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Foreword 

As a part of the OECD Committee’s Study on the Economic Impact of Responsible Fisheries, 
the Directorate for Food, Agriculture and Fisheries Committee invited the member countries 

to inform about the implications of responsible post harvesting practices on responsible 
fishing in their country. The report presented here, the Issue Report, is prepared by the request 
of Ministry of Fisheries by the Institute of Economic Studies (IoES). 

 

The Issue Report on the other hand focuses on the discarding of fish. After the 
implementation of the individual transferable quota system (ITQ) in Iceland, many concerns 

rose about whether the adoption of this system induced excessive discarding of fish. This 
Issue Paper explores the theoretical and empirical research done on this issue. The first part 
exhibits the discarding theory. The existence of discarding is analysed under different fishery 

regimes namely the free access regime and ITQ. The theory is expanded with the inclusion of 
the gear selectivity and the capacity constraints of the vessels. In the second part, the 
empirical research done on discarding is presented.  

 

Ayse Sabuncu is the author of the report.  
 
 

IoES in June 1999 
 
 
 

Tryggvi Thor Herbertsson, 
Director. 
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1. Introduction 

After the implementation of the individual transferable quota system (ITQ) in Iceland, many 

concerns rose about whether the adoption of this system induced excessive discarding of fish. 

This Issue Paper explores the theoretical and empirical research done on this issue. 

The theory of catch discarding presented in the first chapter is due to Arnason 1994, 1996(a) 

and 1996(b). The theoretical work attempts to examine the economics of catch discarding in 

fisheries. In order to study this issue a dynamic fisheries model is used. 

The first part includes the introduction of the basic model, the identification of the socially 

optimal discarding rule and the exploration of this rule under competitive fishery and 

individual transferable quota fisheries management system. It is shown that discarding can be 

socially optimal in a differentiated fishery. Moreover, the competitive fishery is found to 

employ the socially optimal discarding rule. It is further investigated in this first part whether 

there is an increased tendency toward discarding in an ITQ fisheries management system 

compared to the free access alternative. In fact, an ITQ managed system is found to generate 

an excessive incentive for discarding catch compared to a competitive fishery. The factors 

responsible for this deviation and the potential remedies are also discussed. 

The second part of the paper extends the theory allowing for selectivity in harvesting 

technology. The question is how the introduction of selectivity effects the discarding value 

under the free access regime and ITQ managed system. It is found that a switch from free 

access to an ITQ system can both increase or decrease the volume of discards, depending on 

the shapes of the discarding and selectivity cost functions. 

The last part analyses the effects of capacity constraints on discarding. A more general 

formula including capacity constraints is derived, and the results obtained in the first part are 

shown to be a special case of the ones derived in this last part. On the other hand, the 

selectivity possibilities are not explicitly included in this section but this analysis can easily 

be extended to include selectivity as well. 

2. Catch Discarding Theory: A Comparison of Catch Discards under the 
Free Access Regime and ITQ Managed Fisheries 

2.1 Basic Model 

In this analysis a differentiated fishery model is used as discarding makes economic sense 

only in this kind of fishery as shown later. A differentiated fishery is a fishery characterised 

by more than one economic grade of the catch. These grades reflect different landing prices of 

individual fish, different handling costs aboard the vessel etc. The grades are detectable by 

fishermen; they are associated with physical appearance of individual fish such as its size, 

skin damage, colour, etc. 

Let the index i refer to economics grades in the catch and let there be I economic grades of 

fish. Refer to catch grade i as y(i), i = 1,2,…I. Aggregation over catch grades yields total 

catch as y ≡ Σi y(i). 
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Let instantaneous harvesting be determined by the following strictly increasing, jointly 
concave harvesting function: 

 y ≡ Σi y(i) = ΣiY(e,x,i), for all i and e,x ≥ 0,  Y(0,x,i) = Y(e,0,i) = 0 (1) 

where the variable x represents aggregate biomass and e fishing effort. The fishing effort is 

assumed to be the same for all grades.  

Aggregate biomass develops according to the usual rule in aggregate fisheries models: 

 x&  = G(x) – y, for e,x ≥ 0, (2) 

where the natural biomass function G(x), is assumed to have the usual shape with,

 G(0) = G(x1) = G(x2) = 0  for 0 ≤ x1 < x2  and Gxx < 0. 

Harvesting costs are given by the strictly increasing convex cost function: 

 CE(e), for e ≥ 0, CE(0) ≥ 0. (3) 

Landings of fish of grade i is defined as the difference between harvest and discards: 

 l(i) ≡ Y(e,x,i) − d(i), (4) 

where Y(e,x,i) represents the harvest of grade i as specified above, l(i) retained or landed 

harvest and d(i) the discarded harvest of grade i. A negative level of discarding would be 

harvesting. Therefore we assume that d(i) ≥0, all i. Also, since fisheries are characterised by 

nonnegative landings, we impose the restriction l(i) ≥ 0, all i. 

There would generally be economic costs associated with landings and discarding. Let us 

represent these costs by the nondecreasing, convex cost functions: 

 CL(l(i),i), for l(i) ≥ 0, all i, CL(0) ≥ 0, (5) 

 CD(d(i),i), for d(i) ≥ 0, all i, CD(0) ≥ 0. (6) 

The CL( ) functions represent various costs associated with retaining catch of grade i and 

landing it. These costs include the cost of preliminary fish processing aboard the vessel, 

handling, gutting, storing, preserving etc., as well as the actual landing costs.  

The CD( ) functions represent the costs associated with discarding of fish of grade i. As 

discarding is generally relatively easy, these costs would in most cases be small. Notice, 

however, that if discarding were illegal or socially frowned upon, discarding costs would tend 

to be correspondingly higher. 

Given the specifications in (1) to (6) we can write the instantaneous profit function of a given 

firm in the fishery as: 

 π (e,d,x;p) = Σi p(i) · l(i) − CE(e) − ΣiCL(l(i),i)) − ΣiCD(d(i),i), (7) 

where p(i) denotes the price of one unit of landings. The (1 x I) vectors d and p represent 

discarding and quay prices of different grades of fish, respectively. In this profit function, 

fishing effort, e, and discarding, d, are natural control variables. Biomass, x, is a state variable 

and the fish prices, p(i), are parameters.  
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2.2  Optimal Discarding 

The social problem is to adjust fishing effort and the vector of discards so as to maximise 

present value of profits from the fishery. More precisely: 

 
de

Max
, ∫

∞

0

π(e,d,x;p) . exp(-r⋅t)dt (I) 

 Subject to: &x  = G(x) – Σi y(i), 

 e,d ≥ 0, 

where r denotes the rate of discount.  

A solution to this problem includes the socially optimal discarding rule1: 

 d(i) > 0  if  p(i) + CDd(0,i) < CLl(Y(e,x,i) − 0,i) (8) 

The left-hand-side of the second inequality of the discarding rule, p(i) + CDd(0,i), represents 

the marginal costs of discarding. This cost consists of two parts; the unit price of landed catch 

foregone by discarding, p(i), and the direct marginal costs of discarding evaluated at zero 

discarding, i.e., CDd(0). The right-hand-side of (8), CLl(Y(e,x,i)−0,i), represents the marginal 

benefits of discarding (or marginal costs of retaining) catch also evaluated at zero discarding. 

Thus, the discarding rule expressed in (8) states that the catch of grade i should be discarded, 

i.e., d(i) > 0, if the marginal benefits of discarding exceed the costs. 

To facilitate the analysis it is convenient to define the discarding function for fish of grade i: 

 Γ(i) = CLl(y(i)−0,i) − p(i) − CDd(0,i) (9) 

The left-hand-side of (9), Γ(i), is the discarding value for fish of grade i. If the discarding 

value for a particular grade is positive, marginal catch of that grade is discarded. If Γ(i) is 

negative, catch of grade i is retained. The discarding function is not equivalent to the quantity 

discarded, but it can be interpreted as the tendency to discard.  

The discarding function shows that the optimal decision to discard depends directly on (a) the 

quay price, (b) the marginal landing costs and (c) the marginal discarding costs of the grade in 

question. It seems empirically likely that CLl(y(i) − 0) is increasing in the catch rate, y(i), at 

least for y(i) above a certain level. In that case, the discarding function implies that the 

tendency to discard increases with the catch rate. Moreover, as catch increases monotonously 

with biomass and fishing effort, the tendency to discard also generally increases with these 

variables, ceteris paribus. On the other hand, the tendency to discard a particular grade 

diminishes with the price of catch, p(i), and the marginal cost of discarding, CDd(0). 

The analysis so far suggests three seemingly interesting propositions concerning socially 

optimal discarding2: 

Proposition 1  

In an undifferentiated fishery discarding of catch is not optimal. 
                                                           
1 See Appendix 1 for the first-order conditions. 
2 See Appendix 1 for the proofs of the propositions. 
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Proposition 2  

Discarding of catch may be socially optimal. 

Proposition 3  

In a differentiated fishery no discarding may be optimal. 

Γ(i) 

 
 

 

 
               Discarding                                                                     Discarding 
 

                                                         Retaining                                            i (fish size) 

 

 

 

Fig. 1 An example of a discarding function 

2.3 Free Access, Competitive Fisheries 

Under competitive fishery, an arbitrary firm, j, will solve the following problem: 

 
)(),( jdje

Max ∫
∞

0

π(e(j),d(j),x;p)⋅exp(-r⋅t)dt (II) 

 Subject to:  &x  = G(x) – Σk ΣiY(e,x,i) 

 e(j), d(j) ≥ 0, 

where e(j) is the firm j’s fishing effort and π(e(j),d(j),x;p) its profit function corresponding to 

equation (7) above. The summation, Σk, is over all firms in the industry. 

A solution to this problem includes the discarding rule: 

 d(i,j) > 0  if  p(i) + CDd(0,i,j) < CLl(Y(e(i),x,i,j)−0,i,j), all i, (10) 

where d(i,j) is firm j’s discarding of catch of grade i. 

A comparison of the competitive discarding rule, (10), with the socially optimal one, (8), 

shows that the two are formally identical. In fact, formulating the social problem in terms of 

the same number of fishing firms yields the same discarding rule. 

This result can be explained as follows. Competitive utilisation of fish stocks deviates only 

from the optimal one due to the stock externality. The discarding activity, at least as 

formulated here, does not generate any external effects.3 Hence, competitive profit 

maximising discarding rule should be optimal. It is important to realise, however, that this 

                                                           
3 Discarding would, however, produce an externality (presumably a positive one) if some fraction of 
discarded catch survived and thus constituted additions to the biomass. 
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does not mean that the level of competitive discarding is socially optimal. Competitive 

discarding is only socially optimal conditional upon the existing competitive catch and 

biomass levels. These, however, are generally sub-optimal. 

2.4 Individual Transferable Quotas 

Now, we will analyse catch discarding under ITQ fisheries management systems. Consider a 

continuous ITQ system. The essentials of this system are as follows. The fishing firms hold a 

stock of permanent ITQs. These aggregate ITQs refer to aggregate catch volumes and are not 

differentiated according to grades. Let q(j) denote firm j’s quota holding by firm j at time t. At 

each point of time quota holdings must at least equal the firm’s rate of catch. However, if 

discards are not counted against quota, as in fact generally is the case, the firm’s j 

instantaneous quota constraint is: 

 q(j) ≥ Σi l(i,j) ≡ Σi[y(i,j) – d(i,j)], (11) 

where l(i,j) denotes the instantaneous landings of catch of grade i by firm j, y(i,j) the 

instantaneous catch and d(i,j) the corresponding discard. 

Quota holdings can be adjusted by trading, z, at a market price, s. Thus, quota holdings move 

over time according to the equation: 

 q&  = z. (12) 

Now, under quite unrestrictive assumptions, in particular that the quota price is positive, the 

total quota (TAC) determined by the quota authority is equal to total landings. The actual 

development of biomass, however, depends on natural growth and total catches including 

discards. I.e.,  

 x&  = G(x) – Q – Σi Σj d(i,j), (13) 

where Q represents the total quota issued and, as before, Σj denotes summation over all firms 

in the fishery. 

Within this management framework fishing firm j attempts to solve the following problem: 

)(),(),( jdjzje
Max  V = ∫

∞

0

[π(e(j),d(j),x;p) – s · z]⋅exp(-r⋅t)dt  (III) 

 Subject to: q&  = z, 

 x&  = G(x) – Q – Σi Σj d(i,j), 

 q ≥ Σi[Y(e,x,i) = d(i,j)] ≡ Σil(i,j), 

 e(j),d(j) ≥ 0. 

A solution to this problem (III) includes the discarding rule for firm j: 

 d(i,j) > 0 if  p(i) + CDd(0,i,j) < CLl(Y(e(i),x,i,j) − 0,i,j) + σ(j) – δ(j), all i. (14) 
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This discarding rule is similar to the socially optimal and competitive discarding rule, except 

two Lagrange multipliers, σ(j) and δ(j). The Lagrange multiplier σ(j) represents the marginal 

value of quotas to firm j. Since quotas can be freely left unused, maximisation of profits 

requires this term to be nonnegative. Thus, landing of catch represents a cost to the firm 

amounting to σ(j). Hence, σ(j) normally encourages discarding of catch. 

The other Lagrange multiplier, δ(j) represents firm j’s shadow value of biomass. The 

appearance of this multiplier in the discarding rule reflects the fact that in spite of the quota 

restriction, firm j can influence the path of the biomass via discarding of catch. Since higher 

biomass is normally economically beneficial to the firm, δ(j) is usually positive. Hence, δ(j) 

represents a disincentive to discarding. In a fishery composed of many firms, however, δ(j) is 

comparatively small. 

Let Ω(j) ≡ σ(j) − δ(j). The difference Ω(j) represents the deviation of the discarding rule under 

an ITQ system from the optimal one. A positive Ω(j) represents an excessive incentive for 

discarding under ITQ system and vice versa. In most commercial fisheries, Ω(j) would be 

expected to be nonnegative. Ω(j) is the user cost of quota for the species in question. It is 

closely related to the instantaneous quota price provided that there is reasonably large number 

of firms in the industry. In fact, in equilibrium, Ω(j) is approximately equal to the present 

value of this price. 

The ITQ discarding function for the ITQ-managed fishery is: 

 Г˚(i) = CLl(y(i) − 0,i) + Ω(j) − p(i) − CDd(0,i) = Г(i) + Ω(j), (15) 

where Г(i) is the discarding value for the unmanaged fishery as defined in (9) above. 

Proposition 4  

Under the ITQ system described above and when there is more than one fishing firm there is 

generally an excessive incentive for discarding the catch. 

The result expressed in Proposition 4 is economically intuitive. Under a competitive fisheries 

management regime, a fisherman contemplating whether or not to retain a particular fish will 

elect to do so if the net return (measured as the sum of its quay price and discarding costs less 

the landings costs) is positive. Under an ITQ system, this net return must be compared to the 

alternative benefits of discarding the fish and selling the corresponding quota. More precisely, 

the net return of landing the fish must exceed the quota price. Provided that the quota price is 

positive in an ITQ system the discarding value is always larger compared to an unmanaged 

fishery. 

Notice, however, that the result expressed in Proposition 4 does not necessarily mean that 

there will be excessive discarding under an ITQ system. There may be corner solutions. This 

means that if there is no discarding under competitive fisheries management regime, there 

may possibly be no discarding under an ITQ system as well. On the other hand, if there is 

discarding under a competitive regime, there will almost certainly be excessive discarding 

under an ITQ system. 

The problem of excessive discarding does not appear to be the ITQ system itself but it derives 

from the imperfectness of the quota property rights as modelled in this paper or, alternatively, 
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from the enforcement of these rights. To the extent that the quota restriction applies to 

landings rather than catch the quota property rights are incomplete. Enforcing the quota 

restriction by monitoring landings is clearly a case of regulating the wrong target. Fishing 

firms can still impose stock externalities on each other by discarding the catch. In that way 

they undermine the economic value of the quota property rights.  

Similarly, to the extent that ITQs refer to the aggregate volume of catch, the associated 

property rights are also incomplete in another respect. Different grades of catch represent 

different economically different commodities. Quotas, on the other hand, are not 

differentiated by grades. Consequently, different grades of catch cannot correspond to 

different quota prices.  

Potential remedies are issuing ITQs by grades, using taxes and subsidies and enforcement. If 

ITQs are issued for each grade, the quota price for each grade will reflect the relevant 

economics of harvesting, processing and marketing of that grade. In that case, the quota prices 

will never induce excessive discarding of the catch. However, the implementation of ITQs by 

catch grades is not a practical solution. There are many problems. First, the grades may be 

numerous and probably time variant. Second, as the number of grades increases, the market 

for each grade may become very thin. Third, enforcement of quota rights by grades may 

easily prove prohibitively costly. 

Taxing and subsidising can solve the problem, as discarding is an externality problem. But it 

is very important to select the correct tax or subsidy rate. Finally, excessive discarding may be 

regarded as a violation of fishery property rights. Then discarding becomes an enforcement 

problem. But again it is important to select the socially optimal combination of enforcement 

effort and sanctions. 

The best way of action may well be to employ a mix of some or all of the methods discussed 

above, as it seems unlikely that a general solution exists. 

3. Selectivity 

Up to now, the harvesting technology was taken as exogenous. Let us now assume that the 

fishing technology allows a degree of selectivity over grades of fish at some costs.4 Fishing 

with lines and bottom trawl are two examples of harvesting selectivity. Let us define a 

selectivity parameter for grade i, a(i), and the corresponding cost function CS(a(i),i). Take 

a(i) ∈  [0,1], where a(i) = 0 represents no selectivity and a(i) = 1 full selectivity.  

In accordance with this, let the harvesting function for fish of grade i be represented by: 

 y(i) = Y(e,x,i)⋅(1−a(i)) 

Y(e,x,i) is what may be referred to as the "unselective" harvesting function for fish of grade i 

and (1−a(i)) represents the harvesting modifications due to selectivity measures. Clearly, 

when a(i) = 0 unselective harvesting applies and when a(i) = 1 there is full selectivity in the 

sense that no fish of grade i will be caught.  

                                                           
4 This could be due to variable fishing gear selectivity and the choice of fishing grounds and fishing 
seasons. 



 11 

The selectivity cost functions, CS(a(i),i), i = 1,2,...I, are naturally increasing and convex in the 

selectivity parameter, i.e., CSa(i) > 0, CSaa(i) > 0. 

Let’s refer to the net price of catch of grade i by P(i). 

 P(i) ≡ p(i) − CLl(l(i)) − Ω, i = 1,2,....I. 

where as before p(i) represents the gross landing price, CL(l(i)) the unit cost of landings and 

Ω the opportunity cost of quota. In an unmanaged fishery this opportunity cost, Ω is 

identically zero. In a fully-fledged ITQ system Ω would be measured by the market price of 

quotas at the time of landings. 

Given all this we can define a profit function for firm j as: 

 π(j) = Σi P(i)⋅[Y(e,x,i)⋅(1−a(i))−d(i)] − CE(e) − Σi CD(d(i),i) − Σi CS(a(i),i) 

Maximisation of this profit function with respect to fishing effort, discards and selectivity 

yields the following set of necessary conditions: 

 Σi P(i)⋅Ye⋅(1−a(i)) = CEe,  assuming e > 0.  

 -P(i) ≥ CDd(i),  d(i) ≥0,  d(i)⋅(-P(i) − CDd(i)) = 0,  all i.  

 -P(i)⋅y(i) ≥ CSa(i),  a(i) ≥0,  a(i)⋅(-P(i)⋅y(i) − CSa(i)),  all i.  

These first order conditions are quite informative. First notice that for positive selectivity or 

discarding to be optimal the net price, P(i), must be negative. Second, the conditions highlight 

that discarding and selectivity are in a certain sense substitute activities. Both are employed to 

reduce the landings of unwanted fish, i.e. fish for which the net landing price, P(i) ≡ p(i) − 

CL(l(i)) − Ω, is negative. However, they are not necessarily used to the same extent. If for 

instance the marginal cost of discarding is less than the marginal cost of selectivity at zero 

selectivity, i.e., 

 CDd(i)(d(i)) < CSa(i)(0)  

then the profit maximising vessel will only employ discarding to avoid unwanted fish. If the 

marginal cost of discarding at zero discarding is higher than the marginal cost of selectivity 

on the other hand, then the profit maximising vessel will only employ catch selectivity to 

avoid unwanted fish and not discard at all. Finally, the rule for the co-existence of selectivity 

and discarding in the operation of the fishing vessel is: 

 CSa(i)(a(i)) = CDd(i)(d(i)).  

The basic ideas can be usefully depicted in Figure 2. 
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          Values 
                                                                      CS a( i) 

 
 

                                                                                   CD d(i) 
 
 
               - P(i) 0 

 
 
 
 

    

                                                    d0        a0                         1      Fractions of Catch 

Fig. 2 Optimal discarding and selectivity 

 

In Figure 2, the marginal cost of discarding and selectivity intersect with the benefits of not 

landings (i.e., the negative of the net price5) at d0 and a0 respectively. This means that the 

optimal selectivity will be a0 and a fraction d0 of the harvest (after selectivity) will be 

discarded. Thus the quantity of discards of fish of grade i is Y(e,x,i)⋅(1−a0)⋅d0. 

Let us represent the quantity of discarding of fish of grade i by the expression, D = d·y·(1−a), 

where D denotes the volume of discards and d represents the fraction of harvested fish 

discarded and y the total catch of grade i and (1−a) the harvesting modification due to the 

selectivity as before. 

The analysis of the effects of an ITQ system on discarding and selectivity is generally quite 

complicated. A switch to an ITQ system can both increase or decrease the volume of discards. 

The issue can perhaps be clarified with the help of a diagram. Referring to the diagram in 

Figure 2, an increase in Ω means that the net price of landings is reduced. For a grade of fish 

with an initially negative net price this means a shift of the -P(i) line upward. Hence both the 

optimal selectivity fraction and the optimal discarding of harvested fish increase as illustrated 

in Figure 3. 

 

 

 

 

 

 

 

 

 

 

                                                           
5 Which according to the necessary conditions must be negative for discarding or selectivity to be 
profitable. 
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                                                                                   CD d(i) 
               - P(i) 1 
 
               - P(i) 0 

 
 
 
 
  

                  d0       a0      a1      d1        1         Fractions of Catch 

Fig. 3 Effects of an increase in Ω on discarding and selectivity  

 

Figure 3 suggests that whether or not discarding increases as a consequence of an ITQ system 

depends very much on the shape of the discarding and selectivity cost functions and on 

whether selectivity responds sufficiently greatly to an increase in Ω to overwhelm the impact 

on discarding. 

Let there be a switch in quota prices from Ω0 to Ω1, where Ω1 > Ω0. Let the initial discard and 

selectivity fractions, d0 and a0, be 0.4 and 0.5 respectively. Similarly let d1 and a1 be 0.6 and 

0.7 respectively which is entirely possible. Then D0 = 0.2⋅y and D1 = 0.18⋅y, so the volume of 

discards actually decreases. This shows that the volume of discards under an ITQ system may 

actually decrease compared to the volume of discards in an unmanaged fishery. 

4. Capacity Constraints 

In this section of the paper, the effects of capacity constraints on discarding will be examined. 

Discarding rule will be analysed under two kinds of constraints: hold capacity and processing 

capacity.  

4.1 Model 

Consider a fishing trip of length T. The revenue during the trip is represented by the value of 

landings at the end of the trip: 

 R(T) = ∑
=

⋅
I

i

TiliP
1

),()( ,  (1) 

where P(i) denote the unit price of fish of grade i and l(I,T) the corresponding volume of 

landings at the terminal time T.6 P(i) is the net price of fish. 

Let the variable y(i) represent the instantaneous rate of catch of fish of grade i and d(i) the 

instantaneous volume of fish of grade i discarded at sea. Thus, the accumulated fish of grade i 

in the vessel’s hold evolve according to the equation: 

 &( ) ( ) ( )x i y i d i= −  (2) 

                                                           
6 To simplify the analysis, it is implicitly assumed that prices are constant. 
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At the trip’s end, the accumulated catch of grade i, equals the volume of landings: 

 l(i,T) = x(i,T). (3) 

Also, clearly, x(i,0) = 0. 

Let s(t) represent free space in the vessel’s hold at time t with s(0) = S, the total hold capacity. 

Then the available space evolves according to the equation: 

 [ ]& ( ) ( )s y i d i
i

I

= −
=
∑

1

. (4) 

Now, there are certain benefits and costs associated with discarding fish. The costs include 

inter alia the economic resources employed to discard and, as the case may be, the 

psychological discomfort of discarding and the expected penalties (fines) for doing so. The 

benefits, include the costs avoided by discarding the fish including on-board processing costs 

to the extent they are not included in the net price of fish, P(i). Let us refer to these benefits 

net of the costs as the concave profit function π(d(i),i). Notice that π(d(i),i) may easily be 

negative for all d(i) > 0.  

Given this, total operating profits at time t are: 

 Π = π ( ( ), )d i i
i

I

=
∑

1

. (5) 

And the profit function of the fishing trip is: 

 J = R(T)⋅exp(-r⋅T)+
0

∞

∫ Π⋅exp(-r⋅t)dt. (6) 

4.2 Hold Capacity 

Let us first consider the case where there is an upper bound on the hold capacity of the fishing 

vessel.  This case is characterised by the constraint S < ∞ , where S denotes the hold capacity. 

The profit maximisation problem in this case can be formally stated as: 

 
)(id

Max J = R(T)⋅exp(-r⋅T) +
0

∞

∫ Π⋅exp(-r⋅t)dt (7) 

 Subject to [ ]& ( ) ( )s y i d i
i

I

= −
=
∑

1

 

 &( ) ( ) ( )x i y i d i= −  

 x ≥ 0,  x(0) = 0 

 s ≥ 0,  s(0) = S < ∞ 

 d(i) ≥ 0, all i. 
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The necessary conditions include the basic discarding rule7: 

 d(i) > 0  iff  π d(i)(0,i) > P(i)⋅exp(-r(T-t)) − µ⋅exp(rt), all i and all t. (8) 

The term π d(i)(0,i) represents the marginal benefits at time t (possibly negative) of discarding 

fish of grade i when no discarding takes place. The term P(i)⋅exp(-r(T−t)) represents the 

marginal benefits of retaining fish of grade i discounted to the same time t. The last term in 

expression (8), µ⋅exp(rt), depicts the shadow value of hold space at time T also discounted to 

time .µ⋅exp(rt), i.e., represents additional benefits of discarding. These benefits are zero, 

unless the hold space constraint, s ≥ 0, becomes binding during the fishing trip, i.e., s = 0.8 

Given these explanations, the expression (8) simply states that discarding of fish of grade i 

will occur at time t, if the current marginal benefits of discarding, represented by π d(i)(0,i) + 

µ⋅exp(rt), exceeds the current value of retaining the fish, represented by p(i)⋅exp(-r(T−t)). 

Expression (8) is a generalisation of the discarding rule stated in the first section. The third 

term in (8), represents an increased incentive to discard if hold capacity is expected to become 

binding (i.e. µ > 0), constitutes an addition to that rule. Thus, the discarding rule derived in 

the first part is a special case of the discarding rule represented here. 

Given the important role of µ in discarding rule (8), it is useful to obtain a measure of its size. 

If hold capacity never becomes binding, µ = 0, as already stated. However, if hold capacity 

becomes binding, µ becomes positive. More precisely, we can derive from the first order 

conditions9 that: 

 µ ∈ [0, (P(i) − π d(i))⋅exp(-rT)], (9) 

with the upper limit being applicable for any grade i that is being discarded at time T. 

The upper limit in (9) makes full economic sense. The expression P(i) − π d(i)  is the marginal 

profits of more hold space at time T. p(i) is the marginal revenue in terms of sales and π d(i)  is 

the marginal profits in terms of reduced discarding (now that more space is available). The 

discount factor⋅exp(-rT) simply provides the present value of this marginal benefit. 

4.3 Processing Constraints 

Let us now consider the case where there is an upper bound on the capacity of the vessel to 

process catch. This case is characterised by the constraint  

 Z ≥ 
i

I

i

I

x y i d i
= =
∑ ∑= −

1 1

& ( ( ) ( )) , (10) 

where Z denotes the hold capacity. 

The profit maximisation problem in this case can be formally stated as: 

 
)(id

Max J = R(T)⋅exp(-r⋅T)+
0

∞

∫ Π⋅exp(-r⋅t)dt (11) 

 Subject to &( ) ( ) ( )x i y i d i= −  

                                                           
7 See Appendix 2 for the Hamiltonian equation and the first order conditions for this maximisation 
problem. 
8 See expression (7.4) in Appendix 2. 
9 See expressions (7.1) and (7.2) in Appendix 2. 
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 x ≥ 0,  x(0) = 0 

 Z ≥ ( ( ) ( ))y i d i
i

I

−
=
∑

1

, 

 d(i) ≥ 0, all i. 

The first order conditions yield to the same discarding rule as in (8): 

 d(i) > 0  iff  π d(i)(0,i) > p(i)⋅exp(-r(T−t)) − σ⋅exp(rt), all i and all t. (12) 

It is important to realise, however, that σ in (12), which represents the shadow value of 

processing capacity, is different from µ in (8), which represents the shadow value of hold 

capacity.  

From the first order conditions10 σ > 0 only if processing capacity is binding and zero 

otherwise. Hence in the case of constraining processing capacity, there is an increased 

tendency to discard. In that case, discarding will take place to satisfy the processing capacity 

and the shadow value of processing capacity will be: 

 σ = (p(i) − π d(i))⋅exp(-rt), (13) 

which is similar, but not identical, to expression (10) above and has a similar interpretation. 

The discarding rule under both hold capacity and processing capacity constraints is, 

 d(i) > 0  iff  π d(i)(0,i) > p(i)⋅exp(-r(T−t)) − µ⋅exp(rt) − σ⋅exp(rt), all i and all t, (14) 

where µ  is the shadow value of the hold capacity constraint and σ is the shadow value of the 

processing capacity constraint.  

Rule (14) is a further generalisation of the discarding rule in the first section. If capacity 

constraints are not binding (14), collapses to the optimal discarding rule (8) stated in the first 

section. If capacity constraints are (or will be) binding, rule (14) suggests that there will be an 

increased tendency to discard. 

4.4 Discussion 

What will be the impact of different fisheries management systems, in particular the ITQ 

system compared to unmanaged fisheries, on the discarding rule? Retracing the analysis it 

seems that different fisheries management systems will only affect p(i) directly. Hence, from 

that perspective, different fisheries management systems should not affect discarding due to 

capacity constraints. However, it is not unlikely that different fisheries management systems 

may influence vessel capacity relative to harvesting rates. Hence, the frequency of binding 

capacity constraints may well differ from one fisheries management system to another. In 

particular, it seems likely that in an equilibrium position under an ITQ system, capacity 

constraints are more likely to occur than under free fishing. Hence, for that reason discarding 

may increase.11 

                                                           
10 See expression (12.3) in Appendix 3. 
11 The reader should notice that along the adjustment path toward equilibrium, however, the situation 
may be reversed. 
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Is discarding induced by capacity constraints socially sub-optimal? This is not at all clear. The 

quick answer is that it is socially optimal conditional upon the capacity level. So, in a sense, 

discarding due to capacity constraints appears generally to be at least a second best solution. 

However, if the capacity level is wrong, the discarding level is probably not a first best 

solution.  

 
II. Empirical Research on Discarding 

In this second chapter, the empirical work on discarding is explored. The empirical research 

bases on the theoretical work of Arnason 1994, 1996(a), 1996(b) presented in the first 

chapter. The papers from Arnason 1998, T.B. Davíðsson 1997 and C. Therond 1998 are 

summarised in this chapter. 

The paper by Daviðsson describes a general methodology for conducting an indirect 

measurement of discarding based on a comparison of length distributions for catch and landed 

catch. Catch Distribution reflects the varying lengths of cod, which are caught while the 

harvesters are at sea. Landed catch distribution, or Landings Distribution, on the other hand 

reflects the varying lengths of cod which fishermen bring ashore to sell on the markets, to 

distributors or straight to consumers. The discrepancy between these two independent 

measures of size distribution can be attributed to discarding of catch at the sea. Different 

fishing gears, line and bottom trawl, are included in the distribution function, as the 

equipment selectivity can make the catch distribution quite different from the total 

distribution since its purpose is to target the higher value grades. 

The data used to obtain the Catch Distribution is from (Fiskistofa) Fisheries officers and 

includes a large number of length observations from all fishing grounds. The data is collected 

upon requests from Fisheries officers; it does not follow any particular pattern. Hence a slight 

downward bias is expected in this data. But there is data available for cod 1995 and 1996 

collected for MRI’s annual VPA stock estimation. These measurements on the other hand are 

collected sequentially from each fishing ground; they are frequent and constitute a major part 

of the data. 

The information for the Landings Distribution, the landed catch, while recorded by the fishing 

companies may not be available for research purposes. Certain companies are vertically 

integrated from the harvesting to the processing stage and therefore do not enter the market to 

sell the landed fish. The MRI has data on landed catch but the measurements are neither 

frequent nor thorough compared to the data on catch distribution. Hence information from one 

of the fish markets sales (Islandmarkaður), is used as an alternative method. Each day, the 

landed catch of non-integrated fishing vessels is bid on and sold through fish markets. 12-

15% of the total catch is sold through these markets. Assuming that the daily quantity sold 

through the market is a good estimation of the actual landed catch distribution, Daviðsson 

uses the following formula suggested by MRI to convert the weight classes of the market data 

into length categories to be able to compare both distributions. Weight = A* (Length)B, where 

0.01 and 3 are the constants assigned to A and B respectively.  

 

 



 18 

The results are shown in the following figures: 

 

Fig. 4 

 

Fig. 5  

In the above figures the shaded area shows the discrepancy between catch and landings 

distribution in line and bottom trawl fisheries. This discrepancy is interpreted as discarding of 

fish. One can see from above that nearly all cod smaller than 50 cm is being discarded in 

fisheries using bottom trawl but this tendency decreases rapidly as there is no evidence that 

fish larger than 50 cm is discarded. The incentive to discard smaller categories in bottom 

trawl fisheries is higher because the fishermen expect to get a high category catch in the next 

haul. For the line fisheries discarding is high for the smallest category and decreases gradually 

It is different from bottom trawl fisheries in that there is some discard of fish larger then 50 

cm. 

Arnason (1998) argues that the discrepancy between Catch and Landings Distributions can be 

explained as well by other factors than discarding of fish. The first alternative explanation is 

the existence of various measurement errors in the data. He detects in the data of Daviðsson 
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(1997), sampling errors in the data collection at sea and sampling errors in the estimate of size 

distribution of the landings. Moreover, Arnason criticises the use of landing statistics from 

only one market, Islandsmarkaður. The reasons are twofold. First this market represents only 

a small fraction of cod landings in Iceland (5-7%) and second this market disproportionately 

receives catch from a certain geographical area with a size distribution of cod catches 

different (in fact larger) from other parts of the country. 

Different fishing selectivity in the Catch Distribution and Landings Distribution can be a 

possible explanation as well. The harvesting selectivity of commercial vessels landing catches 

to the fish market can be different from that of the overall fleet reflected in the MRI Catch 

Distribution. The majority of the fleet does not normally sell their catches through the fish 

market but rather on a variety of long term contracts to processing plants directly. Moreover, 

the composition of the fishing vessels supplying to the processing plants directly and the ones 

supplying to the fish markets are probably quite different. 

The last explanation, also the one theoretical prediction supports (Arnason 1996) is the 

discarding of fish. But the author points out that one should be careful in interpreting the size 

of discrepancy, as there could be several explanations. 

Arnason develops a formula to calculate discarding volumes on the basis of size composition 

of catch and landings. The formula is the following: 

 d(i) = l⋅[b(I)⋅a(i) - b(i)⋅a(I)]/ a(I)  

d(i) represents the discard, l total volume of landings, a(i) the percentage share of size class i 

in the catch of a given species, b(i) the percentage share of size class i in the landings of a 

given species. a(I) and b(I) are used to estimate y; they are the percentage shares respectively 

in the catch and in the landings of size class I, the class that is supposed to be not discarded at 

all. From the above formula one can calculate the discarding volume directly as a function of 

observable quantities only. The author applies the formula to Daviðsson’s data and obtains 

higher discard rates. It is emphasized therefore in his article that we should be more careful 

when interpreting the results because of the various simplifying assumptions, because of the 

inaccuracies of the data and because of the rough nature of the calculations. We should see 

the results as examples of how particular data in question can, with the help of the above 

formula, can be used to obtain estimates of the catch. 

To test whether there is a significance difference between the Catch Distribution and 

Landings Distribution used in Daviðsson work, Therond (1998) applies a Kolmogorov 

Smirnov (K-S) test. This is a method used when the mathematical distribution function is 

unknown. K-S test consists in using a sample to build a confidence band, in which the 

function will be contained with a specified probability. Therond finds that both in line and in 

bottom trawl fisheries there is a significant difference between catch and landings 

distributions. So she concludes that there has been discards in both fisheries. 
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Therond also analyses the discards in 1989, before the full adoption of ITQ system. Even 

though the quotas already existed during this period, the effort quota option allowed 

fishermen to avoid the quota restriction. Therond tests to see if there was a significant 

difference between catch and landings distribution in line and trawl fisheries in 1989. These 

tests show that the discards existed before the full adoption of ITQ system. Therond shows 

further that the introduction of the ITQ system did not increased the incentive to discard in the 

line fishery. This is not surprising as in 1995, most of the boats engaged in line fishery were 

small boats that were still not under the quota system because of small boat exemption. On 

the other hand, she finds that in the trawl fishery a higher proportion of large cod was landed 

in 1995 than in 1989. Therond proposes three explanations: 

1. Discarding has increased. 

2. Some changes occurred in the composition of the cod stock. 

3. Some changes occurred in the method of fishing with trawl. 

The second explanation is rejected because of the results of the line fishery. Therefore the 

change in the size distribution of cod can be explained either by the increase of discards or by 

the change in the way fishing with trawl. Taking account the fact that quotas allow fishermen 

to take their time to fish more carefully, both explanations can be valid. 
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Appendix 1 

The necessary conditions for solving problem (I) are : 

 π e  − µ · Σ iYe ≡ Σ i(p(i) – CLl) · Ye – CEe − µ · Σ iYe ≤ 0, 

 e ≥ 0, e · (π e  − µ · Σ iYe) = 0,  (I .1) 

 π d(i) ≡ - p(i) + CLl(l(i)) – CDd(d(i)) ≤ 0,  d(i) ≥ 0,  d(i) · πd(i) = 0,  all i.  (I .2) 

Proof of Proposition 1 

In an undifferentiated fishery the number of catch grades is unity, I = 1. Assume that d(1) > 0. 

Then, according to (I .2), p(1) – CLl(1) = - CDd(1). Substituting this into (I .1) yields  

– (CDd(1) + µ) · Ye(1) – Ce ≤ 0. But the right hand side is actually strictly negative 
because profit maximisation requires µ ≥ 0. Consequently, by (I .1), e = 0. Thus, there 
is no catch to discard and d(1) = 0. This contradiction proves the proposition. 

Proof of Proposition 2 

This is immediate. For I ≥ 2 it is clearly possible to select p(1), p(2), such that e > 0  and   

Г(2) > 0  for given x, CLl(y(i) – 0, i) and CDd(0,i). 

Proof of Proposition 3 

Again, the proof is immediate. For a given number of grades, I, x, CLl(y(i) – 0, i) and CDd(0,i) 

simply increase all p(i) until Г(i) < 0 for all i. 

Appendix 2 

Hold Capacity 

To study this problem, it is useful to form the Hamiltonian Equation: 

 H = π ( ( ), )d i i
i

I

=
∑

1

⋅exp(-r⋅t) + λ µ
i

I

i

I

i y i d i y i d i
= =
∑ ∑⋅ − − ⋅ −

1 1

( ) ( ( ) ( )) ( ( ( ) ( )) , (8) 

where the Lagrange multipliers λ( )i ,  i =1,2,…I, represent the shadow value of landings of 

fish of grade i  and the Lagrange multiplier µ  the shadow value of available hold space in the 

vessel. 
The necessary conditions for solving problem (6) include the following12: 

 Hd(i) =π d(i) ⋅exp(-rt) −λ(i) +µ ≤ 0,   d(i) ≥ 0,   d(i)⋅Hd(i) = 0,  ∀i.  (7.1) 

 λ(i) = P(i) ⋅exp(-rT), ∀i. (7.2) 

 µ  is a constant. (7.3) 

 µ(T) ≥ 0, s(T) ≥ 0, µ(T)⋅s(T) = 0. (7.4) 

 

 

 

 

                                                           
12See e.g. Leonard and Van Long (1992). 
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Appendix 3 

Processing Capacity 

The Hamiltonian for this problem is: 

H = π ( ( ), )d i i
i

I

=
∑

1

⋅exp(-r⋅t) + λ σ
i

I

i

I

i y i d i Z y i d i
= =
∑ ∑⋅ − − ⋅ − −

1 1

( ) ( ( ) ( )) ( ( ( ) ( )) , (13) 

The necessary conditions for solving problem (13) include the following: 

 Hd(i) =π d(i) ⋅exp(-rt) −λ(i) +σ ≤ 0,   d(i) ≥ 0,   d(i)⋅Hd(i) = 0,  ∀  (12.1) 

 λ(i) = p(i) ⋅exp(-rT), ∀i.   (12.2) 

 σ  ≥ 0,   Z − ( ( ) ( ))y i d i
i

I

−
=
∑

1

≥ 0,  σ⋅( Z − ( ( ) ( ))y i d i
i

I

−
=
∑

1

 = 0.   (12.3)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


