indigenous languages it may be even more confusing, as there may not be equivalent notions. Defining specific activities planned for community based monitoring is the best way to avoid misunderstanding.

Since there is diversity of an interpretation for community based monitoring terms, methods, and approaches, it is useful to clarify the definitions of the main terms applied to community based monitoring that are used in this document. They are offered in Sections 2.4 and 2.5. The project reviews in Section 3 may contain other terminology, which was used by the interviewees, but all other sections of the Handbook are consistent with the definitions offered in this Section. This Handbook adopted the broadest approach to community based monitoring definition as any locally-based repetitive activity performed by local residents at defined time intervals with the purpose of gathering information to monitor the local environment.

2.1.1 Application of different types of knowledge

Community based monitoring is often emphasized as a perfect vehicle for synthesis of different types of knowledge. However, understanding differences and commonalities between the various types is not easy. This issue is further complicated by the lack of standardized terminology. While it is not the purpose of this publication to discuss the philosophical, political, legal, and linguistic arguments surrounding community based monitoring, the information in this section highlights the complexity of the issue and is intended to encourage careful consideration of the choice of words and better understanding of what their meanings entail. It cannot be overemphasized that the careful use of terminology plays a critical role in the success of a community based monitoring project. Misunderstandings due to different interpretations of the meaning of some phrases and terms can create barriers to local support for community based monitoring projects. The application of indigenous knowledge in scientific research is arguably one of the most difficult, poorly understood and confusing issues. The confusion begins with the use of terminology. Currently, the following terms are used in the English language: Local and Traditional Knowledge (LTK), Traditional Ecological Knowledge (TEK), Indigenous and Traditional Knowledge (ITK) and Traditional Knowledge and Wisdom (TKW). Within different contexts, the word “knowledge” in these terms may mean “ways of knowing”, “the information held by individuals”, or may refer to specific skills. Below is a suggestion for the use of terminology in community based monitoring. The rationale behind this selection is based on the use of terms by international bodies, such as the Arctic Council, United Nations Convention on Biodiversity, United Nations Development Programme, and the relative ease of understanding by diverse audiences. However, the terminology used in the project reviews contained in Section 2 is the same as was used by the person who was interviewed. It does not necessarily coincide with the definitions applied to the rest of the document.

Indigenous knowledge (IK) denotes ways of knowing (a system of knowing) that enable an indigenous individual “…to make true statements and defend them as true. The statements include empirical generalizations, hypothesis and theories; the sum of knowledge is a collection of all statements whether arising from direct observations or as part of systematic truth.” In this regard, Indigenous knowledge does not differ, as a system, from other knowledge systems but it differs in the essence because the ways of knowing (generating knowledge, processing information and transfer of knowledge) are presumed to be different from other knowledge systems. It should be noted that such indigenous knowledge can exist only in indigenous communities where there was no historical interference with other cultures. In the Arctic, most indigenous communities, though economically marginalized, are located in developed countries with a relatively high level of integration. An indigenous person in such communities is a holder of various types of knowledge, including indigenous. So for these reasons, the terms “indigenous” and “traditional knowledge” or simply “local knowledge” are less confusing and more useful for practical purposes.

Indigenous and traditional knowledge (ITK) refers to the ways of knowing by indigenous peoples and to the portion of knowledge of non-indigenous individuals that is based on local and/or cultural traditions and/or special skills typical of a particular location or culture. The relationship between indigenous and traditional are not defined easily. The common use of this expression is in a context that merely denotes that any long-time resident of a particular locale possesses definite qualities that are not known to individuals outside this locale.

These English terms do not always translate well in other languages. For example, the word “traditional” sounds similar in many languages but the meaning and application can be different.

Any community based monitoring project is based on some way of gathering information. The ownership of this information may present a number of questions, especially if it is labelled as indigenous knowledge. The available legal system does not offer comprehensive protection of intellectual property rights related to indigenous knowledge, as the system itself struggles to define what it is that needs to be protected.” The existing legal system cannot properly embrace what it cannot define, and that lies at the heart of the problem.”

Therefore, careful consideration should be given to any potential issues arising from Intellectual Property Rights on products based on indigenous knowledge. Some regional and local indigenous organizations have developed policies and protocols for researchers. (For more information see Appendix 3).

![Grant Gilchrist](image-url)
2.2 Community based monitoring decision tree

To continue the discussion on community based monitoring basics, two schematic tools were created: the Decision Tree (Fig. 1.) and community based monitoring Types and Methods Summary Table (Table 1). The Decision Tree is an example of how to select community based monitoring methods and types appropriate for particular project needs. This chart is followed by a summary table showing relationships between types and methods (Section 2.3). Explanations and definitions of the terms used in the Tree and the Table can be found in Sections 2.3 and 2.5.

These recommendations should not be viewed as set in stone but rather as a flexible guidance tool. This chart may be especially useful for the beginners who may feel lost in the maze of issues related to indigenous and traditional knowledge.

2.3 Summary table

<table>
<thead>
<tr>
<th>CBM METHODS</th>
<th>CBM TYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recording of observations by local observer</td>
<td>Sentinel</td>
</tr>
<tr>
<td>Population survey</td>
<td>Citizen science</td>
</tr>
<tr>
<td>Observations or enhancement of scientific instrument</td>
<td>Journal</td>
</tr>
<tr>
<td>Recording of knowledge</td>
<td>Maintenance monitoring</td>
</tr>
<tr>
<td>Main product type</td>
<td>Group meetings</td>
</tr>
</tbody>
</table>

Table 1. Community based monitoring Types and Methods Summary Table

Figure 1. Decision Tree: An example of decision making process in developing community based monitoring activities

Victoria Goffman © AIA
2.4 Community Based Monitoring Types

 Sentinel (Patrol)

Main features:
- Place-based observing and recording of various elements of the environment are typical.
- Local conditions are documented in order to address various local issues.
- Communities often initiate and manage activities, e.g. Tribal or Village Councils in Alaska, but sometimes local or regional governments are involved.
- Observers are usually hired employees.
- Local organizations usually maintain databases that can contain various types of data.

Pros:
- A significant merit of this type of monitoring is fairly accurate spatial and temporal records of multiple indicators.
- Methodology and data output may not be consistent and the collected data may not be available for open distribution.

Cons:
- Quality control could be difficult to maintain in remote communities.
- Number of available qualified individuals in remote communities may be limited due to other opportunities in the local area.
- Low literacy in some communities requires a special approach.
- Opportunities are created for engaging residents, especially young people, in science.
- It generates interest to science and higher education.

Group meetings:

Main features:
- There is a lack of scientists with the cross discipline training needed for this type of research.
- Surveys can be costly.
- If participating communities do not see a clear benefit to them from the research, it may be difficult to recruit respondents for surveys.

Pros:
- This arguably is the only type of community based monitoring that enables researchers to recreate data from past periods when no data were collected and there are gaps in knowledge.
- Retrospective survey data can lead to better understanding of temporal changes without generating time series of observation.
- "Humans as sensors" research provides greater spatial information over many areas and on a greater variety of species and populations than accessible to conventional science alone.

Cons:
- There may be a challenge in validating such information, as it may be easily influenced by a particular individual or a group, or be politically driven.
- Conflicts with relevant authorities and industries regarding natural resource management and regulations are possible.

Citizen science:

Main features:
- Local residents are involved or hired as assistants/technicians in conventional science research projects.
- Activities are usually led by university or government scientists.
- The methods vary depending on the type of research field.
- Methodology and data output follow the standards of conventional science.

Pros:
- It enables continuous collection of data in remote locations.
- Opportunities are created for engaging residents, especially young people, in science.
- It generates interest to science and higher education.

Cons:
- Low literacy in some communities requires a special approach.
- Number of available qualified individuals in remote communities may be limited due to other opportunities in the communities or because of the temporary nature of projects.
- Quality control could be difficult to maintain in remote communities.

Surveying human sensors

Main features:
- Information is gathered by surveying local residents' perceptions of the status of and changes in environment.
- Surveys are designed by scientists, often with the input of participating community members.
- The data output is processed using sociological, ethnographic or other social sciences' methods depending on the type of survey used.
- Qualitative and quantitative databases are maintained by the researchers.
- The gathered information can be both current and retrospective.

Pros:
- This arguably is the only type of community based monitoring that enables researchers to recreate data from past periods when no data were collected and there are gaps in knowledge.
- Retrospective survey data can lead to better understanding of temporal changes without generating time series of observation.
- "Humans as sensors" research provides greater spatial information over many areas and on a greater variety of species and populations than accessible to conventional science alone.

Cons:
- There is a lack of scientists with the cross discipline training needed for this type of research.
- Surveys can be costly.
- If participating communities do not see a clear benefit to them from the research, it may be difficult to recruit respondents for surveys.

Pros:
- This arguably is the only type of community based monitoring that enables researchers to recreate data from past periods when no data were collected and there are gaps in knowledge.
- Retrospective survey data can lead to better understanding of temporal changes without generating time series of observation.
- "Humans as sensors" research provides greater spatial information over many areas and on a greater variety of species and populations than accessible to conventional science alone.

Cons:
- There is a lack of scientists with the cross discipline training needed for this type of research.
- Surveys can be costly.
- If participating communities do not see a clear benefit to them from the research, it may be difficult to recruit respondents for surveys.

Journal

Main features:
- A personal account of the observed environment is recorded on a regular basis over a period of time.
- Usually, this is a complementary component of a scientific research.
- A detailed record is kept by a local person on his/her initiative, such as Fishermen's journals.

Pros:
- May offer rich contextual information that can contribute to better understanding of a research topic.
- The cost is relatively low.

Cons:
- If no metrics are recorded, it may be difficult or impossible to generate data from this source of information.
- It can be highly subjective and prone to skewed assessment due to different personality types.

Maintenance monitoring:

Main features:
- A regular collection and recording of environmental hazard/waste observations is performed in defined areas (e.g. beaches).
- Clean up activities are organized and performed by local residents, sometimes volunteers.
- This type of monitoring is usually not initiated for scientific purposes.

Pros:
- It reinforces local stewardship and improves local resource management and environmental conditions. If records of activities and results are maintained properly, such data could be of value for various research needs.
- The outcomes can expose industries which may contribute to the environmental problem

Cons:
- Methodology and data output may not be consistent and the collected data may not be available for open distribution.
- Low literacy in some communities requires a special approach.
- Opportunities are created for engaging residents, especially young people, in science.
- It generates interest to science and higher education.

May offer rich contextual information that can contribute to better understanding of a research topic.
- The cost is relatively low.

Cons:
- If no metrics are recorded, it may be difficult or impossible to generate data from this source of information.
- It can be highly subjective and prone to skewed assessment due to different personality types.

Group meetings:

Main features:
- Regular village (town) meetings for local residents are organized to share and report on observations over a certain period of time.
- The meetings are often facilitated by a researcher who summarizes the discussions in a report that presents evidence-based information approved by the participants.

Pros:
- Group meetings can be a cost effective way to gather information and to engage residents

Cons:
- There may be a challenge in validating such information, as it may be easily influenced by a particular individual or a group, or be politically driven.

As demonstrated above, community based monitoring approaches vary depending upon the levels of community engagement, involvement of scientists, sophistication of methods used, potential data accuracy and others. There is limited standardization of information, however a recent paper has addressed a typology of various approaches, their strengths and weaknesses (Danielsen, et al, 2009).
2.5 Community based monitoring methods

Community based monitoring uses methodologies that have been developed and are being currently used in many scientific fields, such as biology, sociology, ethnography, and others. So, the good news is that methodology is available. The challenge is in its application as it requires a cross-disciplinary approach. For example, a biologist needs to understand social science methods and learn how to interpret such data; a social scientist needs to have a good understanding of the fundamental basics of biological or physical sciences in order to be able to comprehend the purpose of the research and process the data.

While quantitative data can be easily managed using available software, a significant difficulty exists in finding appropriate means to manage qualitative data resulting from community based monitoring. The few software programs that are available, such as NVivo and Atlas.ti (See Appendix 1), are of limited flexibility and are sometimes unreliable. Community based monitoring would make a gigantic step forward if new qualitative data management tools were developed.

Below is a brief description of some of the methods used in community based monitoring projects. Many projects employ a combination of methods and types. The methods used in citizen science and maintenance programs are not reviewed here. These types of projects use conventional science methods, as well as appropriate maintenance protocols and techniques.

2.5.1 Recording of observations by local observers

These methods are often used in Sentinel, Maintenance monitoring and Journals to collect quantitative data, as well as spatial (mapping) data and imagery (photos).

Systematic and organized observations: These include recording of current observations in narratives, photo imagery, and mapping. Observations are recorded in established locations, in regular time intervals, using standard instructions. Multiple observers in multiple locations could be employed. GPS mapping and hand-held computer devices are used in more advanced communities. The collected observations are organized in a data-base.

2.5.2 Meetings

In general, any type of meeting could be used, such as a seminar with frontal presentations, focus groups, round tables, or traditional gatherings. For meetings to meet the monitoring criterion, they have to be organized on a regular basis for a period of time, e.g. monthly or yearly. They also need to be arranged thematically and be facilitated. There should be a record of proceedings.

2.5.3 Population survey

This is a method often employed in Surveying human sensors. It can produce both qualitative and quantitative datasets.

Survey research is a complex and sophisticated methodology. Many researchers who do not have a social science background often underestimate this fact. Community based monitoring is often associated with environmental observations. These projects often fall within the natural and physical sciences and many researchers have difficulties with designing a survey. This is why this method is described in greater detail than the other methods. However, it should be noted that this approach will affect things at another point (e.g. sampling technique will determine how the data can be analysed and presented). Furthermore, problems at any of these steps can also create difficulties at a later stage (e.g. a poor understanding of local human knowledge systems and the way people think about the environment may result in ineffectively worded questions, difficulties for those administering surveys, and problems analysing the results).

These are just some of the issues that require specialized knowledge on survey development. While this publication will not address all the issue details, many help books and self-education tools are available on the Internet. A list of useful resources is available in Appendix 1.

While population survey is one of most difficult and expensive methods of community based monitoring, it can produce the most useful sets of statistical and qualitative data that can be used in many fields.
3. Review of community based monitoring projects

3.1 Introduction

Section 2 provided a glimpse of the complex issues that a community based monitoring practitioner needs to understand and the range of expertise that is required for a successful community based monitoring project. In this part of the Handbook, eight community based monitoring programs (Map 1.) are reviewed. Their real life successes and failures are discussed, as related by the project leaders.

Eight projects are presented in alphabetical order. Then interview questions are presented which cover their operations, strengths, and challenges. The projects represent a broad geographical area and show a variety of community based monitoring models that can serve as examples for those interested in the development of community based monitoring programs.

Although all efforts were made to present project information in a systematic way, the interviews range in their depth and level of detail due to the great variety of projects and the information shared by the project leaders.

The interviews are summarized with the following questions:

1. What are the main goals of the project?
2. Who are the participants?
3. Who initiated the project?
4. What are the locations and how were they selected?
5. How difficult was it to find funding and how long did it take?
6. What are the relationships between the project researchers and the communities?
7. What type of monitoring and what methods do you use?
8. How do you organize your data management?
9. Volunteers versus paid staff and participants: how did you address this issue in your project?
10. What problems have you encountered and how did you work them out?
11. What do you think is the main achievement of the project?
12. What advice would you give to others who would like to develop a similar project?
13. What future do you see for this project?
3.2 Project summary table

Here is how the reviewed projects compare:

<table>
<thead>
<tr>
<th></th>
<th>ABC</th>
<th>BSSN</th>
<th>CMMP/CEMP</th>
<th>ECORA</th>
<th>FavLLIS</th>
<th>MarineRangers</th>
<th>Siku-Inuit-Hila</th>
<th>Snowchange</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community/indigenous organization-initiated</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Academia initiated</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government research/regulatory initiated</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Regional</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>National</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Network (if locations)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funded by government regulatory agency</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Competitive research grant</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private fund</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volunteer based</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mostly indigenous</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mostly indigenous, multiple</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Sentinel</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population survey</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citizen science</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Journal</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group meeting</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year in existence</td>
<td>13</td>
<td>2</td>
<td>8/24</td>
<td>10</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Funding level per year* in USD</td>
<td>$</td>
<td>$$$</td>
<td>$</td>
<td>$$$</td>
<td>$</td>
<td>$$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

*Estimated

- $ - up to 100,000
- $$ - 100,001 - 200,000
- $$$ - over 200,000

3.3 Projects

3.3.1 Arctic Borderlands Ecological Knowledge Co-op (ABC) - Canada, United States

The Arctic Borderlands Ecological Knowledge Co-op (ABC) monitors ecosystem changes in the range of the Porcupine Caribou Herd and adjacent coastal and marine areas. It focuses on three areas of overriding concern to the Native peoples who live in the region – climate change, development, and contaminants. The ABC works as a collaborative partnership between the villages of Kaktovik, Old Crow, Aklatvik, Fort McPherson, Tsigehtchik, Inuvik, Tuktoyaktuk, Arctic Village and Environment Canada.

Dr. Gary Kofinas is a professor at the University of Alaska, Fairbanks. He was interviewed for this Handbook. Michael Svoboda is the Director of the ABC and is based out of the offices of Environment Canada in Whitehorse, Yukon.

Status and contact details: www.taiga.net/coop

Director: Mr. Michael Svoboda

Environment Canada, Whitehorse, Yukon, Canada

University of Alaska, Fairbanks, US

michael.svoboda@ec.gc.ca

gary.kofinas@uaf.edu

Project Time: 1996-Present

Funding: Competitive grants, Territorial Governments, United States Fish and Wildlife Service, Parks Canada, Environment Canada, others.

Q1. What are the main goals and activities of the project?

The ABC gathers local and traditional knowledge about the ecosystem within the range of the Porcupine Caribou Herd and adjacent marine/coastal areas with the focus on contaminants, climate change and development.

Q2. Who are the participants?

The ABC works as a collaborative partnership between the villages of Kaktovik, Old Crow, Aklatvik, Fort McPherson, Tsigehtchik, Inuvik, Tuktoyaktuk, and Arctic Village. Funders are often involved in the partnership as board members, observers, and participants. A researcher from the University of Alaska, Fairbanks is also involved.

Q3. Who initiated the project?

The ABC emerged in the mid-1990s when Environment Canada reached out to local communities in the Yukon to join in a broader effort to address issues of ecological change. It built on relationships with co-management boards that had developed out of the settlement of Native land claims and other organizations that represent indigenous communities.

Q4. What are the locations and how were they selected?

The participating communities – Kaktovik, Old Crow, Aklatvik, Fort McPherson, Tsigehtchik, Inuvik, Tuktoyaktuk, and Arctic Village – are self-selected.

Q5. How difficult was it to find funding and how long did it take?

The project is administered by Environment Canada, although this can be changed if the various partner organizations wish to. Funding comes from a variety of different sources. The amounts received from any particular source are often relatively small, for example $5,000. This means the project often has to look for new sources of funding, but it also means that the ABC is not dependent on any single large granting agency.

Q6. What are the relationships between the project researchers and the communities?

There aren't that many "researchers" on the project. Those that have worked in these communities for many years and have strong ties with them.

Q7. What type of monitoring and what methods do you use?

There is a questionnaire that includes both closed and open-ended questions. Local residents who have been identified as experts by their communities are asked a range of questions that address issues related to the weather, berries, fish, caribou, and other animals in the ecosystem. In addition, information is collected about respondents' experiences on the land over their lifetime. There are also mapping exercises. Approximately 20 people are interviewed each year in each community, in sessions that last about one to three hours.
Review of community monitoring basics

Q8. How do you organize your data management?

Since 2000, the ABC has produced regular annual reports based on interviewers’ assessments of and impressions from the surveys they have conducted. These are shared with the communities and posted on the ABC’s website. The survey data gathered is entered into a Microsoft Access database. Temporal data arising from the interviews is digitized.

Q9. Volunteers versus paid staff and participants: how did you address this issue in your project?

The interviews are conducted by local residents who have been hired by the project and are paid for their work. Participants are compensated for their time with a fuel voucher.

Q10. What problems have you encountered and how did you work them out?

One of the challenges that the project has faced is that a few years ago one of the individuals who had been putting enormous time and effort into moving the ABC forward changed jobs and became much less involved. The loss of this “energy center” had a negative impact on the project because she was a talented communicator. Another problem that has to do with the difficulties of interviewing. There is a lot of “filters” one has to work through to get good and accurate data. First, the question has to be well written, then it has to be understood by the interviewer, then it has to be understood by the respondent, and then the interviewer has to write everything down clearly and completely. Also, interview questions have changed over the years leading to some lack of consistency in how the interview is conducted. If anything goes wrong at any point in this process, there will likely be problems.

Q11. What do you think is the main achievement of the project?

Since 2000, the ABC has produced annual reports based on interviewers’ assessments of and impressions from the surveys they have conducted. Currently, the project is compiling a 10 year retrospective analysis of the wealth of information that has been collected, which can provide insights into a variety of longer and shorter-term changes, as well as unusual events, in the surrounding ecosystem. This data can be integrated and contrasted with other available scientific information. Other important achievements are:

- Capacity building in communities to engage in ecological monitoring;
- Ability for regional participation in land management issues;
- Working model for governments and local first nations to engage in positive forum, and build relationships;
- Laying the ground work for positive and constructive dialogue on land management;
- Establishing Long term monitoring data set in region;
- Starting to get analysis and models of how community based monitoring can contribute for decision makers.

Q12. What advice would you give to others who would like to develop a similar project?

Staying relevant to local communities, thinking long-term, economizing, and moving slowly are important. Being flexible and willing to change things is important, but if methods need to be changed, the old methods should overlap with the new ones for several years to allow for calibration of the new information. The survey for the ABC, for example, has changed across the years a bit in response to our experiences.

Q13. What future do you see for this project?

The ABC is conducting an analysis of the data it has gathered over the past 10 years. This is part of trying to demonstrate how the knowledge collected has broader relevance.

Highlights:

- Successful collaboration between communities and governments;
- Developed an interviewing program striving for consistency;
- Flexible and willing to adapt to emerging issues;
- Longevity

Opportunities for improvement:

- Ability to retain key people for a small program on a limited budget;
- Data analyses is lagging

3.3.2. Bering Sea Sub Network: International Community-based Environmental Observation Alliance for Arctic Observing Network (BSSN) – Russian Federation, United States

Composed of community based environmental observations, the efficient management of that data, and lays a foundation for future community-based research. The overall goal of BSSN is to increase understanding and knowledge of pan-Arctic processes, thereby enhancing the ability of scientists, Arctic residents, and governments to predict, plan, and respond to environmental changes and their subsequent socioeconomic effects.

Over 350 harvesters in six coastal indigenous villages have been interviewed in 2008-09 to gather observations on a number of subsistence and local commercial marine species, as well as on physical environment. BSSN is led by Ms. Victoria Gofman, Aleut International Association (AIA) based in Anchorage, Alaska, United States. BSSN secretariat is co-located with AIA and serves as center point for communication and data management. BSSN co-lead, Dr. Lilian Na’ia Alessa of the University of Alaska, Anchorage, was interviewed for this publication. The first analytical project reports is expected by the end of 2009.

Status and contact details: www.bssn.net

Principle investigators:
Ms. Victoria Gofman
Aleut International Association
Anchorage, Alaska, US

Project time: June 1, 2007 - August, 2013

Funding: Competitive grant; National Science Foundation ARC – 0634079, 6830216 with contributions from the United States State Department and the Conservation of Flora and Fauna working group of the Arctic Council.

Q1. What are the main goals and activities of the project?

The goal is to develop a framework to enable networks of human observers, in this case, residents in remote Arctic communities to systematically document physical and social changes occurring in their region. As a geographically distributed network of human “sensors”, it can provide data that are invaluable for the elaboration of adaptation strategies by governments, indigenous communities, and individuals. This may enhance community resilience under conditions of rapid environmental and social change. The main objective is to develop a network of monitoring that can provide an integrated and contrasted with other available scientific information. Other important achievements are:

- Establishing Long term monitoring data set in region;
- Starting to get analysis and models of how community based monitoring can contribute for decision makers.

Q2. Who are the participants?

The BSSN research team consists of the Aleut International Association, the University of Anchorage, the Alaska Native Science Commission (Anchorage, Alaska, U.S.), UNEP/GRID- Arendal (Norway), the Chukotka Business center and the Russian American center in Kamchatka (Russia), village research assistants, and hunters and fishermen in the participating villages.

Q3. Who initiated the project?

The Aleut International Association was the main initiator and a driving force.

Q4. What are the locations and how were they selected?

Six villages (three in the US, Alaska): Gambell, Togiak, and Sand Point, and three in Russia: Kanchalan, Tymlat, and Nikolskoye were selected by respective regional organizations after receiving an invitation to participate during the proposal preparation time. Letters of request with the project description were sent to the presidents of five regional consortia in Alaska (the Aleutian Pribilof Island Association, the Bristol Bay Native Association, Kaveraq, Manilag Association, and the Association of Village Council Presidents) and to the regional Indigenous organizations in Kamchatka and Chukotka. The final selection was confirmed at the workshop where regional representatives selection the locations based upon agreed criteria that included geographic location, community capacity to run the project, community interest, needs, and previous project experience, as well as potential project contributions to the community.

Q5. How difficult was it to find funding and how long did it take?

The concept was developed in 2003, approved as a CAFF project in 2004, and endorsed as an IPY project in 2006. The first attempt to fund it through a USAID Biodiversity program in 2005 was unsuccessful. In 2006, a proposal was submitted to NSF Arctic Observing Network, a program created during and for IPY. NSF funded a pilot. The second proposal for the continuation of the project for five years was approved in 2009.
At over USD 3.7 million for seven years, BSSN is probably the largest community based monitoring project in the Arctic in terms of financial investment and its outreach to the communities. The process of securing funding was methodical and required collaboration with scientists, local communities, and other relevant organizations. Maintaining a high profile and visibility in international forums through presentations and participation in the Arctic Council and at various science conferences helped establish BSSN as a reputable network for community based monitoring.

Q6. What are the relationships between the project researchers and the communities?

The project was designed with the villages as the heart of the project. While the travel cost in the region is extremely high, there were joint meetings and the project lead travelled to all villages but one (could not get to Bering Island due to bad weather). Cooperative relationships with village councils were established early on. The project lead made presentations to the Council Boards during the trips. Village coordinators/research assistants were hired with the help of the local councils or village administrations. The BSSN project assistant based in Anchorage is responsible for maintaining ongoing communication with all villages. All project staff located in Anchorage is bilingual (English and Russian). Monthly teleconferences are held for BSSN staff and village research assistants.

Q7. What type of monitoring and what methods do you use?

BSSN gathers observations on subsistence and local commercial marine species, as well as observations on the physical state of the environment in places of harvest. The methods of research is a non-probability purposive survey. It is believed that a non-random selection method is best suited for this type of research because of the small size of the communities and close ties that exist between community members. Local community members are trained as interviewers and instructed to interview the most experienced harvesters. When permission is granted interviews are recorded on a digital audio recorder. The survey instrument (questionnaires) was developed with input from community representatives. The questionnaire contains a variety of questions: closed-ended, open-ended, and multiple choice. Over 600 surveys were received from BSSN villages in the pilot project in 2008-09 and are being processed.

Q8. How do you organize your data management?

Filled out questionnaires are sent to the BSSN Secretariat in Anchorage where they are organized in two data sets: the qualitative data and audio – in a popular program NVivo; the quantitative data – in statistical software database SPSS. The surveys from Russia are translated and entered into the databases in both English and Russian. A special protocol was developed for categorizing and coding qualitative information.

Q9. Volunteers versus paid staff and participants: how did you address this issue in your project?

BSSN does not rely on volunteers. As it works mostly in impoverished, disadvantaged communities, it’s important to provide paying jobs and to bring small tokens of appreciation to all participants in the form of small cash payments. All village research assistants are paid for their work. The size and type of the appreciation payment or gifts are determined by the communities themselves within the approved budget.

Q10. What problems have you encountered and how did you work them out?

Most of the problems were rooted in the inability to react fast because of communication problems, such as slow or broken internet connections in the villages, and transportation logistics. However, eventually the problems were solved by using alternative means and thanks to the great perseverance and dedication of BSSN staff. The obstacles could be summarized as: 1) Lack of infrastructure in the villages, such as difficulties with office space set up and abilities to use and maintain equipment; 2) Irregularities in interviews due to insufficient training of the interviewers; 3) Poor communication and difficult transportation logistics.

This is how the problems were addressed.

1. Every village is different. The project had sufficient flexibility to change arrangements to accommodate the circumstances. For example, sub-award agreements with some villages had to be changed and hire new people in others.

2. A BSSN project assistant travelled to the Alaskan villages in the middle of the project to provide much needed field training. There were intense communications with our Russian partners to address the quality of interviews. These efforts helped improve the quality of survey.

3. While it was not possible to fix the Internet and telephone connections, having a dedicated staff in central locations in both countries helped maximize whatever means were available. For example, teleconferences for Russian project staff with Anchorage were run via a cell phone service based in Kamchatka, a rather unorthodox way.

Q11. What do you think is the main achievement of the project?

The main achievement is that local observations are recognized by the mainstream science as valid and important data. This is manifested by the support of one of the main science funding agency in the US. Beyond that, the infrastructure and methods developed in the course of the project will strengthen connections between Russian and Alaskan indigenous communities. They could be utilized by other research projects initiated by communities, academia or government. By training and hiring local residents, the majority of whom are indigenous, an interest in science in generated, and it builds pride in being a bearer of local, traditional and indigenous knowledge. It is expected that the data will be of use to the broader scientific and local communities. It is also anticipated that the findings may yield new knowledge that could help address many important issues, such as adaptation to climate change and sustainable resource management, just to name a few.

Q12. What advice would you give to others who would like to develop a similar project?

A project of this scale requires substantial resources to develop. Building a relationship with an organization that has qualified personnel to spend sufficient time on the design and development is important. A diverse team of collaborators with different types of expertise, from University scientists to community leaders and government officials, is essential.

Q13. What future do you see for this project?

The BSSN team is enthusiastic about the opportunity to continue the research for five more years and being able to add more locations. The team will be looking for products and policies that would make a good use of the data gathered in the project and is looking forward to helping shape a new generation of scientists.

Highlights:

- Achievements:• Developed standardized observation network yielding quantifiable data• Secured multi-year funding• Established infrastructure for continuous work in the network communities

Opportunities for improvement:

- Training of local research assistants
- Face-to-face communication between community participants and researchers and among community participants

3.3.3 Community Moose Monitoring Project and Community Ecological Monitoring Project (Canada)

For 8 years the Community Moose Monitoring Project (CMMP) has been going on in the Mayo area of the Yukon, which is located in the traditional territory of the First Nation of Nacho Nyak Dun. The population of the village, which in 2006 numbered 248, shares a Native language – Northern Tutchone – with several other surrounding First Nation communities. As part of their efforts to manage the resources that local residents rely on for food, the Mayo community wanted to develop a means to track and monitor the moose population in the area. The Community Ecological Monitoring Project (CEMP), which is also run out of the local Fish and Wildlife office in Mayo, has been active in the area for 25 years. The purpose of the program is to gather systematic observations about the boreal forest food web. There are two parts to the CEMP – a technical monitoring component and a local and traditional knowledge component – both of which involve the active participation of local community members. Mr. Mark O’Donoghue, of the local Fish and Wildlife office, plays a leading role in both projects.

Status and contact details: www.bsnn.net
Q3. Who initiated the project?

For the CMMP, the idea and the desire for the project came from the community, but the local fish and wildlife office provides the technical resources needed to keep it going. It helps train local participants and analyses the results. Because the office is located in the village of Mayo, there is continual communication between the Fish and Wildlife employees working on the CMMP and the local co-management board, which jointly oversees the project. The CEMP has been going on for about 23 years, although more recently it has been expanded to include a local and traditional knowledge component. The First Nation communities that participate in the CEMP had expressed a desire that this knowledge be incorporated into monitoring efforts.

Q4. What are the locations and how were they selected?

The local fish and wildlife office was set up in the Mayo area for the express purpose of working directly with local northern Tutchone communities. This grew out of an agreement with First Nations. It was widely known that they had a huge body of knowledge about the environment and wanted it be incorporated into management decisions. The intention of establishing the Fish and Wildlife office was to help with monitoring, but also to just listen to what the communities were saying. It also offers input on programs and management decisions.

Q5. How difficult was it to find funding and how long did it take?

The money for the CMMP comes directly from the Yukon government and is part of the Fish and Wildlife office’s regular budget. However, there is a source of funding for the project that is based on a variety of partners that contribute. However, the local and traditional knowledge component, which started 4 years ago, is funded from a special grant through the Northern Ecosystem Initiative, which was looking for projects that combined scientific and indigenous knowledge. There are some people who are sceptical about the usefulness of the information gathered, and so that needs to be justified in order to get more funding in the coming years. However, the project only costs about $1,000 to run, which makes it easier to deal with the sceptics.

Q6. What are the relationships between the project researchers and the communities?

Because the Fish and Wildlife office is a local outfit, the people who lead the monitoring projects are themselves members of the community.

Q7. What type of monitoring and what methods do you use?

For the Community Moose Monitoring Project, every fall 20 local hunters, and sometimes other people who spend a lot of time in the bush take their observations about all the animals they see in a small booklet with maps. Those who participate in the project are hunters and other residents who are very skilled in the bush. Although the participants have changed somewhat from year to year, a lot of the same people have been involved in the project from the beginning.

The technical monitoring component of the CEMP happens at five long-term sites set up in the surrounding forest. Each year, community residents along with a technician from the local Fish and Wildlife office go to these locations at particular times of the year to take measurements and make scientific counts of a variety of things. This includes things like the volume of berries, the amount of snow cover, the numbers of hares and mice, etc. Also, community members do counts of carnivore tracks, owls, songbirds, and other animals within a designated 25 kilometer trans-sector.

During the summer months, technicians from the local Fish and Wildlife office play a leading role in monitoring. During the winter time these responsibilities are shared equally between the office and community members. The LTK component of the CEMP consists of interviews with local residents who have been most active out on the land during the previous year. The CEMP draws on a variety of partners that contribute. However, the local and traditional knowledge component, which started 4 years ago, is funded from a special grant through the Northern Ecosystem Initiative, which was looking for projects that combined scientific and indigenous knowledge. There are some people who are sceptical about the usefulness of the information gathered, and so that needs to be justified in order to get more funding in the coming years. However, the project only costs about $1,000 to run, which makes it easier to deal with the sceptics.

Q8. How do you organize your data management?

Every year, the CMMP observations are compiled by the local Fish and Wildlife office and the results are summarized and presented at a meeting of the local Mayo Area Renewable Resources Council. Also, during the first 5 years that the project was going on, a one-page summary of the results was put in every resident’s mailbox. Currently, the local Fish and Wildlife office is preparing an 8 year overview of the project in a response to a request by the Yukon government, which provides the financing for the CMMP. A two to four-page glossy summary will be distributed to all community members on the basis of this overview when it’s done.

The data collected from the CEMP technical monitoring is analysed and published in an annual report. These reports, which are available to anyone, go to the project funders and partners, and are also presented at the local co-management board. When the local and traditional knowledge component of the CEMP was being carried out by the grandfather-grandson team, a 5-10 page report was produced by them every year and presented to the local co-management board. Because this work is currently being done by students, who don’t have the time to produce such a report, the information gathered in the interviews is entered into a Microsoft Access database by the local Fish and Wildlife office. The aim is to compile this information in a sort of “community diary” is available at local community offices.

Q9. Volunteers versus paid staff and participants: how did you address this issue in your pro-

There is an attempt to expand the CMMP to other nearby northern Tutchone villages. However, it has been difficult to find someone in these other communities who has the time to dedicate to getting the project operating. This coming fall, a newly-hired technician from the local Fish and Wildlife office will travel to the communities in order to be on site and work towards getting the CMMP started in these areas.

As for the CEMP, when surveys of local residents first were started, there were some difficulties with the interview. Sometimes people didn’t answer certain questions and it wasn’t clear what the problem was. Was it because the interviewer skipped the question? Or was it because the interviewee didn’t understand the question? However, after the first year, things improved a lot. It got clearer what the source of the problem was. It helps that the local Fish and Wildlife office is here, because someone is on-hand to review the interviews shortly after they’re done and give the students feedback.

Q10. What problems have you encountered and how did you work them out?

The response from the community to the CMMP and CEMP has been all positive. There are some people who are indifferent, but certainly no negative response. The reason is that the communities want to gather this information for their management decisions. Also, in certain ways the projects are a source of pride for participants. The hunters who take part in the CMMP enjoy the fact that they have been singled out by the community as people with valuable knowledge and experience. The communities really like the traditional and local knowledge part added to the CEMP. The people being interviewed like the fact that local schoolchildren are doing the interviews. They feel it is a way for them to share their knowledge with a younger generation.

Q11. What advice would you give to others who would like to develop a similar project?

Trying to expand the CMMP made clear the importance of being in the community and being there all the time, so the work is well known. So far, the expansion hasn’t been successful because of that. In one place, the administrative person assigned to work on the CMMP just didn’t have time to do it. In another area, there’s been a problem of high turnover of staff. And also, if a person is not from the community, they often do not have the connections necessary to get the work done. So it’s really important to have right person on site.

Q12. What future do you see for this project?

This coming fall, a newly-hired technician from the local Fish and Wildlife office will travel to the communities in order to be on site and work towards getting the CMMP started in these areas. The CEMP is currently preparing a multi-year project summary. A particular focus is the local knowledge component, whose funding is dependent on a special federal grant that is currently running out. This report will hopefully lay the basis for securing further funding for the local knowledge component. The technical monitoring will continue on as it has for the last 25 years.

Highlights:

Achievements:
- Longevity
- Full engagement and support of the communities
- Encourages transfer of traditional knowledge from older generation

Opportunities for improvement:
- Finding personnel to work in new communities
- Training of interviewers
Review of community monitoring basics

3.3.4 Community Moose Monitoring Project and Community Ecological Monitoring Project (The Russian Federation)

An Integrated Ecosystem Management Approach to Conserve Biodiversity and Minimize Habitat Fragmentation in Three Selected Model Areas in the Russian Arctic. (The acronym ECORA was derived from the Russian language title of the project and then was transliterated in English and, eventually, became the most commonly used name for the project).

The Conservation of Arctic Flora and Fauna (CAFF) Working Group of the Arctic Council, UNEP/GRID – Arendal, and the Russian Federation initiated ECORA, a Global Environment Facility (GEF) project in the Russian Arctic to address threats to habitats, fragmentation of ecosystems, and disruption of ecological balance, especially in lowland tundra, forest tundra, and coastal and nearshore marine areas. The main goal of ECORA is the harmonization of relationships between environmental protection, industries, and indigenous populations leading to the sustainable use of biodiversity in the Russian Arctic, as demonstrated in the Model areas through implementation of integrated ecosystem management (IEM) strategies. The Model Areas, Kolguev Island, Kolyma River Basin, and Beringovsky District, were selected because of their rich biodiversity, the presence of resource development industries, and indigenous population. The project activities range from strengthening legislative, administrative and institutional frameworks to enhancing the knowledge base through involvement of local residents and integration of indigenous and traditional environmental observation.

Status and contact details: www.grida.no/ecora/

Project Manager: Dr. Evgeny Kuznetsov
National Institute for Nature Protection
Ministry for Natural Resources of the Russian Federation
Moscow, Russian Federation

Project time: 1999 - 2009

Funding: GEF, in-kind contributions from Arctic Council’s member states

Q1. What are the main goals and activities of the project?

The main objective of CBM in ECORA was to develop long-term monitoring of selected biodiversity components that would serve as indicators of species’ status and trends, habitat fragmentation, and climate change. However, in Russia the results of such monitoring would be difficult to apply in the same manner as official scientific data are used. In addition, there are no rigorous standards to comply with. So, there were opportunities for creativity and flexibility. The focus of CBM was turned into nurturing partnership relationships between local participants and project scientists, with special attention paid to cultivating interest and respect for traditional knowledge and the people who hold it.

Q2. Who are the participants?

ECORA has a complex collaboration of international participants. The project is co-led by Russia and United Nations Environment Programme-Global Resource Information Databank - Arendal (UNEP GRID- Arendal) with the participation of advisors from other Arctic Countries and Russian Association of Indigenous Peoples of the Far North, Siberia and Far East and (RAKPID). Local residents are participating in the CBM component of the project.

Q3. Who initiated the project?

ECORA was conceived in 1999 by CAFF and UNEP/GRID – Arendal and went through a multi-year planning and approval process.

Q4. What are the locations and how were they selected?

The Model areas were selected by a group of project experts based on the following criteria: 1) presence of indigenous peoples; 2) rich biodiversity of global significance; 3) current or planned industrial activities; and 4) location within CAFF geographical territory. Other factors that played a role were the presence of other large international programs in the area, willingness and good-spirit cooperation from local and regional authorities. The Model Areas were selected in 2003. Since all three areas had small populations and only a few villages, all ten communities were included in the project. They were Bugrino (Kolguev Island); Chersky, Kolymsk, Andryushkino, Pokhodsk, Nutendli (Kolyma), and Beringivski, Meinypylgino, Khatyrya, and Alkatvaam (Beringovsky District).

Q5. How difficult was it to find funding and how long did it take?

ECORA’s budget consisted of a three million dollar grant from GEF, which was matched by in-kind contributions from the Russian federal government and additional grants from the Arctic states for specific project activities. GEF requires at least a 50% match. So the total project budget can be estimated at 6 million US dollars. The portion allocated to the CBM effort is relatively small.

Q6. What are the relationships between the project researchers and the communities?

Despite many logistical difficulties, ECORA’s research team has developed good partner relationships with participating communities. Local residents were invited to meetings with researchers and had opportunities to add their observations. All too familiar complaints that some scientists came, village folks participated by providing information, then scientists left and no one heard from them again, were brought up many times. Sometimes residents of remote villages, not spoiled with the attention of the regional government, perceive scientists and especially foreign researchers as a venue to vent their frustrations and to pass information about local issues to the outside world. It’s important that researchers have the patience and humility to listen to what people have to say.

Relationships with regional governments vary from very active engagement and support in Yakutia (Kolyma) to polite indifference in the other two regions. Reporting to Russian officials is necessary regardless of their interest in the project. Unfortunately, there are no incentives for government officials to support projects with community based monitoring, as data derived from this research cannot be used officially in natural resource management. However, it can be used as a reference material, and ECORA, acting through other components of the program, has had success in doing this. The most tangible benefit to communities from the project’s interactions with the regional governments was drawing authorities’ attention to the dire situations in those remote and almost forgotten communities.

Q7. What type of monitoring and what methods do you use?

Two types of community based monitoring are being used in ECORA: 1.) a sentinel monitoring performed by a selected observer who regularly fills out questionnaires and sends them to the researchers for data management and analysis, and 2.) a free-style diary of observations by one individual.

A set of a dozen of thematic questionnaires was designed by the researchers based on the results of population surveys to determine subsistence activities in each Model Area. Two local observers were hired and trained in each village. The training took place in the village for about two days with a visiting researcher. Each observer has a set of questionnaires based on the types of harvesting activities of that individual. They are also equipped with digital cameras so they can take pictures of bird colonies and other objects of observation. Completed questionnaires are sent to regional coordinators by whatever means available, and then mailed to the Moscow ECORA office.

An experienced subsistence harvester writes about 100 pages of observations over one year, creating an environmental observation diary. No instructions are provided, except one – the writer should document everything that he/she deems important. This document is his/her vision of the environment. All participating villages are using the same set of survey materials and standardized methodology.

The frequency depends on the theme, e.g. the phenology questionnaire is completed once a year but observations of bird colonies are recorded 2-3 times a year. For traditional knowledge interviews, ECORA asked for assistance from Snowchange, another project active in community based monitoring and with particular experience in the gathering of oral traditions. This partnership developed a good synergy and complemented each others work.

Q8. How do you organize your data management?

All collected data (questionnaires, diaries) are processed and stored in the Manager’s office in Moscow. No special qualitative and quantitative software is used for analysis because researchers consider the volume too low. Currently, only a preliminary analysis has been performed, such as verification for obvious mistakes. A final report will be prepared after all activities are completed.

There are no restrictions to the access to the data and it is under discretion of the Manager. The research team welcomes collaborative requests.

Q9. Volunteers vs. paid staff and participants: how did you address this issue in your project?

Local observers receive a modest compensation for their time. The size of the payment is a small portion of an average salary in the area. In general, there is an opinion that excessive compensation creates a situation where people invest more in financial gain more than in the project and that could negatively affect the quality of the recorded data. Payments to respondents of surveys are not common in Russia and often do not have much influence on the decision to participate. If people are willing to participate, they will do it without payment.

Q10. What problems have you encountered and how did you work them out?

Unfortunately, one very important factor - accessibility of a remote location - was overlooked. That created difficulties with establishing communication and keeping the work plan on schedule. That was one of the reasons why the communities did not participate in the planning and selection process and were informed about participation in the project only after the formal selection.

The two most important methodological challenges for community based monitoring are the application of standardized approaches and training people how to record their observations (e.g. filling out questionnaires) based on these approaches. While the original plan called for synchronized observations in all areas, difficulties with finding local coordinators and
experts impeded the schedule. The target year for the beginning of monitoring was 2004 but the delays pushed it to 2006, when the Beringovsky District began working. The other regions joined in 2007 (Kolyma), and in 2008 (Kolyaev).

The remoteness of the Model Areas makes it difficult, even for the regional coordinator to visit villages more than just a few times a year. This presents problems with verification of information and with timely assistance for local observers when they experience difficulties. For example, one of the problems encountered was incomplete questionnaires. More opportunities for on-site training could have reduced such problems.

Public relations should not be overlooked. Local newspapers and radio stations are good ways to provide information back to the community and should be used year-round to report to the whole community about project activities. Every time a meeting takes place, be it a city-hall meeting or talks with authorities, a short news item should be submitted to the local media. ECOORA began doing this too late into the project and should have started doing this when the project was still in the planning stages.

Q11. What do you think is the main achievement of the project?

Local participants feel an increase in the awareness of the value of their knowledge and traditional ways of life. After several centuries of government-induced assimilation, society is beginning to recognize that traditional ways of life that indigenous peoples led for millennia are efficient and healthy ways of living in the Arctic. Participation in the project leads to increased interest in learning from elders about traditional ways and promotes the transfer of this knowledge to the younger generation.

While the goal of meaningful participation in resource management may seem to be unattainable at this time, this project builds the qualities that communities need to advance this cause, such as growing self awareness and a renewed reliance on traditional ways of life. Cooperation with scientists is a two-way learning process: while traditional knowledge is shared with scientists, many learn new skills working as research assistants. Involving schools in the project is an investment in a new generation of local observers.

Q12. What advice would you give to others who would like to develop a similar project?

There are no recipes for success. Community based monitoring is an invaluable component of any large-scale monitoring because of one simple fact — without local residents it is impossible to collect year-around data in the vast Arctic region. There are not enough scientists in the world to do this. Community based monitoring is based on human relationships. What is invested in that relationship will define what the final result will be. It’s a fine balance between give and take.

Q13. What future do you see for this project?

It is important to recognize Community based monitoring as a valid monitoring method and give it an “official” status in Russia. The National Institute for Nature Protection has not had any funding for field work since the 1990’s. The prospects for project continuation are not very bright at this time. A new proposal, related to climate change, is being prepared in Russia. The National Institute for Nature Protection has not had any funding for field work since the 1990’s. The prospects for project continuation are not very bright at this time. A new proposal, related to climate change, is being prepared in Russia.

3.3.5 Fávllis Network (Norway)

Fávllis is a network of academic and community collaborators that was created to advance knowledge relevant for effective resource management, including understanding interactions between ecosystems, culture and local societies in the northern fjords. The research project initiated by the Fávllis network is centered around the traditional knowledge of Sami peoples led for millennia are efficient and healthy ways of living in the Arctic. Many Sami communities that asked for this research cooperated in the planning of the project. They wanted the project because they observed that the fish stocks were decreasing and the ecosystem was changing. The Project Consortium is administered by the Sami Center at the University in partnership with Sami institutions. Community members are not employed by the project. The communication is both ad hoc and planned based on the schedules of key participants in the Saami institutions and local fishermen.

Q7. What type of monitoring and what methods do you use?

The project is trying to establish baseline data over a period of time that people can remember, approximately from 1945. It does not use the word “monitoring”. The activities include:

1. Interviewing fishermen using open-ended, guided questionnaires and an interview guide. Interviews are conducted by the researchers, sometimes with the assistance of local residents. About 20 people are interviewed in December, May, June, and in autumn. Village populations range from 50 to 200.
2. Making use of the interviews that were conducted in the 1970s and 1980s by local research institutions.
3. GIS mapping.
4. Making a documentary film about traditional knowledge because traditional knowledge cannot be documented by words alone. The film will also capture differences between fisherman’s knowledge and researchers’ when they have discussions on such topics as causes for seal-population change.

Q8. How do you organize your data management?

The team is planning to analyze GIS biological data derived from the summaries of the surveys stored at the National Statistics Bureau. The goal is to put together different types of knowledge and have it available for open access.

Q9. Volunteers vs. paid staff and participants: how did you address this issue in your project?

The project does not pay participants. People are motivated; they want to tell researchers what is going on and they see the benefit in this research. The project, however, contributes to local institutions by providing financial support.

Q10. What problems have you encountered and how did you work them out?

Sufficient funds were not budgeted for project administration and that created problems. The time needed for the website was underestimated. This will be taken into account for the next proposal.

Q11. What do you think is the main achievement of the project?

This project has advanced cooperation between local residents and scientists. Through its work Sami traditional knowledge is used as a valid monitoring method and given an “official” status in Russia. The National Institute for Nature Protection has not had any funding for field work since the 1990’s. The prospects for project continuation are not very bright at this time. A new proposal, related to climate change, is being prepared in Russia. The National Institute for Nature Protection has not had any funding for field work since the 1990’s. The prospects for project continuation are not very bright at this time. A new proposal, related to climate change, is being prepared in Russia.

Review of community monitoring basics

Review of community monitoring basics
is made relevant and its use should improve local fisheries management. This project is about how to use all types of knowledge and make the best management decision. This project is also important for documenting traditional knowledge.

Q12. What advice would you give to others who would like to develop a similar project?

To look for partners to cooperate as early in the project as possible, preferably prior to any research activities, is important. Reviewing previous research and looking at what kind of knowledge is available can be helpful.

Q13. What future do you see for this project?

There is a desire to continue and establish a network for Saami fishermen. There is a need to train young researchers, build the capacities of local institutions, and make the University of Tromso aware of the traditional knowledge of Saami fishermen. The project team is fortunate to work with senior biologists who are open minded, interested and see the future of this type of research.

Highlights:

Achievements:
- Built a strong collaboration between researchers of various disciplines, local communities, government and academia
- Utilized archived data & integrated with new data
- Multi-dimensional approach to resources management

Opportunities for improvement:
- Network management capacity
- Communication and outreach

3.3.6 Marine Rangers Project (Australia)

The Marine Rangers project began in 2000 in Australia’s Northern Territory at the request of local indigenous communities to address the issue of a large volume of debris washing up on their beaches and the entanglement of marine animals. With help from the World Wildlife Fund, and later from the regional government, a program to monitor and clean up marine debris by local residents was established. A comprehensive database is maintained and regular reports are presented to the communities. Participation in this project raised local residents’ awareness of their own role in creating waste that washed up on their beaches and increased the capacities of local people, who learned new skills through project implementation. Mr. Shane Penny works on the Marine Rangers Project for the Department of Natural Resources, the Environment and the Arts.

Status and contact details: http://www.nt.gov.au/trela/wildlife/marine-research.html#debris

Lead: Mr. Shane Penny
Northern Territory Department of Natural Resources, Environment and the Arts
Brinkin, Northern Territory Australia
shane.penny@nt.gov.au
Project time: 2000-2009
Project funding: the Northern Territory’s Department of Natural Resources, Environment and the Arts (DINREAA)

Q1. What are the main goals and activities of the project?

The goal is to monitor and clean up marine debris washing up on the shores of Aboriginal communities located along the coast of Australia’s Northern Territory.

Q2. Who are the participants?

The participants are local community members, volunteers from Conservation Volunteers Australia, and employees from the Department of Natural Resources, the Environment, and the Arts. Previously, people from the World Wildlife Fund were also involved in on-the-ground operations.

Q3. Who initiated the project?

Australia’s Northern Territory is a sparsely populated region of the country bordered by the Timor Sea, the Arafura Sea, and the Gulf of Carpentaria to the north. Indigenous peoples make up over 30% of the residents of the region, with some residing in remote communities located along the coast accessible only by air, boat, or 4-wheel vehicle during the dry season. About 10 years ago, several local community councils began to express concerns about a large volume of debris washing up onto their beaches, as well as the fate of sea turtles and other marine life that were getting entangled in nets. In addition to being a source of food for indigenous inhabitants, these animals were also considered sacred by the Native communities. The project was initiated by Aboriginal communities in the area, which are represented through local Land Councils.

Representatives from the communities reached out to the World Wildlife Fund for help and input on developing a monitoring program and ways to clean up the shoreline.

Q4. What are the locations and how were they selected?

The communities are self-selected. They realized they had a problem and then contacted outside organizations seeking help to design something. There are about seven communities regularly involved right now. There are several more who have participated more sporadically over the last several years. For awhile, the organizers were happy to take anyone on board. They would try to find them a bit of money to get them going and send someone out there to help them set things up.

Q5. How difficult was it to find funding and how long did it take?

For some communities, the Aboriginal Land Councils fund community projects. They get their money from the federal government and a bit from the state government. They initially teamed up with the World Wildlife Fund, which also contributed resources, to establish the program. But because of a change in the World Wildlife Fund’s policies, they’re no longer involved on the ground in the project.

In 2006, the Northern Territory’s Department of Natural Resources, Environment and the Arts (DINREAA) took over from the WWF. The project received a three-year funding grant. This is now coming to an end, and the team was unsuccessful in getting more money, so now the project is looking for other ways to keep the monitoring going.

Q6. What are the relationships between the project researchers and the communities?

There have never been any tensions with communities. The only problems that have been faced have revolved around cultural issues. If there’s a ceremony going on in the community or if someone has passed away, then people are not around. Often there’s no advance notice, such that you can show up at a community to do some work and people just aren’t around or you can’t get access to areas that you want to survey. But generally people are really keen to help out and be involved.

The project is trying to engage the community in some of its scientific work and trying to build capacity in communities for doing simple numerical tasks. A lot of these ranger groups don’t get a lot of exposure to doing these kinds of things, but the skills tend to be transferrable across other projects. So when another project is started, the rangers can use those skills and develop further. The project attempts to get people involved and not be seen as government officers collecting data and disappear.

Q7. What type of monitoring and what methods do you use?

The monitoring is done by local community members. In some cases they are volunteers. In other cases, they’re on a government works program. Also, the project receive some help from Conservation Volunteers Australia. They work at three sites. In some cases school kids come out. It’s whoever is available. A date is arranged and depending on how well-funded the community is, some resources are needed, vehicles are supplied. Sometimes other resources are needed, occasionally with the help of local mining operations. Then, they spend a couple of days combing the beach and then a couple of days sorting, counting, weighing. The monitoring generally happens during October and November, although it occurs at other times as well in certain locations.

Q8. How do you organize your data management?

The DINREAA has developed a comprehensive Microsoft Access database to store the data from the Marine Rangers Project. People involved in recycling efforts often request information from the database about the weight of the plastics collected by the rangers, with the aim of making use of the debris.

In addition, a copy of the data is left in the communities, as they own it. Electronic summaries from the office database are sent out as well. An annual summary is also compiled. Previously, these were quite technical documents, but the last couple of years they are turned into a visual-based document. There’s a problem with literacy and numeracy in these areas, so it’s important to make things accessible. Very good positive feedback was received from the first reports using this method.

Q9. Volunteers vs. paid staff and participants: how did you address this issue in your project?

The Marine Rangers Project is largely a volunteer-based system. Participants are not compensated, except for those who already get some compensation through the government works programs. They’re often assigned to do community work, and since there isn’t always something to do, they’re happy to participate when the debris monitoring starts. Food and water are provided when the monitoring is being conducted. And in some places operational expenses are paid. But a desire for financial compensation is not really an issue.
Review of community monitoring basics

Sometimes the researchers do get a little bit of bunk information. One of the things that they had to deal with was problems identifying the marine debris. Many of the community participants had trouble reading the data sheet. When it was realized what the problem was, they were added to them, so that people who had trouble reading could identify the debris without a problem. This worked well.

Also sometimes if there is a lot of debris, interest wanes pretty quickly, particularly if it’s very hot outside. To deal with this the workday is adjusted: work for 2-3 hours in the morning, then relax, and return to sorting in the afternoon. Sometimes it’s the cultural issues that are the hardest things to overcome. In some communities people are working to a different timescale. Some of the rangers have the attitude that they want to do the monitoring, but it happens when it happens. So it takes a lot of effort on the project part to coordinate them to get going.

Q11. What do you think is the main achievement of the project?

Gathering information about marine debris has helped communities identify where they’re coming from, and also look for solutions to the problem. Also, as a result of the Marine Rangers Project, some of the communities have started paying more attention to their beaches and taken more pride in them. One community in which the project did a survey didn’t realize that half of the debris washing up onto the shore was their own rubbish. Once they did, straight away signs went up all over beach “Do Not Litter!” They really got a sense of pride from their work, and a feeling that they’ve got control of the consequences.

Q12. What advice would you give to others who would like to develop a similar project?

Understanding the realities of the community is important. In this project’s experience, keeping the written text, when it came to training manuals, to a minimum was important. Lots of drawing and images for interpreting the task that needs to be undertaken was valuable. Also, it had to do with how people were actually using the information being gathered. A lot of the data queries we got were from people wanting to recycle plastics. For them, weight, not numbers is the important thing. We were cataloguing a lot of information that wasn’t really necessary.

Another thing to bear in mind is what happens when there are multiple Community based monitoring programs in one area. Another project that runs parallel with ours, the Ghost Nets program, which is more focused just on collecting nets off beach, also has a lot more money. Some of the communities try to weigh up the amount of money out project got versus the amount of work, compared to that offered by other programs that require less effort but bigger returns. There’s a certain competition. No one has said no to our work yet, but it’s something that people talk about over dinner when they are out in the field.

Q13. What future do you see for this project?

Unfortunately, it has just run out of funding. The proposal for the continuation was unsuccessful. Now the project team is deciding what to do. Some communities, probably about half, really want to keep going. So, it’s about figuring out where money would be coming from. One of the things that were done with the project is the creation of “net kits”, which are kept at local ranger stations. Local residents can effectively go out on their own and do surveys anytime they want. However, when it comes down to time and the amount of fuel needed for boats and vehicles, there are challenges. Some places are really well-funded, whereas in other places their cars are falling apart. It’s much more difficult for these communities to keep things going without some outside support.

Highlights:

Achievements:
- Organized a systematic monitoring and data gathering in very remote communities
- Helped communities to find solution to their problems, while collecting data useful for others
- Community participants are volunteers

Opportunities for improvement:
- Increase level of literacy in the communities
- Consistent and sufficient funding

3.3.7 Siku-Inuit-Hila Project (Canada, Greenland, United States)

The Siku-Inuit-Hila (Sea Ice-People-Weather) project looks at the different ways in which the Inuit communities of Barrow, Alaska, Kangiqtaugaqiq, Nunavut, and Qaanag, Greenland live with and from sea ice. The purpose of the project is not simply to understand human-sea ice relationships, but also to facilitate the exchange of knowledge between the indigenous peoples who live in these places, and between local sea ice experts and scientists. Despite being separated by vast distances, cultures, and languages these groups all share knowledge and experience of sea ice. The Siku-Inuit-Hila project combines different community-based research methods in order to monitor sea ice, gather local and traditional knowledge about sea ice, and enable exchange between the participating communities and scientists. Dr. Shari Gearheard is Principle Investigator on the Siku-Inuit-Hila Project. She is an expert on human-environment interactions, traditional knowledge research, the Arctic environment and change, and community-based research methods. She is also a resident of Kangiqtaugaqiq, Nunavut.
Q7. **What type of monitoring and what methods do you use?**

There are three components to the research. The first is an exchange of people, in which participants visit the different communities and learn about local sea ice knowledge and the activities that people do on the ice and related skills. There was one exchange to each participating community. There are about 12-14 people going to the different places, where they spend about 2-3 weeks. In each place, they try to spend as much time on the ice as possible. Local hosts planned ice trips.

In Barrow, permission was received from the whaling captains association to be on the ice during the spring bowhead whale hunt. People from Kangiqtauapik were really excited because there’s no bowhead whale hunting there. And the same was true for those from Greenland. Being able to participate in that hunt allowed participants hands-on, on-ice experience learning about Barrow sea ice knowledge and use. Similar on-ice time in Kangiqtauapik (travelling regional fords by snow machine and camping) and Qaanuaaq (travelling by dog team to the next community of Siorapaluk and back) were key to project learning and the exchange of knowledge.

The second component of the research is the establishment of a sea ice working group in each community that meets on a regular basis to discuss their observations of ice conditions and their experiences on the ice. In particular, they focus on issues like what the ice is doing at that time versus what it normally should be doing, documenting knowledge and language about sea ice, and the results of the technical monitoring from the local sea ice stations, which is the third component of the project. In each of the locations, local monitors set up 3-4 sea-ice monitoring stations to record a variety of data about ice conditions. With training by the project glaciologist and supported by a manual designed by two of the project researchers, local residents gather quantitative information about the sea ice including parameters like sea ice temperature and thickness. The method developed for this work is simple but yields robust data. The method has been so successful that there are requests from other communities for Siku-Inuit-Hila monitors be sent to their communities to help them get something similar set up. For example, ice monitoring projects in Nunavik, Canada, have already switched to this method. It may be the basis for a wider network around the Arctic.

Q8. How do you organize your data management?

The data stays in the communities and is shared with the project glaciologist to assist with analysis and reporting. In Kangiqtauapik it is housed at the Itaqaq Heritage and Research Center and in Barrow at the Barrow Arctic Science Consortium. In Qaanuaaq, it will be deposed with the local government. Communities decide where they want the data stored and shared. There has yet to be a discussion of whether or not there is a desire for more public access of the raw data (there are publications of the results and the team is also writing a book). Also, all communities are looking for ways to extend the monitoring beyond the project. So Kangiqtauapik has been successful in acquiring additional funding. With more long term monitoring, a detailed plan for data management will be made.

Q9. Volunteers versus paid staff and participants: how did you address this issue in your project?

Participants are paid for their participation. They are researchers – so just as scientists get paid, so do local researchers and monitors.

At the very beginning of sea ice monitoring there were some problems with people writing down incorrect measurements. But these were simple issues and as soon as they were pointed out, it was easy enough to fix. The monitors take a lot of pride in what they do and they want to do it right. It took a little bit of time at first for monitors to learn the techniques of course, but now they’re used to it and they are running the stations (from set up, to monitoring, to station take-down) independently.

Communication can be a challenge across such great Arctic distances. It’s been successful, but it requires a lot of energy. It’s a continuous process, calling people and emailing people (even snail mailing people). Language too is a challenge in that the project wants to respect everyone’s language and publish in all the dialects where they want the data stored and shared. There has yet to be a discussion of whether or not there is a desire for more public access of the raw data (there are publications of the results and the team is also writing a book). Also, all communities are looking for ways to extend the monitoring beyond the project. So Kangiqtauapik has been successful in acquiring additional funding. With more long term monitoring, a detailed plan for data management will be made.

Q10. What problems have you encountered and how did you work them out?

The knowledge gathered and shared is most central, but there are also the bonds between people. When participants travel together it is a really intense time of exchange. It is not just about sea ice, but about people, and life, in general. The participants are reminded that these “knowledge holders”, whether scientist or hunter, are people with very interesting life stories, families, senses of humour, etc. When travelling great distances across ice or taking flights together, as well as living together, deep bonds are created. This was also the thing that created the momentum that kept the project going. People don’t want to let their friends down by not doing their part.

All the Inuit really liked meeting people from other communities. It is really interesting to see what similarities and differences there are. And sea ice is the common denominator among all participants. There are scientists who have dedicated their life to trying to understand it and they are passionate about it, even if in a different way. Even if this is different from Inuit, everyone has something to say about it.

During one of the last meetings when people realized that they were at the end of the last exchange trip, people were crying. They had become very close to each other and didn’t know when they would see one another again. It’s no longer just a project when you have people around the table crying – there is something deeper there. The manual developed by the project for setting up sea ice monitoring stations has proven very effective. There is a hope that it can serve as guide for other communities interested in doing similar work. It can be found online at: http://snscd.org/pubs/special/snsdc_special_report_14.pdf.

Q12. What advice would you give to others who would like to develop a similar project?

If anyone wants to do a community-based project he/she needs to already have or work on establishing a relationship with a person or a group in the community who will actually do the project. Unless he/she lives there, he/she needs to partner with a local person or local organization to carry the project through. This is critical for keeping the project going and making it meaningful locally.

Q13. What future do you see for this project?

The results of the Siku-Inuit-Hila project are being compiled in a book, which is being written and illustrated primarily by the local sea ice experts. One of this book’s aim is to show what life with ice is really like from the practical standpoint of people who live and depend on it. The authors hope that this approach might reach a broader audience including the public, students, science, and industry. But the first audience for the Siku-Inuit-Hila project is the communities themselves. The people in these communities want to know and share amongst their own people what is valuable and important to them.

The funding for the project is coming to an end, and it remains to be seen how, whether, and in what form it’s going to keep going. In Kangiqtauapik there is funding to keep the sea ice monitoring station going and in Qaanuaaq the local monitor there is interested in maintaining observations as well. Collaboration with other ice monitoring projects in Barrow may allow local observations to continue as well.

Highlights:

- Achievements:
 - Developed a manual for local communities for setting up sea ice monitoring using a simple but robust method that can be used in other projects integrated activities, which enhanced connections between Inuit living in different countries
 - Built successful relationships between scientists
 - and indigenous communities

- Opportunities for improvement:
 - Access to long-term funding to keep up observations and research network
 - Additional funding to translate project results and products into multiple indigenous languages

- 3.3.8 Snowchange (Canada, Finland, Russia, United States)

The Snowchange Cooperative is a not-for-profit organization based in Finland. It was established in 2001 in the form of an indigenous views on climate and ecology. Mr. Tero Mustonen has been leading the organization since its inception. Snowchange’s mission is to empower indigenous peoples by enabling them to conduct their own research. The program runs projects in the Arctic countries working with local indigenous communities. Snowchange responds to requests from communities and/or scientists to initiate research. In addition to the Arctic countries, the program has partners in New Zealand, India, and Australia. All research activities, which often include scientists, are based on careful gathering of traditional knowledge about the environment by interviewing harvesters and sometimes recording interviews on video or audio. The results of the research are archived at the Snowchange office and are available for communities and researchers. Annual conferences, held in different countries, bring together international participants to share their experiences. Approximately 2000 people are estimated to have been involved with the project.

Status and contact details: www.snowchange.org

Head of International Affairs: Mr Tero Mustonen
Chairperson: Ms. Saaja Lehtonen (annual rotation)

Snowchange Cooperative, Finland

Project Time: 2001 – on going

Funding: various government and private sources
Q1. What are the main goals and activities of the project?

The Snowchange Cooperative is a program that consists of various projects aimed at documenting indigenous views on climate change and ecology. Snowchange activities are comprised of educational and cultural events (crafts fairs, workshops, facilitation etc.) and scientific research focused on traditional knowledge. For example, in a project on the Environmental Observations of Seal Hunters in the Community of Merikarvia, Southern Finland, (on the Baltic Coast) the goal was to find out what local knowledge could tell about environmental changes happening in the area. In ECOFA Snowchange surveyed local residents to find out how indigenous peoples of the region, Chukchi, Yukage, and Even, apply traditional knowledge to natural resource use.

Q2. Who are the participants?

Snowchange partners with researchers, as well as other organizations and institutions, such as the Northern Forum, the Academy of Science of Yakutia (Russian Federation), and the Saami Council, to implement its projects depending on its needs. Over the years, approximately 2000 local residents have participated in Snowchange projects.

Q3. Who initiated the project?

Initial meetings were held with Saami in 1996. At one of the meetings in 2001, an Inuit lady was talking about what united all indigenous peoples in the Arctic. Everyone agreed that it was snow. Then the conversation turned into a discussion on climate change and the fact that people should have a positive outlook on change, something that people can influence, rather than seeing it as negative and destructive. By combining two words together they got the idea of the Snowchange project. It took several years to organize it and in 2001 the first project activities took place. Snowchange's approach is community-centered. It all depends on what people want it to do. Snowchange does not initiate activities.

Q4. What are the locations and how were they selected?

Snowchange has had projects in many Scandinavian, North American, and Russian communities. Some of them are Sevvettijärvi, Merikarvia in Finland, Krasnocheleje, and the Kolyma region in Russia. Snowchange does not select communities but engages in a dialogue with communities, and if the community expresses an interest Snowchange takes on a project.

Q5. How difficult was it to find funding and how long did it take?

Snowchange generates a small income from educational and cultural activities but the core funding and project funding come from various agencies and organizations. The list includes: Ministry of Natural Protection of Finland, Finish Academy of Science, MFA of Finland, Saami Council, Barents Sea Secretariat, and others. The project was built on a successful pilot project. Something small scale was tried first, it worked, and then the new project was built from there. That might have been what made this application successful. Also, the National Science Foundation is increasingly interested in local knowledge. The travel component of the project, to facilitate knowledge exchange between all these people and places, is huge. The participants are very grateful that NSF saw the value in that. They (via Polar Field Services) provided tremendous logistics support.

Q6. What are the relationships between the project researchers and the communities?

A typical Snowchange project is organized like this:

1. After Snowchange has been approached with a request from a community, it organizes a visit to this community to listen to that community's concerns.
2. Snowchange, sometimes in partnership with scientists or other organizations, designs the research.
3. The team goes back to the community to explain what they propose to do and the community holds a meeting to approve the work.
4. The team spends substantial time in the community easing into the life of the residents, participating in some of their activities if invited.

Q7. What type of monitoring and what methods do you use?

Researchers conduct open-ended interviews with local residents. Sometimes local peoples are trained to interview but the interviewing is performed only during the team's visit. If permission is granted, information is recorded on audio and video, and locations are mapped.

In the project on the Environmental Observations of Seal Hunters in Southern Finland, Snowchange researchers have been coming to the community every year since 2002 to document and map the use of the sea-ice in the Baltic Sea and the interactions between sea-ice and seals. Oral history, as told by the hunters, was compared with scientific data.

In partnership with the Saami Council, Snowchange has been working in two communities, Sevvettijärvi in Finland and Lovozero in Kola peninsula in Russia, to document observations on climate change and biodiversity on and off for about ten years. The observations collected in 2000 and 2002 were included as case studies in ACIA in Chapter 3.

Q8. How do you organize your data management?

Snowchange's office maintains digital archives of interviews, audio/video recordings, and other project materials. All interviews are transcribed. Metadata is created for all material. Access is defined by the communities where the data was collected. Snowchange archives only the data that the community has permitted us to store. Residents also specify what final products they would like to receive. Snowchange follows up on all requests.

Q9. Volunteers versus paid staff and participants: how did you address this issue in your project?

This is a difficult topic. In some areas Snowchange has to pay, for example in North America. Mr. Mustonen personally opposes this, as it creates an unhealthy situation in his opinion. The cost of Community based monitoring in North America is substantially higher than in Russia and in Northern Europe. For example, the cost of activities for one year per community in Russia ranges between ten and twenty thousand Euros. Snowchange may have six to eight communities at a time. Most of the budget is allocated to travel to enable visits to communities. Compensation to participants is provided only in communities, which mostly are located in North America, where the practice became a norm.

Q10. What problems have you encountered and how did you work them out?

Working with researchers could be frustrating, as they have a difficult time understanding the holistic nature of Indigenous and Traditional knowledge. One cannot focus on just one topic, such as index species, and not pay attention to anything else. This presents a challenge when designing surveys. Scientists should also be sensitive to the ownership of knowledge. People in the communities own their knowledge – scientists don't. The use should be negotiated prior to any release to the public and people in the communities should have an opportunity to review. It is difficult to include women's observations. Women should be in the center stage of research as they are key to many subsistence activities but in some cultures traditionally only men are interviewed.

Q11. What do you think is the main achievement of the project?

Snowchange has gained valuable experience over the decade of its work. An expansive library of materials has been accumulated and shared with communities and scientists. Several books based on the research results and articles in science journals were published. The main benefit, for example to the Finnish community of Merikarvia is in the recording and preservation of traditional knowledge. This is one of the few communities in Finland where these stories are still told. By nurturing long-term relationships, Snowchange is helping communities to develop their own capacity for Community based monitoring.

Q12. What advice would you give to others who would like to develop a similar project?

The most important message from Snowchange is that communities should have opportunities to continue their subsistence practices and be able to speak their language, as the paramount condition for the continuation of traditional knowledge. Recordings are not the traditional knowledge; the knowledge can only exist if people use it. Community based monitoring is one of the means to entice people to use it.

Q13. What future do you see for this project?

Snowchange is successful and effective. Many multimillion dollar programs disappear but Snowchange is still here. It is grass roots and there are no plans on expanding. One of the strengths of Snowchange is its cost-efficiency in organizing its projects. It does so by building long-term relationships with communities and organizations across the Arctic. Generating grass-roots support is a very important condition for sustainability. Community based monitoring is affordable for Community based monitoring in the Arctic. Local people should contribute their time to collect information on their own. It does not take a lot of money if there are good relationships with communities. Snowchange is trying to define these relationships without money.

Highlights:

- Achievements:
 - Longevity based on flexible and creative approach
 - Built partnerships outside the Arctic
 - Earned communities’ trust
 - Encouraged indigenous communities to value and preserve their traditional ways of life
 - Provided valuable input to one the major scientific assessments of climate change, ACIA
- Opportunities for improvement:
 - Mutual understanding with scientists

Win 2002 WWF Panda Prize for best national environment project.
4. Recommendations for community based monitoring development

4.1 Advice from those who tried and succeeded

The interviews in the previous section provided a very useful and inspiring account of practical issues involved in the implementation of community based monitoring programs. Since there are no “text books” on community based monitoring, learning from such projects could be the most productive way of entering this field.

While the interviewed projects vary greatly, some common trends related to community based monitoring emerge from “lessons learned”. This is what many interviewed project leaders underscored as the most important components and activities leading to successful work.

Plan ahead:

- Building a relationship with an organization that has qualified personnel to spend sufficient time on the design and development is important. A diverse team of collaborators with different types of expertise, from academia to community leaders and government officials, is essential.
- A researcher needs to already have or work on establishing a relationship with a person or a group in the community who will actually do the project. Unless he/she lives there, a researcher needs to partner with a local person or local organization, who would work with them to provide training and other support.
- Ask what kind of knowledge or information is available already; look at prior research first and build on it.
- Think long-term, economize, and move slowly. Start with a small project or a pilot that can be built on later.
- Allocate sufficient time and resources for local project staff training.

Prepare for the unexpected:

- Being flexible and willing to change things is important. Maintain a presence in the community at all times: it’s important to have the right person on site to address emerging issues in a timely manner.

Make it relevant to communities:

- Indigenous and Traditional knowledge can only exist if people use it. Community based monitoring is one of the means to entice people to use traditional knowledge. By paying more attention to their environment and taking pride in their work, communities develop a feeling of ownership of and control over the consequences of the use of their environment.

Respect communities:

- Learn about the community’s life cycle and respect their schedule.
- Don’t force the project if there is no interest in the community.
- Respect gender roles accepted in the community but don’t overlook women as they are the key to the knowledge on many subsistence activities.

Make it relevant to science and resource management agencies:

- Community based monitoring is an invaluable component of any large-scale monitoring, since without local residents it is impossible to collect year-around data in the vast Arctic region.
- Quantifiable methods that allow for the comparison of data between disciplines increase the range of application of community based monitoring data and therefore increase the interest of funding agencies.

Think of sustainability:

- Community based monitoring is based on human relationships. What is invested in that relationship will define what the final result will be. It’s a fine balance between give and take.
- Generating grass-roots support is the most important condition for sustainable community based monitoring. No long-term funding is available for community based monitoring in the Arctic at this time. Local people should contribute their time to collect information on their own. Good relationships with communities are the key to success.

4.2 Community based monitoring project development

More specific recommendations drawn on the comments above could be helpful to those developing community based monitoring programs. This list is suggested as a building block and should not be viewed as an all-inclusive work plan. The tasks are presented in the project timeline phases where they typically occur. These phases do not necessarily match the timeline of grant cycles, but rather take into account all activities leading to actual monitoring as a planning phase, monitoring activities (data collection and processing) fall into an implementation phase, and a reporting phase covers activities aimed at the analysis of collected data.
Recommendations for community monitoring development

4.2.1 Planning

The community based monitoring component is frequently an afterthought in research projects. It is often described in proposals in a very vague language and only after the project has been approved does actual planning for a community based monitoring component begin. This is too late and should be planned at the time of the project design and proposal development, on par with all other project activities.

Collaboration: build a team

As every project leader emphasized in Section 3, community based monitoring is rooted in collaborative research. Building relationships with potential communities, researchers, and other partners is essential for its success. It is important to understand that social scientists are indispensable in developing appropriate research methods even if the project is aimed at monitoring for biological resources, including bio-sampling and other “hard science” research.

Anticipate competition: find out what else is happening in the community

Some communities, especially the ones with relatively easy access, “enjoy” popularity among researchers. If the project plan calls for work in such a community, it is useful to determine if other projects are planning their activities in the same timeframe. When a community is inundated with research projects residents may not want to participate in yet another project, regardless of the perceived benefits. There may also be a competition for the few individuals available to work on projects.

Make timely decisions: select community based monitoring types and methods to meet project goals

There are no recipes for how to design community based monitoring, but the ingredients are known and it is the responsibility of the project developer to figure out which ones are necessary to accomplish the goals of the project. The community based monitoring Decision Tree (Section 2.2) leads you through a possible decision making process in the selection of the right ingredients. This Decision Tree is an example of how one may proceed in choosing a type or types of community based monitoring, which could be appropriate for a particular project. Please refer to Section 2.3 to match community based monitoring types with recommended methods.

This is how this process unfolded in BSSN:

In 2004, it was decided to develop a community based monitoring project because it was believed, that it would benefit emerging circumpolar Arctic research systems. This was a science driven project. It also responded to the needs of community based observation project. The community based monitoring Decision Tree was used to select the right ingredients. An expert, who could guide the process of data gathering and reporting. Developing a cost estimate at the proposal planning stage would be prudent.

Environmental observations and organize them in useful data sets, as well to exercise control over the use of these databases. BSSN was intended to be an independent community based monitoring project. Different methods were used to ensure that the future results would fit within a larger scheme of Arctic research. Several concept papers were drafted and discussed with other organizations and scientists. At the same time, funding opportunities were monitored, and National Science Foundation’s (NSF) Arctic Observing Network appeared to be the most promising. Once the funding source was determined, a detailed project design became the focus. It was decided from the outset that the gathered observations should be quantifiable, meaning that some sort of a survey should be used. The project was not designed by a sociologist, and experts were consulted after the initial review of survey methods. A private company specialization in this type of work was selected and was included in the funding proposal as a consultant. A University scientist with a diverse background in natural and physical sciences was invited to join the project to guide the scientific synthesis of all components.

Thus, as early as in the pre-proposal phase, BSSN had identified what type of community based monitoring and what methods should be used; what experts would be needed to do this work and how much that would cost. Programs where community based monitoring is only a component may not need such an extensive amount of background work. Depending on the scope of the community based monitoring component, an appropriate plan should be developed. An adequate budget should be planned for monitoring and reporting. Developing a cost estimate at the proposal planning stage would be prudent.

Be prepared in advance: get project data organization system in place

Once the decision on the type of community based monitoring for the project has been made and the methods suitable for this type are determined, it should become clear what kind of data may be generated. Being able to design a data organization and storage system prior to the collection of data is a big advantage. Unfortunately, data management, analysis and reporting are often overlooked and under-budgeted components that should be addressed at the beginning of the project. While programs such as Excel and Microsoft Access are quite common, many others software programs were consulted. An expert, who can guide the process of data gathering and storage. For projects that are part of larger research programs, data management requirements are often more specific. For community based monitoring projects, this often presents a problem, as their data often does not fit into the moulds created for other disciplines. Community based monitoring data can come in many different formats and media, and designing a system that accommodates all of them is a challenge that should not be underestimated. There are many resources available for data management. The more complex the program, the harder it is for a nonexpert to work with it. (See Appendix 1.)

A project developer should strive to ensure that:

- The information gathered can be converted into data.
- The monitoring methods are repeatable and information collection is easy standardized (collected in the same way no matter who the observer or recorder is).
- Project personnel are available to process and organize the data using appropriate software.
- The data is deposited where it can be easily retrieved by потомство.
- The terms of the data use are clearly spelled out and reflect local requirements in addition to all applicable national laws.
- Metadata is created and is broadly available.

Communicate effectively: make it a priority

Communication between all collaborators and partners is essential. A communication plan should be developed early in the project, even if possible, dedicated personnel should be selected or hired. For the programs that originated outside of communities and with only marginal initial consultations with the residents, starting on the right foot with the communities may make or break the project. Below are some suggestions about how to approach such communication, including the most extreme situation when researchers are new to the community and don’t have strong ties there.

It goes without saying that researchers should learn as much as possible about potential participating communities, including their culture and administrative structure before contacting that community.

What materials to prepare:

- Describe the project in a simple language using visual aids, such as graphics and photos.
- Emphasize the links between the project goal and issues of concern in the community and be open to modify the project to reflect community’s recommendations.
- Show how the researchers will be reporting the results of the work back to the community and how the results may be used by the community.
- Prepare a realistic budget for the work in the community based on actual costs of “doing business” in this community (find out in advance rate of rent, salaries, communication cost, etc.)

Who to contact:

Find out the government structure and direct your first inquiries to that individual or body and be persistent in getting a response from them. (See Appendix 3.) For more information on local and indigenous governments in the Arctic countries). Use local media where appropriate to make introductions and short presentations.

How to contact:

- Realize that in rural and indigenous communities people may have a different way/protocol for what is appropriate. Don’t get discouraged if your attempts to communicate are not reciprocated.
- Find an authority figure who may introduce you to the community and show some support for your project.

This is an example of pre-proposal communication and early project phases in BSSN.

Lack of funding often impedes the consultation process with communities when program concepts are being developed. BSSN was not an exception. The very first meeting to discuss the concept with Alaskan and Russian communities took place in 2005 on the fringes of a large international conference in Anchorage. This meeting was organized in pre-proposal time without any dedicated funding. The meeting was also timed to coincide with what the network should be observing. An indigenous consultant, with extensive ties to many indigenous communities in Alaska was hired to communicate with five Bering Sea coastal regions in Alaska and seek their support and contribution. This preliminary work proved to be crucial in developing a successful proposal.

The second meeting took place in 2006, after the proposal had been approved but prior to receiving any funds. The meeting was also timed to coincide with another large meeting in Anchorage and limited funding received from third parties was pulled together. This workshop developed practical recommendations for the implementation of BSSN (The meeting proceedings are available at www.bssn.net).

The first project activities were trips to all BSSN communities to meet the authorities and to introduce the project to local residents. In Russia, that meant meeting with governors’ cabinets to get their approval for the project, and only after that were the trips to the villages arranged. In Alaska, presentations were made to the village tribal councils seeking their approval of the project activities.

In addition to regular electronic communication, monthly
Recommendations for community monitoring development

4.2.2 Implementation

Project activities that take place after the project has been established and funded are technically in the implementation phase. In this section the focus is on gathering of information, generating data and processing it – activities that constitute community based monitoring.

As was stressed repeatedly, community based monitoring programs are very diverse and it would be difficult to come up with a useful generic list of recommendations. What is reviewed here are the issues, which were raised by the interviewed project leaders. Almost every project has experienced difficulties of various degrees in these particular areas: providing adequate training and building capacity, ensuring efficient on-going communication, retaining staff, project oversight and quality control.

Provide adequate training

Any community based monitoring activities that call for community members’ participation should plan on sufficient time and adequate funding for training. While it is sometimes easier to bring all participants to a centrally located city, one-on-one training in the community may be more efficient. In indigenous cultures, learning is achieved through observing and practicing, not taking notes in a classroom. Project leaders or senior staff should be able to visit communities over the course of the project for continuous training and trouble shooting. Training should not be seen as a one-time workshop. Manuals are helpful but they cannot be a substitute for personal training.

Find reliable local project staff

Finding the right person to do the job in the community is crucial. When the community leadership is interested and supportive of the activities, they will recommend local community members who will be appropriate for the project. Adequate compensation could also help retain the most capable people. Scheduling project work with consideration for harvesting activities could help avoid problems with absenteeism.

Ensure work oversight and quality control

Regardless of the amount of training, there will be difficulties in execution, following rules and procedures. Maintaining flexibility in how activities are organized and expedient feedback are needed to successfully deal with these issues. The incoming data need to be continually monitored to ensure that the selected methods and their execution are providing the intended information. Whenever possible, adjustments should be made. However, in case of population survey, changes may need to be deferred until the next cycle. If the survey instrument is altered in the middle of a survey there will be problems with data analysis.

Engage in on-going communication

In most Community based monitoring projects, researchers do not reside in the communities where activities are taking place. All possible technology options should be explored to keep in touch weekly. External project communication is as necessary as internal communication. Whenever possible, media, conference, local meetings and events should be used to inform the public about the project.

4.2.3 Reporting

Depending on the length of the project, there may be a number of reporting cycles, e.g. annually. Regular reporting is important in all project phases. The suggestions in this section address final project reporting (after the project or a substantial portion of it has been completed) but can be applied to other project reports. For on-going monitoring projects, it is important to present overall findings and results of the monitoring regularly.

The most common problem is the gap between the time of completion of the project (or a portion of it) and the time when the report is available. Another common problem is presenting (or mailing) a report written in scientific language that lay people, and especially community members, cannot understand. Figure 2. shows an example of a step-by-step approach for keeping a community in the loop after the monitoring activities have been completed.

Step 1

After all activities have been completed, a simple letter of appreciation sent to all participants in the community will acknowledge the value of their contribution and will inform them about the time line for project results and final reports. If appropriate, town-hall meetings and presentations to local authorities should be organized.

Step 2

Approximately within one month, project summary materials and any results available at this time should be delivered to the community. These materials should be concise and visually appealing (brochures, posters). Slide shows and short videos are excellent media as well.

Step 3

Presentation of final project product(s) should be done in the communities, preferably by the project lead within a reasonable time after the activities are completed. If necessary, material should be translated into local languages. Whenever possible, recommendations on how the results of the research may be of use to the communities should be developed. Presentations should not be limited to talks and reports. If the budget permits, films and books should be considered.

A successful conclusion of a project opens doors to many other opportunities with that community. This is important because monitoring presumes on-going activities for long periods of time and building interest and support in the communities will ensure future cooperation.
Conclusions

Community based monitoring, in all its forms, has so many variables that it is virtually impossible to devise a single one-size-fits-all approach. Every component that goes into the design of a community based monitoring program needs to be specific to a particular country, region, culture, community needs, science needs, and government regulations just to name a few. In the end, it is critical to understand how these components work together to ensure project success.

Many researchers leading community based monitoring projects are individuals who are passionate about this work, who are independent thinkers and are not afraid to break the barriers. They don’t always work “by the book”; rather they design “the book” of community based monitoring practices. Some of those practices and advice are featured in this Handbook and hopefully will serve as an encouragement to others to continue these discoveries and to write new chapters in “the book” of community based monitoring.

Most of the recommendations singled out as the most important by the interviewed project leaders in Section 3 deal with the processes of community based monitoring, such as project design, organization and human relationships. Not surprisingly, most of the identified difficulties also arise from the deficiencies in these processes. It is worthwhile to note that almost all cited challenges are similar to the ones faced by many other research projects operating in remote locations, such as difficulty in finding qualified human resources, dealing with complex logistics, building rapport with local government and residents, and searching for sustainable funding. This shows that failures and successes of community based monitoring projects, in many cases, depend on the same factors as any scientific or natural resource management activities.

One conclusion is crystal clear: community based monitoring is here to stay. As the reviews have shown, there are many successes, but also there are many problems, which need to be addressed. There is a consensus among researchers on some issues, while on other issues researchers take opposite sides. What are some of these issues?

There is a great range in projects’ size and funding level. The reviewed projects ranged from three thousand US dollars to several hundred thousand dollars per year.

Do smaller less expensive projects have better sustainability?

Several long-term monitoring project leaders emphasized that modest funding and manageable size are keys to their long-term sustainability. This statement appeared to be correct, as the longest reviewed projects are relatively inexpensive (See Table 1). However, all these projects are organized and run with substantial involvement from government agencies that provide offices, staff, and technical support. Had this support been calculated, the total cost of the projects would have been much higher. The longevity of these projects is most likely explained by the government involvement. Another important factor is project’s ability to provide regular and community relevant results. So, partnering with government regulatory agencies is a positive step towards sustainability.

Do project products and results differ in projects of different size and funding levels?

The most significant advantage of larger projects is in the final products, which offer better organized and higher quality data, and other products, such as books and films. Since these project teams usually have better scientific expertise they are more likely to make discoveries and advance science. At the same time these project may have a more difficult time taking root in the communities.

The smaller projects are more adaptable. It is easier for a smaller project to pick up activities when funding is not consistent and there are gaps. However, if funding is not sufficient, there may be difficulty in attracting and retaining staff and participants, accumulated data may not be properly processed and therefore may remain useless for a long time.

Many projects start small, as pilots, and expand slowly. This was pointed out as a good strategy by several interviewed researchers. Since community based monitoring is a new research field many projects are sailing in uncharted waters. Testing pilot ideas, refining design and then expanding is a good progression to success.

The interviewed leaders of small projects thought that being small was good. At the same time every one expressed the need for more sufficient funding. No leader of larger projects pointed out that downsizing would improve the project. The morale here may be that every researcher is setting up goals that are commensurate with available funding.

Ultimately, every program deals with two major challenges: how to fund work and how to sustain funding. Most of the long-term monitoring projects are funded by various government regulatory agencies that operate on an annual funding cycle. They have modest budgets but enjoy the benefits of government infrastructure, such as...
local offices and staff. Projects funded by competitive grants often have larger budgets and more ambitious goals. These projects are better equipped to develop and test new methods and approaches. It would make sense if a community based monitoring project begins as a competitive grant research project. Successful projects that demonstrate results that are deemed valuable for the society should be transferred to appropriate government regulatory/maintenance agencies and “adopted” by the communities through the direct involvement of village or other local governance entities. Until this chain of command develops, the sustainability of community based monitoring programs will remain a problem.

Many community based monitoring projects use various types of interviews as method of data collection.

How do local residents- interviewers compare to visiting researchers?

In the social sciences, the discussion about the effectiveness and appropriateness of local residents interviewing other people in their communities is not new and there is no consensus. There are successful projects that do not use local residents and then, there are projects that do. Some scientists believe that a person who has no academic training cannot perform, as well as a researcher or a graduate student. Another opinion in favour of visiting researchers is that a stranger may get more information as people would make an effort to explain things that are obvious to locals. Other researchers see a tremendous potential in local residents and advocate hiring and training them. There are many social benefits in that. A younger person interviewing an elder will not only collect information for the project but will likely learn something new about his/her own culture and traditions. Obviously, local residents who are not researchers will require training, and there will likely be more work needed to address technical irregularities during data processing. Every researcher needs to weigh all the pros and cons and decide what works best for his/her project and its budget.

Another contentious issue is whether to pay or not to pay to local assistants and participants.

Are paid employees better than volunteers?

There is no consensus here either. They may not be better but providing compensation may be the only way to retain local residents working in the project. There is a definite division in opinions between North America and Europe. Volunteerism is not typical in North American Arctic communities. In many surveys, respondents expect to receive small payments or gifts. The only reasonable solution is to follow the practices established in the community.

All projects recognize the importance of finding and retaining qualified individuals to oversee project activities in the villages. Unfortunately, it remains incredibly difficult to do this. Some projects stalled altogether in the absence of such people. Poor infrastructure in many villages makes it challenging to run projects. Dependence on only a handful of capable individuals becomes an Achilles’ heel of many community based monitoring projects. Hopefully, the growth of community based monitoring projects will lead to an increased interest from the best qualified people in the communities. It is also important that community based monitoring projects, large and small, are funded at a level that makes them competitive. Building capacity for running community based monitoring projects by local organizations is critical.

While these issues have not been brought forward in most of the interviews, it should be noted that there is a need for comparative analysis studies on the accuracy and effectiveness of community based monitoring activities to advance the theoretical basis for its implementation in scientific research and natural resource management; and there is a definite shortage of scientists who are comfortable working within both “soft” and “hard” science disciplines.

There is a need for a new generation of scientists with multi-disciplinary academic backgrounds; there is also a need for a new generation of local residents who are as comfortable working in community based research projects as they are in harvesting activities. The research and natural resource management agencies need to work together with local governments to better integrate community based monitoring practices in the everyday life of the communities. Local knowledge, which is a foundation for community based monitoring, is holistic, and so should be the academic education and government approach to community based monitoring.

In the meantime, self-education and experience sharing are the keys. Fortunately, there are many resources and many successful projects. This Handbook will hopefully be one of them.

Conclusions

References

Root et al 2003 ??????

Acknowledgements

This Handbook would have not been possible without generous sharing of the experience by the project leaders who agreed to be interviewed for this publication. Many thanks are offered to Dr. Gary Kohfanas, Dr. Evgeny . Dr. Lilian Alessa, Dr. Einar Eythórsson Dr. Svanhild Andersen, Dr. Else Grete Broderstad, Mr. Shane Penny, Dr. Shari Gearheard, and Mr. Tero Mustonen.

Dr. Andrea Grant-Friedman is recognized for her contribution to this publication, as well as AIA staff, Mr. Jim Gamble and Ms. Hanna Eklund, for their assistance. Mr. Michael Svoboda and Mr. Mike Gill provided much appreciated guidance and advice. The generous financial support of Environment Canada is acknowledged with great appreciation.
Appendix 1: Survey of information and resources

Research Methods Knowledge Base: A comprehensive web-based textbook that addresses all of the topics in a typical introductory undergraduate or graduate course in social research methods. Although much of what it covers goes beyond the boundaries of survey research, it does have some useful basic information about sampling, measurement, survey design, and data analysis. It also addresses the major theoretical and philosophical underpinnings of research including the idea of validity in research, reliability of measures; and ethics. It is written so as to be accessible to experts and non-experts alike. www.socialresearchmethods.net

Appendix 2: Governance in Arctic communities

Canadian Indigenous Governance Structure

Canadian Indigenous governance is divided among three officially recognized groups:

First Nations: First Nations represent approximately 500 tribal organizations divided among all of Canada’s 1. 10 provinces and 3 territories with the exception of the territory of Nunavut which is entirely Inuit. First Nations overall is represented by the Assembly of First Nations (http://www.afn.ca). The group is further divided among 24 Provincial Territorial Organizations (http://www.afn.ca/article.asp?id=2952)

Inuit: The national Inuit organization in Canada is 2. Inuit Tapiriit Kanatami (http://www.itk.ca/) which represents Inuit in four regions: 1. Nunatsiavut (Labrador), Nunavik (Northern Quebec), Nunavut, and the Inuvialuit Settlement Region in the Northwest Territories.

Indigenous Peoples and the Canadian Government

The Canadian government maintains numerous resources related to Indigenous Peoples primarily under the auspices of Indian and Northern Affairs Canada (INAC http://www.ainc-inac.gc.ca/). These include the Aboriginal Canada Portal (http://www.aboriginalcanada.gc.ca/), which contains a database of National Aboriginal Organizations, as well as sections on environmental research and traditional and ecological knowledge. In addition, the portal provides a listing of over 700 unique First Nations, Inuit and Métis community pages with information such as community home page, statistical profiles, tribal council and other organization affiliations, mapping, and connectivity profiles.

Other Canadian government agencies maintain a great deal of information related to Indigenous Peoples as well and can be contacted for more specific information, these include: Parks Canada (http://www.pc.gc.ca/), Fisheries

Appendix 2: Community based monitoring in conservation and natural resource management

A compilation of case studies and peer reviewed articles on application of CBM in conservation and resource management in the developing countries: http://monitoringmatters.org

Biodiversity and Conservation, special issue 14:2507-2820, 2005

Resources
The Saami Council (NGO) is an umbrella organization of the Sami people in Finland, Sweden, Norway and Russia and it was established in 1956. www.saamicouncil.net

“The primary aim of the Saami Council is the promotion of Saami rights and interests in the four countries where the Saami are living, to consolidate the feeling of affinity among the Saami people, to attain recognition for the Saami as a nation and to maintain the economic, social and cultural rights of the Saami in the legislation of the four states. (Norway, Sweden, Russia and Finland). This objective can be achieved through agreements between these states and the bodies representing the Saami people, the Saami parliaments… Saami Council endeavors to communicate and makes proposals on questions concerning Saami people’s rights, language and culture and especially on issues concerning Saami in different countries.”

The Saami Council has eight member organizations from the 4 countries;
1. Gualdlaga Sámi Searvi (GSS) - Saami Association of Kola Peninsula
2. Murmånskska guvoľu Sámesearvi (OOMSO) - Saami Association of Murmansk Region
4. Norrga Sámiid Rikkasearvi (NSR) - Norwegian Saami Association
5. Riikkasearvi Sámi Attnam (RSA) - The National Association of Samiind
6. Sámiid Atmostihntu (SAL-SFF) - (People’s federation of the Saami)
7. Sámiid Rikkasearvi (SR) - Saami Association of Sweden
8. Suoma Sámiid Guovddássearvi (SSG) - Saami Association of Finland

Resources

There are a number of various other Sami organizations, and the list can be found from here: http://www.saamicouncil.net/dpdentid=2182

The University of Lapland has a database that has a collection of research conducted with the Saami people or in their region. Database can be found at: http://artscentre.ulapland.fi/valjak/Tietokanta.aspx

Conducting research in Sweden:
Guidelines on where to get information and financing (EU based): http://ec.europa.eu/youreurope/business/competing-through-innovation/conducting-research/sweden/index_en.htm

Sweden’s own “The Researcher’s Mobility Program”: http://www.researchinsweden.se/

Conducting research in Finland:
Guidelines on where to get information and financing (EU based): http://ec.europa.eu/youreurope/business/competing-through-innovation/conducting-research/finland/index_en.htm

National Advisory Board of Finland: http://www.tenk.fi

There are research guidelines developed by the National Advisory Board of Finland that one should follow when conducting research. Different disciplines have their own norms and recommendations that should be followed in conducting research.

Conducting research in Norway:
The Research Council of Norway provides advice and financing for researchers: http://www.forskningsradet.no/servlet/Satellite?c=Page&cid=1177315739060&n=1177315739060&pageName=ForskningsradetEngelsk%2F
Hovedside

Alaska Native Tribes and the U.S. Government
In Alaska there are approximately 230 federally recognized Tribes. Federal recognition marks the distinct and unique legal relationship that exists between the U.S. Federal Government and Tribal Governments. Alaska has nearly 40% of the nations Tribes. Alaska Tribes maintain the inherent authority and right to continue governing themselves. This includes but is not limited to maintaining and strengthening their distinct political, legal, economic, social and cultural institutions, while retaining their right to participate fully, if they so choose, in the political, economic, social and cultural life of the State.

With the passing of the Alaska Native Claims settlement act in 1971, twelve regional corporations were created and later there was a thirteenth region added which was created for Alaska Native peoples living outside of Alaska. In addition to the regional corporations, there are also individual village corporations. These corporations are state chartered entities with shareholders and their primary focus is based on revenue building. Unlike Native Corporations, Tribal Governments fundamental work is based around governing and protecting the health and well being of their Tribal Citizens and future generations. With corporations focus on revenue and Tribal Governments focus on Tribal Citizens, a clash is often created causing a revenue based perspective to crash into a traditional and cultural perspective. This single issue has often acted as a divide and conquer tactic splitting regions, towns, communities, villages and even families.

Please note that Tribal Governments should not be confused with Tribal Entities, Native regional corporations, village corporations, and Native non-profits or State chartered boroughs or communities.

Alaskan Native Tribes and the State of Alaska
Currently the State of Alaska does not officially recognize Tribes. The State of Alaska maintains an extensive database of community information online. This database includes community information summaries, detailed community information, local contact information, capital projects by community and community photos. In addition, virtually all state agencies are aware of Tribes and Indigenous communities, in particular, the Alaska Department of Fish and Game Division of Subsistence, which monitors the community subsistence information system among other data. It should be noted that federal, state and privately funded research takes place frequently in many areas of Alaska. For this reason regional entities have often developed research guidelines for use in their communities. Researchers should inquire about any local regulations or guidelines used in their region. The Alaska Native Science Commission (AKNSC) developed recommendations for research in the Arctic communities http://aknscc.org

Russian Indigenous Governance Structure
General information about Russian Association of Indigenous Peoples of the North, Siberia and Far East (RAIPON) can be found at http://www.raipon.info/en/RAIPON was created in 1990 at the First Congress of Indigenous Peoples of the North. The Association was originally called the “Association of Peoples of the North of the USSR” and united 26 indigenous groups of the North. On November 24, 1993 the Association was registered as public political movement “Association of indigenous peoples of the North, Siberia and Far East of Russian Federation” and on July, 1999 it was registered at the RF
Resources

45

Ministry of Justice as All-Russia public organization and received the registration number 2174.

RAIPON is a non profit organization. Its goals are the protection of human rights, advocacy for the legal interests of indigenous peoples of the North, Siberia and the Far East, and addressing environmental, social and economic problems.

RAIPON unites 41 indigenous groups whose total population is around 250,000 people. These people are represented by 34 regional and ethnic organizations that have the authority to represent these groups both in Russia and in the international community.

Russian indigenous associations:

1. Association of native human groups of the North of Primorsky Krai - Association of the Indigenous Peoples of the Primorsky Krai. Association embraces the representatives of all aboriginal communities. Members: Udege, Even, Nyagan, Tsy, Odjke, Olenek, Olegush. Tel.: (4232) 4-41-00-88, e-mail: milcenter@yandex.ru, psu.psylogyzda@mail.ru. www.udege.org.

2. Association of native human groups of the North of Chukotka. Association embraces the representatives of all aboriginal communities. Members: Chukchi, Chunaun, Eskimo, Even, Koryak, Kere, Yukagir, Tel.: (422) 2-60-75, Fax (422) 2-17-09.

3. Kamchatka regional Association of native human groups of the North of Kamchatka. Association embraces the representatives of all aboriginal communities. Members: Koryak, Even, Nigilal, Tichy, Udoroch, Udege, Nyikan. Tel.: (4231) 3-30-64, e-mail: uchiri@inbox.ru.

4. Association of native human groups of the North of Sakhalin. Association embraces the representatives of all aboriginal communities. Members: Even, Even, Nigilal, Tichy, Udoroch, Udege, Nigilal. Tel.: (4231) 3-30-64, e-mail: uchiri@inbox.ru.

5. Association of local organizations of the Aborigines of the North of the Khabarovsk Krai. Association embraces the representatives of all aboriginal communities. Members: Even, Even, Nigilal, Tichy, Udoroch, Udege, Nyikan. Tel.: (4231) 3-30-64, e-mail: uchiri@inbox.ru.

6. Association of the indigenous peoples of the North of the Primorye District of the Primorsky Krai. Association embraces the representatives of all aboriginal communities. Members: Udege, Even, Nyagan, Tsy, Odjke, Olenek, Olegush. Tel.: (4232) 4-41-00-88, e-mail: milcenter@yandex.ru, psu.psylogyzda@mail.ru. www.udege.org.

7. Regional Council of Representatives of Indigenous Peoples of the Sakhalin Oblast. Council embraces the representatives of all aboriginal communities. Members: Nigilal, Nigilal, Even, Olenek, Olegush. Tel.: (4242) 4-50-35, 8 914 759 73 42, E-mail: rscu_kms@mil.ru.

8. Regional Association of the Aborigines of the North of the Khabarovsk Krai. Association embraces the representatives of all aboriginal communities. Members: Even, Even, Nigilal, Tichy, Udoroch, Udege, Nyikan. Tel.: (4231) 3-30-64, e-mail: uchiri@inbox.ru.

9. Association of the indigenous peoples of the North of the Amur Oblast. Association embraces the representatives of all aboriginal communities. Members: Even, Even, Nigilal, Tichy, Udoroch, Udege, Nyikan. Tel.: (4231) 3-30-64, e-mail: uchiri@inbox.ru.

10. Regional Association of the Aborigines of the North of the Khabarovsk Krai. Association embraces the representatives of all aboriginal communities. Members: Even, Even, Nigilal, Tichy, Udoroch, Udege, Nyikan. Tel.: (4231) 3-30-64, e-mail: uchiri@inbox.ru.

11. Association of the indigenous peoples of the North of the Primorye District of the Primorsky Krai. Association embraces the representatives of all aboriginal communities. Members: Udege, Even, Nyagan, Tsy, Odjke, Olenek, Olegush. Tel.: (4232) 4-41-00-88, e-mail: milcenter@yandex.ru, psu.psylogyzda@mail.ru. www.udege.org.

12. Association of the indigenous peoples of the North of the Khabarovsk Krai. Association embraces the representatives of all aboriginal communities. Members: Even, Even, Nigilal, Tichy, Udoroch, Udege, Nyikan. Tel.: (4231) 3-30-64, e-mail: uchiri@inbox.ru.

Appendix 4. Knowledge system concepts, terminology and their Application

ANKN - The Alaska Native Knowledge Network is designed to serve as a resource for compiling and exchanging information related to Alaska Native knowledge systems and ways of knowing. It has been established to assist Native people, government agencies, educators and the general public in gaining access to the knowledge base that Alaska Natives have acquired through cumulative experience over millennia. http://www.ankn.uaf.edu/index.html

Terminology/basic concepts

Local environmental knowledge. (Source: The Resilience and Adaptive Management Group, University of Alaska Anchorage)

Traditional ecological knowledge (TEK) has often been used in the anthropological field about indigenous peoples’ knowledge, that refers to a holistic world view together with the practice and knowledge generated through generations. The term ‘local knowledge’ is used typically as a generic term for knowledge that is generated through local observations about the local environment held by a specific group of people (e.g. Berkes & Folke, 2002). The more specific term local environmental knowledge (LEK) or local ecological knowledge is distinguished from the more widely interpreted term local knowledge. In this research, we refer to LEK. LEK incorporates the depth of the community knowledge, and as Berkes & Folke (2002, p. 143) write, “publications, data records, and computer databases are often not adequate to serve the institutional memory”. C. R. Menzies writes that “All traditional knowledge is local, but not all local knowledge is traditional” (2006, p. 108). What is common for both LEK and TEK is that they are both detailed situated knowledge that can be both collective and individual. Local (ecological) knowledge usually has less temporal depth than indigenous knowledge according to Berkes & Folke (2002) and environmental knowledge is created by people from observations and understandings. Studies have shown that LEK not only exists in indigenous communities, but also in non-indigenous, resource-dependent communities, such as farming and fishing communities, as well as among observable individuals, whether from rural or urban backgrounds, and whether original inhabitants or migrants (e.g. Schulman, 2007). So LEK can be non-indigenous and non-traditional knowledge about the environment among observable individuals and the community. Local knowledge itself can be determined in many ways and Antweiler (1998) has compiled these into a comprehensive list which is summarized below:

Regional Governments in the Russian Arctic:

• Karelia, Republic: www.gov.karelia.ru Email: government@karelia.ru
• Yamalo-Nenets Autonomous Okrug: www.adm.yanao.ru
• Krasnoyarsk Krai: www.krskstat.ru
• Sakha (Yakutia), Republic: www.sakha.gov.ru
• Chukotka Autonomous Okrug: www.chukotka.org
• Kamchatksky Krai: www.kamchatka.gov.ru. E-mail: cancel@kamchatka.ru
List of local knowledge, its branches and their various connotations. (After Antweiler, 1998, p. 5.)

<table>
<thead>
<tr>
<th>Term, synonyms</th>
<th>Meaning, salient aspect, implicit significance, antonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indigenous knowledge</td>
<td>Culturally integrated knowledge; knowledge of small, marginal/non-western groups</td>
</tr>
<tr>
<td>Local knowledge</td>
<td>Knowledge rooted in local or regional culture and ecology</td>
</tr>
<tr>
<td>Traditional knowledge</td>
<td>Handed down, old, oral</td>
</tr>
<tr>
<td>People’s knowledge</td>
<td>Broadly disseminated knowledge, knowledge as potential for political resistance, as opposed to elite knowledge</td>
</tr>
<tr>
<td>Community knowledge</td>
<td>Related to small social units</td>
</tr>
<tr>
<td>Everyday knowledge, practical knowledge</td>
<td>Informal, practical, as opposed to academic, specialist, expert knowledge or as opposed to ritual knowledge</td>
</tr>
<tr>
<td>Experiential knowledge</td>
<td>As opposed to theoretical knowledge, speculation</td>
</tr>
<tr>
<td>Experimental knowledge</td>
<td>Trial-and-error, as opposed to controlled experiment</td>
</tr>
</tbody>
</table>

Diversity of local knowledge, its branches and their various connotations. (After Antweiler, 1998, p. 5.)

List of Acronyms

<table>
<thead>
<tr>
<th>Term, synonyms</th>
<th>Meaning, salient aspect, implicit significance, antonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic Borderlands Ecological Knowledge Co-op</td>
<td>GIS Geographic Information System</td>
</tr>
<tr>
<td>Arctic Climate Impact Assessment</td>
<td>GEF Global Environment Facility</td>
</tr>
<tr>
<td>Assembly of First Nations (Canada)</td>
<td>GPS Global Positioning System</td>
</tr>
<tr>
<td>Alaska Native Claims Settlement Act</td>
<td>ICSU International Council for Science</td>
</tr>
<tr>
<td>Arctic Observing Network</td>
<td>IEM Integrated Ecosystem Management</td>
</tr>
<tr>
<td>Bureau of Indian Affairs (USA)</td>
<td>IK Indigenous Knowledge</td>
</tr>
<tr>
<td>Bureau of Land Management</td>
<td>INAC Indian and Northern Affairs Canada</td>
</tr>
<tr>
<td>Bering Sea Sub-Network</td>
<td>IPY International Polar Year</td>
</tr>
<tr>
<td>Conservation of the Arctic Flora and Fauna</td>
<td>ITK Indigenous and Traditional Knowledge</td>
</tr>
<tr>
<td>Community Based Monitoring</td>
<td>Inuit Tapiriit Kanatami (Canada)</td>
</tr>
<tr>
<td>Circumpolar Biodiversity Monitoring Programme</td>
<td>LTK Local and Traditional Knowledge</td>
</tr>
<tr>
<td>Community Ecological Monitoring</td>
<td>MFA Ministry of Foreign Affairs (Finland)</td>
</tr>
<tr>
<td>Community Moose Monitoring Project</td>
<td>NGO Non Governmental Organization</td>
</tr>
<tr>
<td>Northern Territory's Department of Natural Resources, Environment and the Arts (Australia)</td>
<td>NPS National Parks Service (USA)</td>
</tr>
<tr>
<td>Department of the Interior (USA)</td>
<td>NSF National Science Foundation</td>
</tr>
<tr>
<td>Integrated Ecosystem Approach to Conserve Biodiversity and Minimize Habitat Fragmentation in the Russian Arctic (acronym derived from the Russian name of the project)</td>
<td>RAIPON Russian Association of Indigenous Peoples of the North, Far East and Siberia</td>
</tr>
<tr>
<td>Environmental Protection Agency (USA)</td>
<td>RF Russian Federation</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife Service</td>
<td>TEK Traditional Ecological Knowledge</td>
</tr>
<tr>
<td>RF Russian Federation</td>
<td>TKW Traditional Knowledge and Wisdom</td>
</tr>
<tr>
<td>TEK Traditional Ecological Knowledge</td>
<td>UNEP United Nations Environmental Programme</td>
</tr>
<tr>
<td>Traditional Knowledge and Wisdom</td>
<td>USAID United States Agency for International Development</td>
</tr>
<tr>
<td>United Nations Environmental</td>
<td>WMO World Meteorological Organization</td>
</tr>
<tr>
<td>Programme</td>
<td>WWF World Wildlife Fund</td>
</tr>
</tbody>
</table>

For further information and additional copies contact:

CAFF INTERNATIONAL SECRETARIAT
Borgir
Nordurslod
600 Akureyri
ICELAND

Telephone: +354 462 3350
Fax: +354 462 3390
E-mail: caff@caff.is
Internet: http://www.caff.is

ISBN NUMBER: 978-9979-9778-4-1