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ABSTRACT

The high temperature geothermal prospects in Kenya are located within and are
associated with the development of the Kenya Rift. Kenya Rift is a continental
scale volcano-tectonic feature that stretches from northern to southern Africa.
Development of the Rift started during the Oligocene (30 million years ago) and
activity has continued to recent times. The last 2 million years saw the
development of large shield volcanoes within the axis of the rift. These centres are
the most important geothermal prospects within the rift. Association between
rifting and most of the occurrences of geothermal energy is mainly due to shallow
magma chambers underneath the young volcanoes within the rift axis.

Detailed surface studies of most of the prospects in the central sector of the rift
which comprises Suswa, Longonot, Olkaria, Eburru, Menengai, Lakes Bogoria and
Baringo, Korosi and Paka volcanic fields have been studies and geothermal
systems identified. Electric power is currently being generated at Olkaria with
209MWe installed while exploration drilling has been undertaken at Eburru and a
2.5MWe pilot plant is being developed by KenGen and due to be commissioned by
2011. Production drilling is in progress for 280MWe for Olkaria I unit 4 and
Olkaria 4 developments due to be commissioned in 2013. The Geothermal
Development Company (GDC) is currently undertaking detailed studies at Silali,
Paka, Barrier and Korosi for siting of exploration wells. It is estimated that more
than 7,000MWe can be generated from prospects in the Kenya rift.

1. INTRODUCTION

Geothermal is an indigenous and abundantly occurring resource in Kenya. Exploitation of Kenya’s
geothermal resources has environmental and social advantages over the other major sources of
electricity generation options available for the country. Geothermal is the least cost source of electric
power for base load in Kenya (Acres, 1987, 1994; 1997; KPLC, 1998, 2000). Currently, 209 MW, of
the installed interconnected generation of 1350MW. is generated from geothermal sources at Olkaria.
Geothermal is expected to contribute additional S000MW, by 2030. Current estimates indicate that
generation potential of the Kenya Rift could exceed 7,000MW. In order to fast track development of
geothermal resources in Kenya, the Government of Kenya incorporated GDC to explore all
geothermal resources in the country, drill exploration and production wells and sell steam to power
producers.



Omenda 2 Geothermal exploration in Kenya

2. GEOLOGICAL SETTING
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Kenya rift is part of the eastern arm of the East African rift
system. The segment referred to as the Kenya rift extends
from Lake Turkana in the north to northern Tanzania near
Lake Natron (Figure 1). In this sector of the rift system, the |
activity began about 30 million years ago in the Lake Turkana
area and then migrated southward being more intense about
14 million years ago. -

Formation of the graben structure started about Smillion years
ago and was followed by fissure eruptions in the axis of the E

rift to form flood lavas by about 2 to 1 million years ago. [ T
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FIGURE 1: Map of the Kenya Rift
3. GEOTHERMAL DEVELOPMENT showing the geothermal prospects

Exploration for geothermal energy in Kenya started in the 1960’s with surface exploration that
culminated in two geothermal wells being drilled at Olkaria. In early 1970’s more geological and
geophysical work was carried out between Lake Bogoria and Olkaria. This survey identified several
areas suitable for geothermal prospecting and by 1973, drilling of deep exploratory wells commenced
and was funded by UNDP. Additional wells were thereafter, drilled to prove enough steam for the
generation of electricity and in June 1981, the first 15 MW, generating unit was commissioned. The
second 15 MW, unit was commissioned in November 1982 and the third unit in March 1985 which
increased the total generation to 45 MW.. This was the first geothermal power station in Africa and is
owned and operated by KenGen. GDC is currently undertaking production drilling in the field to
support an additional 140MW, plant being developed by KenGen for commissioning in 2013.

In 2003, KenGen commissioned a 70MW. Olkaria II power plant in the Northeast field and was
further increased by 35MW in 2010 giving the station an installed capacity of 105MW.. In the
western sector of the greater Olkaria field is 55MW,. Orpower4 plant. The generator is currently
undertaking production drilling to support a further 36MW, in the field. GDC is also drilling
production wells in the Olkaria IV area earmarked for 140MW. plant being developed by KenGen.
The plant is planned for commissioning in 2013. All the developments at Olkaria will result in a total
installed capacity of 525MW by 2013 against a proven geothermal resource potential of well over
1,000MW...

The Government of Kenya and other parties have continued to explore for geothermal energy in the
Kenya rift. British Geological Survey and the government of Kenya carried out studies in the Lake
Magadi area (Allen at al., 1992), the area around Lake Naivasha including Longonot, Olkaria, Eburru,
and Badlands (Clarke et al., 1990), and in the north rift (Dunkley et al., 1993). Geotermica Italiana
also did some work in Longonot and Suswa calderas and also described geo-volcanological features
important in geothermal exploration at Menengai (Geotermica Italiana Srl, 1987a, 1987b, and 1988).
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4. GEOTHERMAL PROSPECTS
4.1 Eburru

Eburru volcanic complex is located to the
north of Olkaria. The Government of
Kenya carried out detailed surface studies
between 1987-1990 that culminated in the
drilling of six exploration wells in Eburru
between 1989 and 1991. Further infill
MT surveys done in 2006 revealed that
the Eburru field can support up to 50-
60MW,. (Wameyo, 2006; Figure 3). The
results from the exploration wells indicate
that the field had experienced
temperatures of over 300°C possibly due
to localized intrusive.

Discharge fluid chemistry from the wells
indicates that the reservoir is non-boiling
with moderate salinity brine and a high
amount of non condensable gases (NCQG).
Despite the almost similar geology, the
chloride level of EW-I (956 to 1976 ppm)
is higher than the Olkaria average. As
compared to Olkaria, the reservoir
permeability is low (KPC, 1990).

Omenda

LEGEMD

[ ] AanTus

Trachyles

Paniellenies

A
°

;_
&

)

Walcanic centre

Fumnarale

Pumice lapili deposits @ Ew02 Geohermalwell

Fracure
Fault
Fang ¥aciine

Craters

Hot areas

FIGURE 2: Geological map of Eburru Geothermal

Field (Omenda and Karingithi, 1993)

©
©
W
o

INUILU IUIIYD (NI

Easting (km)

—80— |so-therm lines O Crater A Volcanic centre

Legend

-é Geothermal well ——~ Road e pEgyt

FIGURE 3: MT Resistivity distribution at 500 m a.s.l. (Wameyo, 2006)

The maximum
discharge temperature
was 285°C and the
total output from the
two wells that
discharged (EW-1 &

EW-6) is 29 MWt
(Ofwona, 1996). The
estimated power

potential of the field
based on the data from
the wells is about 50-
60 MWe (Wameyo,
2006; Mburu, 2006;
Omenda et al., 2000)
and conceptualized as
in Figure 4. The area
has a fairly well
established
infrastructure and for
this reason a 2.5 MWe
binary pilot plant is
planned for
commissioning in
2011.
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4.2 Menengai volcano

Menengai is a major Quaternary caldera
volcano located within the axis of the
central segment of the Kenya Rift. The
volcano is located within an area
characterized by a complex tectonic
activity characterized by confluence of
two tectono-volcanic axes (Molo and the
Solai). The volcano has been active since
about 0.8 Ma to present. The volcano is
built of Trachyte lavas and associated
intermediate pyroclastics. Most of the
pyroclastics activity accompanied caldera
collapse. Post caldera activity (<0.1 Ma)
mainly centred on the caldera floor with
eruption of thick piles of trachyte lavas
from various centres (Figure 5).

MT resistivity distribution at 2km bsl
shows a conductive body of less than
Sohm-m centred in the western caldera
floor “lobe” and a smaller anomaly at the

FIGURE 4: Conceptual model of the Eburru
geothermal system (Omenda and Karingithi, 1993)

respectively suggesting the presence of magma bodies,
which could be heat sources. Vp/Vs ratios of 1.6-1.7
suggest steam-dominated reservoir (Simiyu, 2003).
Gravity modeling also shows the presence of dense
bodies at about 4 km depth under the caldera floor.

Heat loss survey indicates that the prospect loses about
3,536 MWt naturally to the atmosphere with 2440 MWt
being the convective component (Ofwona, 2004).
Fumaroles are scarce in the prospect with the few
strong ones occurring within the caldera floor.
Fumaroles steam compositions have low contents of
reactive gases (CO,, H,S, H,, CH4, and N). Gas
geothermometry based on H,S and CO, indicates that
the reservoir temperatures are greater than 250°C.

The mapped potential area in Menengai is about 84
Km? translating to over 1650 MWe of electric power
when conversion rate of 15SMW per square kilometer is
used (Figure 6 and 7). The reservoir rocks are expected
to be trachyte as at Olkaria and therefore comparable
permeability is postulated. Whereas Olkaria system has
several discrete hot magmatic intrusions which are
considered heat sources, Menengai has a centralized
body under the caldera (Figure 7).

centre of the caldera (Figure ©6).
Seismology indicates seismic wave
attenuation at 7-8km depths underneath
Menengai  caldera and  Ol’banita,
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conducted indicate that minimal
impacts would occur from proposed
drilling activities and future
development of the resource
(Mungania et al, 2004). Existing
infrastructure also favor
development of this resource. If
developed, the resulting hot water
could be used by the various Agro
based industries which are close to
the resource in Nakuru town. GDC
plans to wundertake drilling of
exploratory wells in Menengai in
February 2011. 9972000 -{_

9984000

9982000 —

9980000 —

9978000 —

9976000 —

9974000 -

~ 9986000
: [~ 9984000
- 9982000
- 9980000
9978000
- 9976000

f~ 9974000

[~ 9972000

T
164000 166000

4.3 Longonot volcano

Longonot is a large caldera volcano
within the floor of the southern
Kenya Rift adjacent to Olkaria
Geothermal field (Figure 1). The
volcano comprises of a large
trachyte caldera of about 11 km dia
and a resurgent activity on the
caldera floor that formed a central
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FIGURE 7: Geothermal model of Menengai volcano

The youngest activity (<300 yrs BP) at Longonot was s
of mixed Trachyte-basalt composition and erupted
within the crater floor and on the northern flank of the
central volcano (Figure 8).

Geothermal surface manifestations are mainly
fumaroles and hot grounds within the central crater.
The geochemical survey revealed high radon and CO»
gas discharges. Gas geothermometry also indicate that
geothermal reservoir temperatures could exceed 300 °C
(KenGen, 1998).
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MT resistivity distribution at 2 km bsl shows a
conductive body of <11 ohm m in the southern slopes
of the young central volcano and extending beyond the
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caldera boundary. It is postulated that the body could
be of magmatic type and thus possibly the resource heat
source (Figure 9). Preliminary results of micro seismic
investigations show correspondence between seismics
and MT. Shear wave splitting anisotropy directions

o veoper mone

were evidenced in the data suggesting fault control in
the movement of pressurized fluids in the near
subsurface (Onacha, 2006).
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FIGURE 9: MT resistivity map of Longonot (Onacha, 2006)
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4.4 Suswa

Suswa is the southernmost of a
. Distance (m) series of Quaternary caldera
) Horizontal Scale 12 100000 ¥ MT Sounding volcanoes in the Kenya rift. The
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FIGURE 10: 2-D Resistivity model of Longonot volcano and 4 km, respectively (Figure 11).
Volcanism at Suswa that comprised
trachytes and phonolites started about late Pleistocene and continued to less than 1,000 years ago
(Omenda, 1997).
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Results from detailed surface studies suggest reservoir temperatures of 250°C based on gas
geothermometry. Seismic and gravity studies show that the heat source under the caldera is at about
6-8 km deep with a NE-SW bias. Resistivity (MT) at 500 m bsl indicates a low (15-20 ohm m)
anomaly under the island block and extending to the north out of the inner caldera (Figure 12).

Conceptual model indicates that heat source for Suswa is a magmatic body centred under Ol Doinyo
Nyoke volcano (Figure 13). The body is at a depth of more than 6-8 km and could be the heat source
of the geothermal system. The geothermal system must have attained temperatures of more than
250°C as seen from the presence of hydrothermal epidote within the lithics. Gas geothermometry
indicate that gases sampled in the prospect originated from sources having temperatures of more than
250°C. The prospect has a fairly good recharge from both the west and east rift escarpments.
However, the water table in the rift floor is deep, probably more than 300 m, due to intense faulting of
the pre-Suswa formations. The prospect is licensed to WalAm, Inc of Canada. However, it is not
clear when the concessionaire may undertake exploratory drilling in the prospect.
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FIGURE 13: Geothermal model of Suswa volcano
4.5 Lake Bogoria and Arus

Arus — Lake Bogoria prospect is the area surrounding Lake Bogoria and extending about 50 km
southward and westward (Figure 1). The upper Plio-Pleistocene volcanism of the rift floor in the area
between Arus and Lake Bogoria is characterized by large volumes of evolved lavas that consist mostly
of peralkaline trachyte, trachyphonolite and phonolite (Figure 14). Small outcrops of basaltic lavas
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occur in isolated areas within the prospect. The northern sector south of Lake Baringo is, however,
dominated by fluvial and alluvial deposits. There are no Quaternary central volcanoes in the prospect.
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The geothermal manifestations occurring in the prospect include fumaroles, hot and steaming grounds,
anomalous boreholes, hot springs, steam jets, altered grounds, sulphur, calcite and travertine deposits.
Most o these manifestations occur along the shores of Lake Bogoria and at the Arus springs (Figure
15).

Fluid geothermometry indicates intermediate subsurface temperatures of more than 145-245°C for the
Lake Bogoria springs while those at Arus are at 170-192°C. The low resistivity bodies (< 10 ohm-
meter) occur mainly along and at the intersection of major faults and transverse zones (Figure 16).
These intersection zones may be forming weak regions through which magmatic materials find their
way to the shallow sub-surface. However, the resistivity data has not defined clear geothermal
reservoirs in the field and more MT stations are planned by GDC in 2011.

The geothermal reservoirs in this field, therefore, could be assumed to follow the fault plane model
where discrete small reservoirs are located along fault zones (Figure 17).
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4.6 Lake Baringo

Lake Baringo geothermal prospect is in the
northern part of the Kenyan rift and covers the
area around Lake Baringo. Surface
manifestations include fumaroles, hot springs,
thermally altered hot grounds and anomalous
ground water boreholes. The geology of the
area is characterized by trachyte and trachy-
phonolite to the east and west while basalts
occur to the north and alluvial deposits to the
south. Olkokwe Island in Lake Baringo is the
only Quaternary volcanic complex which is
associated with volcanic activity at Korosi to the
north

Fumaroles and hot springs occur on Olkokwe
Island while weak fumarolic areas occur in the
western zone along fractures/faults. Gas
geothermometry indicates reservoir temperatures
of more than 120-200°C in the west near
Chepkoiyo well and more than 170°C in the
Olkokwe Island system.

Resistivity indicates potential occurrences of
fault controlled, discrete reservoirs in areas west
of the Lake, SE and north (Figure 18). Since a
large portion of the prospect is not associated
with a centralized Quaternary volcano, it is
postulated that the heat sources are probably
deep dike swarms along the faults. It can be
concluded from the available information that
the resource at Lake Baringo is low to
intermediate temperature suitable for direct uses.
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4.7 Korosi volcano

Korosi volcano is located in the north rift
Valley and neighbours Lake Baringo to the
south and Paka volcano to the north.
KenGen and the Ministry of Energy
undertook detailed surface studies in the
prospect in 2005. The area is strongly
faulted by a system of NNE trending
faults, which extends northwards onto the
flanks of Paka volcano (Figure 19). The
latest volcanic activity associated with
Korosi was of basaltic composition and
occurred a few hundred years ago while

the last trachytic volcanism occurred about
100ka.

Surface geothermal manifestations include
hot steaming grounds and fumaroles.
Surface temperatures ranging between 90 —
95°C have been recorded.

The MT resistivity map at 1500 mbsl
shows low resistivity below the Korosi
massif but is well defined in resistivity
map at 4000 mbsl (Figure 20). The MT
plot shows a well defined <10Qm low
resistivity below the Korosi Massif. The
low resistivity below the massif is
interpreted to mark the top of the heat
source for the geothermal system.

Gas chemistry of five samples from Korosi
using H,S Gas geothermometry function
indicates that temperatures of more than
250°C exist in the reservoir under the
volcano. Conceptual model indicates that
a viable geothermal system exists under
the Korosi massif with the upflow within
the micro-graben and outflow largely to
the north.

4.8 Chepchuk volcanic field

The Chepchuk area was covered during the
studies at Korosi which was done by
KenGen and the Ministry of Energy in
year 2005. The geology of Chepchuk is
characterized by faulted Plio Pleistocene
flood trachytes and younger basaltic flows
occupying micro-grabens. The area is

heavily faulted with half of the Chepchuk volcanic complex down faulted westward. It is postulated
that the old Chepchuk volcano could be the dominant source but with contribution from Paka volcanic
area. It is estimated that the resource is of intermediate temperature.
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4.9 Paka volcano

Detailed surface studies of Paka
volcano was undertaken in 2006/7.
Paka shield volcano is constructed
largely by trachyte lavas and
pyroclastic deposits and located just
to the north of Korosi volcanic
complex (Figure 21). Volcanic
activity commenced by 390 ka
(Trachytes) and continued to within
10 ka (basalts).

The structure of Paka is dominated by
a broad zone of normal faulting 7.5
km wide graben bound by the eastern
and the western fault boundaries
respectively. This zone shows a right
stepping en echelon arrangement
along the volcano and forms one of
the regional fault pattern, which
extends southwards to Chepchuk and
northwards into the southern flanks of
Silali.

Surface geothermal activity is widely
developed at Paka particularly within
the summit craters and the northern

114

1124

110

108+

106+

o
1S)
i

Northings (km)
S
P

100

9 I @

96

94-|

92+

T
186 188 190
Eastings (km)

11 Omenda

fre Young and Uppar Basaits Tyt ras and
D n g e vacnd
Pyt cons I:I Pymclasiic and REFT MAR G
Volcan kclas S deposiis I:I Trac —
® [ s —
Faun |:| Lowwar Basats
£ notasea I:l Maugeariies o BHM
L ————

& Fumaohs D Loy Trachytas

FIGURE 21: Geological map of Paka volcano

flanks where fumaroles at >97°C are
common. Sulphur crystals are
common for the fumaroles within the
craters.  Gas geothermometry of
fluids from Paka indicate the
reservoir system to be at more than
250°C.

MT resistivity at Paka prospect
shows conductive bodies under the
massif and on the eastern side at foot
of fault scarp. The latter is not
considered to be of geothermal
interest (Figure 22).

The anomaly under Paka volcano
could be imaging hot rocks. Seismic
studies indicate shallow events
directly under Paka suggesting that a
hot body exists below about 2.5 —
Skm depth. Heat loss studies of Paka

192 194 19 volcano revealed that a total heat loss
- Faultline | 3 Voloanic cenire of 2,855 MW, occurs within the

—— Road E MT sounding

FIGURE 22: MT resistivity plot at 3000 m bsl

prospect  with a  convective
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component of 10 MWt. Most of the heat is lost within the Paka craters area.

Conceptual model developed for Paka indicates that the system is closely associated with the
magmatic intrusion under the volcano. The model indicates that the low resistivity imaged by MT at
the foot of the eastern scarps may not be of geothermal significance but further studies are required to
characterize the anomaly. GDC plans to collect additional MT data in 2011 to assist in siting of

exploration wells.
4.10 Silali volcano

Silali is the largest Quaternary
caldera volcano on the floor of
the northern Kenya rift.
Previous studies of the
volcano and the surrounding
areas indicated occurrence of

a  hydrothermal  system,
indicating probable
occurrence of a  high
temperature geothermal
resource. These earlier
studies recommended the

prospect for further detailed

surface  investigations  to
determine  its  geothermal
resource potential.
Consequently, Geothermal

Development Company Ltd
(GDC) as part of its mandate
to develop geothermal
resources in the country
carried out detailed surface
exploration in 2010. The
studies involved geological
mapping, soil gas
assessments, fumaroles and
hot spring sampling, MT and
TEM  measurements and

environmental baseline
surveys.
Integrated results of the

studies indicate the existence
of a geothermal resource
under Silali caldera that
extends to the eastern flanks
of the caldera (Figure 23).
The heat source is associated
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FIGURE 23: Simplified geological map of Silali volcano

with shallow magmatic intrusive under the caldera and extends to the eastern flanks. Estimated gas
geothermometry from the prospect area gave temperatures of 238-287°C. It is estimated that the high
temperature anomaly from geophysical covers an area of about 81km?. Using the worlds’ average
conversion rate of 15 MW¢/km? this translates to potential generation capacity of more than
1,200MW, (Lagat and Ngenoh, 2010). GDC plans to undertake exploratory drilling in the prospect in

late 2011.



Geothermal exploration in Kenya 13 Omenda

180000 190000 200000
140000 - —_— R e R L - 140000

v MT Sounding
Scale 1:250000

0 2000 4000 6000
: ohm.m
95
63
53
130000 i I - 130000 £
J.. R : L. L -
28
= 23
~ 7
§ l 15
S - 12
£
kS E 1
S 9

120000 4 - B iy ! .. y. . I 120000

S NNWHA o N

e

Resistivity at 2000mbs|

T r
180000 190000 200000
Eastings (m)

FIGURE 24: Resistivity distribution map at 2000 m bsl
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4.11 Other geothermal prospects

The other potential geothermal prospects within the Kenya rift that have not been studied in details
include Lake Magadi, Emuruangogolak, Namarunu, and Barrier volcanic complex. Preliminary
information indicates that the Lake Magadi system could be of intermediate temperatures and suitable
for binary power plant development and for direct applications (Allen et al., 1989). Magadi prospect
is not in the immediate plans for detailed evaluation.

Most of the northern prospects are magmatically active and have been postulated to host high
temperature geothermal systems (Dunkley et al., 1993). GDC is at advanced stages of planning to
systematically investigate these prospects commencing with Barrier in early 2011. If successful,
Barrier will be committed to exploratory drilling in 2013.
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