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On stationary and cycle-stationary sequences

Hermann Thorisson

Abstract. Consider random sequences in two-sided time split into cycles by the visits
to arecurrent set of states A. The two Palm dualities between stationary sequences Z
and sequences with stationary cycles Z° are constructed using the change-of-measure
and change-of-origin method. The first duality has the standard interpretation that Z°
behaves like Z conditioned on Zp € A. The second duality has the less known but no
less important interpretation that Z° behaveslike Z seen from atypical visit to A.
Keywords: Palm theory, stationarity, shift-coupling.
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1 Introduction

Toss a coin at each integer time n to obtain a doubly infinite sequence of i.i.d.
coin tosses. Note that if we observe these coin tosses from the heads, then
the sequence splits into independent cycles, each cycle starting at a head and
continuing with tails until the next cycle starts with ahead. These cyclesare al
of geometric length, except the cycle starting at the last head strictly before time
zero and ending just before the first head at or after time zero. This particular
cycle has a length which is the sum of two independent geometrics minus 1.
This is the so-called “inspection (or waiting-time) paradox”. Thus one of the
cycles differs in distribution from the others, that is, the heads do not split the
coin tossesintoi.i.d. cycles.

Now suppose we observe that thereis ahead at time zero. Then conditionally
on this observed fact, the coin tosses are no longer i.i.d. (unless we remove the
head at the origin). On the other hand, the heads now split the coin tosses into
i.i.d. cycles(of geometric length). Hence, conditioning on a head at the origin
turns an i.i.d. sequence into a sequence with i.i.d. cycles.
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448 HERMANN THORISSON

In this paper we consider a general stationary sequence Z = (Z; )<z rather
than ani.i.d. heads-and-tails sequence. The counterpart of “heads’ arethetime-
points when the sequenceisin aparticular recurrent set of states A. Thesetime-
pointswe call simply “points” and denote the nth point by S,, with the convention
that S_; < 0 < Sy. The points split the process into a two-sided sequence of
cycles. The conditioning on a point at time zero (that is, on Zp € A) turnsasta
tionary sequence Z into asequence Z° = (Z7)rez With stationary cycles, that is,
into acycle-stationary sequenc@/e shall present the distributional relationship
between these two types of sequences, stationary and cycle-stationary.

In fact, there is not only one but rather two important relationships between
stationary and cycle-stationary sequences. The first is the point-at-zeroduality
aready mentioned above, which saysthat the cycle-stationary sequence behaves
as the stationary one when there happens to be a point at time zero. The second
is the randomized-origirduality which says that the cycle-stationary sequence
behaves as the stationary one with origin shifted to a point picked uniformly at
random from all the points (this uniform picking should of course be understood
inalimit sense). Thetwo dualities coincide for instancein the ergodic case. An
intuitive explanation of the second duality can be found at the end of Section 3.

Thisisaparticular approach to the so-called Palm theory of stationary discrete-
time sequences. The continuous-time counterpart is presented in Chapter 8 of
Thorisson (2000); see the notes and references of that book for the historical
background. The discrete-time case is considerably simplified by the fact that
the conditioning on Sy = 0 is elementary and need not be motivated by a limit
theorem as in the continuous-time case (where the probability of So = 0 is
zero). On the other hand, the discrete-time case is slightly complicated by the
fact that So is only “conditionally uniform” and does not become “ uniform and
independent” when divided by Sy — S_; (asin the continuous-time case).

Theplan of the paper isasfollows. Section 2 presentsthe point-at-zero duality,
and Section 3 the randomized-origin duality, while Section 4 contains the main
equivalence theorem on which these dualities rely.

2 ThePoint-at-Zero Duality

The hard part of the proof of Theorems 1 and 2 below isthe equival ence between
(a) and (e) in Theorem 6 in the final section.

Theorem 1. (From Stationarity to Cycle-Stationarity). Let Z = (Zy)iez
be a random sequence with a general state spgdtef) and supported by a
probability space(2, F,P). Let A € E be such that the even{¥, € A}
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happen for infinitely many positive and infinitely many negative timesall
such times “points”. LetS = (Si)rez be the increasing two-sided sequence
of points with the convention th&t; < 0 < Sy. Think of the sequence as
splitting Z into cycles and put

X, =38, — S,_1 =nth cycle length .
In particular, Xo = So — S_1 is the length of the cycle straddliry Put
Z° = 05,2
Suppos¢ is stationary undepP, that is,
underP: 6,Z=p Z, ne Z,
where
nZ = (Zntikez -

Then conditionally orz° the distribution ofSg is uniform on{0, ..., Xq — 1}
and moreover, if we define a new probability measiren (22, F) by

dP° = 1/(XoE[1/X,]) dP (length-debiasingP)
then firstly:
E°[Xo] = 1/E[1/ Xo] < 00
and
P(So = k) = P°(Xo > k)/E°[Xol;

secondly: Z° is cycle-stationary undeP?, that is, withS, = S, — So we have
Z3 € Aand

underP®: 0s5.Z°=p Z°, neZ;
thirdly:
P(Z° € |So=k) =P°(Z° € |Xo > k), k=>0; (1)

and finally: conditionally on a point at zeroZ under P behaves asz°
underPe°, that is,

P(Ze:|Zoc A =P(Z°c ). 2
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Proof. The conditiona uniformity of S, under P and the cycle-stationarity
of Z° under P° follows from the equivalence of (a) and (€) in Theorem 6 below
and the definition of P°. Theclam E°[Xo] = 1/E[1/ X,] < oo isobvious from
the definition of P°. That P(Sp = k) = P°(Xg > k)/E°[X,] can be seen as
follows:

P(So=k) = E[P(So=k|Z°)]
= E[1xy>k/Xol (conditional uniformity of Sp)
= E°[Lxo-]/E°[X0] (definition of P°)

In order to prove (1), let f be a bounded measurable function from (E, ) to
(R, B). Since Sp isuniformon {0, ..., Xq — 1} conditionally on Z°, we have

El1is0=t}1Z°]1 = Lixo>4)/ Xo-
Thisyields the second step in

E[f(Z°)1(sp=iy] = EI[f(Z°)E[L5o=31Z°1]
ELf(Z°)1ix0>1)/ Xo] .

By the definition of P° thisyields
ELf(Z°)1(so=t)] = E°Lf (Z°)1(x0>1)]/E°[Xo] -

Divide by P(So = k) = P°(Xo > k)/E°[X(] to obtain (1). We get (2) from (1)
by takingk = 0,since Z° = Zon{Zy € A} = {So = 0}, and Lix,-qp = 1. O

Theorem 1 above associates to each stationary sequence a cycle-stationary se-
guencewith cyclelengths having finite mean. Thisisdone by alength-debiasing
change-of-measure and by shifting the origin to apoint. The next theorem turns
thisaround: it associates astationary sequenceto each cycle-stationary sequence
with cyclelengthshavingfinitemean. Thisisdoneby thereversedlength-biasing
change-of-measure and a uniform shift of the origin from the point at zero into
theinterval ending at time zero. Dueto (2), we call thisthe point-at-zero duality

Theorem 2. (From Cycle-Stationarity to Stationarity). Let Z° = (Z)kez

be a random sequence with a general state spgdtef) and supported by a
probability space&<2, F, P°). LetU be arandom variable uniformly distributed
on [0, 1) and independent af°. LetA € F be such thatZj € A and such
that the event$Z; € A} happen for infinitely many positive and infinitely many
negative times, call such times “points”. LetS® = (S;)«cz be the increasing
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two-sided sequence of points with the convention 8jat= 0. Think of the
sequence® as splittingZ° into cycles and put

X, =S, —S,_, =nthcyclelength.
In particular, Xo = —S°, is the length of the cycle ending at time zero. Put

Z = 0_xeZ°
the sequence seen from a location uniformly placed in a cycle

Suppose&° is cycle-stationary undde® andE°[Xo] < oo, and define a proba-
bility measureP on (L2, /F) by

dP = (Xo/E°[Xo])dP° (length-biasing??)
Then firstly:
E[1/Xo] = 1/E°[X0] > O
and withS = (Sy)«ez the points ofz,
P(So = k) = P°(Xo > k)/E°[Xol;
secondly:Z is stationary undeP; thirdly:
P(Z° € -|So=k) =P°(Z° € |Xo > k), k>0;

and finally: conditionally on a point at zer@, underP behaves ag° underP?,
that is,

P(Z e |Zoe A)=P°(Z° € ).

Proof. The first point of Z at or after time zero isat Sy = [U Xo] which is
uniformon {0, ..., Xo — 1} conditionally on Z°. This, the cycle-stationarity of
Z° under P°, theequivalenceof (a) and (e) in Theorem 6 bel ow, and thedefinition
of P yields the stationarity of Z under P. The clam E[1/Xo] = 1/E°[X¢] is
obvious from the definition of P. The remaining claimsfollow from Theorem 1,
since Z is stationary under P and since the definition of P in Theorem 2 is the
reversal of the definition of P° in Theorem 1. O

Bull Braz Math Soc, Vol. 33, N. 3, 2002



452 HERMANN THORISSON

3 TheRandomized-Origin Duality

We are now at the second duality between stationarity and cycle-stationarity. In
this case the hard part of the proof of Theorems 4 and 5 below is not only the
equivalence between (a) and (e) in Theorem 6 in the final section, but also the
following shift-coupling theorem, which we will not prove here.

Theorem 3. (Shift-Coupling). LetZ = (Zy)iez andZ’ = (Z})rez be two ran-
dom sequences with a general state spatef) and supported by a probability
space(R2, ’F, P). For eachintegen > 0, letU,, be uniform on{—n, ..., n} and
independent of andZ'. Let7 be the invariant sule=-algebra of £Z, that is,

1={Be¥*:6,B=BforalnelZ.

Let|| - || denote the total variation norm for bounded signed measures; in par-
ticular, if P and Q are two probability measures then

1P — Q| =2 sup |P(B) — Q(B)].

BeF?
Then the following claims are equivalent:
(@ P(ZeB)=P(Z €B), Bel.
(b) ||P(By,Z € ) —P@Oy,Z' € )|| >0, n— occ.

(c) The probability spacé&?, F, P) can be extended to support a finite random
timeT suchthat;Z =p Z'.

For proof, see Thorisson (2000), Section 7.4 in Chapter 7.

The randomized-origin duality is presented in the following two theorems. Al-
though thisduality isnot aselementary asthe other one, it hasarelatively simple
intuitive explanation which is given at the end of this section.

Theorem 4. (From Stationarity to Cycle-Stationarity). Assume the conditions
of Theorem 1, in particular suppogegis stationary undeP. LetU, be uniform
on{—n,...,n} and independent of. Let 7 be the invariantr-algebra ofZ
and zZ°, that is,

J={{ZeB}:Be1}={{Z°€ B} : B 1}
Define a new probability measuRe on (2, /F) by
dP° = 1/(XoE[1/ X0|7]) dP  (length-debiasind® conditionally onZ)
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ThenZze is cycle-stationary undde®,

E°[XolJ] = 1/E[1/X,|]] < o0,
P(Ze B)=P°(Z°e€ B), Be1l, (©)]

||P(95UnZe-)—P°(Z°e-)||—>0, n— oo, 4
and the probability spac&?, F, P) can be extended to support a finite random
integer M such that

P@#s,Z €-) =P (Z° ).
Proof. We obtain (3) asfollows: for B € 7,

P°(B) = E°[13] = E[1s/(XoE[1/Xol7])] (by the definition of P°)

= E[E[1z/(XoE[1/XolID|TI] (conditioning on 7)
= E[(1s/E[1/Xo|JDE[L/ X0l T]] (moving out functionsin 7)
= E[13] =P(B).

We next prove that for al nonnegative random variables Y it holds that
E°[Y]J] = E[Y/XolJ1/E[1/ XolJ]. ©)
To establish (5) take B € 7 to obtain

E°[1zY] = E[15Y/(XoE[1/X0lT])] (by the definition of P°)
= E[E[13Y/(X0E[1/X0lJ])IJ]]  (conditioning on 7)
= E[(1s/E[1/Xo|JDE[Y/XolJ11 (moving out functionsin 7)
E°[(15/E[1/ X0l JDELY/ XolJ1]  (dueto (3))

which is equivalent to (5). Due to the equivalence of (a) and (e) in Theorem 6
below, we havethat for all nonnegative measurablefunctions f and all integersi,

ELf(65,2)/ Xol = E[F(Z°)/ X0l

Take B € 7, notethat {05, Z € B} = {Z° € B}, and replace f(0s,Z) and f(Z°)
by f(@s,. Z)l{Z°€B} and f(Zo)l{ZoeB} to obtain

ELf(0s,2)/ XolJ1 = ELf(Z°)/ XolT1.
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Apply B)withY = f(6s,Z) andY = f(Z°) and divide by E[1/ X,| 7] to obtain
from this that
E°[f (65, 2)1T1 = E°[F(Z°)1]].

Take expectation to obtain that Z° is cycle-stationary under P°. The rest of the
theorem follows from Theorem 3 (noting that the shift-coupling time must be a
point). O

Theorem 4 above associates to each stationary sequence a cycle-stationary se-
guence with cycle lengths having finite conditional mean. This is done by a
conditional length-debiasingchange-of-measure and by shifting the origin to a
point. The next theorem turnsthisaround: it associates a stationary sequence to
each cycle-stationary sequencewith cyclelengthshaving finite conditional mean.
This is done by the reversed conditional |ength-biasingchange-of-measure and
a uniform shift of the origin from the point at zero into the interval ending at
time zero. Dueto (4) and (7), we call this the randomized origin duality.

Theorem 5. (From Cycle-Stationarity to Stationarity). Assume the conditions
of Theorem 2, in particular suppos€ is cycle-stationary undde°. LetU, be
uniformon{—n, ..., n} and independent &°. Let 7 be the invariant--algebra
of Z andZ°. Assume thaE°[X|J] < oo and define a new probability measure
Pon (R, F) by

dP = (Xo/E°[X0|T])dP° (length-biasingP°) .
ThenZ is stationary undeP,

P(ZeB)=P°(Z°e€B), Bel, (6)

IP(Z € ) =Py, 2° € )|l > 0, n— o0, (7)

and the probability spac&?, ‘F, P°) can be extended to support a finite random
time T such that
P(Ze)=POrZ2°€").

Proof. Duetothecycle-stationarity of Z° under P°, wehavefor all nonnegative
measurable functions f and all integersi,

E°Lf (65, 2)] = E°[f(Z°)].
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Take B € 1, note that {05, Z € B} = {Z° € B}, and replace f(0s,Z) and
f(Z°) by f(bs5,2)1zocpy and f(Z°)1zocp) to Obtain E°[ f (05, Z) L z0ep)] =
Eo[f(Zo)l{ZoeB}]. ThUS

E°Lf (65,2171 = E°[f(Z°)|]].

In the same way as we obtained (5) we get E[Y/ Xo|J] = E°[Y|J]/E°[X0|J].
Apply thiswithY = f(6s,Z) and Y = f(Z°) and take expectations to obtain

ELf(0s,2)/ Xol = E[f(Z°)/ Xol.

Thus (e) in Theorem 6 below holds, and the equivalence of (e) and (a) yields
the stationarity of Z under P. We obtain (6) in the same way as (3) and the rest
of the theorem follows from Theorem 3. O

Hereisanintuitiveexplanationto theabovetheorem. Consider acycle-stationary
sequence Z° and suppose we can pick an integer at random on the whole line.
Then firstly, the process seen from there should be stationary. Secondly, the
position of the integer in the interval where it lands should be uniform. Thirdly,
aparticular interval of length & will be picked with probability proportional to &
and, due to the ergodic theorem, conditionally on 7 the number of such intervals
is proportional to P°(Xy = k|7); thus some interval of length & is picked with
probability proportiona to kP°(Xo = k|J) which is exactly the result of the
length-biasing change of measurein Theorem 5.

4 Key Equivalence Theorem

The following theorem was the key to the above dualities.

Theorem 6. Let Z = (Z;)rez be a random sequence with a general state space
(E, E) and supported by a probability space, F,P). LetA € F be such
that the event$Z, € A} happen for infinitely many positive and infinitely many
negative timeg, call such times “points”. LetS = (S)xz be the increasing
two-sided sequence of points with the convention that < 0 < Sp. Put

Z° = 0s,Z. For nonegative integers, put Ny = inf{n > 0: S, > k}. Then the
following statements are equivalent:

(a) Z is stationary undeP.

(b) For all nonnegative measurable functiofissnd nonnegative integers

ELY . Lsosksy, 1 f @ Z)/ Xn,] = n ELf(Z)/ Xo]. G)

k
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(c) For all nonnegative measurable functiofisand all nonnegative integers
n andm,

EL Y f65,2)Lix,2m)/ Xil = nE[Lisomm f(Z°)/Xo]. (9

1<i<N,

(d) For all nonnegative measurable functiofissnd nonnegative integers

El Y f(052)]=nE[f(Z°)/X0]. (10)
1<i<N,
and conditionally onz° the variableSy is uniform on{0, ..., Xq — 1},

that is,
ElYiso=m) S (Z°)] = E[L{x>m) [ (£°)/ Xol, m = 0.
(e) For all nonnegative measurable functiofi@nd integers
ELf(0s,2)/ X0l = E[f(Z°)/ X0l (11)
and conditionally orZ° the variableSy is uniform on{0, ..., Xq — 1}.

We prove this theorem circularly.

Proof that (a) implies(b). Assumethat (a) holds. First suppose f isbounded,
say f <a.Since N, =0for0 < k < Spandsince S, < Xg we have

> Liockzso) [ 0:Z2)/ Xn,] < aSo/Xo < a.
k

Thus the expectation of the left-hand side is finite which allows us to split the
expectation in the final step in the following calculation

nE[f(Z)/Xol = Y E[f(6:Z)/Xy]  (by stationarity)

1<k<n

= E[ Y f6:2)/Xn,]
1<k=<n
= E[Z Lio<k<so) f (O Z)/ X n,]
k
+ElLsoen) Y Lisomkzn £ OcZ)/ X ;]
k

—ElLsozn Y Lnkzso) S O 2)/ Xn,]
k
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Applying stationarity to the first term on theright yields thefirst stepin

L) Lo<k=so) S 6 2)/ X n,]
k
= E[)_ Lpekzsy, /0 2)/ Xn,]
k
= ElLsoen Y _ Lnakzsy,) L OcZ)/ X ;]
k

+ElLsozn) Y Lincksy 1 f OcZ)/ X ;]
k

Combining these two calculations yields

nE[f(Z)/Xol = Ellispem) Y Lnkzsy, 1 fOZ)/ Xy,
k

+ ElL{so2n) Z Lockzsy 1 f(OZ) ] XN,
k

+ E[l{So<n} Z 1{So<k§n}f(9kz)/XNk]
k

—E[Lisozn) Y Lnek=sor S O Z)/ X -
k

If So > n then Sy = Sy, and thus the second and fourth term on the right are
identical but have different signs and thus cancel. Adding the two remaining
terms on theright yields

nELf(Z)/ Xol = ElLispan) Y, Lisockzsy,)f 0cZ)/ Xn,]. (12)
k

Since Sp > n implies So = Sy, we have

El1iso=n) Z Liso<k<sn,) f (O Z)/ Xn,] = 0.
k

Addthisto (12) to obtain (8) for f bounded. In order to remove the boundedness
restriction replace f by f A a in (8) and apply monotone convergence once on
the left hand side and twice on the right hand side to obtain that (a) implies (b).

Proof that (b) implies(c). Assumethat (b) holds. Since
Ly, —k=m) f Osy, Z) [which equals 15, f (Z°) when k = Q]
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isthe same mapping of 6, Z for al k, we obtain from () thefirst equality in

nE[Lis5=m) f(Z°)/ Xo]
= E[Z Liso<k=sw 1 Lisn, —k=my [ Osy, 2)/ X n;]
K

= E[ Z Z1{Si,1<k§S,~}1{S,~fk=m}f(esiZ)/Xi]

1<i<N, k

= E[ Z Z1{0<kgx,»}1{X,-—k:m}f(9s,~Z)/Xi]

1<i<N, k

= E[ Y f0s2)Lx-m/Xil.

1<i<N,

Thus (¢) holds.

Proof that (c) implies (d). Assume that (¢) holds. Summing over m in (9)
yields (10) since

Z Lixomy=X;  and Z Liso=my = 1.

m=>0 m=>0
In order to establish the conditional uniformity of Sp, note that if we replace
f(6s.Z)in(9) by f(0s,2)X; [ and f(Z°) by f(Z°)Xo] then we obtain

El Y f052)Lix,2m] = nE[Lsomm f(Z°)]

1<i<N,
while if we replace f(65,Z) in (10) by f(0s,Z)lix,-my and f(Z°) by
f(Z°) 1ixy>m) then we obtain
E[ Y f652)Lix,m] = nE[Lixoem f(Z°)/ Xol -
1<i<N,

Since the left-hand sides of the last two identities are identical, so are the right-
hand sidesand we obtainthefollowing: for all nonnegative measurablefunctions
f and al integersm > 0it holds that

ElLiso=m} f(Z°)] = E[Lixg>m) F(Z°)/ Xo] .

Thisisthe definition of the claim that conditionally on Z° the distribution of Sy
isuniformon {0, ..., Xg — 1}.
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Proof that (d) implies (). We obtain (e¢) from (d) if we can show that (10)
implies (11). For that purpose assume that (10) holds for all nonnegative mea-
surable f and al nonnegative integersn. Let j be an arbitrary integer and apply
(10) with f (65, Z) replaced by f(0s,,;Z) [and thus f(Z) replaced by f (65, Z)]
to obtain thefirst equality in

nE[f(0s,Z2)/Xol =E[ Y f(6s,,2)]

1<i<N,
= E[ Y fOsDI—ELY  fOs, ,DI+El > fO52)].
1<i<N, 1<i<j Np+1<i<Ny+j

Let f bebounded, say f < a, divide by n and apply (10) to the first term on the
right to obtain

i+j

|ELf (6s,Z2)/ Xol — ELf(Z°)/ Xol| < aljl/n.

Send n to infinity to obtain (11) for f bounded. Apply monotone convergence
to remove the boundedness of f.

Proof that (e) implies(a). Assume that (€) holds. Then the conditional uni-
formity of Sy yields the second step in

ELf (0:2)] = ELf (6s-52°)]
= E[Y_ L xoeken [ (6 Z°)/ Xol (13)
k

= Y ED)_ Lpu-xoekemLise, ,<kese) £ (0:Z°)/ Xo) .
i k

Apply (11) with f(Z°) replaced by
Y- xo<k<mlise,  <k<se ) f (6 Z°)
and f (0s,Z) by Ly x; <k<n) Li—so-xo<k<—s7) f (605, Z) to obtain
ElLp—xo<k=mLise,  <k<so ) S (06 Z°)/ Xol
= Ellp—x, <kemli—so—xo<k=—s2} S (Oks,Z) / Xol .
Sum over k, move the sum inside the expectation, and make the variable substi-
tution m = k + S? in the sum on the right-hand side to obtain

E[Z Y- xo<k<nyLise,  <k<so ) f(6Z°)/ Xo]
%

= E[Z 1{n+S}’71<m§n+Sl.°}1{—X0<m§0}f(0mzo)/XO] .
m
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Sum over i and apply (13) to obtain

ELf0n2)] =Y ELY  Linis semzntsiLi-xoem=0,f 6 Z°)/ Xol.
i m
Since Zi 1{n+Slf’71<m§n+Si°} = 1 weobtan

ELf6.2)] = EDY_ L xoem=0)f OnZ°)/ Xol.

m

ThusE[ f(6,Z)] does not depend on n. Thus Z is stationary, that is, (e) implies
(a) and the proof of Theorem 6 is complete. O
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