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Abstract

The observed transaction prices on a stock market at discrete time points are assumed to

be a sample from a continuous time-value process. The theory of an e�cient market is used

as motivation for a random-walk type model. The fact that bid-ask spread and other mi-

crostructure phenomena exist is accounted for by adding a noise term to the model. Models

for elementary detrending based on stochastic processes in continuous time are set up. For

empirical analysis, they are formulated in state-space form, and calculations are performed

with the Kalman-�lter recursions. The result is an analytical way of decomposing the ob-

served transaction price change into a value innovation and a market noise component. The

respective innovation standard deviations and market noise standard deviation are easily in-

terpreted. Some alternative stochastic structures are considered and applied to data from the

Iceland Stock Exchange.

Keywords: Di�usion processes, state-space models, �nancial data, infrequent trading.



1 Introduction

The value of a �nancial asset is of interest, and up-to-date information is needed for optimal

decision-making. Cash or money in the bank is immediately transferable to goods in the

store so information on the value can be obtained at each time point by counting without any

uncertainty involved. In highly active �nancial markets, assets with high liquidity have similar

properties, the holder of the asset follows the reported statistics with certainty similar to that

of a statement from a bank. The goal of this paper is to develop and test tools for reporting

the status of an asset traded on a �nancial market characterized by �infrequent trading�.

The nature of a �nancial market is that trading takes place at discrete time points. If

the time intervals between trading tend to be long, the trading is viewed as infrequent. The

problem of infrequent trading describes a situation of uncertainty about the value of assets.

This uncertainty calls for some estimation of the value between trades. The estimation is

essentially a kind of a forecasting exercise. Based on history, we calculate at any point in

time an estimate of the value. When trading takes place, we obtain a measure of the quality

of this estimate. O�cial data reported from �nancial markets are typically time-series data,

containing information of closing prices, last bid/ask, highest/lowest price of the day, etc. So,

when closing prices are reported, it is essentially a forecast, stating that the last transaction is

an objective measure of the value, and that nothing has happened in the time from last trade

to closing time.

The theory of e�cient markets describes the behavior of prices under ideal conditions. By

de�nition of an e�cient market, one should not be able to make a pro�t by forecasting future

prices. The e�cient market hypothesis implies a kind of martingale probability structure. The

simplest model of that type for returns in a �nancial market is the random-walk model. It

captures the non-forecast-ability feature of the ideal conditions. The quoting of last trading

prices as the current value is essentially just an application of this model. Therefore, the fact

that the observed auto- and cross-correlation of observed returns seem to yield scope for pro�t

has puzzled many authors. Explanations have been suggested, such as that this is somehow

due to infrequent trading, non-synchronized trading, bid-ask spread, asymmetric information,

etc. (Campbell et al., 1997; Glosten and Milgrom, 1985). Campbell et al. (1997) give a review
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of how such phenomena could possibly a�ect the sample autocorrelation function estimated

from reported closing time prices. Some authors have developed computational procedures

to correct for such microstructure e�ects, perhaps the most well-known is the Scholes and

Williams (1977) method for calculating betas in CAPM models under non-synchronized trad-

ing. The market microstructure literature is full of empirical examples showing that empirical

returns have signi�cant autocorrelation structure, seemingly contradicting the e�cient market

hypothesis. For further discussion on the e�cient market hypothesis, see, e.g., Cuthbertson

(1996). The market microstructure literature deals with explaining the di�erence in theoreti-

cal and observed phenomena of the market. A review of market microstructure theory is given

in O'Hara (1995).
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True value

Last trade

Figure 1: True value process and observed process.

Ait-Sahalia (1998) shows a mathematical model with a monopolist specialist market

maker and agents, where all participants in the market optimize their respective utility

functions. The resulting optimal behavior generates an observed process with a correlation-

structure di�erent from that of a random walk. The optimization problems of agents in the

market are also discussed by O'Hara (1995).

It is not realistic to assume that this trend is constant over time.

In this paper, the optimizing problem of agents in the market is not treated nor is the the-
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ory of e�cient market contested. The focus is on de�ning a simple stochastic model capturing

the features of observed data resulting from infrequent trading. The phenomena of infrequent

trading is illustrated in Figure 1. The jagged curve represents the value at each time point,

whereas the jumping one is a continuous extrapolation of last-observed transactions. The aim

is to get an up-to-date, on-line estimate of the value of a �nancial asset. The base will be

a random-walk model, which is augmented in a simple way. The key idea is to add a noise

component to the random walk model so that the observed transaction price is composed of

a market signal describing value dynamics and a noise term capturing microstructure phe-

nomena. The interpretation of the noise component is that it is an estimate of the size of all

microstructure phenomena. Typically the bid-ask spread would contribute to such a compo-

nent. For markets with infrequent trading, data on bids and asks are also likely be infrequent.

For assets where there are no market makers some of the time, the quality of bid-ask data as

well as statistical modeling of it might also raise di�culties. The setup of the model as market

signal plus noise also allows for simultaneous transactions at di�erent prices. The standard

deviation of the noise term gives an objective measure of the spread of such transactions.

Graphical inspection of many �nancial time series often reveals a persistent trend. Assets

on a �nancial market compete with money in the bank, and the fact that interest rates are

generally positive suggests that a realistic model for the development of value in time should

contain a drift term. The random-walk model consistently underestimates trend so it could

be argued that for a credible signal-noise analysis, some kind of detrending is necessary. Four

types of trends in a continuous-time stochastic process are considered: �rst, no drift; second,

a constant drift; third, a random walk drift and fourth, a mean-reverting stationary drift.

Detrending is performed by estimating a model containing a given drift structure.

The fact that transactions only take place at discrete time points calls for an adaption

of the continuous-time model to a discrete one. The popularity of continuous-time stochastic

process models in �nance has increased in recent years due to the work of people like the Nobel

prize winner Merton, see, e.g., Merton (1990) and others. From a statistical viewpoint, it is

not clear how to deal with the estimation of drift and di�usion of a continuous-time process

where it is not even possible to perform approximately sampling in continuous time. The
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basis of the approach taken here is to assume a very simple form of the drift and di�usion

terms and set up a state-space model, distinguising between the observed price and the true

value. The state-space model consists of a state-equation, describing the dynamics of the

true unobservable state and a measurement equation, describing the composition of state and

noise. A feature of this approach is that it incorporates the fact that at the same time point,

it is possible to have two or more observed prices, whereas it is assumed that value is unique,

i.e., the approach is that observed prices are noisy measurements of true value.

The model considered will assume that the log of observed prices consists of a random-

walk signal, analogous to the e�cient market hypothesis, with added noise independent of the

signal. The size of the signal, i.e., daily innovations, is related to the size of the noise by the

ratio of the respective standard deviations.

The goal of this paper is to design descriptive measures for market development in thin,

newly developed markets with infrequent trading and low volumes. The slow trading rep-

resents rare sampling of a continuous value process at discrete time points. The estimated

standard deviations for the signal and the noise, respectively, give an objective measure of

market behavior of individual stocks. Some simple continuous-time stochastic process models

are de�ned in Section 2. The choice of models is such that the traditional way of report-

ing, i.e., reporting the last transaction as an estimate of value, is a special case of the model

considered. The scope for very complex models is not feasible when data are sparse. The

observational models for the discretely observed empirical process are de�ned in Section 3.

The model is naturally represented in a state-space form, which is ideal for computational

purposes. The state-space setup together with the Kalman-�lter yields on-line estimates of

the state vector, i.e., value and trend, at each point in time together with an uncertainty mea-

sure of these estimates. Together with the estimated standard deviation of the noise, they can

be used to calculate a probability-based interval for the price in an eventual transaction. The

interpretation of these quantities for the state of the market is straightforward. Authorities

on stock markets monitor trading in order to detect eventual foul play. It is, for example,

possible to use the methods presented here to give objective benchmarks. In Section 4, the

models are applied to Icelandic stock market data, and parameters are estimated by numer-
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ically maximizing the normal likelihood. The choice of the normal likelihood is partly based

on computational reasons. The results could be interpreted as quasi-maximum-likelihood.

Section 5 contains discussion of the methods and future research.

2 The models

Modeling the dynamics of stocks and other �nancial assets is often based on some form of

Brownian motion. The simplest one is perhaps a pure random-walk model, i.e:

dS(t) = �dW (t) (1)

where W (t) is standard Brownian motion, (W (0) = 0; V (W (t)) = t). A popular version

assumes that the relative prices (log-prices) follow Brownian motion, i.e., that the absolute

prices follow geometric Brownian motion. The best known case is perhaps the Black-Scholes

model.

dS(t) = �S(t)dt+ �S(t)dW (t) (2)

dB(t) = rB(t)dt (3)

where S(t) denotes the value of a certain stock at time t, and B(t) denotes the value of a

bank account at time t. Model based on equation systems such as equations (2) and (3) play

an important role in the option pricing literature (Björk, 1998). The modern mathematical

�nance literature treats more general forms of di�usion models than equation (2) (Merton,

1990; Shiryaev, 1999).

The traditional approach, e.g., the use of last observed prices as a proxy for value at closing

time, is essentially forecasting future value with the last observed price, which corresponds to

using equation (1) on equidistant time spaces.

In the present paper, just as in equation (2), the approach is based on geometric Brownian

motion. The motivation is the author's belief that behavior of relative price changes is closer

to Brownian motion than that of absolute price changes. The initial model considered is:

d�(t) = �dW (t) (4)
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where �(t) = log(value at time t). The notation of using �, rather than log(S), is to emphasize

that the value is interpreted as a latent variable. The market microstructure literature suggest

that the empirical performance of equation (4) is not satisfactory. A simple, straightforward

extension of the model is to add a noise term. The observations on the market are then given

by

y(t) = �(t) + "(t) (5)

where y(t) = log(observed prices at time t). The second term in equation 5, "(t), can be

interpreted as some kind of market noise, e.g., due to bid-ask spread, or how di�erent observed

prices at the same time-point can be. The variance of "(t), �2" , is a measure of this variability.

Equation (4) together with equation (5) represents a simple extension of the model,

�today's value=best prediction for tomorrow�. This extension represents a random-walk model

with added noise linking together the concepts of transaction price and true value. The

fact that a pure random-walk model underestimates trend, often observed in �nancial data,

suggests that a drift parameter, like �, in equation (2) should be included. The simplest case

is to add a constant drift. The notion of constant drift may not be realistic. As the cycles in

a �nancial market are conceivably steeper than those of a random-walk, it may be preferable

to let the drift itself be a stochastic process. A straightforward extension is to assume that

the drift itself is a random-walk.

d�1(t) = �2(t)dt+ �1dW1(t) (6)

The function �2(t) is the drift and is assumed to be stochastic and to follow its own di�usion:

d�2(t) = �2dW2(t) (7)

On vector form equations (6) and (7) can be written:

d�(t) = A�(t)dt+ CdW (t)

where �(t) = (�1(t); �2(t))
0, W (t) = (W1(t);W2(t))

0 and:

A =

2
4 0 1

0 0

3
5 and C =

2
4 �1 0

0 �2

3
5 (8)
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A model of this type is more �exible and conceivably picks up more persistent movements

than those of the random walk.

A property of this model's forecast function might be a drawback from an infrequent

trading point of view. In the period of no observations, the point forecast is the last estimated

value prolonged with the last estimate of the drift. A possible remedy is to modify the model

so that the long horizon forecast is more conservative. One possibility for achieving this is to

assume that the drift follows a mean-reverting process, e.g., of Ornstein-Uhlenbeck type:

d�1(t) = �2dt+ �1dW1(t)

d�2(t) = �(�2(t)� r)dt+ �2dW2(t)  � 0 (9)

The parameter r represents the mean for the �2(t) process, and  represents the speed of

reversion to the mean. In matrix form it is:

d�(t) = A�(t)dt+ bdt+ CdW (t) (10)

with

A =

2
4 0 1

0 �

3
5 and b =

2
4 0

r

3
5 (11)

and, as before, the observed log-price is

y(t) = �1(t) + "(t) (12)

The di�erence between equation (5) and equation (12) is that �1(t) in equation (12) contains

drift. The model in its most general form, equations (10) and (12), includes the other models

in the section as special cases. The parameter vector � = �"; �1; �2; ; r is easily interpretable

as well as estimatable. The models are labeled M1; : : : ;M4, see Table 1.

Table 1 summarizes the model structures involved. The theoretical �nancial literature

typically treats �" = 0 (Björk, 1998; Merton, 1990; Shiryaev, 1999) which does not allow

simultaneous transactions at di�erent prices. The interpretation of the parameters and the

states is easy. The state �1 represents level of value; the state �2 represents trend of value;

�" represents standard deviation of market noise; and �1 and �2 represent standard deviation

of input signals.
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Model Type

M1 Brownian motion with added noise

M2 Brownian motion with added noise and deterministic trend

M3 Brownian motion with added noise and Brownian motion drift

M4 Brownian motion with added noise and Ornstein-Uhlenbeck drift

Table 1: Model types analyzed

3 Dealing with discrete data

Continuous sampling is only possible in theoretical situations, and the possibility of approx-

imating continuous sampling by decreasing the sampling interval is only an option when the

sampling can be controlled. In the case of �nancial market data, the sampling process cannot

be controlled, and in the case of infrequent trading, the time interval between sampling points

can become considerable. In the this paper, the technical problem of discrete sampling is cast

in the framework of state-space analysis for time series. The notation is based on Harvey

(1989). Data on log-observed prices y(t) are obtained at discrete time points t1; t2; : : : . The

models in Section 2 are linear stochastic di�erential equations. Solving these at time point ti

given ti�1 gives:

�(ti) = eAÆi�(ti�1)+

Z ti

ti�1

eA(s�ti�1)bds+

Z ti

ti�1

eA(s�ti�1)CdW (s) (13)

where Æi = ti� ti�1, and A is given by equation (11). Equation (13) represents the dynamics

of the unobservable state vector between observation time points. Equation (13) together

with the observation equation, (12) �ts directly into a state-space representation. With some

algebraic manipulations, shown in appendix A, equation (13) can be written as:

�(ti) = T (ti; ti�1)�(ti�1) +

2
4 Æt � g1(Æi; )

g1(Æi; )

3
5+ �(ti; ti�1) (14)
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with the matrix controlling the transition between time ti and ti�1 given by

T (ti; ti�1) =

2
4 1 g1(Æi; )

0 e�Æi

3
5

The variance of the innovation from time point ti�1 to time point ti, �(ti; ti�1) is given by

Q(ti; ti�1) = V (�(ti; ti�1)) =

R ti
ti�1

2
64 �

2
1 +

�2
2

2
(1� e

�(s�ti�1))2
�2
2


(1� e

�(s�ti�1))

�2
2


(1� e

�(s�ti�1)) �
2
2

3
75 ds = (15)

2
4 �21Æi + �22g3(Æi; ) �22g2(Æi; )

�22g2(Æi; ) �22g1(Æi; 2)

3
5

where (see appendix A)

g1(Æ; ) =
1


(1� e�Æ)

g2(Æ; ) =
1


(g1(Æ; ) � g1(Æ; 2))

g3(Æ; ) =
1

2
(Æ � 2g1(Æ; ) + g1(Æ; 2))

These formulas �t directly into the Kalman-�lter recursions (Harvey, 1989). Conditional on

information available at time ti�1, �(tjti�1), denotes the estimate of the state vector at time

t. The corresponding covariance-matrix of this estimate is P (tjti�1). The are calculates with

equations (16) and (17).

�(tjti�1) = T (t; ti�1)�(ti�1jti�1) +

2
4 t� ti�1 � g1(t� ti�1; )

g1(t� ti�1; )

3
5 (16)

P (tjti�1) = T (t; ti�1)P (ti�1jti�1)T (t; ti�1)
0 +Q(t; ti�1) (17)

Given that a transaction takes place at time ti, the predicted value, ŷ(ti) and the variance of

the corresponding prediction error are given, respectively, by equations (18) and (19).

ŷ(ti) = [1 0]�(tijti�1) (18)

f(ti) = [1 0]P (tijti�1)[1 0]0 + �2" (19)

The �rst term in f(ti) is due to the uncertainty in the estimation of the state, and the second

term is due to the existence of the noise term. (These terms are analogous to the terms in
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the variance of the prediction in regression analysis.) On the arrival of new information, i.e.,

a transaction, y(ti), at time point ti, the estimate of the state vector and its corresponding

covariance matrix are updated with the updating equations (20) and (21).

�(tijti) = �(tijti�1) + P (tijti�1)(y(ti)� ŷ(tijti�1))=f(ti) (20)

P (tijti) = P (tijti�1)� P (tijti�1)[1 0]0[1 0]P (tijti�1)=f(ti) (21)

The parameters (�"; �1; �2; ; r) may be obtained by maximizing the normal likelihood

function.

log(L(�"; �1; �2; ; rjyt1 ; : : : ; ytn)) (22)

= �
n

2
log(2�) �

1

2

nX
i=1

log(f(ti))�
1

2

X
v(ti)

2=f(ti)

The likelihood is calculated with the Kalman-�lter, using the formulas above.

Some remarks on interpretation: At each point in time, t, one can calculate an estimate

of the value of a stock conditional on the information gained by the last transaction at time

tl, i.e., �1(tjtl). If �2 > 0, then �2(tjtl) is an estimate of the drift. The values of P (tjtl)

can also be calculated on-line and give an estimate of the uncertainty of the value and drift

estimates. On-line calculation of the prediction-variance f(tjtl) is also straightforward. The

on-line calculation of f(tjtl) gives an objective measure of how far from the predicted value

an eventual transaction is expected. It is conceivable that authorities at the stock exchange

could use such an objective measure for monitoring and perhaps controlling eventual foul play

in the market.

The approach given above results in the traditional way of reporting, i.e., reporting closing

prices, as a special case. Applying this model with �" = �2 = 0 gives the same result as

reporting last transaction price as value. The assumption �" = 0 is obviously unrealistic in

markets where it is possible to trade simultaneously at two di�erent prices. Using �" > 0 may

also be realistic when transactions are never simultaneous, e.g., to interpret bid-ask spread

and other microstructure phenomena. The assumption of a �xed drift, (�2 = 0; r > 0), is
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unrealistic for stocks but might be appropriate for bonds. Relaxing the assumption �2 = 0

will introduce a stochastic drift and allows for more persistent movements than those of the

random walk. This would however mean that there is a local drift, which perhaps is more

likely to �t a bond market than a stock market. When �2 > 0, putting  > 0 sets a bound

on the drift term so it cannot wander away. In practical situations, the �t might be similar to

the case  = 0. The Kalman-�lter prediction equation gives an on-line estimate of the value

and an uncertainty measure. The estimated value of �" gives an idea of the size of market

noise. The recursive nature of the Kalman-�lter requires some initial values for the state vector

�(t0jt0) and the corresponding covariance matrix P (t0jt0). The Kalman-�lter recursions are

repeated application of the Bayes rule, and these initital values are needed to represent an

inital guess of the state and the uncertainty of that guess. A natural way of quantifying the

situation of knowing little about the state is to assign large values to the diagonal elements of

P (t0jt0). Another possibility would be to estimate the initial values directly from data, i.e.,

by adding them as parameters to the likelihood function(equation (22)).

4 Some empirical results

These ideas were tested on data from the Iceland Stock Exchange (ISE). The ISE is an

automated, computerized market, which opened in 1991. Active trading started in 1993 and

has gradually increased, in both the number of companies registered and trading intensity.

By the year 2000, over 70 companies were registered. The accessible data consist of every

registered transaction since the opening of the ISE. The distribution of the transactions is

tabulated in Table 2. For the years 1995-1999, the extreme quantiles seem pretty much

constant, whereas there might be some upward drift in the center of the distribution. The 1

percent quantile in this period is very close to the tax-deduction limit. There seems to be an

upward trend in the center of the distribution.

Data for all transactions on the market were available from the opening till February 24th

2000. The variables observed were, stock number, price per share, volume in number of shares

and time of transaction. The dates of each companies' annual meeting of shareholders were

also available. A total of 76 stocks were traded in a little over 76000 transactions with the
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least traded stock only traded three times. The parameters of the models in Section 2 were

estimated with the methods for discretely sampled data described in Section 3. The number

of transactions has increased on average by 5% each month from 1993 to 2000, see Figure 2.

The outliers in Figure 2 are due to heavy trading in December, in particular on December

31st.

Year q0:01 q0:1 q0:25 q0:5 q0:75 q0:90 q0:99 n

1993 20185 68629 100188 150415 252241 853120 6073847 1878

1994 24634 74605 117000 172000 335997 879500 5698800 2605

1995 130168 139100 200800 324000 757770 1815000 11400000 2701

1996 130020 150500 240000 400256 921000 1904000 10909000 5256

1997 130002 154724 244096 456000 971508 2190000 10500000 11821

1998 130074 176000 272337 555000 1010005 1944200 8080400 12350

1999 131078 197626 331500 773499 1320000 2860287 9900000 30153

Table 2: Quantiles of transactions in Icelandic kronas.

The activity in December is partly due to tax regulations, i.e., agents are buying tax

deductions at the end of the year. The development of monthly turnover is described in

Figure 3. Regression suggests that monthly turnover has increased by about 6% a month

from 1993 to 2000.

There were several practical implications. The stochastic processes given by the de�nitions

in Section 2 are of a continuous path type. The board of a company can make decisions that

imply a jump in the value. Therefore, an extra parameter was added. This parameter is a

constant that was used to multiply the variance matrix of the innovation if the transaction

time was within 20 days from the annual meeting. Close to the annual meeting one might

suspect that there are agents trading for a political position in the company. To allow for

such a strange period of trading, the likelihood was then based on a modi�ed variance matrix

for the innovations. Generally, the innovation covariance matrix, Q(t; ti�1) from equation 15
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was used, but if t was closer to the annual meeting than 20 days, it was replaced by:

�Q(t; ti�1) (23)

The idea with equation (23) is to allow for large innovations close to the annual meeting. The

initial estimate of the state-vector �(t0) and the diagonal elements of its covariance matrix

P (tjt0) were also estimated. The estimate of the parameter �", the measurement noise, can

be concentrated analytically simply by taking the derivative of the likelihood equation and

solving the resulting equation. The remaining parameters have to be estimated numerically.

The parameters estimated are shown in Table 3. The time variable, t was measured in days.

Model Parameters estimated

M1 �", �1, �1(t0),P11(t0),�

M2 �", �1, �1(t0), �2(t0), P11(t0),�

M3 �", �1, �2, �1(t0), �2(t0), P11(t0), P22(t0), �

M4 �", �1, �2, , r,�1(t0), �2(t0), P11(t0), P22(t0), �

Table 3: Parameters estimated in the models analyzed

In the most complex case, M4, there are 10 estimated parameters, of which �ve are

of interest, and �ve are nuisance parameters. It is therefore clear that we cannot expect

sensible results for small data series. The likelihood function was calculated with a Fortran

subroutine, and the optimization was performed with the nlm routine of the R-statistical

package(Ihaka and Gentleman, 1996). The numerical routines converged easily for over 70

stocks, and estimates of the parameters were obtained. Graphical inspection of most series

suggests a long-term trend in most series, but the maximized log-likelihood values show that

the trend is generally not statistically signi�cant. The numerical estimates of the long-term

drift suggest that the magnitude of the drift is mostly at a sensible level. A scatter plot of

�" versus �1 is shown in Figure 4. The �gure suggests that the low noise stocks tend to

have strong signals. The signal-to-noise ratio of standard deviations plotted against trading

intensity is shown in Figure 5. There seems to be a strong relationship that more trading
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intensity leads to a higher signal-to-noise ratio. This result is by no means a natural one. It

is is seen in Figures 6 and 7 that all of the rarely traded companies have high �", and the

frequently traded ones have high �1. Figure 7 suggests that higher intensity leads to higher

volatility. The explanation is that the companies with the highest intensity are traded in a

short period of high volatility, see e.g., stock number 76 in Figure 80. From Figure 6 it is seen

that the noise is smaller for stocks traded more often. This is a quite natural result because

rarely traded stocks are prone to more bargaining due to higher uncertainty, and agents put

a price on liquidity.
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Figure 4: Signal �1 versus noise �"

The numerical estimates of �" vary from about half a percent up to a few percent. This

is natural range keeping in mind what could be expected from guessing a reasonable bid-ask

spread. The interpretation of the graphs is straightforward: lower liquidity means higher noise.

This is analogous to theories on the relevance of the bid-ask spread (Campbell et al., 1997).

The results suggest that the estimate of �" is not much a�ected by the other parameters.

To get a grip on the reality behind the parameter estimates, it is useful to look at some

speci�c stocks. Stock number 76 enters the market in late 1999. During four months, there

are 1305 transactions, and the market price increases over 50%. The period is 136 days, of
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which the market was open for trading 97 days. Of these 1305 transaction there are 434, cases

of zero time interval. For example, at a particular time point, all in the same second four

transactions took place at the prices of 32.20, 32.40, 32.60 and 32.80. The standard deviation

of the logarithm of these four numbers is 0.0079, which is close to the maximum-likelihood

estimate of �̂" = 0:0073, so it could be argued that this is a representative sample! Each of

the four transactions included 20,000 shares. The estimate of signal-noise ratio �̂1=�" = 11:5

is of course extreme. A few seconds before, there was a transaction of 20,000 shares at a price

of 32.00; half a minute later there were a couple of transactions of 20,000 and 40,425 shares,

respectively at a price of 33.00 and two minutes later there was a transaction of 100,000 shares

at a price of 33.30. Simultaneous (at the same second) transactions at di�erent prices can

occur as the order book may contain many asking bids, say one for 1000 shares at 1 another

for 20,000 shares at 1.2 and the third, for 100,000 shares at 1.5. Then a buyer comes and clears

the entire order book and buys everything that is for sale. Similar circumstances may hold

for the buying bids. There might be many o�ers on both sides, and there may be none. On

the Iceland Stock Exchange some companies have made agreements with institutions, such as

0 2 4 6 8

0
2

4
6

8
10

12

Transactions per day

σ̂ 1
σ̂ ε
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Figure 5: Signal-to-noise, �1=�", versus trading intensity.
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banks, to act as market makers to ensure liquidity with their stock. These institutions commit

themselves to maintaining permanent bids and asks. Other companies might not have any

such agreement. In such an environment, it is hard to say what the bid-ask spread really is.

The interpretation in this paper is that the parameter �" picks up latent bid-ask spread and

perhaps other market microstructure phenomena.
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Figure 6: Noise versus trading intensity.

The data for each stock is shown in Figures 8 to 80. The scales in the �gures are di�erent

in order to illustrate the behaviour of each individual stock. The estimation results of models

M1; : : : ;M4 are given in Tables 4 to 76. The dates of the annual meeting are marked by

M. The standard deviation of the noise ranges from half a percent up a few percent. The

maximized log-likelihood does no in most cases suggest signi�cant improvements in �t from

model M1 to M4. The log-likelihood values are generally very similar for models M2 and M3.

The eventual improvement in �t is usually due to the inclusion of drift, whereas the step from

M2 or M3 to M4 is marginal. The drift parameter, r, is drift per day. The estimated yearly

rate is exp(365 � r̂), so a 10% yearly rate is re�ected by r = log(1:1)=365 = 0:00026. The

natural magintude of r is deemed to be roughly 0.0001, and it is natural to assume that the

standard deviation of changing drift is of similar magnitude. Skewness and kurtosis of the
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scaled prediction errors, (y(ti) � ŷ(ti))=f(ti), are shown. The distribution is generally not

severely skewed, but kurtosis is generally high.
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Figure 7: Signal versus trading intensity.

Stock number 2 is one of the most regularly traded stock, on the market with 6086

transactions in eight years. In Figure 9 it can be seen that there is a steady upward drift except

for periods around the annual meeting. The inclusion of trend for this stock is statistically

the most signi�cant of all stocks, log � likelihood(M2=M1) = 5. The standard deviation of

the noise, �" = 0:6%, is among the lowest in the study. The standard deviation of the daily

innovations(�1) is around 1%, which is also among the lowest in the study, indicating that

investing in stock is quite risky. The drift r = 0:0007, suggests a yearly increase in price of

around 30%. Models M3 and M4 have �̂2 = 0, which gives the unrealistic interpretation of a

constant drift.

Data for stock number 18 are shown in Figure 25, and estimation results are given in Table

21. There are 929 transactions in six years. There is a period of rapid increase, another period

of persistent decrease and then rapid increase again. Although not statistically signi�cant,

the case of stock number 18 illustrates what is meant to be accomplished with the stochastic

trend component of model M3. The low value of  could be interpreted as there is a slow
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adaptation of the drift term to a permanent equilibrium drift.

5 Discussion

The standard deviation of the noise term, �", can be interpreted as microstructure deviance

from the continuous-time textbook model. The standard deviation of the innovation �1 is a

measure of how fast stock is moving from day to day. The signal-to-noise ratio relates the

market innovation to the microstructure e�ects. Both �1 and the signal-to-noise ratio are

useful parameters for risk management because an ideal investor would like something that

will not move fast, and something that is easily converted into other assets.

In the analysis of the Icelandic stock market data, no signi�cant sign of a stochastic

trend was found. In view of the e�cient market hypothesis, detecting a trend, deterministic

or stochastic, should perhaps not be trivial. However, a kind of power game in the market

is conceivable such that a strong investor consistently buys all o�ered stock in a particualar

company over an period of time in order to build up a block that could be decisive in controlling

the company. This is conceivable when trading is infrequent because, in such markets, there

are by de�nition few agents; little is o�ered for sale, and buyers are rare. Then at a certain

time point, this investor might threaten some parties wantint to control the company to sell

a decisive block of shares to a competing group and then quit trading that stock. This kind

of behavior would suggest that there would be an upward trend while this investor is buying

and a gradual decline after the strong investor has left the scene and prices are converging

to their �natural level�. This behavior would suggest the existence of a stochastic trend, i.e.,

�2 > 0. The data do not suggest the existence of this phenomena although a nonsign�cant

illustration of it is hinted at for stock number 18.

In the application of this study, the variance of the state-innovation Q(t; ti) was designed

to increase linearly in Æt = t� ti, regardless of what time of day or night it is, whether or not

the stock is open for trade. One could easily add parameters to make this innovation variance

more complex. That might be of interest in some situations. In the case of the Icelandic stock

market, data are so sparse that this hardly leaves much scope for estimating a more complex

structure of the innovation variances.
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The same argument applies for the problem of updating the parameters �" and �1. It

is unrealistic to believe that they are constant in time. The limited data will not allow for

sophisticated modeling of the updating scheme.

Agents using models of this kind might also want to use a parameter like � in equation

(23). There might be dates other than the annual meeting when the board is taking decisions

on critical matters, mergers, closing plants, layo�s, etc. The annual meeting is typically a

date when decisions on dividends and stock splits are taken. No e�ort is made here to explain

the returns. It is expected that agents are risk averse and prefer a low value on �" and �1,

high dividends and big stock splits.
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Appendix

A Derivation of discretely observed dynamics

The key of deriving equation (14) and (15) lies in calculation of the matrix exponent, eA.

The continuous time state dynamics are given by:

d�(t) = A�(t)dt+ bdt+ CdW (t)

with

A =

2
4 0 1

0 �

3
5 C =

2
4 �21 0

0 �22

3
5 b =

2
4 0

r

3
5

Write the matrix A as:

A = G�G�1

G =

2
4 1 � 1



0 1

3
5 � =

2
4 0 0

0 �

3
5

and de�ne

��(t) = G�1�(t)

then

d��(t) = G�1d�(t) =

G�1(A�(t)dt+ bdt+ CdW (t) =

G�1G�G�1�(t)dt+G�1bdt+G�1CdW (t) =

���(t) +G�1bdt+G�1CdW (t)

Solving for initional condition at time ti�1 gives

��(ti) = e�Æi��(ti�1) +

Z ti

ti�1

e�(s�ti�1)G�1bds+ ��(ti; ti�1)

where

��(ti; ti�1) =

Z ti

ti�1

e�(s�ti�1)G�1CdW (s)
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The variance of ��(ti; ti�1), is given by:

V (��(ti; ti�1)) =

Z ti

ti�1

e�(s�ti�1)G�1CC 0(G�1)e�(s�ti�1)
0

ds

Using the formula for matrix exponent:

eA = I +A+A2=2 + : : :

the special structure of the matrix � gives

e�(s�ti�1) =

2
4 1 0

0 e�(s�ti�1)

3
5

and transforming back gives the discretely observed state dynamics of �(t),

�(ti) = Ge�ÆiG�1�(ti�1) +G

Z ti

ti�1

e�(s�ti�1)G�1bds+G��(ti)

= T (ti; ti�1)�(ti�1) + r

2
4 Æi �

1

(1� e�Æi)

1� e�Æi

3
5+ �(ti; ti�1)

with

T (ti; ti�1) =

2
4 1 1


(1� e�Æi)

0 e�Æi

3
5

=

2
4 1 g1(Æi; )

0 e�Æi

3
5

and the variance, Q(ti; ti�1) of �(ti; ti�1) = G��(ti; ti�1) is:

Q(ti; ti�1) = V (�(ti; ti�1)) =

Z ti

ti�1

Ge�(s�ti�1)G�1CC 0(G�1)0e�(s�ti�1)0G0ds =

Z ti

ti�1

2
4 �21 +

�2
2

2
(1� e�(s�ti�1))2

�2
2


(1� e�(s�ti�1))

�2
2


(1� e�(s�ti�1)) �22

3
5 ds =

2
4 �21Æi +

�2
2

2
(Æi � 2 1


(1� e�Æi) + 1

2 (1� e�2Æi))
�2
2


((1 � e�Æi)� 1

2 (1� e�2Æi))

�2
2


( 1

(1� e�Æi)� 1

2 (1� e�2Æi))
�2
2

2 (1� e�2Æi)

3
5

=

2
4 �21Æi + �22g3(Æi; ) �22g2(Æi; )

�22g2(Æi; ) �22g1(Æi; 2)

3
5
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The functions gi's are de�ned by:

g1(Æ; ) =
1


(1� e�Æ)

g2(Æ; ) =
1


(g1(Æ; ) � g(Æ; 2))

g3(Æ; ) =
1

2
(Æ � 2g1(Æ; ) + g1(Æ; 2))

Standard calculus gives:

lim
!0

g1(Æ; ) = Æ

lim
!0

g2(Æ; ) = Æ2=2

lim
!0

g3(Æ; ) = Æ3=3

B Data and estimation results for individual stocks

The �gures plots of logged transaction prices for each stock during the period of trade on

the Icelandic exchange. The dates of the annual meeting are marked with, M. The tables

show estimation result for the models M1; : : : ;M4. The stocks are numerated in the order

of registration on the Icelandic stock exchange. Stocks numer 54, 57 and 74 had 35, 3 and

7 transaction respectively, and was not enough data to estimate models and are therefore

excluded from the analysis. The result for stock number 37 are based on 12 transactions do

not make much sense either. Note that the parameter r is not identi�able in model M4 when

 = 0. Therefore some strange estimates on r are to be expected when  is close to zero in

model M4.
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Figure 8: Log-prices for stock number 1

Stock number 1: A total of 1181 transactions from 04/22/91 to 02/24/00

M1 M2 M3 M4

�̂" 0.0129 0.0129 0.0129 0.0130

�̂1=�̂" 0.9683 0.9582 0.9582 0.9493

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0020

r̂ 0 0.0004 0 0.0007

log-likelihood 2896.2620 2897.9210 2897.9210 2899.3860

skewness -0.1355 -0.0503 -0.0503 -0.0274

kurtosis 11.3232 11.1006 11.1004 11.0754

Table 4: Comparison of models for stock number 1
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Figure 9: Log-prices for stock number 2

Stock number 2: A total of 6086 transactions from 06/16/92 to 02/24/00

M1 M2 M3 M4

�̂" 0.0058 0.0058 0.0058 0.0058

�̂1=�̂" 1.9659 1.9474 1.9475 1.9432

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.2657

r̂ 0 0.0007 0 0.0007

log-likelihood 20291.1500 20296.1500 20296.1500 20297.4700

skewness -0.5375 -0.4711 -0.4711 -0.4735

kurtosis 13.9771 13.7542 13.7543 13.7212

Table 5: Comparison of models for stock number 2
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Figure 10: Log-prices for stock number 3

Stock number 3: A total of 5435 transactions from 07/01/92 to 02/24/00

M1 M2 M3 M4

�̂" 0.0093 0.0093 0.0093 0.0093

�̂1=�̂" 2.6070 2.6050 2.6050 2.6039

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0025

r̂ 0 0.0004 0 0.0007

log-likelihood 15269.6300 15270.0700 15270.0700 15270.3800

skewness -0.5304 -0.5103 -0.5103 -0.5053

kurtosis 30.8869 30.7976 30.7976 30.7851

Table 6: Comparison of models for stock number 3
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Figure 11: Log-prices for stock number 4

Stock number 4: A total of 3171 transactions from 07/29/92 to 02/24/00

M1 M2 M3 M4

�̂" 0.0093 0.0093 0.0093 0.0093

�̂1=�̂" 4.0351 4.0175 4.0176 4.0170

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.2113

r̂ 0 0.0010 0 0.0010

log-likelihood 8245.8580 8246.9230 8246.9230 8246.9620

skewness -0.3579 -0.3192 -0.3191 -0.3199

kurtosis 18.9759 18.8752 18.8749 18.8787

Table 7: Comparison of models for stock number 4
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Figure 12: Log-prices for stock number 5

Stock number 5: A total of 284 transactions from 08/19/92 to 02/11/00

M1 M2 M3 M4

�̂" 0.0099 0.0100 0.0102 0.0105

�̂1=�̂" 0.5368 0.4827 0.3941 0.2947

�̂2=�̂"x10
2 0 0 0.3171 1.4213

̂ 0 1 0 0.0216

r̂ 0 0.0004 0 0.0004

log-likelihood 764.2870 772.3572 774.7022 777.2343

skewness -1.2349 -0.8207 -0.8861 -0.9401

kurtosis 8.4445 7.6026 7.8330 8.0391

Table 8: Comparison of models for stock number 5
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Figure 13: Log-prices for stock number 6

Stock number 6: A total of 498 transactions from 08/24/92 to 02/14/00

M1 M2 M3 M4

�̂" 0.0291 0.0291 0.0295 0.0295

�̂1=�̂" 0.4793 0.4740 0.4067 0.4078

�̂2=�̂"x10
2 0 0 0.2632 0.3030

̂ 0 1 0 0.0026

r̂ 0 0.0004 0 0.0008

log-likelihood 854.5007 855.7273 860.3294 861.9577

skewness 0.1934 0.3028 0.3385 0.3456

kurtosis 22.2319 21.8463 20.9055 21.2240

Table 9: Comparison of models for stock number 6
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Figure 14: Log-prices for stock number 7

Stock number 7: A total of 777 transactions from 09/14/92 to 02/22/00

M1 M2 M3 M4

�̂" 0.0186 0.0186 0.0186 0.0187

�̂1=�̂" 0.5977 0.5919 0.5919 0.5804

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0035

r̂ 0 0.0004 0 0.0006

log-likelihood 1718.4300 1719.8660 1719.8660 1722.2480

skewness -0.9521 -0.8486 -0.8486 -0.8549

kurtosis 9.5710 9.3295 9.3294 9.3601

Table 10: Comparison of models for stock number 7
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Figure 15: Log-prices for stock number 8

Stock number 8: A total of 240 transactions from 12/08/92 to 02/24/00

M1 M2 M3 M4

�̂" 0.0131 0.0131 0.0132 0.0135

�̂1=�̂" 0.4084 0.3688 0.3340 0.0000

�̂2=�̂"x10
2 0 0 0.1542 5.0799

̂ 0 1 0 0.1178

r̂ 0 0.0003 0 0.0003

log-likelihood 604.9081 610.2188 609.6230 615.3386

skewness -0.7556 -0.4001 -0.3912 -0.4034

kurtosis 3.7812 3.1990 3.2969 3.3575

Table 11: Comparison of models for stock number 8
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Figure 16: Log-prices for stock number 9

Stock number 9: A total of 1599 transactions from 12/09/92 to 02/24/00

M1 M2 M3 M4

�̂" 0.0093 0.0093 0.0093 0.0093

�̂1=�̂" 1.7550 1.7500 1.7500 1.7460

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0037

r̂ 0 0.0004 0 0.0005

log-likelihood 4325.0550 4325.6890 4325.6890 4326.1600

skewness -0.4595 -0.4116 -0.4117 -0.3961

kurtosis 13.2182 13.0589 13.0589 13.0157

Table 12: Comparison of models for stock number 9
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Figure 17: Log-prices for stock number 10

Stock number 10: A total of 2606 transactions from 12/16/92 to 02/23/00

M1 M2 M3 M4

�̂" 0.0092 0.0092 0.0092 0.0092

�̂1=�̂" 1.7153 1.7080 1.7080 1.6992

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0081

r̂ 0 0.0005 0 0.0007

log-likelihood 7286.8920 7288.1740 7288.1750 7289.7270

skewness 0.6546 0.7003 0.7003 0.7116

kurtosis 11.5022 11.4756 11.4756 11.4183

Table 13: Comparison of models for stock number 10
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Figure 18: Log-prices for stock number 11

Stock number 11: A total of 124 transactions from 12/30/92 to 10/10/95

M1 M2 M3 M4

�̂" 0.0192 0.0193 0.0193 0.0193

�̂1=�̂" 0.2286 0.2099 0.2099 0.1975

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0300

r̂ 0 0.0002 0 0.0003

log-likelihood 286.5907 287.8055 287.8055 289.3843

skewness -0.0125 0.1465 0.1464 0.1755

kurtosis 3.2249 3.0823 3.0823 3.3655

Table 14: Comparison of models for stock number 11
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Figure 19: Log-prices for stock number 12

Stock number 12: A total of 571 transactions from 01/26/93 to 02/24/00

M1 M2 M3 M4

�̂" 0.0119 0.0119 0.0119 0.0119

�̂1=�̂" 1.0580 1.0473 1.0473 1.0447

�̂2=�̂"x10
2 0 0 0.0001 0.0001

̂ 0 1 0 0.0000

r̂ 0 0.0005 0 0.4568

log-likelihood 1342.4560 1344.1290 1344.1290 1344.5790

skewness -0.5775 -0.4178 -0.4180 -0.4025

kurtosis 20.0526 19.4079 19.4086 19.3018

Table 15: Comparison of models for stock number 12
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Figure 20: Log-prices for stock number 13

Stock number 13: A total of 1317 transactions from 02/03/93 to 02/23/00

M1 M2 M3 M4

�̂" 0.0091 0.0091 0.0091 0.0091

�̂1=�̂" 1.2986 1.2911 1.2911 1.2879

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0023

r̂ 0 0.0004 0 0.0007

log-likelihood 3590.4500 3592.1860 3592.1860 3592.9320

skewness 0.3416 0.4175 0.4175 0.4346

kurtosis 11.3520 11.1753 11.1753 11.1456

Table 16: Comparison of models for stock number 13

37



0.
5

1.
0

1.
5

2.
0

year

lo
g−

pr
ic

e 

Log prices for stock 
14

0.
5

1.
0

1.
5

2.
0

1993 1994 1995 1996 1997 1998 1999 2000

MM MM MM MM MM MM MM

Figure 21: Log-prices for stock number 14

Stock number 14: A total of 1153 transactions from 02/19/93 to 02/23/00

M1 M2 M3 M4

�̂" 0.0123 0.0123 0.0123 0.0123

�̂1=�̂" 1.2364 1.2119 1.2120 1.2105

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0092

r̂ 0 0.0010 0 0.0010

log-likelihood 2727.4730 2732.4720 2732.4720 2732.8100

skewness -0.1032 0.0717 0.0718 0.0825

kurtosis 16.0654 15.3378 15.3379 15.5027

Table 17: Comparison of models for stock number 14
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Figure 22: Log-prices for stock number 15

Stock number 15: A total of 7503 transactions from 02/19/93 to 02/24/00

M1 M2 M3 M4

�̂" 0.0066 0.0066 0.0066 0.0067

�̂1=�̂" 2.7064 2.6972 2.6972 2.6936

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.4333

r̂ 0 0.0007 0 0.0007

log-likelihood 23968.7800 23970.5400 23970.5400 23971.3000

skewness -0.7324 -0.7058 -0.7058 -0.7073

kurtosis 53.1092 53.0061 53.0056 53.0290

Table 18: Comparison of models for stock number 15
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Figure 23: Log-prices for stock number 16

Stock number 16: A total of 1429 transactions from 03/25/93 to 02/23/00

M1 M2 M3 M4

�̂" 0.0123 0.0123 0.0123 0.0124

�̂1=�̂" 0.9476 0.9433 0.9433 0.9386

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0022

r̂ 0 0.0003 0 0.0006

log-likelihood 3650.3070 3651.2730 3651.2730 3652.4520

skewness -0.1045 -0.0400 -0.0400 -0.0203

kurtosis 16.7040 16.4748 16.4747 16.4947

Table 19: Comparison of models for stock number 16

40



0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

year

lo
g−

pr
ic

e 

Log prices for stock 
17

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1994 1995 1996 1997 1998 1999 2000

MM MM MM MM MMMM MM

Figure 24: Log-prices for stock number 17

Stock number 17: A total of 171 transactions from 07/16/93 to 02/21/00

M1 M2 M3 M4

�̂" 0.0363 0.0363 0.0363 0.0363

�̂1=�̂" 0.5588 0.5588 0.5588 0.5584

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0151

r̂ 0 0.0000 0 0.0000

log-likelihood 217.6940 217.6958 217.6958 217.7114

skewness 0.3494 0.3569 0.3569 0.3558

kurtosis 7.7693 7.7592 7.7593 7.7636

Table 20: Comparison of models for stock number 17
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Figure 25: Log-prices for stock number 18

Stock number 18: A total of 929 transactions from 09/16/94 to 02/23/00

M1 M2 M3 M4

�̂" 0.0089 0.0089 0.0090 0.0089

�̂1=�̂" 1.7664 1.7593 1.7169 1.7178

�̂2=�̂"x10
2 0 0 0.5855 0.6570

̂ 0 1 0 0.0019

r̂ 0 0.0004 0 0.0011

log-likelihood 2435.4420 2436.0930 2436.2740 2437.0740

skewness -0.5598 -0.4839 -0.5202 -0.4608

kurtosis 9.4651 9.2185 9.4241 9.2373

Table 21: Comparison of models for stock number 18
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Figure 26: Log-prices for stock number 19

Stock number 19: A total of 2019 transactions from 11/02/94 to 02/21/00

M1 M2 M3 M4

�̂" 0.0085 0.0085 0.0085 0.0085

�̂1=�̂" 2.1304 2.1201 2.1201 2.1128

�̂2=�̂"x10
2 0 0 0.0003 0.0003

̂ 0 1 0 0.0002

r̂ 0 0.0007 0 -0.0040

log-likelihood 5579.4070 5580.7320 5580.7320 5581.8330

skewness -0.4290 -0.3618 -0.3618 -0.3723

kurtosis 17.1625 16.9440 16.9441 16.9924

Table 22: Comparison of models for stock number 19
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Figure 27: Log-prices for stock number 20

Stock number 20: A total of 885 transactions from 11/10/94 to 02/24/00

M1 M2 M3 M4

�̂" 0.0088 0.0089 0.0089 0.0089

�̂1=�̂" 1.3784 1.3619 1.3619 1.3597

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0086

r̂ 0 0.0005 0 0.0005

log-likelihood 2397.5060 2398.9360 2398.9360 2399.1950

skewness -0.0166 0.0836 0.0837 0.0817

kurtosis 11.5571 11.4210 11.4209 11.5346

Table 23: Comparison of models for stock number 20
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Figure 28: Log-prices for stock number 21

Stock number 21: A total of 1745 transactions from 11/08/94 to 02/23/00

M1 M2 M3 M4

�̂" 0.0102 0.0102 0.0102 0.0102

�̂1=�̂" 1.8101 1.7994 1.7759 1.7851

�̂2=�̂"x10
2 0 0 0.3446 0.0000

̂ 0 1 0 0.0004

r̂ 0 0.0007 0 -0.0034

log-likelihood 4532.4580 4533.6610 4534.1760 4535.3840

skewness -0.3486 -0.2824 -0.2600 -0.2898

kurtosis 14.8300 14.6361 14.5921 14.6642

Table 24: Comparison of models for stock number 21
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Figure 29: Log-prices for stock number 22

Stock number 22: A total of 1463 transactions from 12/30/94 to 02/24/00

M1 M2 M3 M4

�̂" 0.0170 0.0170 0.0170 0.0170

�̂1=�̂" 1.3030 1.2999 1.2999 1.2993

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0129

r̂ 0 0.0005 0 0.0006

log-likelihood 3222.3880 3222.9370 3222.9370 3223.0560

skewness 0.3238 0.3669 0.3671 0.3709

kurtosis 20.0670 19.9254 19.9251 19.9141

Table 25: Comparison of models for stock number 22
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Figure 30: Log-prices for stock number 23

Stock number 23: A total of 1071 transactions from 01/26/95 to 02/24/00

M1 M2 M3 M4

�̂" 0.0127 0.0127 0.0127 0.0127

�̂1=�̂" 1.1979 1.1882 1.1882 1.1834

�̂2=�̂"x10
2 0 0 0.0001 0.0007

̂ 0 1 0 0.0021

r̂ 0 0.0007 0 0.0001

log-likelihood 2609.7890 2611.4720 2611.4720 2612.5920

skewness -0.0637 0.0352 0.0352 0.0117

kurtosis 9.4045 9.1901 9.1901 9.2482

Table 26: Comparison of models for stock number 23
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Figure 31: Log-prices for stock number 24

Stock number 24: A total of 2398 transactions from 01/23/95 to 02/24/00

M1 M2 M3 M4

�̂" 0.0101 0.0101 0.0101 0.0101

�̂1=�̂" 1.9718 1.9695 1.9535 1.9602

�̂2=�̂"x10
2 0 0 0.4570 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0004 0 -0.1154

log-likelihood 6392.3400 6392.7570 6393.2430 6394.3900

skewness -0.1955 -0.1638 -0.1375 -0.1675

kurtosis 9.8506 9.7874 9.7174 9.7938

Table 27: Comparison of models for stock number 24
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Figure 32: Log-prices for stock number 25

Stock number 25: A total of 774 transactions from 07/25/95 to 02/23/00

M1 M2 M3 M4

�̂" 0.0098 0.0099 0.0099 0.0099

�̂1=�̂" 1.6982 1.6800 1.6799 1.6800

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0008 0 0.0009

log-likelihood 1943.7840 1945.5680 1945.5680 1945.5680

skewness -0.4471 -0.3153 -0.3153 -0.3152

kurtosis 10.1530 9.8128 9.8127 9.8126

Table 28: Comparison of models for stock number 25
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Figure 33: Log-prices for stock number 26

Stock number 26: A total of 102 transactions from 05/23/95 to 02/22/00

M1 M2 M3 M4

�̂" 0.0126 0.0131 0.0141 0.0141

�̂1=�̂" 0.4958 0.4083 0.2411 0.2333

�̂2=�̂"x10
2 0 0 0.3306 0.4182

̂ 0 1 0 0.0038

r̂ 0 0.0004 0 0.0006

log-likelihood 230.4309 236.1116 239.9949 240.7744

skewness -1.4765 -0.5727 -0.4679 -0.3940

kurtosis 4.7233 3.0812 3.0669 3.0503

Table 29: Comparison of models for stock number 26
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Figure 34: Log-prices for stock number 27

Stock number 27: A total of 145 transactions from 09/01/95 to 02/24/00

M1 M2 M3 M4

�̂" 0.0086 0.0088 0.0092 0.0092

�̂1=�̂" 0.6868 0.6038 0.4364 0.4320

�̂2=�̂"x10
2 0 0 0.3748 0.3576

̂ 0 1 0 0.0066

r̂ 0 0.0005 0 0.0003

log-likelihood 370.8616 377.2277 383.0530 387.0535

skewness -0.9351 -0.2988 -0.1825 -0.2494

kurtosis 5.9547 4.8617 5.0283 5.0778

Table 30: Comparison of models for stock number 27
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Figure 35: Log-prices for stock number 28

Stock number 28: A total of 307 transactions from 12/29/95 to 01/25/00

M1 M2 M3 M4

�̂" 0.0253 0.0253 0.0253 0.0257

�̂1=�̂" 0.8046 0.8045 0.8045 0.7353

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0020

r̂ 0 -0.0000 0 -0.0023

log-likelihood 527.7458 527.7464 527.7464 534.7267

skewness 0.0972 0.0936 0.0935 0.1934

kurtosis 8.6673 8.6694 8.6694 8.5186

Table 31: Comparison of models for stock number 28
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Figure 36: Log-prices for stock number 29

Stock number 29: A total of 418 transactions from 05/22/96 to 02/02/00

M1 M2 M3 M4

�̂" 0.0337 0.0337 0.0337 0.0338

�̂1=�̂" 0.7995 0.7995 0.8012 0.7863

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0231

r̂ 0 -0.0000 0 -0.0003

log-likelihood 618.8483 618.8496 618.8495 619.9664

skewness 3.4748 3.4723 3.4739 3.5182

kurtosis 46.7575 46.7640 46.8176 47.1106

Table 32: Comparison of models for stock number 29
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Figure 37: Log-prices for stock number 30

Stock number 30: A total of 445 transactions from 05/22/96 to 02/23/00

M1 M2 M3 M4

�̂" 0.0205 0.0206 0.0207 0.0207

�̂1=�̂" 0.6847 0.6842 0.6639 0.6547

�̂2=�̂"x10
2 0 0 0.2032 0.0000

̂ 0 1 0 0.0028

r̂ 0 0.0002 0 -0.0009

log-likelihood 903.6611 903.7677 904.4830 907.9821

skewness -1.2363 -1.1916 -1.0854 -1.1668

kurtosis 13.9684 13.8032 13.4772 13.7880

Table 33: Comparison of models for stock number 30
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Figure 38: Log-prices for stock number 31

Stock number 31: A total of 774 transactions from 06/06/96 to 02/24/00

M1 M2 M3 M4

�̂" 0.0131 0.0131 0.0131 0.0131

�̂1=�̂" 1.4752 1.4611 1.4611 1.4612

�̂2=�̂"x10
2 0 0 0.0002 0.1317

̂ 0 1 0 0.0000

r̂ 0 0.0009 0 0.0016

log-likelihood 1787.8910 1789.4750 1789.4750 1793.3770

skewness -0.4434 -0.3182 -0.3182 -0.3306

kurtosis 13.1623 12.8544 12.8544 12.8958

Table 34: Comparison of models for stock number 31
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Figure 39: Log-prices for stock number 32

Stock number 32: A total of 748 transactions from 07/10/96 to 02/24/00

M1 M2 M3 M4

�̂" 0.0189 0.0189 0.0189 0.0190

�̂1=�̂" 1.1096 1.1047 1.1046 1.0910

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0114

r̂ 0 0.0007 0 0.0003

log-likelihood 1538.5370 1539.2890 1539.2890 1540.9670

skewness 0.8257 0.8818 0.8817 0.8788

kurtosis 14.2290 14.1022 14.1021 14.1836

Table 35: Comparison of models for stock number 32
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Figure 40: Log-prices for stock number 33

Stock number 33: A total of 81 transactions from 09/20/96 to 02/09/00

M1 M2 M3 M4

�̂" 0.0089 0.0087 0.0087 0.0088

�̂1=�̂" 0.8135 0.8163 0.8163 0.7963

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0786

r̂ 0 0.0003 0 0.0003

log-likelihood 195.5161 196.9725 196.9725 197.6980

skewness -0.3585 -0.0019 -0.0019 0.0692

kurtosis 6.3028 5.9365 5.9365 6.0564

Table 36: Comparison of models for stock number 33
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Figure 41: Log-prices for stock number 34

Stock number 34: A total of 157 transactions from 01/21/97 to 11/04/99

M1 M2 M3 M4

�̂" 0.0372 0.0372 0.0372 0.0372

�̂1=�̂" 0.6022 0.5871 0.5871 0.5871

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 452.5997

r̂ 0 -0.0010 0 -0.0010

log-likelihood 212.3939 213.3849 213.3850 213.3850

skewness 0.4101 0.2364 0.2364 0.2364

kurtosis 9.3610 9.1917 9.1917 9.1917

Table 37: Comparison of models for stock number 34
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Figure 42: Log-prices for stock number 35

Stock number 35: A total of 410 transactions from 03/20/97 to 01/28/00

M1 M2 M3 M4

�̂" 0.0108 0.0108 0.0108 0.0108

�̂1=�̂" 0.8640 0.8614 0.8618 0.8532

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0080

r̂ 0 -0.0002 0 -0.0000

log-likelihood 1059.9980 1060.2920 1060.2920 1061.0380

skewness -0.1271 -0.1999 -0.1996 -0.2241

kurtosis 4.9672 5.0012 5.0026 5.0454

Table 38: Comparison of models for stock number 35
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Figure 43: Log-prices for stock number 36

Stock number 36: A total of 2083 transactions from 03/20/97 to 02/24/00

M1 M2 M3 M4

�̂" 0.0077 0.0077 0.0077 0.0077

�̂1=�̂" 2.4202 2.4163 2.4164 2.4096

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0004 0 -0.1660

log-likelihood 6226.9370 6227.1620 6227.1620 6227.5530

skewness 0.8534 0.8753 0.8752 0.8703

kurtosis 18.7676 18.7600 18.7599 18.7493

Table 39: Comparison of models for stock number 36
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Figure 44: Log-prices for stock number 37

Stock number 37: A total of 12 transactions from 05/15/97 to 12/17/99

M1 M2 M3 M4

�̂" 0.0000 0.0000 0.0000 0.0000

�̂1=�̂" 1009.0605 1009.0605 1307.0265 244144027089682661376.0000

�̂2=�̂"x10
2 0 0 2457.4836 46.1715

̂ 0 1 0 0.0001

r̂ 0 -0.0001 0 0.0207

log-likelihood 24.2264 24.2778 32.3272 39.0920

skewness 0.1412 -0.0823 -1.1778 -0.0966

kurtosis 2.1974 2.0779 3.8137 2.4104

Table 40: Comparison of models for stock number 37
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Figure 45: Log-prices for stock number 38

Stock number 38: A total of 2549 transactions from 06/13/97 to 02/24/00

M1 M2 M3 M4

�̂" 0.0091 0.0091 0.0091 0.0091

�̂1=�̂" 1.4798 1.4798 1.4794 1.4761

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0022

r̂ 0 -0.0001 0 0.0006

log-likelihood 7650.5760 7650.6150 7650.6150 7651.2000

skewness -1.6040 -1.6141 -1.6145 -1.6125

kurtosis 118.8603 119.0568 119.0578 118.9875

Table 41: Comparison of models for stock number 38
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Figure 46: Log-prices for stock number 39

Stock number 39: A total of 720 transactions from 06/25/97 to 02/22/00

M1 M2 M3 M4

�̂" 0.0133 0.0133 0.0133 0.0134

�̂1=�̂" 1.6287 1.6049 1.6049 1.5870

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0011 0 0.4340

log-likelihood 1673.2250 1674.3710 1674.3710 1675.4860

skewness 0.0398 0.1394 0.1394 0.1470

kurtosis 8.3214 8.0525 8.0525 7.9962

Table 42: Comparison of models for stock number 39
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Figure 47: Log-prices for stock number 40

Stock number 40: A total of 49 transactions from 07/07/97 to 02/14/00

M1 M2 M3 M4

�̂" 0.0089 0.0089 0.0091 0.0089

�̂1=�̂" 0.6616 0.6616 0.5122 0.5492

�̂2=�̂"x10
2 0 0 0.4870 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0000 0 0.3245

log-likelihood 123.6167 123.6516 124.9076 127.5755

skewness -0.1304 -0.0549 -0.3752 0.0549

kurtosis 4.2130 4.2247 4.4270 4.0914

Table 43: Comparison of models for stock number 40
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Figure 48: Log-prices for stock number 41

Stock number 41: A total of 1643 transactions from 07/17/97 to 02/24/00

M1 M2 M3 M4

�̂" 0.0086 0.0086 0.0086 0.0086

�̂1=�̂" 3.6665 3.6398 3.6398 3.6273

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0017 0 0.2642

log-likelihood 4445.6660 4446.9600 4446.9600 4447.5620

skewness 0.0150 0.0721 0.0721 0.0815

kurtosis 9.8064 9.6759 9.6759 9.6428

Table 44: Comparison of models for stock number 41
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Figure 49: Log-prices for stock number 42

Stock number 42: A total of 65 transactions from 08/01/97 to 04/13/99

M1 M2 M3 M4

�̂" 0.0105 0.0110 0.0110 0.0113

�̂1=�̂" 1.0444 0.8868 0.8868 0.7935

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 -0.0011 0 0.7941

log-likelihood 152.3486 155.4317 155.4317 157.0650

skewness 1.0057 0.3442 0.3442 0.0915

kurtosis 6.2303 5.1096 5.1096 4.7822

Table 45: Comparison of models for stock number 42
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Figure 50: Log-prices for stock number 43

Stock number 43: A total of 348 transactions from 08/28/97 to 02/24/00

M1 M2 M3 M4

�̂" 0.0269 0.0270 0.0270 0.0271

�̂1=�̂" 1.2281 1.2219 1.2219 1.1818

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0009 0 1.3986

log-likelihood 571.7848 572.0879 572.0879 573.9782

skewness -0.2679 -0.1975 -0.1974 -0.1338

kurtosis 5.7089 5.5773 5.5772 5.6000

Table 46: Comparison of models for stock number 43
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Figure 51: Log-prices for stock number 44

Stock number 44: A total of 172 transactions from 08/28/97 to 02/24/00

M1 M2 M3 M4

�̂" 0.0329 0.0330 0.0330 0.0331

�̂1=�̂" 0.7439 0.7415 0.7416 0.7215

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 -0.0009 0 0.1143

log-likelihood 257.7642 258.3022 258.3022 258.6399

skewness -0.0358 -0.1777 -0.1777 -0.1392

kurtosis 4.8939 4.9784 4.9786 5.0118

Table 47: Comparison of models for stock number 44
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Figure 52: Log-prices for stock number 45

Stock number 45: A total of 90 transactions from 08/29/97 to 02/22/00

M1 M2 M3 M4

�̂" 0.0162 0.0164 0.0164 0.0167

�̂1=�̂" 0.8298 0.7947 0.7947 0.7561

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0075

r̂ 0 -0.0007 0 -0.0003

log-likelihood 167.1926 168.4652 168.4652 169.5388

skewness 0.1068 -0.2665 -0.2665 -0.3254

kurtosis 4.5760 4.4192 4.4192 4.1308

Table 48: Comparison of models for stock number 45
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Figure 53: Log-prices for stock number 46

Stock number 46: A total of 23 transactions from 10/08/97 to 02/24/00

M1 M2 M3 M4

�̂" 0.0071 0.0074 0.0073 0.0079

�̂1=�̂" 1.0881 0.9804 0.9805 0.7966

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0004 0 0.0780

log-likelihood 48.6837 49.8202 49.8202 51.6056

skewness -0.9333 -0.1982 -0.1982 -0.0054

kurtosis 5.7324 3.9890 3.9889 3.6793

Table 49: Comparison of models for stock number 46
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Figure 54: Log-prices for stock number 47

Stock number 47: A total of 1118 transactions from 10/30/97 to 02/24/00

M1 M2 M3 M4

�̂" 0.0107 0.0107 0.0107 0.0107

�̂1=�̂" 2.1106 2.0741 2.0741 2.0742

�̂2=�̂"x10
2 0 0 0.0007 0.2673

̂ 0 1 0 0.0000

r̂ 0 0.0015 0 0.0002

log-likelihood 2954.8670 2957.2600 2957.2600 2958.5000

skewness -0.2440 -0.1314 -0.1314 -0.1228

kurtosis 10.7317 10.5542 10.5542 10.5457

Table 50: Comparison of models for stock number 47
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Figure 55: Log-prices for stock number 48

Stock number 48: A total of 845 transactions from 11/27/97 to 01/28/00

M1 M2 M3 M4

�̂" 0.0174 0.0174 0.0174 0.0174

�̂1=�̂" 2.7402 2.7402 2.7401 2.7389

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0044

r̂ 0 -0.0002 0 0.0000

log-likelihood 1701.8610 1701.8670 1701.8670 1701.9070

skewness -0.6066 -0.6130 -0.6130 -0.6171

kurtosis 12.9399 12.9544 12.9542 12.9687

Table 51: Comparison of models for stock number 48
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Figure 56: Log-prices for stock number 49

Stock number 49: A total of 553 transactions from 11/27/97 to 02/04/00

M1 M2 M3 M4

�̂" 0.0068 0.0068 0.0068 0.0069

�̂1=�̂" 2.9548 2.9546 2.9546 2.9198

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.7330

r̂ 0 -0.0004 0 -0.0003

log-likelihood 1514.6220 1514.7920 1514.7920 1515.7810

skewness -0.1414 -0.1893 -0.1893 -0.1899

kurtosis 8.8006 8.8758 8.8758 8.9159

Table 52: Comparison of models for stock number 49
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Figure 57: Log-prices for stock number 50

Stock number 50: A total of 163 transactions from 01/07/98 to 02/07/00

M1 M2 M3 M4

�̂" 0.0286 0.0285 0.0285 0.0285

�̂1=�̂" 1.0955 1.1000 1.1000 1.0994

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0002

r̂ 0 -0.0013 0 0.0001

log-likelihood 230.9019 231.5230 231.5230 231.5290

skewness -0.9054 -1.1086 -1.1086 -1.1082

kurtosis 17.1322 17.9645 17.9644 17.9587

Table 53: Comparison of models for stock number 50
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Figure 58: Log-prices for stock number 51

Stock number 51: A total of 52 transactions from 01/30/98 to 02/03/00

M1 M2 M3 M4

�̂" 0.0228 0.0228 0.0228 0.0228

�̂1=�̂" 0.6191 0.6184 0.6184 0.6112

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 -0.0001 0 -1.1357

log-likelihood 78.7432 78.7628 78.7628 79.0241

skewness 0.6035 0.5420 0.5420 0.5124

kurtosis 6.6508 6.6222 6.6222 6.4655

Table 54: Comparison of models for stock number 51
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Figure 59: Log-prices for stock number 52

Stock number 52: A total of 321 transactions from 02/17/98 to 02/21/00

M1 M2 M3 M4

�̂" 0.0137 0.0137 0.0137 0.0137

�̂1=�̂" 0.8905 0.8889 0.8889 0.8801

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0046

r̂ 0 -0.0002 0 0.0003

log-likelihood 762.4140 762.4712 762.4712 762.8603

skewness -0.4484 -0.4815 -0.4815 -0.4710

kurtosis 6.3665 6.3947 6.3949 6.3228

Table 55: Comparison of models for stock number 52
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Figure 60: Log-prices for stock number 53

Stock number 53: A total of 93 transactions from 02/19/98 to 02/22/00

M1 M2 M3 M4

�̂" 0.0288 0.0288 0.0288 0.0290

�̂1=�̂" 0.6512 0.6511 0.6511 0.6366

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0060

r̂ 0 0.0001 0 0.0006

log-likelihood 141.8471 141.8638 141.8638 142.1513

skewness 0.0859 0.1179 0.1179 0.1612

kurtosis 12.8210 12.5670 12.5670 12.2462

Table 56: Comparison of models for stock number 53
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Figure 61: Log-prices for stock number 55

Stock number 55: A total of 1095 transactions from 05/18/98 to 02/24/00

M1 M2 M3 M4

�̂" 0.0098 0.0098 0.0098 0.0098

�̂1=�̂" 2.2865 2.2807 2.2807 2.2799

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0126

r̂ 0 -0.0006 0 -0.0005

log-likelihood 2985.9470 2986.2010 2986.2010 2986.2250

skewness -0.1876 -0.2253 -0.2252 -0.2276

kurtosis 8.5240 8.5542 8.5542 8.5584

Table 57: Comparison of models for stock number 55

78



0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

year

lo
g−

pr
ic

e 

Log prices for stock 
56

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

1999 2000

MM

Figure 62: Log-prices for stock number 56

Stock number 56: A total of 92 transactions from 06/19/98 to 01/17/00

M1 M2 M3 M4

�̂" 0.0286 0.0288 0.0288 0.0288

�̂1=�̂" 0.6457 0.6251 0.6251 0.6251

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 -0.0009 0 -0.0005

log-likelihood 143.2473 144.0949 144.0949 144.0949

skewness 0.0446 -0.2151 -0.2150 -0.2149

kurtosis 9.4974 8.7073 8.7077 8.7077

Table 58: Comparison of models for stock number 56
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Figure 63: Log-prices for stock number 58

Stock number 58: A total of 166 transactions from 09/09/98 to 02/22/00

M1 M2 M3 M4

�̂" 0.0136 0.0138 0.0140 0.0141

�̂1=�̂" 0.8327 0.7989 0.7401 0.7193

�̂2=�̂"x10
2 0 0 0.5335 0.0000

̂ 0 1 0 0.0059

r̂ 0 -0.0008 0 0.0005

log-likelihood 387.6714 388.9833 389.3403 391.7243

skewness 0.1505 -0.1012 -0.2013 -0.0774

kurtosis 3.8580 3.7828 4.0534 4.0953

Table 59: Comparison of models for stock number 58
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Figure 64: Log-prices for stock number 59

Stock number 59: A total of 966 transactions from 09/29/98 to 02/24/00

M1 M2 M3 M4

�̂" 0.0092 0.0092 0.0093 0.0092

�̂1=�̂" 2.6478 2.6478 2.6414 2.6433

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0152

r̂ 0 0.0002 0 0.0000

log-likelihood 2679.7280 2679.7430 2679.7510 2679.8120

skewness -0.7293 -0.7209 -0.7145 -0.7169

kurtosis 9.1955 9.1606 9.1693 9.1576

Table 60: Comparison of models for stock number 59
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Figure 65: Log-prices for stock number 60

Stock number 60: A total of 594 transactions from 10/30/98 to 02/23/00

M1 M2 M3 M4

�̂" 0.0133 0.0133 0.0133 0.0135

�̂1=�̂" 1.5390 1.5350 1.5349 1.3992

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.2702

r̂ 0 0.0006 0 0.0012

log-likelihood 1446.1950 1446.4240 1446.4240 1455.5730

skewness 0.1661 0.2062 0.2062 0.2363

kurtosis 5.6853 5.6652 5.6652 5.2720

Table 61: Comparison of models for stock number 60
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Figure 66: Log-prices for stock number 61

Stock number 61: A total of 299 transactions from 11/10/98 to 02/21/00

M1 M2 M3 M4

�̂" 0.0081 0.0081 0.0081 0.0082

�̂1=�̂" 1.2837 1.2837 1.1997 1.0401

�̂2=�̂"x10
2 0 0 2.7368 0.0000

̂ 0 1 0 0.2287

r̂ 0 0.0002 0 0.0006

log-likelihood 862.3123 862.4025 862.5558 877.4117

skewness -0.7200 -0.6677 -0.6911 -0.5709

kurtosis 7.5142 7.4394 6.7979 5.9771

Table 62: Comparison of models for stock number 61
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Figure 67: Log-prices for stock number 62

Stock number 62: A total of 2516 transactions from 11/27/98 to 02/24/00

M1 M2 M3 M4

�̂" 0.0053 0.0053 0.0053 0.0053

�̂1=�̂" 5.8970 5.8827 5.8826 5.8827

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0013 0 0.0010

log-likelihood 8485.0240 8485.4850 8485.4850 8485.4850

skewness -0.5102 -0.4823 -0.4822 -0.4823

kurtosis 9.4002 9.3065 9.3064 9.3065

Table 63: Comparison of models for stock number 62
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Figure 68: Log-prices for stock number 63

Stock number 63: A total of 3729 transactions from 11/27/98 to 02/24/00

M1 M2 M3 M4

�̂" 0.0043 0.0043 0.0043 0.0043

�̂1=�̂" 9.3914 9.3823 9.3824 9.3823

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0018 0 0.0002

log-likelihood 12927.3300 12927.7600 12927.7700 12927.7700

skewness -0.9390 -0.9170 -0.9169 -0.9170

kurtosis 18.4659 18.3709 18.3701 18.3708

Table 64: Comparison of models for stock number 63
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Figure 69: Log-prices for stock number 64

Stock number 64: A total of 75 transactions from 12/04/98 to 12/29/99

M1 M2 M3 M4

�̂" 0.0191 0.0191 0.0200 0.0199

�̂1=�̂" 0.4975 0.4975 0.3457 0.3593

�̂2=�̂"x10
2 0 0 0.6774 0.0001

̂ 0 1 0 0.0063

r̂ 0 0.0002 0 0.0021

log-likelihood 158.8465 158.9612 160.3113 163.1084

skewness -0.7838 -0.6703 -0.5935 -0.5058

kurtosis 9.3968 9.1515 7.3496 8.3500

Table 65: Comparison of models for stock number 64
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Figure 70: Log-prices for stock number 65

Stock number 65: A total of 1510 transactions from 12/15/98 to 02/24/00

M1 M2 M3 M4

�̂" 0.0081 0.0081 0.0081 0.0081

�̂1=�̂" 5.7818 5.7683 5.7684 5.7683

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0025 0 0.0001

log-likelihood 4241.6400 4242.3540 4242.3540 4242.3540

skewness 0.6783 0.7194 0.7194 0.7194

kurtosis 13.7495 13.7198 13.7200 13.7198

Table 66: Comparison of models for stock number 65
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Figure 71: Log-prices for stock number 66

Stock number 66: A total of 1700 transactions from 12/17/98 to 02/24/00

M1 M2 M3 M4

�̂" 0.0046 0.0046 0.0046 0.0046

�̂1=�̂" 6.4524 6.4092 6.4093 6.4111

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0024

r̂ 0 0.0024 0 0.0001

log-likelihood 5748.5030 5750.2420 5750.2420 5750.3220

skewness -0.8260 -0.7503 -0.7502 -0.7565

kurtosis 13.9958 13.5586 13.5579 13.5759

Table 67: Comparison of models for stock number 66
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Figure 72: Log-prices for stock number 67

Stock number 67: A total of 71 transactions from 12/28/98 to 02/15/00

M1 M2 M3 M4

�̂" 0.0097 0.0097 0.0097 0.0097

�̂1=�̂" 0.4702 0.4702 0.4704 0.4480

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0000 0 0.2078

log-likelihood 191.8190 191.8209 191.8210 192.3043

skewness -0.5736 -0.5569 -0.5576 -0.5523

kurtosis 6.4602 6.4387 6.4380 6.3476

Table 68: Comparison of models for stock number 67
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Figure 73: Log-prices for stock number 68

Stock number 68: A total of 153 transactions from 01/12/99 to 02/21/00

M1 M2 M3 M4

�̂" 0.0143 0.0143 0.0143 0.0144

�̂1=�̂" 2.2536 2.2536 2.2538 2.1647

�̂2=�̂"x10
2 0 0 0.0017 0.0000

̂ 0 1 0 0.0017

r̂ 0 -0.0001 0 0.0143

log-likelihood 304.1943 304.1987 304.1988 305.7892

skewness -0.2747 -0.2894 -0.2895 -0.2072

kurtosis 4.5159 4.5342 4.5334 4.4676

Table 69: Comparison of models for stock number 68
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Figure 74: Log-prices for stock number 69

Stock number 69: A total of 18 transactions from 01/13/99 to 12/02/99

M1 M2 M3 M4

�̂" 0.0306 0.0311 0.0311 0.0443

�̂1=�̂" 0.5615 0.4656 0.4656 0.0000

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0056

r̂ 0 -0.0016 0 0.0019

log-likelihood 23.6386 25.3676 25.3676 30.5408

skewness 1.2965 0.1789 0.1789 -0.4214

kurtosis 3.3928 2.2294 2.2294 3.0548

Table 70: Comparison of models for stock number 69
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Figure 75: Log-prices for stock number 70

Stock number 70: A total of 1255 transactions from 04/28/99 to 02/23/00

M1 M2 M3 M4

�̂" 0.0039 0.0039 0.0039 0.0039

�̂1=�̂" 4.8358 4.8259 4.8260 4.8198

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 4.1080

r̂ 0 0.0006 0 0.0008

log-likelihood 4562.4970 4562.6360 4562.6360 4574.8270

skewness 0.6393 0.6595 0.6594 0.6620

kurtosis 9.1141 9.1119 9.1119 9.1084

Table 71: Comparison of models for stock number 70
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Figure 76: Log-prices for stock number 71

Stock number 71: A total of 48 transactions from 05/07/99 to 02/22/00

M1 M2 M3 M4

�̂" 0.0154 0.0153 0.0153 0.0151

�̂1=�̂" 0.7784 0.7895 0.7895 0.7707

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0786

r̂ 0 -0.0002 0 0.0002

log-likelihood 100.0445 100.0977 100.0977 101.1196

skewness -0.0189 -0.1232 -0.1232 -0.0065

kurtosis 6.8873 7.2037 7.2037 7.3861

Table 72: Comparison of models for stock number 71
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Figure 77: Log-prices for stock number 72

Stock number 72: A total of 18 transactions from 06/03/99 to 02/17/00

M1 M2 M3 M4

�̂" 0.0187 0.0186 0.0186 0.0194

�̂1=�̂" 1.4647 1.4240 1.4240 1.1370

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0241

r̂ 0 -0.0015 0 0.0008

log-likelihood 21.5909 22.0036 22.0036 24.1787

skewness 0.3644 -0.1570 -0.1570 -0.0983

kurtosis 3.5807 3.5639 3.5639 5.6486

Table 73: Comparison of models for stock number 72
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Figure 78: Log-prices for stock number 73

Stock number 73: A total of 153 transactions from 06/09/99 to 02/22/00

M1 M2 M3 M4

�̂" 0.0123 0.0123 0.0123 0.0123

�̂1=�̂" 1.0919 1.0824 1.0824 1.0499

�̂2=�̂"x10
2 0 0 0.0002 0.0002

̂ 0 1 0 0.0000

r̂ 0 0.0006 0 0.7000

log-likelihood 379.4526 379.7496 379.7496 380.9638

skewness 1.1309 1.2004 1.2004 1.2332

kurtosis 13.1938 12.8699 12.8702 12.8317

Table 74: Comparison of models for stock number 73
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Figure 79: Log-prices for stock number 75

Stock number 75: A total of 901 transactions from 08/31/99 to 02/24/00

M1 M2 M3 M4

�̂" 0.0043 0.0043 0.0043 0.0043

�̂1=�̂" 9.2571 9.1718 9.1718 9.1718

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0052 0 0.0001

log-likelihood 3024.7920 3026.3080 3026.3080 3026.3080

skewness -0.1993 -0.1140 -0.1140 -0.1140

kurtosis 7.0507 6.8824 6.8824 6.8824

Table 75: Comparison of models for stock number 75
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Figure 80: Log-prices for stock number 76

Stock number 76: A total of 1305 transactions from 10/11/99 to 02/24/00

M1 M2 M3 M4

�̂" 0.0073 0.0073 0.0073 0.0073

�̂1=�̂" 11.4990 11.4944 11.4944 11.4944

�̂2=�̂"x10
2 0 0 0.0000 0.0000

̂ 0 1 0 0.0000

r̂ 0 0.0029 0 0.0001

log-likelihood 3833.0180 3833.0990 3833.0990 3833.0990

skewness 0.3908 0.4042 0.4042 0.4043

kurtosis 9.7943 9.7852 9.7852 9.7851

Table 76: Comparison of models for stock number 76
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