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On stationary and cycle-stationary sequences

Hermann Thorisson

Abstract. Consider random sequences in two-sided time split into cycles by the visits
to a recurrent set of states A. The two Palm dualities between stationary sequences Z

and sequences with stationary cycles Z◦ are constructed using the change-of-measure
and change-of-origin method. The first duality has the standard interpretation that Z◦
behaves like Z conditioned on Z0 ∈ A. The second duality has the less known but no
less important interpretation that Z◦ behaves like Z seen from a typical visit to A.
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1 Introduction

Toss a coin at each integer time n to obtain a doubly infinite sequence of i.i.d.
coin tosses. Note that if we observe these coin tosses from the heads, then
the sequence splits into independent cycles, each cycle starting at a head and
continuing with tails until the next cycle starts with a head. These cycles are all
of geometric length, except the cycle starting at the last head strictly before time
zero and ending just before the first head at or after time zero. This particular
cycle has a length which is the sum of two independent geometrics minus 1.
This is the so-called “inspection (or waiting-time) paradox”. Thus one of the
cycles differs in distribution from the others, that is, the heads do not split the
coin tosses into i.i.d. cycles.

Now suppose we observe that there is a head at time zero. Then conditionally
on this observed fact, the coin tosses are no longer i.i.d. (unless we remove the
head at the origin). On the other hand, the heads now split the coin tosses into
i.i.d. cycles(of geometric length). Hence, conditioning on a head at the origin
turns an i.i.d. sequence into a sequence with i.i.d. cycles.
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448 HERMANN THORISSON

In this paper we consider a general stationary sequence Z = (Zk)k∈Z rather
than an i.i.d. heads-and-tails sequence. The counterpart of “heads” are the time-
points when the sequence is in a particular recurrent set of states A. These time-
points we call simply “points” and denote the nth point by Sn with the convention
that S−1 < 0 ≤ S0. The points split the process into a two-sided sequence of
cycles. The conditioning on a point at time zero (that is, on Z0 ∈ A) turns a sta-
tionary sequence Z into a sequence Z◦ = (Z◦

k )k∈Z with stationary cycles, that is,
into a cycle-stationary sequence. We shall present the distributional relationship
between these two types of sequences, stationary and cycle-stationary.

In fact, there is not only one but rather two important relationships between
stationary and cycle-stationary sequences. The first is the point-at-zeroduality
already mentioned above, which says that the cycle-stationary sequence behaves
as the stationary one when there happens to be a point at time zero. The second
is the randomized-originduality which says that the cycle-stationary sequence
behaves as the stationary one with origin shifted to a point picked uniformly at
random from all the points (this uniform picking should of course be understood
in a limit sense). The two dualities coincide for instance in the ergodic case. An
intuitive explanation of the second duality can be found at the end of Section 3.

This is a particular approach to the so-called Palm theory of stationary discrete-
time sequences. The continuous-time counterpart is presented in Chapter 8 of
Thorisson (2000); see the notes and references of that book for the historical
background. The discrete-time case is considerably simplified by the fact that
the conditioning on S0 = 0 is elementary and need not be motivated by a limit
theorem as in the continuous-time case (where the probability of S0 = 0 is
zero). On the other hand, the discrete-time case is slightly complicated by the
fact that S0 is only “conditionally uniform” and does not become “uniform and
independent” when divided by S0 − S−1 (as in the continuous-time case).

The plan of the paper is as follows. Section 2 presents the point-at-zero duality,
and Section 3 the randomized-origin duality, while Section 4 contains the main
equivalence theorem on which these dualities rely.

2 The Point-at-Zero Duality

The hard part of the proof of Theorems 1 and 2 below is the equivalence between
(a) and (e) in Theorem 6 in the final section.

Theorem 1. (From Stationarity to Cycle-Stationarity). Let Z = (Zk)k∈Z

be a random sequence with a general state space(E,E) and supported by a
probability space(�,F, P). Let A ∈ E be such that the events{Zn ∈ A}
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happen for infinitely many positive and infinitely many negative timesn, call
such times “points”. LetS = (Sk)k∈Z be the increasing two-sided sequence
of points with the convention thatS−1 < 0 ≤ S0. Think of the sequenceS as
splittingZ into cycles and put

Xn = Sn − Sn−1 = nth cycle length .

In particular, X0 = S0 − S−1 is the length of the cycle straddling0. Put

Z◦ = θS0Z

SupposeZ is stationary underP, that is,

underP : θnZ =D Z, n ∈ Z ,

where

θnZ = (Zn+k)k∈Z .

Then conditionally onZ◦ the distribution ofS0 is uniform on{0, . . . , X0 − 1}
and moreover, if we define a new probability measureP◦ on (�,F) by

dP◦ = 1/(X0E[1/X0]) dP (length-debiasingP)

then firstly:

E◦[X0] = 1/E[1/X0] < ∞
and

P(S0 = k) = P◦(X0 > k)/E◦[X0] ;
secondly:Z◦ is cycle-stationary underP◦, that is, withS◦

n = Sn − S0 we have
Z◦

0 ∈ A and

underP◦ : θS◦
n
Z◦ =D Z◦, n ∈ Z ;

thirdly:

P(Z◦ ∈ ·|S0 = k) = P◦(Z◦ ∈ ·|X0 > k), k ≥ 0 ; (1)

and finally: conditionally on a point at zero,Z under P behaves asZ◦
underP◦, that is,

P(Z ∈ ·|Z0 ∈ A) = P◦(Z◦ ∈ ·) . (2)
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Proof. The conditional uniformity of S0 under P and the cycle-stationarity
of Z◦ under P◦ follows from the equivalence of (a) and (e) in Theorem 6 below
and the definition of P◦. The claim E◦[X0] = 1/E[1/X0] < ∞ is obvious from
the definition of P◦. That P(S0 = k) = P◦(X0 > k)/E◦[X0] can be seen as
follows:

P(S0 = k) = E[P(S0 = k|Z◦)]
= E[1{X0>k}/X0] (conditional uniformity of S0)

= E◦[1{X0>k}]/E◦[X0] (definition of P◦)

In order to prove (1), let f be a bounded measurable function from (E,E) to
(R,B). Since S0 is uniform on {0, . . . , X0 − 1} conditionally on Z◦, we have

E[1{S0=k}|Z◦] = 1{X0>k}/X0 .

This yields the second step in

E[f (Z◦)1{S0=k}] = E[f (Z◦)E[1{S0=k}|Z◦]]
= E[f (Z◦)1{X0>k}/X0] .

By the definition of P◦ this yields

E[f (Z◦)1{S0=k}] = E◦[f (Z◦)1{X0>k}]/E◦[X0] .

Divide by P(S0 = k) = P◦(X0 > k)/E◦[X0] to obtain (1). We get (2) from (1)
by taking k = 0, since Z◦ = Z on {Z0 ∈ A} = {S0 = 0}, and 1{X0>0} = 1. �

Theorem 1 above associates to each stationary sequence a cycle-stationary se-
quence with cycle lengths having finite mean. This is done by a length-debiasing
change-of-measure and by shifting the origin to a point. The next theorem turns
this around: it associates a stationary sequence to each cycle-stationary sequence
with cycle lengths having finite mean. This is done by the reversed length-biasing
change-of-measure and a uniform shift of the origin from the point at zero into
the interval ending at time zero. Due to (2), we call this the point-at-zero duality.

Theorem 2. (From Cycle-Stationarity to Stationarity). Let Z◦ = (Z◦
k )k∈Z

be a random sequence with a general state space(E,E) and supported by a
probability space(�,F, P◦). LetU be a random variable uniformly distributed
on [0, 1) and independent ofZ◦. Let A ∈ E be such thatZ◦

0 ∈ A and such
that the events{Z◦

n ∈ A} happen for infinitely many positive and infinitely many
negative timesn, call such times “points”. LetS◦ = (S◦

k )k∈Z be the increasing
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two-sided sequence of points with the convention thatS◦
0 = 0. Think of the

sequenceS◦ as splittingZ◦ into cycles and put

Xn = S◦
n − S◦

n−1 = nth cycle length .

In particular, X0 = −S◦
−1 is the length of the cycle ending at time zero. Put

Z = θ−[UX0]Z
◦

= the sequence seen from a location uniformly placed in a cycle.

SupposeZ◦ is cycle-stationary underP◦ andE◦[X0] < ∞, and define a proba-
bility measureP on (�,F) by

dP = (X0/E◦[X0])dP◦ (length-biasingP◦)

Then firstly:

E[1/X0] = 1/E◦[X0] > 0

and withS = (Sk)k∈Z the points ofZ,

P(S0 = k) = P◦(X0 > k)/E◦[X0] ;
secondly:Z is stationary underP; thirdly:

P(Z◦ ∈ ·|S0 = k) = P◦(Z◦ ∈ ·|X0 > k), k ≥ 0 ;
and finally: conditionally on a point at zero,Z underP behaves asZ◦ underP◦,
that is,

P(Z ∈ ·|Z0 ∈ A) = P◦(Z◦ ∈ ·) .

Proof. The first point of Z at or after time zero is at S0 = [UX0] which is
uniform on {0, . . . , X0 − 1} conditionally on Z◦. This, the cycle-stationarity of
Z◦ under P◦, the equivalence of (a) and (e) in Theorem 6 below, and the definition
of P yields the stationarity of Z under P. The claim E[1/X0] = 1/E◦[X0] is
obvious from the definition of P. The remaining claims follow from Theorem 1,
since Z is stationary under P and since the definition of P in Theorem 2 is the
reversal of the definition of P◦ in Theorem 1. �
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3 The Randomized-Origin Duality

We are now at the second duality between stationarity and cycle-stationarity. In
this case the hard part of the proof of Theorems 4 and 5 below is not only the
equivalence between (a) and (e) in Theorem 6 in the final section, but also the
following shift-coupling theorem, which we will not prove here.

Theorem 3. (Shift-Coupling). LetZ = (Zk)k∈Z andZ′ = (Z′
k)k∈Z be two ran-

dom sequences with a general state space(E,E) and supported by a probability
space(�,F, P). For each integern > 0, letUn be uniform on{−n, . . . , n} and
independent ofZ andZ′. LetI be the invariant sub-σ -algebra ofEZ, that is,

I = {B ∈ EZ : θnB = B for all n ∈ Z} .

Let || · || denote the total variation norm for bounded signed measures; in par-
ticular, if P andQ are two probability measures then

||P − Q|| = 2 sup
B∈EZ

|P(B) − Q(B)| .

Then the following claims are equivalent:

(a) P(Z ∈ B) = P(Z′ ∈ B), B ∈ I .

(b) ||P(θUn
Z ∈ ·) − P(θUn

Z′ ∈ ·)|| → 0, n → ∞ .

(c) The probability space(�,F, P)can be extended to support a finite random
timeT such thatθT Z =D Z′.

For proof, see Thorisson (2000), Section 7.4 in Chapter 7.

The randomized-origin duality is presented in the following two theorems. Al-
though this duality is not as elementary as the other one, it has a relatively simple
intuitive explanation which is given at the end of this section.

Theorem 4. (From Stationarity to Cycle-Stationarity). Assume the conditions
of Theorem 1, in particular supposeZ is stationary underP. LetUn be uniform
on {−n, . . . , n} and independent ofZ. Let J be the invariantσ -algebra ofZ
andZ◦, that is,

J = {{Z ∈ B} : B ∈ I} = {{Z◦ ∈ B} : B ∈ I}
Define a new probability measureP◦ on (�,F) by

dP◦ = 1/(X0E[1/X0|J]) dP (length-debiasingP conditionally onJ)
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ThenZ◦ is cycle-stationary underP◦,

E◦[X0|J] = 1/E[1/X0|J] < ∞ ,

P(Z ∈ B) = P◦(Z◦ ∈ B), B ∈ I , (3)

||P(θSUn
Z ∈ ·) − P◦(Z◦ ∈ ·)|| → 0, n → ∞ , (4)

and the probability space(�,F, P) can be extended to support a finite random
integerM such that

P(θSM
Z ∈ ·) = P◦(Z◦ ∈ ·) .

Proof. We obtain (3) as follows: for B ∈ J,

P◦(B) = E◦[1B] = E[1B/(X0E[1/X0|J])] (by the definition of P◦)

= E[E[1B/(X0E[1/X0|J])|J]] (conditioning on J)

= E[(1B/E[1/X0|J])E[1/X0|J]] (moving out functions in J)

= E[1B] = P(B) .

We next prove that for all nonnegative random variables Y it holds that

E◦[Y |J] = E[Y/X0|J]/E[1/X0|J] . (5)

To establish (5) take B ∈ J to obtain

E◦[1BY ] = E[1BY/(X0E[1/X0|J])] (by the definition of P◦)
= E[E[1BY/(X0E[1/X0|J])|J]] (conditioning on J)

= E[(1B/E[1/X0|J])E[Y/X0|J]] (moving out functions in J)

= E◦[(1B/E[1/X0|J])E[Y/X0|J]] (due to (3))

which is equivalent to (5). Due to the equivalence of (a) and (e) in Theorem 6
below, we have that for all nonnegative measurable functions f and all integers i,

E[f (θSi
Z)/X0] = E[f (Z◦)/X0] .

Take B ∈ I , note that {θSi
Z ∈ B} = {Z◦ ∈ B}, and replace f (θSi

Z) and f (Z◦)
by f (θSi

Z)1{Z◦∈B} and f (Z◦)1{Z◦∈B} to obtain

E[f (θSi
Z)/X0|J] = E[f (Z◦)/X0|J] .
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Apply (5) with Y = f (θSi
Z) and Y = f (Z◦) and divide by E[1/X0|J] to obtain

from this that
E◦[f (θSi

Z)|J] = E◦[f (Z◦)|J] .

Take expectation to obtain that Z◦ is cycle-stationary under P◦. The rest of the
theorem follows from Theorem 3 (noting that the shift-coupling time must be a
point). �

Theorem 4 above associates to each stationary sequence a cycle-stationary se-
quence with cycle lengths having finite conditional mean. This is done by a
conditional length-debiasingchange-of-measure and by shifting the origin to a
point. The next theorem turns this around: it associates a stationary sequence to
each cycle-stationary sequence with cycle lengths having finite conditional mean.
This is done by the reversed conditional length-biasingchange-of-measure and
a uniform shift of the origin from the point at zero into the interval ending at
time zero. Due to (4) and (7), we call this the randomized origin duality.

Theorem 5. (From Cycle-Stationarity to Stationarity). Assume the conditions
of Theorem 2, in particular supposeZ◦ is cycle-stationary underP◦. LetUn be
uniform on{−n, . . . , n} and independent ofZ◦. LetJ be the invariantσ -algebra
of Z andZ◦. Assume thatE◦[X0|J] < ∞ and define a new probability measure
P on (�,F) by

dP = (X0/E◦[X0|J])dP◦ (length-biasingP◦) .

ThenZ is stationary underP,

P(Z ∈ B) = P◦(Z◦ ∈ B), B ∈ I , (6)

||P(Z ∈ ·) − P◦(θUn
Z◦ ∈ ·)|| → 0, n → ∞ , (7)

and the probability space(�,F, P◦) can be extended to support a finite random
timeT such that

P(Z ∈ ·) = P◦(θT Z◦ ∈ ·) .

Proof. Due to the cycle-stationarity of Z◦ under P◦, we have for all nonnegative
measurable functions f and all integers i,

E◦[f (θSi
Z)] = E◦[f (Z◦)] .
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Take B ∈ I , note that {θSi
Z ∈ B} = {Z◦ ∈ B}, and replace f (θSi

Z) and
f (Z◦) by f (θSi

Z)1{Z◦∈B} and f (Z◦)1{Z◦∈B} to obtain E◦[f (θSi
Z)1{Z◦∈B}] =

E◦[f (Z◦)1{Z◦∈B}]. Thus

E◦[f (θSi
Z)|J] = E◦[f (Z◦)|J] .

In the same way as we obtained (5) we get E[Y/X0|J] = E◦[Y |J]/E◦[X0|J].
Apply this with Y = f (θSi

Z) and Y = f (Z◦) and take expectations to obtain

E[f (θSi
Z)/X0] = E[f (Z◦)/X0] .

Thus (e) in Theorem 6 below holds, and the equivalence of (e) and (a) yields
the stationarity of Z under P. We obtain (6) in the same way as (3) and the rest
of the theorem follows from Theorem 3. �

Here is an intuitive explanation to the above theorem. Consider a cycle-stationary
sequence Z◦ and suppose we can pick an integer at random on the whole line.
Then firstly, the process seen from there should be stationary. Secondly, the
position of the integer in the interval where it lands should be uniform. Thirdly,
a particular interval of length k will be picked with probability proportional to k

and, due to the ergodic theorem, conditionally on J the number of such intervals
is proportional to P◦(X0 = k|J); thus some interval of length k is picked with
probability proportional to kP◦(X0 = k|J) which is exactly the result of the
length-biasing change of measure in Theorem 5.

4 Key Equivalence Theorem

The following theorem was the key to the above dualities.

Theorem 6. LetZ = (Zk)k∈Z be a random sequence with a general state space
(E,E) and supported by a probability space(�,F, P). Let A ∈ E be such
that the events{Zn ∈ A} happen for infinitely many positive and infinitely many
negative timesn, call such times “points”. LetS = (Sk)k∈Z be the increasing
two-sided sequence of points with the convention thatS−1 < 0 ≤ S0. Put
Z◦ = θS0Z. For nonegative integersk, putNk = inf{n ≥ 0 : Sn ≥ k}. Then the
following statements are equivalent:

(a) Z is stationary underP.

(b) For all nonnegative measurable functionsf and nonnegative integersn,

E[
∑

k

1{S0<k≤SNn }f (θkZ)/XNk
] = n E[f (Z)/X0] . (8)
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(c) For all nonnegative measurable functionsf and all nonnegative integers
n andm,

E[
∑

1≤i≤Nn

f (θSi
Z)1{Xi>m}/Xi] = nE[1{S0=m}f (Z◦)/X0] . (9)

(d) For all nonnegative measurable functionsf and nonnegative integersn,

E[
∑

1≤i≤Nn

f (θSi
Z)] = n E[f (Z◦)/X0] , (10)

and conditionally onZ◦ the variableS0 is uniform on{0, . . . , X0 − 1},
that is,

E[1{S0=m}f (Z◦)] = E[1{X0>m}f (Z◦)/X0], m ≥ 0 .

(e) For all nonnegative measurable functionsf and integersi

E[f (θSi
Z)/X0] = E[f (Z◦)/X0] (11)

and conditionally onZ◦ the variableS0 is uniform on{0, . . . , X0 − 1}.
We prove this theorem circularly.

Proof that (a) implies (b). Assume that (a) holds. First suppose f is bounded,
say f ≤ a. Since Nk = 0 for 0 < k ≤ S0 and since S0 < X0 we have

∑

k

1{0<k≤S0}f (θkZ)/XNk
] ≤ aS0/X0 ≤ a .

Thus the expectation of the left-hand side is finite which allows us to split the
expectation in the final step in the following calculation

nE[f (Z)/X0] =
∑

1≤k≤n

E[f (θkZ)/XNk
] (by stationarity)

= E[
∑

1≤k≤n

f (θkZ)/XNk
]

= E[
∑

k

1{0<k≤S0}f (θkZ)/XNk
]

+ E[1{S0<n}
∑

k

1{S0<k≤n}f (θkZ)/XNk
]

− E[1{S0≥n}
∑

k

1{n<k≤S0}f (θkZ)/XNk
]

Bull Braz Math Soc, Vol. 33, N. 3, 2002



ON STATIONARY AND CYCLE-STATIONARY SEQUENCES 457

Applying stationarity to the first term on the right yields the first step in

E[
∑

k

1{0<k≤S0}f (θkZ)/XNk
]

= E[
∑

k

1{n<k≤SNn }f (θkZ)/XNk
]

= E[1{S0<n}
∑

k

1{n<k≤SNn }f (θkZ)/XNk
]

+ E[1{S0≥n}
∑

k

1{n<k≤SNn }f (θkZ)/XNk
]

Combining these two calculations yields

n E[f (Z)/X0] = E[1{S0<n}
∑

k

1{n<k≤SNn }f (θkZ)/XNk
]

+ E[1{S0≥n}
∑

k

1{n<k≤SNn }f (θkZ)/XNk
]

+ E[1{S0<n}
∑

k

1{S0<k≤n}f (θkZ)/XNk
]

− E[1{S0≥n}
∑

k

1{n<k≤S0}f (θkZ)/XNk
] .

If S0 ≥ n then S0 = SNn
and thus the second and fourth term on the right are

identical but have different signs and thus cancel. Adding the two remaining
terms on the right yields

nE[f (Z)/X0] = E[1{S0<n}
∑

k

1{S0<k≤SNn }f (θkZ)/XNk
] . (12)

Since S0 ≥ n implies S0 = SNn
we have

E[1{S0≥n}
∑

k

1{S0<k≤SNn }f (θkZ)/XNk
] = 0 .

Add this to (12) to obtain (8) for f bounded. In order to remove the boundedness
restriction replace f by f ∧ a in (8) and apply monotone convergence once on
the left hand side and twice on the right hand side to obtain that (a) implies (b).

Proof that (b) implies (c). Assume that (b) holds. Since

1{SNk
−k=m}f (θSNk

Z) [which equals 1{S0=m}f (Z◦) when k = 0]
Bull Braz Math Soc, Vol. 33, N. 3, 2002
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is the same mapping of θkZ for all k, we obtain from (b) the first equality in

nE[1{S0=m}f (Z◦)/X0]
= E[

∑

k

1{S0<k≤SNn }1{SNk
−k=m}f (θSNk

Z)/XNk
]

= E[
∑

1≤i≤Nn

∑

k

1{Si−1<k≤Si }1{Si−k=m}f (θSi
Z)/Xi]

= E[
∑

1≤i≤Nn

∑

k

1{0<k≤Xi }1{Xi−k=m}f (θSi
Z)/Xi]

= E[
∑

1≤i≤Nn

f (θSi
Z)1{Xi>m}/Xi] .

Thus (c) holds.

Proof that (c) implies (d). Assume that (c) holds. Summing over m in (9)
yields (10) since

∑

m≥0

1{Xi>m} = Xi and
∑

m≥0

1{S0=m} = 1 .

In order to establish the conditional uniformity of S0, note that if we replace
f (θSi

Z) in (9) by f (θSi
Z)Xi [ and f (Z◦) by f (Z◦)X0] then we obtain

E[
∑

1≤i≤Nn

f (θSi
Z)1{Xi>m}] = nE[1{S0=m}f (Z◦)]

while if we replace f (θSi
Z) in (10) by f (θSi

Z)1{Xi>m} and f (Z◦) by
f (Z◦) 1{X0>m} then we obtain

E[
∑

1≤i≤Nn

f (θSi
Z)1{Xi>m}] = nE[1{X0>m}f (Z◦)/X0] .

Since the left-hand sides of the last two identities are identical, so are the right-
hand sides and we obtain the following: for all nonnegative measurable functions
f and all integers m ≥ 0 it holds that

E[1{S0=m}f (Z◦)] = E[1{X0>m}f (Z◦)/X0] .

This is the definition of the claim that conditionally on Z◦ the distribution of S0

is uniform on {0, . . . , X0 − 1}.
Bull Braz Math Soc, Vol. 33, N. 3, 2002
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Proof that (d) implies (e). We obtain (e) from (d) if we can show that (10)
implies (11). For that purpose assume that (10) holds for all nonnegative mea-
surable f and all nonnegative integers n. Let j be an arbitrary integer and apply
(10) with f (θSi

Z) replaced by f (θSi+j
Z) [and thus f (Z) replaced by f (θSj

Z)]
to obtain the first equality in

nE[f (θSj
Z)/X0] = E[

∑

1≤i≤Nn

f (θSi+j
Z)]

= E[
∑

1≤i≤Nn

f (θSi
Z)] − E[

∑

1≤i≤j

f (θSi+j
Z)] + E[

∑

Nn+1≤i≤Nn+j

f (θSi
Z)] .

Let f be bounded, say f ≤ a, divide by n and apply (10) to the first term on the
right to obtain

|E[f (θSj
Z)/X0] − E[f (Z◦)/X0]| ≤ a|j |/n .

Send n to infinity to obtain (11) for f bounded. Apply monotone convergence
to remove the boundedness of f .

Proof that (e) implies (a). Assume that (e) holds. Then the conditional uni-
formity of S0 yields the second step in

E[f (θnZ)] = E[f (θn−S0Z
◦)]

= E[
∑

k

1{n−X0<k≤n}f (θkZ
◦)/X0] (13)

=
∑

i

E[
∑

k

1{n−X0<k≤n}1{S◦−i−1<k≤S◦−i }f (θkZ
◦)/X0] .

Apply (11) with f (Z◦) replaced by

1{n−X0<k≤n}1{S◦−i−1<k≤S◦−i }f (θkZ
◦)

and f (θSi
Z) by 1{n−Xi<k≤n} 1{−S◦

i −X0<k≤−S◦
i } f (θkθSi

Z) to obtain

E[1{n−X0<k≤n}1{S◦−i−1<k≤S◦−i }f (θkZ
◦)/X0]

= E[1{n−Xi<k≤n}1{−S◦
i −X0<k≤−S◦

i }f (θkθSi
Z)/X0] .

Sum over k, move the sum inside the expectation, and make the variable substi-
tution m = k + S◦

i in the sum on the right-hand side to obtain

E[
∑

k

1{n−X0<k≤n}1{S◦−i−1<k≤S◦−i }f (θkZ
◦)/X0]

= E[
∑

m

1{n+S◦
i−1<m≤n+S◦

i }1{−X0<m≤0}f (θmZ◦)/X0] .
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Sum over i and apply (13) to obtain

E[f (θnZ)] =
∑

i

E[
∑

m

1{n+Si−1<m≤n+S◦
i }1{−X0<m≤0}f (θmZ◦)/X0] .

Since
∑

i 1{n+S◦
i−1<m≤n+S◦

i } = 1 we obtain

E[f (θnZ)] = E[
∑

m

1{−X0<m≤0}f (θmZ◦)/X0] .

Thus E[f (θnZ)] does not depend on n. Thus Z is stationary, that is, (e) implies
(a) and the proof of Theorem 6 is complete. �
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