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ABSTRACT 
 
This paper treats the mathematics for calculating flow, pressure and temperature in 
a heat distribution network, when the network has loops.  A looped network cannot 
be calculated directly, and the flow and temperature solution has to be obtained by 
iteration of the non-linear system equations.  Network theory is used to reduce the 
number of equations which are iterated.  The thermal solution of the network is 
then found without requiring iteration.   
 
An example is given of an analysis of the Balcova district heating network in 
Turkey.

 
 
1.  MICROSCOPIC MODELS 
 
The goal is to calculate temperature, heat flow, pressure and water flow for the distribution network.  
A district heating model has to be able to: 
 

• Calculate water flow in all system elements; and 
• Calculate head at all nodes. 
 

Where 
 

• Some elements have known flow; and 
• Some nodes have known head. 

 
The unknowns are: 
 

• The element flow; and 
• The head at the nodes. 

 
The constraints are: 
 

• Kirchhoff’s current law; 
• Kirchhoff’s voltage law; and 
• Elements (branch) relations. 
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1.1  Kirchhoff’s current law 
 
The sum of the mass flows at any node equals 0 at any time.  This results in one equation for each 
node: 
 
 

 (1) 

 
1.2  Kirchhoff’s voltage law 
 
The sum of all voltage (potential) differences along any closed path (loop) in the network is zero.  This 
results in one equation for each loop: 
 

  (2) 

 
1.3  Elements relations 
 
The element relations add one equation for each element, relating flow and head loss: 
 
  (3) 
 
This is the so-called resistance formulation, where  is a non-linear head loss function.  This 
equation can be inverted in order to give the conductivity formulation: 
 
  (4) 
 
1.4  Direct mass flow solution 
 
A solution of these two sets of equations will give the flow in all elements.  The head change and sub-
sequentially the nodal head can be found from the element relations.  The resistance formulation is 
used here. 
 

  (5) 

 

  (6) 

 
1.5  Direct head loss solution 
 
A solution of these two sets of equations will give the head loss in all elements.  The flow and sub-
sequentially the nodal head can be found from the element relations.  The conductivity formulation is 
used here. 
 

  (7) 
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  (8) 

 
1.6  Previous methods 
 
Three linearization and solution methods have been traditionally applied.  These are the Hardy – Cross 
method, the Newton – Raphson gradient iteration and the Wood and Charles linearization (Figure 1). 
 
The Hardy-Cross method is an error correction method.  An initial guess value is set for all elements.  
The head losses are calculated and added along the loops in the system (which is to sum to zero 
according to Kirchhoff’s voltage law), and the error is calculated.  Then a flow change in all the loop 
elements, necessary to make the error zero is found, and a new set of element flows is defined.  This is 
done for all the loops, and repeated until the error vanishes.  This method is stable, but requires high 
number of iterations. 
 
The Newton-Raphson method is a linearization method, the non-linear equations are linearized by the 
gradient corresponding to the guess value, and a new value calculated according to the solution of the 
linearized equation system.  This method does converge in a few iterations, if it converges at all.  A 
good set of guess values is needed for the method to work.  Many commercial programs use Hardy-
Cross to obtain a good set of guess values for the Newton-Raphson method. 
 
The Wood and Charles method is as 
well a linearization method, but the 
linearization is made by a chord going 
through origo instead of a tangent as in 
the Newton-Raphson method.  This 
method converges almost as quickly as 
Newton-Raphson, but is stable, and can 
be formulated so, that a set of good 
initial guess values is generated 
automatically.  The head difference in 
the pipe branches is usually a quadratic 
function of the flow.  The Newton-
Raphson (classical) linearization can 
give results that cause problems in the 
iteration, particularly if the flow 
becomes less than one half of the flow 
value on which the linearization is 
based.  In that case the head difference 
will become negative.  For the 
quadratic flow resistance, the slope of the Wood and Charles linearization will be one half of that 
resulting from the classical linearization.  This is indeed a crude approximation, but will result in a 
robust iteration and have acceptable convergence by averaging two successive iterations.   
 
 
2.  GRAPH THEORY FOR DISTRICT HEATING NETWORK MODELING 
 
In the modelling of district heating network these basic laws have to be fulfilled: 
 

• Conservation of mass; 
• Conservation of momentum; and 
• Conservation of energy. 
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FIGURE 1:  Comparison of linearization methods 
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The graph theory considers a network to be a composite concept of: 
 

• A set of nodes (x, y, z); 
• A set of branches; and 
• A connectivity relation (ni, nj). 

 
2.1  Definitions 
 
The general network analysis presented here follows the terminology commonly used in network 
theory. 
 
Path:  A set of branches b1 ...  bn in the graph Gn is a path between nodes Vj and Vk if consecutive 
branches bi and bi+1 have a common endpoint, no node of Gn is an endpoint of more than two of the 
branches in the set, and Vi as well as Vj are endpoints of exactly one branch of in the set. 
Connected graph:   A graph Gn is connected if there is a path between any two nodes of the graph. 
 
Loop:  A subgraph Gs is a loop if Gs is connected and every branch of Gs has exactly two nodes of Gs 
incident at it.  Associated with the loop is a direction specified by the direction of a given datum 
branch in the loop. 
 
Tree:  A subgraph Gs of the connected graph Gn is a tree if it is connected and Gs has no loops. 
 
Spanning tree:  A subgraph Gs of the connected graph Gn is a spanning tree if it is connected, Gs 
contains all nodes of Gn and Gs has no loops. 
 
Cutset:  A set of branches of a connected graph Gn (not their endpoints) is a cutset if the removal of 
these branches results in a graph that is not connected, and the restoration of any one of these branches 
results in the graph being connected again.  The cutset can be seen as a border going through the 
graph.  Associated with the cutset is a direction specified by the direction of a given datum branch in 
the cutset.  The separate graphs obtained by removing the branches of the cutset are called components 
of the graph with respect to the cutset.  The net flow over the cutset must be zero in order to conserve 
the mass in each of the components. 
 
Link:  The branches not belonging to a tree T are called links.   
 
Cotree:  The set of links in a network with a tree T is named cotree with respect to the tree T. 
 
2.2  Element types 
 
The flow solution of a network has three element types: 
 
  p: pipes; 

  m: flow elements; and 
  h: head elements. 

 
2.2.1  Pipes 
 
Here the word "pipe" is used in a general sense that is a conduit carrying a fluid from one point in 
space to another, and can have many elements, pumps, valves, etc.  A pipe element is simply a set of 
serially connected physical element in the network having some relation between flow and head 
change. 
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2.2.2  Flow elements 
 
Flow elements have a constant, known flow.  They are usually used to define consumption point in the 
network, and have than one end connected to a datum or zero point. 
 
2.2.3  Head elements 
 
Head elements have a constant, known head difference between the element connection points.  They 
are often used to define a supply point, and have than one end connected to a datum or zero point. 
 
2.3  The connectivity relation 
 
The incidence or connectivity relation relates each branch to a pair of nodes, the node where the 
branch originates and the node where it ends.  A distribution system can be treated as a connected 
graph, where the pipes correspond to branches and the nodes to points where the pipes divide or are 
united, or convey the flow to the consumer.  In network theory an incidence (or connectivity) matrix 
must be defined in order to describe the above mentioned connectivity relation for a network with nn 

nodes and nf branches: 

Matrix A is an nn · nf matrix, with entries aij where: 

 
 aij = 1 if pipe j starts at node i; 

aij  = -1 if pipe j ends at node j; and 

aij  = 0 otherwise. 

 
The connectivity matrix as defined above has one column for each flow stream in the system, and one 
row for each node.  Each column can only have two non-zero entries, -1 and 1, as the flow stream has 
to originate somewhere and end at some other location.  A simple district heating system, containing 
typical elements of such a system is shown in Figure 2 along with the associated connectivity matrix. 
 

 
 

FIGURE 2:  The connectivity matrix for a simple district heating system 
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2.4  Continuity equation (Kirchhoff’s current law) 
 
Continuity for the mass in a pipe network can be defined by reference to the current law of Kirchhoff: 
The sum of the mass flows at any node equals 0 at any time. 
 
The connectivity matrix has a row for every node in the system.  In each row all entries of 1 represent 
an outgoing flow stream from that node, and entries of -1 an incoming flow stream.  The system flow 
can conveniently be stated by means of a column vector with nj entries, each stating the flow in the 

corresponding flow stream.  A positive flow indicates flow in the same direction as defined in the 
connectivity matrix, a minus signs an opposite flow direction.  By using the connectivity matrix this 
becomes: 
 
 A m = 0 (9) 
 
2.5  Momentum equation (Kirchhoff’s voltage law) 
 
The node piezometric head is conveniently stated in the column vector hn with nn entries, each stating 

the head at the corresponding node.  As the connectivity matrix contains information on which flow 
streams connect to each node in the corresponding row, it is possible to calculate the head difference 
between the ends of all pipes in a vector form: 
 
  (10) 
 
2.6  Definition of spanning tree 
 
The choice of a spanning tree is usually based on a certain order of preference in electrical circuit 
analysis.  The following normal tree algorithm can be used to define the spanning tree used for the 
network calculations: 
 
1. Sort the network branches in the following order: 

 
h: Head sources; 
p: Pipes; and 
m: Flow sources. 

 
2. Consider the next branch in the sorted list. 
 
3. Check if the new branch will form a loop in the network.  (If one and only one node of the new 

branch nodes is incident at a tree branch, the new branch will not form a loop).  If yes, then do not 
add it to the tree T, but to the cotree L.  If no, add it to the tree T. 

 
Go back to step 2. 
 
Repeat this until all nodes in the network are covered by tree branches. 
 
Note that the check on whether a new branch will not form a loop is specified.  This is because that it 
is not easy to check whether the new branch forms a loop, as specified in the references mentioned.  
One might expect that if both nodes of a new branch are already incident at tree branches, then the 
new branch will form a loop.  However, this will only be the case when the tree is a connected graph.  
There is no guarantee that this will be true.  It is obvious that if the new branch is not at all connected 
to the tree, it will be added to it, as it will not form a loop.  Then the tree is not a connected graph 
anymore.  The branch that finally connects the components of the tree will have both nodes incident at 
tree branches, and will therefore be wrongly assumed to form a loop. 

hhA =n
T
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The check on the new branches used in the algorithms above assures that the tree will be correctly 
formed, but assures at the same time that it will be a connected graph at any stage during the selection 
of the spanning tree. 
 
The tree algorithm assumes that the number of resistors is low compared to the number of pipes, and 
that no loop will be formed only by resistors, storage tanks and head sources.  It is possible to reduce 
this condition to that of prohibiting only loops composed of head sources, by treating the resistors and 
the storage tanks in a manner similar to that for the pipes.  This will complicate the analysis, and is not 
relevant to a district heating system, where the majority of elements are pipes.  A loop made only of 
head sources is in violation of the voltage law of Kirchhoff, as the heads around the loop do not 
necessarily sum up to zero.  At least one element in the loop must be such that the head difference is 
not prescribed in order to fulfill this law. 
 
Cutsets of flow sources are also prohibited.  A cutset made up only of flow sources is in violation of 
the current law of Kirchhoff, as the flow in the cutset branches does not necessarily sum up to zero.  
Therefore at least one branch in the cutset must be such that the flow is not prescribed in order to 
fulfill this law. 
 
The graph for the piping system is closed as all boundary points of the physical system are connected 
with the datum point by some combination of sources and resistors.  Therefore, this condition 
corresponds to requiring that at least one boundary node of the physical system be attached to a head 
source.  That is quite reasonable, because otherwise the pressure level of the network cannot be 
determined. 
 
The connectivity matrix A can be rearranged with respect to a spanning tree T containing nT branches 

by splitting it into two sub-matrices AT and AL in the following manner: 

 
  (11) 
 
The sub-matrix AT is the nn · nT connectivity matrix for the branches of the spanning tree, and the 

matrix AL is the nn · nL connectivity matrix for the links, where nL denotes the number of links.  The 

sum of nT and nL is nf, the total number of branches in the network.  As the datum point is not 

included in the connectivity matrix, and the sub-matrix AT is based on a spanning tree, nn = nT.  

Therefore AT is a square invertible matrix. 
 
2.7  The cutset matrix 
 
A cutset matrix is a matrix with one row for a cutset in the network, and one column for every branch. 
The entries of the cutset matrix are as follows: 
 
 dij  = 1 denotes that branch j is a member of the cutset i with same direction; 

dij  = -1 that branch j is a member with opposite direction; and 

dij  = 0 that branch j is not member of cutset i. 

 
It follows from the definition of a spanning tree, that every tree branch is member of one and only one 
cutset, together with some (or no) links, but no other tree branches.  Such cutsets are called 
fundamental cutsets with respect to the spanning tree T.  The fundamental cutset matrix D is an nT · nf 

matrix, partitioned as follows: 

A A A= T L
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  (12) 
 
As the tree branches are members of and only one fundamental cutset, the tree part of the matrix is the 
identity matrix.  The submatrix DL reflects the membership of the links in every fundamental cutset. 

 
2.8  The loop matrix 
 
A loop matrix is a matrix with one row for each loop in the network, and one column for each branch. 
The entries of the loop matrix are as follows: 
 

bij  = 1 denotes that branch j is a member of the loop i with same direction; 

bij  = -1 that branch j is a member with opposite direction; and 

bij  = 0 that branch j is not a member of loop i. 

 
It follows from the definition of a spanning tree, that every link is a member of one and only one loop 
together with some tree branches, but no other links.  Such loops are called fundamental loops with 
respect to the cotree L. 
 
The fundamental loop matrix B is an nL · nf matrix, partitioned as follows: 

 
  (13) 
 
As the links are members of one and only one fundamental loop, the link part of the matrix is the 
identity matrix.  The sub-matrix BT reflects the membership of the tree branches in every fundamental 

loop. 
 
2.9  Loop and cutset relations 
 
If the cutset gets into a loop, it has to go out of the loop again.  The number of elements common both 
to the loop and the cutset will thus always have an even number.  At one intersection of loop and 
cutset, the directions will coincide, but be opposite at the other (Figure 3). 
 

 
 

FIGURE 3:  The loop and cutset relations 
 
Both the B and D matrices have one column for every branch in the graph.  If both matrices are 
arranged in the same column order, the following relationship holds: 

[ ] [ ]LTLTTT AAIAAAAAD 111 −−− ===

[ ]IBB T=

  
Loop  direction   Cutset direction   
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From this, it can be seen that: 
 
  (14) 
 
Combining this with equation (12), the B matrix is calculated as: 
 
  (15) 

 
2.10  Flow elements grouping  
 
The fluid flow vector is divided into four groups.  The flow elements, where the flow is known, the 
head elements, where the head is known, and the pipes, where neither flow nor head is known.  All the 
head elements are members of the spanning tree, and all the flow elements of the cotree.  The pipes are 
divided into tree pipes and cotree pipes. 
 

  (16) 

 
The current law of Kirchhoff now looks a little bit different: 
 

  (17) 

 
2.11  The partitioned cutset equation 
 
The cutset matrix is calculated from the connectivity matrix.  The connectivity matrix can be used to 
calculate the net flow at every node, which has to equal zero.  In the same way, the net flow in every 
cutset equals zero, and the cutset or connectivity matrices can either be used for establishing the mass 
conservation in the network.  Mass conservation (Kirchhoff’s current law) by the cutset matrix is: 
 

  (18) 

 
The cutset matrix is then partitioned into submatrices according to the various branch groups.  The 
partition lines indicate the partitioning between the tree and the cotree as shown in equation (16).  
Note that there cannot be any flow sources among the tree branches and only pipes and flow sources 
can occur among the link branches. 
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  (19) 

 
2.12  The partitioned loop equation 
 
The nodal analysis does not require a specific treatment of the voltage law, as the system heads 
(pressures) are only expressed at the nodes.  The head differences over the loop branches can then be 
calculated from the nodal heads, and will sum up to zero for any closed path in the network.  The 
voltage law specifies that the sum of voltage (head) differences for any loop in the network shall be 
zero.  This can be written for a pipe network using the fundamental loop matrix as: 
 
 B h = 0 (20) 
 
The loop matrix can then be partitioned into submatrices according to the various branch categories.  
The partition lines indicate the partitioning between the tree and the cotree as shown in equation (16).  
The submatrices in the loop matrix tree part are obtained from equation (19) by equation (14). 
 

  (21) 

 
2.13  Element relations 
 
The pipes in the network have relation between the head loss and the flow.  The matrix notation of the 
resistance formulation is: 
 
Tree pipe head vector: 
  (22) 
 
Link pipe head vector: 
  (23) 
 
When an appropriate linearization method has been used, the element relations can be used in order to 
solve for the network flow.  The Wood and Charles linearization changes equations (22) and (23) into 
linear matrix equations, using a diagonal resistance matrix to relate flow and head loss: 
 
  (24) 
 
  (25) 
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3.  BRANCH CHARACTERISTICS – RESISTORS  
 
The resistance function relates the head loss to the flow and the element parameters (diameter, surface 
roughness etc).  The function is defined both for a single pipe (scalar) as r(m,parameters) and a set of 
pipes (vector valued function) r(m,parameters).  The resistance matrix is then defined by the Wood 
and Charles linearization as: 
 

  (26) 

 
The resistance matrix is a diagonal matrix, with the linearized resistance factors on the diagonal. 
 
3.1  Pipes 
 
The pipes have a resistance defined by the Darcy-Weisbach equation, which is written as: 
 

  (27) 

 
The friction factor can be calculated directly from Colebrook - White equation: 
 

  (28) 

 
3.2  Valves 
 

  (29) 

 
The factor kL is a property of the valve or fitting, and is dependent on the valve position when 

referring to a valve, but is constant for a fitting. 
 

  - loss factor at =1; and 
  - valve position (0…1). 

 
3.3  Pumps 
 
The negative resistance function of a pump can be determined from performance measurements of the 
pump.  A common form of such a function is: 
 
  (30) 
 
The factors ho and k describe pump properties, and depend on the pump speed. 
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4.  STEADY STATE FLOW SOLUTION 
 
4.1  Stepwise solution with back-substitution 
 
The equations which have to be solved together are the cutset, loop and linearized element equations 
(19), (21), (24) and (25).  Recall: 
 

  (19) 

 

  (21) 

 
  (24) 
 
  (25) 
 
The know vectors (inputs) are the head element head vector hhT and the flow element flow vector 

mmL.  Desired are the vectors of head loss and flow in the pipes, mpT, mpL, hpT and hpL.  The flow 

element head vector hmL and the head element flow vector mhT are of secondary interest, the show 

only what head is required to keep the input flow for the flow element as well as what flow is needed 
to keep the input head for the head element. 
 
The tree pipe flow vector is found in the second row of equation (19): 
 
  (31) 
 
The cotree pipe head vector is in the second row of equation (21): 
 
  (32) 
 
Inserting equation (24): 
 
  (33) 
 
Inserting equations (25) and (26): 
 
  (34) 
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Regrouping: 
 
  (35) 
 
and solving: 
 

  (36) 
 
Equation (36) has to be solved by iteration.  It relates the cotree pipe flow vector to both the input 
vectors.  The real degree of freedom for the network is the cotree pipe flow, so when this vector has 
been determined, the flow solution has been found.  It has one row for every loop in the network, so 
the number of equations which have to be iterated is reduced considerably compared to the traditional 
methods.  When the iteration has converged, all remaining flows and heads in the network can be 
found by back-substitution. 
 
This allows all system flows to be calculated in terms of the flows in the flow source elements and the 
flow in the pipes in the cotree: 
 

  (37) 

 
All head losses can now be found from the branch equations (Equations (24) and (25) recalled): 
 
  (24) 
 
  (25) 
 
  (38) 
 
This solution approach has the advantage that the calculation effort within the iteration is kept low.  A 
direct matrix solution may be more interesting, but it will require more effort within the iteration loop. 
 
4.2  Direct matrix solution 
 
Rearrange equations (19) and (21) in order to have only known variables on the left hand side: 
 

  (39) 

 

  (40) 

 
Now eliminate the pipe head vectors from equation (40) by equations (24) and (25): 
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  (41) 

 
The row equations from equations (39) and (41) are: 
 
  
 
  
 
  
 
  
 
The three first equations are sufficient to calculate all flows: 
 

  (42) 

 
or: 
 

  (43) 

 
The head losses are found by substituting equations (24) and (25).  Then the three needed row 
equations are: 
 
  
 
  
 
  
 
The head loss matrix equation is then: 
 

  (44) 
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  (45) 

 
 
5.  THERMAL SOLUTION 
 
The calculation of temperatures and heat flow in the network is based on the flow solution.  Heat is 
transferred through the pipes of the network by the fluid, so similar methods have to be used to ensure 
that the conservation of energy for the network is fulfilled, as what was done for the flow solution. 
 
First of all, the connectivity matrix has to be modified.  Now the direction of flow in every element 
does matter, and the connectivity matrix has to be corrected, so that the direction of the elements 
corresponds with the flow direction.  If the connectivity matrix is multiplied from the left hand side 
with a diagonal matrix containing the sign of the flow on the diagonal, each column in the connectivity 
matrix will either be multiplied  by 1 (if the flow direction is the same as the element direction) or by -
1 (if the flow direction is opposite to the element direction).  The corrected connectivity matrix is 
named element flow connectivity matrix: 
 
  (46) 
 
The heat flow in a pipe is only dependent on the inflow condition of the fluid.  The temperature of the 
fluid at the inflow end will solely determine the heat flow in the pipe.  So a new variant of the 
connectivity matrix is needed.  The element flow origin matrix has the same dimensions as the 
connectivity matrix.  Instead of having two non-zero entries in each column, this matrix has an entry 
of 1 in the row corresponding to the inflow node into each pipe.  The matrix can readily be calculated 
from the element flow connectivity matrix: 
 

  (47) 

 
If a new flow solution is calculated, some flows may have changed direction, and the element flow 
origin matrix must be recalculated. 
 
5.1  Element types 
 
Three element types are added for the thermal solution.  They are: 
 

t: temperature source; 
q: heat source; and 
x: heat exchanger. 

 
All the element types used in the flow solution are active here, as heat will be transported wit the 
flowing fluid. 
 
5.2  Pipe heat flow 
 
The heat transported with the flow in a single pipe element is calculated by: 
 
  (48) 
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The origin temperatures for all elements in the network can be found from the nodal temperatures by: 
 
  (49) 
 
The heat flow for the all the flow elements is then calculated by: 
 
  (50) 
 
5.3  Heat exchangers 
 
Heat exchangers transfer heat from one flowstream to another, without mixing the fluids.  They are 
thus elements with four connection points, as shown in Figure 4. 
 
In order to model the heat exchanger within the network, an equivalent model with two connection 
points has to be introduced.  An equivalent heat transfer coefficient is associated with this 
simplification.  This coefficient is non-linear and dependent on the fluid temperatures, so iteration is 
necessary for an exact thermal solution.  A schematic of the equivalent heat exchanger is shown in 
Figure 5. 
 

 

 

 
 

 
 

 

FIGURE 4:  Schematic of a heat exchanger 
 

FIGURE 5:  Schematic of an equivalent  
heat exchanger 

 
The heat flow for a heat exchanger elements is then calculated by: 
 
  (51) 
 
In order to relate the heat flow in the heat exchangers to other elements in the network, the heat 
exchanger connectivity matrix  is defined in the same way as the connectivity matrix.  The vector 
of heat exchanger heat flow is thus: 
 
  (52) 
 
5.4  Temperature and heat flow elements 
 
These elements are simply treated in the same way as the flow and head elements in the flow solution. 
 
5.5  Steady state thermal solution 
 
The current law of Kirchhoff law for the heat flow in the network is: 
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   (53) 

 
By rearranging the equation so that the known vectors are on the left hand side of the equation: 
 

  (54) 

 
The pipe heat flow and the heat exchanger heat flow can be calculated as: 
 

  (55) 

 
Equation (55) can now be inserted into equation (54): 
 

  (56) 

 
This equation has the heat flow in the constant temperature elements as unknowns as well as the nodal 
temperatures.  Information required to find this heat flow is entered by adding an additional row to the 
equation. 
 

  (57) 

T 
his additional row enters information about the value of the temperature of the constant temperature 
elements (inputs).  Expanding the terms in this equation in order to obtain a more readable result: 
 

  (58) 
 
The nodal temperatures and constant temperature heat flow are now found by: 
 

  (59) 

 
 
6.  PRACTICAL EXPERIENCE AND CONCLUSION 
 
The microscopic models presented here are just one of many kinds of network calculation models.  
These models have proven to be powerful, and as they give insight into the mathematics behind the 
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model, the enable a skilled user to do very detailed and accurate analysis.  The method is as well very 
flexible, because the terminology enables the user to adapt these models relatively easily to new fields 
of application. 
 
6.1  Industrial usage 
 
The Dutch energy company NUON in Arnhem, the Netherlands, has been using these models as their 
main tool for district heating design and operation since 1995.  The main benefit they saw in these 
models was the flexibility and easy adoption to other systems or for new application.  The author has 
developed the analysis package Pipelab in cooperation with NUON, running under the numerical 
environment Matlab.  This package is not commercial, but is used for research purposes both in 
academia and industry. 
 
6.2  A sample study from Turkey 
 
Adil Caner Şener, at the Izmir Institute of Technology Geothermal Energy Research Development 
Test and Education Centre did as well aproject at the United Nations University – Geothermal 
Training Programme in Reykjavik in 2002.  The title of the report was:  “Modelling of Balçova 
geothermal district heating system”. 
 
His study analyzed the system, pinpointing various problem areas in the present operation of the 
system.  Optimization of the geothermal supply system was studied, as well as time series methods for 
load forecasting. 
 
The microscopic models were 
used for calculation of flow and 
head loss in the distribution 
system.  Figure 6 is a diagram 
from the report, showing the 
head both in the supply and 
return network as a function of 
the distance from the supply 
point. 
 
The thermal solution method was 
then used to obtain the 
temperatures in the supply 
network.  Figure 7 is a diagram 
from the report, showing the 
temperature as a function of the 
distance from the supply point. 
 
It is apparent from the diagram, 
that unacceptable cooling is in a 
few of the pipes in the network. 
There were reports from the 
operation on heating problems by 
a few of the consumers.   
 
In Figure 8, the distribution 
system is shown, and the 
problem areas indicated. 
  

 
 

FIGURE 6:  Length from source vs. head loss diagram for the 
Balcova distribution system 
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FIGURE 7:  Length from source vs. node temperature diagram for the Balcova distribution system 
 

 
 

FIGURE 8:  Buildings with heating problems 
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The analysis did show, that the problem areas were related to pipes with abnormally high head loss per 
unitary length.  The problem areas are indicated in Figure 9. 
 

 
 

FIGURE 9:  Presentation of regions with heating problems in h-l diagram of supply network 
 

Similarly, the area with the high cooling in the supply system was one of the problem areas (Figure 
10). 
 

 
 

FIGURE 10:  Presentation of regions with heating problems in T-l diagram of supply network 
 

The conclusion is, that a microscopic analysis is necessary for safe and good design, operation and 
troubleshooting of pipe networks. 
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7.  FINAL WORDS 
 
I do sincerely hope that this presentation of the mathematics behind a thorough analysis of district 
heating networks will give the reader a new insight into this fascinating area of research and design. 
 
 

NOMENCLATURE 
 
Scalars  
 

A Heat transfer area (m2) 
aij  Connectivity matrix entry (-)  

C Heat capacity of house (J/°C) 
cp Water heat capacity (J/(kg °C))  

g Acceleration due to gravity (m/s2)  
Gn Graph  

Gs Subgraph  

ki PI-control parameter (kg/(s^2 °C)) 
kl Building heat loss factor (W/ °C) 
kp P-control parameter (kg/(s °C)) 
L Cotree (the set of links)  
m Water mass flow (kg/s) 
m0 Reference water mass flow (kg/s) 

mavg Average mass flow 

nL Number of links (-)  

nn  Number of nodes (-)  

nq Number of constant heat flow elements (-)  

nt Number of constant temperature elements (-)  

nT  Number of tree branches (-)  

q Heat flow (W)  
Q Heat duty (W) 
Q0 Heat duty at reference conditions (W) 

Qloss Heat loss (W) 
Qnet Net heat (W) 
qq Constant heat flow (W)  

Qsupp Heat supply (W) 
qt Heat flow in constant temperature element (W)  

qx Heat exchanger duty (W)  

Rc Capacity ratio 
T Temperature (°C)  
T Tree  
T1 Pipe inlet temperature (pumping station) (°C) 
T2 Return temperature at pumping station (°C) 
Tc,in  Cold fluid inlet temperature (°C)  
Tc,out  Cold fluid outlet temperature (°C)  
Tg Ground temperature (°C) 
Th,in  Hot fluid inlet temperature (°C)  
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Th,out  Hot fluid outlet temperature (°C)  
Ti Indoor temperature (°C) 
Ti0 Reference indoor temperature (°C) 
Ti,set Desired indoor temperature in dynamic modelling (°C) 
To Outdoor temperature (°C) 
To0 Reference outdoor temperature (°C) 
Tr Return water temperature (primary network) (°C) 
Tr0 Reference return water temperature (primary network) (°C) 
Trs Return water temperature in secondary network (°C) 
Ts Water supply temperature (primary network) (°C) 
Ts0 Reference water supply (primary network) (°C) 
U  Heat transfer coefficient (W/(m2°C))  
Ueq Equivalent heat transfer coefficient (W/°C)  
Up Pipe heat loss factor (W/ °C) 
y Variable 
z Variable 

 
Greek symbols  
 

ε Heat exchanger effectiveness 
τ Pipe transmission effectiveness 
τ0 Pipe transmission effectiveness at reference conditions 
∆Tm Logarithmic mean temperature difference (°C) 
∆Tm0 Logarithmic mean temperature difference at reference conditions (°C) 

 
Vectors and matrices  
 

A Flow elements connectivity matrix (-)  
Af Flow connectivity matrix (-)  

AL Cotree connectivity matrix (-)  

Aq Constant heat flow connectivity matrix (-)  

AT Tree connectivity matrix (-)  

At Constant temperature connectivity matrix (-)  

Ax Heat exchanger connectivity matrix (-)  

D Cutset matrix (-)  
E Element flow origin matrix (-)  
IhT Tree head source identity matrix  

IpT Tree pipe identity matrix  

IpL Cotree pipe identity matrix  

m Flow vector (kg/s)  
mhT  Tree head source flow vector (kg/s)  

mmL Link flow source flow vector (kg/s)  

mpL  Link pipe flow vector (kg/s)  

mpT  Tree pipe flow vector (kg/s)  

Fij  Submatrix of the cutset matrix  

qf  Vector of heat flow in flow elements (W)  
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qq  Constant heat flow vector (W)  

qt  Vector of heat flow in constant temperature elements (W)  

qx  Heat exchanger duty vector (W)  

Tn  Node temperature vector (°C)  

Ueq  Heat exchanger transfer matrix (W/°C) 

 
 


	The goal is to calculate temperature, heat flow, pressure and water flow for the distribution network.  A district heating model has to be able to:
	 Calculate water flow in all system elements; and
	 Calculate head at all nodes.
	Where
	 Some elements have known flow; and
	 Some nodes have known head.
	The unknowns are:
	 The element flow; and
	 The head at the nodes.
	The constraints are:
	 Kirchhoff’s current law;
	 Kirchhoff’s voltage law; and
	 Elements (branch) relations.
	The sum of the mass flows at any node equals 0 at any time.  This results in one equation for each node:
	The sum of all voltage (potential) differences along any closed path (loop) in the network is zero.  This results in one equation for each loop:
	The element relations add one equation for each element, relating flow and head loss:
	This is the so-called resistance formulation, where  is a non-linear head loss function.  This equation can be inverted in order to give the conductivity formulation:
	A solution of these two sets of equations will give the flow in all elements.  The head change and sub-sequentially the nodal head can be found from the element relations.  The resistance formulation is used here.
	A solution of these two sets of equations will give the head loss in all elements.  The flow and sub-sequentially the nodal head can be found from the element relations.  The conductivity formulation is used here.
	Three linearization and solution methods have been traditionally applied.  These are the Hardy – Cross method, the Newton – Raphson gradient iteration and the Wood and Charles linearization (Figure 1).
	The Hardy-Cross method is an error correction method.  An initial guess value is set for all elements.  The head losses are calculated and added along the loops in the system (which is to sum to zero according to Kirchhoff’s voltage law), and the erro...
	The Newton-Raphson method is a linearization method, the non-linear equations are linearized by the gradient corresponding to the guess value, and a new value calculated according to the solution of the linearized equation system.  This method does co...
	The Wood and Charles method is as well a linearization method, but the linearization is made by a chord going through origo instead of a tangent as in the Newton-Raphson method.  This method converges almost as quickly as Newton-Raphson, but is stable...
	2.2  Element types
	2.2.1  Pipes
	2.2.2  Flow elements
	2.2.3  Head elements
	2.3  The connectivity relation
	The incidence or connectivity relation relates each branch to a pair of nodes, the node where the branch originates and the node where it ends.  A distribution system can be treated as a connected graph, where the pipes correspond to branches and the ...
	Matrix A is an nn   nf matrix, with entries aij where:
	aij = 1 if pipe j starts at node i;
	aij  = -1 if pipe j ends at node j; and
	aij  = 0 otherwise.
	The connectivity matrix as defined above has one column for each flow stream in the system, and one row for each node.  Each column can only have two non-zero entries, -1 and 1, as the flow stream has to originate somewhere and end at some other locat...
	FIGURE 2:  The connectivity matrix for a simple district heating system
	Continuity for the mass in a pipe network can be defined by reference to the current law of Kirchhoff:
	The connectivity matrix has a row for every node in the system.  In each row all entries of 1 represent an outgoing flow stream from that node, and entries of -1 an incoming flow stream.  The system flow can conveniently be stated by means of a column...

	2.5  Momentum equation (Kirchhoff’s voltage law)
	The node piezometric head is conveniently stated in the column vector hn with nn entries, each stating the head at the corresponding node.  As the connectivity matrix contains information on which flow streams connect to each node in the corresponding...

	2.6  Definition of spanning tree
	The connectivity matrix A can be rearranged with respect to a spanning tree T containing nT branches by splitting it into two sub-matrices AT and AL in the following manner:
	The sub-matrix AT is the nn   nT connectivity matrix for the branches of the spanning tree, and the matrix AL is the nn   nL connectivity matrix for the links, where nL denotes the number of links.  The sum of nT and nL is nf, the total number of bran...

	2.7  The cutset matrix
	A cutset matrix is a matrix with one row for a cutset in the network, and one column for every branch.
	It follows from the definition of a spanning tree, that every tree branch is member of one and only one cutset, together with some (or no) links, but no other tree branches.  Such cutsets are called fundamental cutsets with respect to the spanning tre...
	As the tree branches are members of and only one fundamental cutset, the tree part of the matrix is the identity matrix.  The submatrix DL reflects the membership of the links in every fundamental cutset.

	2.8  The loop matrix
	A loop matrix is a matrix with one row for each loop in the network, and one column for each branch.
	It follows from the definition of a spanning tree, that every link is a member of one and only one loop together with some tree branches, but no other links.  Such loops are called fundamental loops with respect to the cotree L.
	The fundamental loop matrix B is an nL   nf matrix, partitioned as follows:
	(13)
	As the links are members of one and only one fundamental loop, the link part of the matrix is the identity matrix.  The sub-matrix BT reflects the membership of the tree branches in every fundamental loop.

	2.9  Loop and cutset relations
	If the cutset gets into a loop, it has to go out of the loop again.  The number of elements common both to the loop and the cutset will thus always have an even number.  At one intersection of loop and cutset, the directions will coincide, but be oppo...
	FIGURE 3:  The loop and cutset relations
	2.10  Flow elements grouping
	The fluid flow vector is divided into four groups.  The flow elements, where the flow is known, the head elements, where the head is known, and the pipes, where neither flow nor head is known.  All the head elements are members of the spanning tree, a...
	The current law of Kirchhoff now looks a little bit different:
	2.11  The partitioned cutset equation
	The cutset matrix is then partitioned into submatrices according to the various branch groups.  The partition lines indicate the partitioning between the tree and the cotree as shown in equation (16).  Note that there cannot be any flow sources among ...
	2.12  The partitioned loop equation
	The nodal analysis does not require a specific treatment of the voltage law, as the system heads (pressures) are only expressed at the nodes.  The head differences over the loop branches can then be calculated from the nodal heads, and will sum up to ...
	The loop matrix can then be partitioned into submatrices according to the various branch categories.  The partition lines indicate the partitioning between the tree and the cotree as shown in equation (16).  The submatrices in the loop matrix tree par...
	2.13  Element relations
	The pipes in the network have relation between the head loss and the flow.  The matrix notation of the resistance formulation is:
	Tree pipe head vector:
	Link pipe head vector:
	The resistance function relates the head loss to the flow and the element parameters (diameter, surface roughness etc).  The function is defined both for a single pipe (scalar) as r(m,parameters) and a set of pipes (vector valued function) r(m,paramet...
	The resistance matrix is a diagonal matrix, with the linearized resistance factors on the diagonal.

	3.1  Pipes
	The pipes have a resistance defined by the Darcy-Weisbach equation, which is written as:
	The friction factor can be calculated directly from Colebrook - White equation:

	3.2  Valves
	The factor kL is a property of the valve or fitting, and is dependent on the valve position when referring to a valve, but is constant for a fitting.

	3.3  Pumps
	The negative resistance function of a pump can be determined from performance measurements of the pump.  A common form of such a function is:
	The factors ho and k describe pump properties, and depend on the pump speed.

	4.1  Stepwise solution with back-substitution
	The equations which have to be solved together are the cutset, loop and linearized element equations (19), (21), (24) and (25).  Recall:
	The know vectors (inputs) are the head element head vector hhT and the flow element flow vector mmL.  Desired are the vectors of head loss and flow in the pipes, mpT, mpL, hpT and hpL.  The flow element head vector hmL and the head element flow vector...
	The tree pipe flow vector is found in the second row of equation (19):
	The cotree pipe head vector is in the second row of equation (21):
	Inserting equation (24):
	Inserting equations (25) and (26):
	Regrouping:
	and solving:
	Equation (36) has to be solved by iteration.  It relates the cotree pipe flow vector to both the input vectors.  The real degree of freedom for the network is the cotree pipe flow, so when this vector has been determined, the flow solution has been fo...
	This allows all system flows to be calculated in terms of the flows in the flow source elements and the flow in the pipes in the cotree:
	All head losses can now be found from the branch equations (Equations (24) and (25) recalled):

	4.2  Direct matrix solution
	Rearrange equations (19) and (21) in order to have only known variables on the left hand side:
	Now eliminate the pipe head vectors from equation (40) by equations (24) and (25):
	The row equations from equations (39) and (41) are:
	The three first equations are sufficient to calculate all flows:
	or:
	The head losses are found by substituting equations (24) and (25).  Then the three needed row equations are:
	or:

	5.1  Element types
	Three element types are added for the thermal solution.  They are:
	All the element types used in the flow solution are active here, as heat will be transported wit the flowing fluid.

	5.2  Pipe heat flow
	The heat transported with the flow in a single pipe element is calculated by:
	The origin temperatures for all elements in the network can be found from the nodal temperatures by:
	The heat flow for the all the flow elements is then calculated by:

	5.3  Heat exchangers
	Heat exchangers transfer heat from one flowstream to another, without mixing the fluids.  They are thus elements with four connection points, as shown in Figure 4.
	The heat flow for a heat exchanger elements is then calculated by:
	In order to relate the heat flow in the heat exchangers to other elements in the network, the heat exchanger connectivity matrix is defined in the same way as the connectivity matrix.  The vector of heat exchanger heat flow is thus:

	5.4  Temperature and heat flow elements
	5.5  Steady state thermal solution
	The current law of Kirchhoff law for the heat flow in the network is:
	By rearranging the equation so that the known vectors are on the left hand side of the equation:
	The pipe heat flow and the heat exchanger heat flow can be calculated as:
	Equation (55) can now be inserted into equation (54):
	This equation has the heat flow in the constant temperature elements as unknowns as well as the nodal temperatures.  Information required to find this heat flow is entered by adding an additional row to the equation.
	T
	his additional row enters information about the value of the temperature of the constant temperature elements (inputs).  Expanding the terms in this equation in order to obtain a more readable result:
	The nodal temperatures and constant temperature heat flow are now found by:
	The microscopic models presented here are just one of many kinds of network calculation models.  These models have proven to be powerful, and as they give insight into the mathematics behind the model, the enable a skilled user to do very detailed and...

	6.1  Industrial usage
	The Dutch energy company NUON in Arnhem, the Netherlands, has been using these models as their main tool for district heating design and operation since 1995.  The main benefit they saw in these models was the flexibility and easy adoption to other sy...

	6.2  A sample study from Turkey
	The thermal solution method was then used to obtain the temperatures in the supply network.  Figure 7 is a diagram from the report, showing the temperature as a function of the distance from the supply point.
	It is apparent from the diagram, that unacceptable cooling is in a few of the pipes in the network.
	There were reports from the operation on heating problems by a few of the consumers.
	In Figure 8, the distribution system is shown, and the problem areas indicated.
	FIGURE 7:  Length from source vs. node temperature diagram for the Balcova distribution system
	The analysis did show, that the problem areas were related to pipes with abnormally high head loss per unitary length.  The problem areas are indicated in Figure 9.
	Similarly, the area with the high cooling in the supply system was one of the problem areas (Figure 10).
	FIGURE 10:  Presentation of regions with heating problems in T-l diagram of supply network
	The conclusion is, that a microscopic analysis is necessary for safe and good design, operation and troubleshooting of pipe networks.

	7.  Final words
	I do sincerely hope that this presentation of the mathematics behind a thorough analysis of district heating networks will give the reader a new insight into this fascinating area of research and design.
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