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Abstract

Observed transaction prices on a financial market are assumed to be noisy discrete measure-
ments on a multivariate Wiener-process. The likelihood function is calculated by means of
Kalman filtering. A three-stage procedure of estimating the covariance matrix is proposed.
The method is applied to Icelandic stock market data by numerically maximizing the like-
lihood. The application shows that the method is feasible and that the information about

many relations on the Iceland Stock Exchange is sparse.
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1 Introduction

In a financial market where many assets are traded, a measure of the relation between move-
ments of assets is of interest. Some risk management systems, e.g., CAPM(Sharpe, 1964;
Lintner, 1965; Mossin, 1966), are based on correlations between movements of assets. When
stocks trade non-synchronously, estimation from observed data poses a problem. In this paper
a direct procedure for estimation of the correlation coefficient from nonsynchronous data is
given.

When a new stock market opens it is typically characterized by infrequent trading and
low volumes. Traditional ways of reporting closing day prices may give misleading signals
about the market, undermining agents’ confidence. Reporting closing day prices of various
assets is actually quoting information of varying quality, as some assets are traded more
frequently than others. When reporting a closing day price of an asset that was not traded
that day, or perhaps has not been traded at all for weeks, the information about that asset, is
obviously of inferior quality, compared with information on one which was traded just before
closing. Using time series methods on multivariate data requires simultaneous observations
of all coordinates of the data vector at each sampling point. Relaxing that requirement
by guessing the missing observations demands special precautions. Harvey (1993) discusses
methods for dealing with missing observations. In the traditional time series literature, missing
observations are typically treated like some kind of exception. In the environment of financial
markets, missing observations for some assets, is perhaps rather the rule rather than the
exception. Analyzing the movement of a partially observed multivariate vector, Bassett et al.
(1991) approach the problem by treating the dimension of the observed vector as variable.
The approach in the present paper is different. The setup is a very simple, continuous-time
stochastic model. The simplicity of the model is justified by the intended application to stock
market data, where the efficient market hypothesis implies that it should not be possible to
predict future values. It is assumed that the observed data are discretely observed points of a
multivariate diffusion process. The diffusion process describes the value of each asset at each
point in time. At the time of a transaction, a part of the vector, usually only one coordinate,

is observed.



Economic theory typically abstracts from the mechanics of trading, whereas the market-
microstructure literature deals with explaining what impact the trading mechanism has on
price formation. The purpose of market-microstructure theory is also to explain why prices
exhibit particular time-series properties (O’Hara, 1995). It is well known that time-series
analysis of real data from financial markets tends to show significant serial correlation in
returns (Campbell et al., 1997; Cuthbertson, 1996). The existence of such serial correlation for
stock-market data has troubled many analysts as it suggests that the returns of some assets are
predictable, and thereby contradicting the efficient-market-hypothesis. Some authors consider
these findings as a possible violation of the efficient market hypothesis. Campbell et al.
(1997), page 129, discuss empirical findings in discrete time on the impact of nonsynchronous
trading on serial correlations; individual security returns with non-zero means tend to induce,
among other things, negative serial correlation, well-diversified portfolios tend to have positive
serial correlations, etc. They also discuss the impact of daily non-trading probabilities on
autocorrelations of observed returns.

The intended application for this work is stock market data, and the approach is to
assume the efficient-market-hypothesis in continuous time and formalize it as a continuous
martingale in log-prices. When data consist of non-synchronous observations of a multivariate
Wiener-process, it can be shown that information on one asset can help predict the price of
another, provided that they are correlated. The example described in Section 2 illustrates
this in a simple manner. The transactions on a financial market take place in a bargaining
environment. The nature of bid-ask data is quite complex; thus, to allow for the impact of bar-
gaining and other microstructure phenomena, a noise component is added to the model. The
interpretation of observed prices is that they are the sum of the true value and microstucture
noise. The decomposition of transaction prices into signal and noise for univariate financial
data is described in Toémasson (2000). That model is now extended to deal with the relations
between many stocks. To be more specific, the variable under consideration here consists
of a k-dimensional vector, k, being the number of assets traded on the market. The vector
of values is defined at each point in time, whereas the transactions consist of discrete noisy

observations of one or more coordinates of this vector. It is assumed that the value vector has



a continuous path in each coordinate, therefore a multivariate diffusion-process is a natural
candidate. This obviously means that when real discontinuities occur, e.g., when a dividend is
paid, or a stock split takes place, some precautions are necessary. The quantitative measure of
relation between the various assets is the covariance matrix of the innovations of the process.
The model is written down explicitly in Section 3. The model is a multivariate one, whereas
the observations are univariate in nature, i.e., at most time points only one coordinate of
the vector is observed. Due to bargaining and the existence of many bids/asks at some time
points, it is possible to observe two or more transactions of the same asset simultaneously, not
necessarily at the same transaction price. It is assumed, though, that at each point in time,
the value of each asset is unique. In Section 4, a statistical model for dealing with discrete
observations is derived from the theoretical model in Section 3. Section 2 shows that when
two assets, driven by a correlated bivariate Wiener-process, are traded non-synchronously, the
expected value of an asset, A, conditional on past values of both assets, will be a function
of the latest observation of asset A, and the two latest observations of asset B, if there are
transactions with asset B later than the latest transaction of asset A. This conditional, ex-
pected value will also be a function of the four time points of transaction times for assets A
and B, respectively. When extending these results to more than two assets, it is clear that the
conditional expected value of an asset will become a function of every transaction price that
has taken place since that asset was last traded, as well as the time points of the transactions.
It is evident that the extension of the formulas of Section 2 to high dimensions will be quite
messy, not to mention the impact of introducing the noise component. The model can easily
be written in state-space form, as the interpretation is that the state equation represents the
dynamics of the latent value, and the measurement equation is the observed transaction price.
Using the state-space representation, the Kalman-filter recursions are a straightforward way
of calculating the conditional expectations. Assuming normality, the Kalman-filter algorithm
also gives a method of calculating the likelihood function. The parameters of the model can
then be estimated by numerically maximizing the likelihood. The dimension of the system
is a problem, so a stepwise procedure is proposed in Section 5. The steps consist of several

univariate or low-dimensional optimization problems, constraining the estimates to form a



valid covariance matrix, which is used as a starting value for an EM (expectation maximum)
algorithm. A brief description of an application of the method to Icelandic stock market data

is given in Section 6.

2 A two-dimensional example

Suppose that we have a pair of correlated processes:

dXi(t) | _ | ordi(t) Q)
dXs (1) o dWa(t)

E(dWy(t)) = E(dWy(t)) =0 , E(dWZ(t)) = E(dWZ2(t)) =dt and E(dW,(t)dWs(t)) = pdt

Both X;(t) and X2(t) are standard univariate Wiener-processes, i.e., the best forecast value

is the last observed one:
E(X;(t)|X1(s)) = X1(s) and E(X3(t)|X2(s)) = Xa(s) fort>s (2)

However, information about a new value of, say, Xi(¢), will affect the conditional expected

value of Xs(t):
E(Xo(t)|X1(2), X1(s), X2(s)) = Xa(s) + poz/o1(X1(t) — X1(s)) fort>s (3)

From equation (3) it is clear that when the processes are correlated, the arrival of new infor-
mation in one of the processes will affect the conditional expectation. This fact is illustrated
in Figures 1 to 3. In Figure 1 two correlated random-walk processes are plotted, and the
optimal forecast X; (t) = X;(30) for t > 30 for s = 1 and ¢ = 2. In Figure 2 a new observation,
A = X5(35), on one of the processes is obtained, and in Figure 3 it is shown how this new
information will affect the conditional expectation, B = E(X;(35)|X2(35), X1(30), X2(30)).
It is clear that the best forecast for X;(t) is affected by this new information.

A four-dimensional vector consisting of two correlated Wiener-processes, X1 measured at

time-points #; and 2, and X2 measured at time-points s; and sg, is normally distributed with
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zero mean and a covariance matrix given by:

ot a?min(ti,to) poioomin(ty, s1) poroemin(ty, s2)
a?min(ty, to) o2ty poioomin(te, s1) poiroamin(ta, s2) B
poroomin(ty, s1) poioamin(ts, s1) 0351 oamin(sy, s2) -
I poroomin(ty, s9) poioamin(ta, s2) O'gmin({il,SQ) 0%32 |
a%tl Y AB ()
s BB

By using equation (4), equation (3) can be generalized by use of standard normal theory,

which gives the expected value of X;(¢1), conditional on (X (t2), X2(s1), X2(s2)) as:
E(X1(t1)|X1(t2), X2(s1), Xa(52)) = ZapE pp(Xi(t2), Xa(s1), Xa(s2))’ (5)

Ift; > t2 > s1 > s9 the observation intervals are disjoint, then E (X (t1)| X1 (t2), X2(s1), X2(s2)) =
X1(t2), i.e., disjoint observation intervals do not yield any information about the relation be-

tween the two processes. Equation (3) can easily be generalized to higher dimensions, but it
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is evident that the conditional distribution of X;(¢1) will be a function of everything that has
happened since the last observation of X;. Therefore, the corresponding formula will be quite

messy.

3 A simple continuous-time model of dependent assets

The example in Section 2 shows that in the environment of non-synchronous trading, it
is very natural, even under the efficient market hypothesis, to observe a significant serial-
correlation structure of asset returns. In this paper a slight modification of the random-walk
model presented in Section 2 will be introduced. The approach is similar to Toémasson
(2000), i.e., that the true prices are assumed to follow a continuous time diffusion process
with added noise. The observed transaction price is the sum of the true price and a noise
component. The purpose of the noise component is to capture microstructure phenomena.
The true price of asset j, at time ¢, is denoted with o;(t), and the k-dimensional vector
a(t) = (ay(t), ... ,ag(t)), is defined accordingly. The dynamics of a(t) are assumed to follow

a correlated Wiener-process:
da(t) =dW(t) with E(@dW@t)dW(t)") =Q (6)

The observation vector y(t) consists of an observation of a(t) + €(t). The vector e(t) =
(e1(t),... ,ex(t)) consists of the microstructure noise for each asset. It is conceivable to observe
simultaneous observations, i.e. many realizations of £(¢). In a previous paper by To6masson
(2000) several structures of drift term are tested on empirical stock market data. The results
indicated that the volatility term was dominating, and that the choice of drift structure
affected the volatility estimates only marginally, which perhaps is a natural result of the
efficient market hypothesis. Therefore, for simplicity in this paper no drift term is put into
equation (6). It is also conceivable to allow for some structure of the noise term, e(t), but
for simplicity, the noise is assume to be i.i.d. within each asset. The noise components are
assumed to be independent, zero-mean processes for all assets, but each asset is allowed to
have its own asset-specific variance of the noise. The vector of standard-deviations of &(t)

is denoted with o¢ = (0¢1,...,0.%)'. The matrix @ consists of elements, o0;; describing



the simultaneous comovements of assets. The square root of the diagonal, o;;, is the daily

volatility of stock j.

4 Application to discrete data

In real markets transactions take place in a bargaining environment, which results in observed
transaction prices being different from the true price. Transactions take place at time points,
t1,t9,. .., the possibility of simultaneous transactions of the same asset at different transaction
prices is allowed, as well as non-synchronous trading of assets in general. In fact, only a part
of the k-dimensional vector, y(t), of log-transaction prices, is observed at each time point,
and, as it is possible to obtain many different observations of a coordinate of y(t), the vector
y(t) should be interpreted as a sample. The observations are therefore in practice univariate,
or at most bivariate. At time, ¢;, we observe the price, y;(#;), and the number, j = j(t;), of

the asset which is traded at time ¢;. To be more specific, the observed price at time ¢; is:
yji(t:) = a;(ts) +€;(t:) (7)

where y;(t;) denotes the observed transaction price of asset j, a;(t;) denotes its true price, and
€;(t;) denotes a market microstructure noise component due to phenomena like bargaining.
The vector of the true asset prices at time, ¢, is denoted by a(t) of equation (6). The true
price is unobservable, and there an evident time dependency is described by the stochastic dif-
ferential equation (6). Solving the stochastic differential equation at time point ¢; conditional

on the value at time point ¢;_; gives:
a(ti) = a(ti-1) + &(t) (8)
with
&(t;) = W (t:) — W (ti-1)

It is therefore natural to interpret equation (7) and write a measurement equation as (9) into

a state space model:

y(ti) = z(t))ee(ts) + €5(ti) 9)



Here y(t;) = y;(t;) is a transaction in asset j = j(¢;) taking place at time point t;; the
vector z(t;) is a k-dimensional vector of zeroes, except z;(t;) = 1. As information, i.e., data,
y(t1),y(t2), ..., arrives, the Kalman-filter recursive algorithm gives an objective estimate of
the true price for all assets at each point in time. If a(¢|¢;) denotes the expected value of a(t),
conditional on information available at time ¢;, and P(¢|t;) as the covariance-matrix for this

estimate, then

a(tlt;) = alti|t;) (10)

P(tlt;) = P(tilt:) + (t — t:)Q (11)

Given that transaction with asset j takes place at time ¢;, the predicted transaction price is:

g(t:) = z(ti)ou(tilti-1) (12)
and the corresponding forecast variance is given by:
f(ti) = 2(ta) P(tilti-1)2(t:) + 02 (13)
The updating equations of the Kalman filter are

a(tilt) = eu(tilti-1) + P(tilti-1)2(t:) (y(t:) — 9(8:))/ f (i) (14)

P(tilt:) = P(tilti-1) — P(tilti—1)2(t:)) 2(t:) P(tilti—1)/ f (i) (15)

If all the parameters of the matrix @, are known, these recursions give an optimal estimate
of the value and the corresponding variance at each point in time. The problem of daily non-

trading is thus eliminated, and an eventual inter-asset correlation is incorporated in a proper

way, and there is no need to interpolate on non-trading days.

5 Estimation of Q from data

Assuming normality the Kalman-filter recursions of the previous section provide a direct way

of calculating the likelihood function.

log(L(y(t1), .. ,y(ta)|Q, 0¢)) = ——log (2m) — 5 2109 - Z(y(tz‘) —9(t:))?/ £ (t:) (16)



The parameter o, consists of k company-specific standard deviations measuring the bargaining
scope for each asset. The matrix @ consists of k(k+1)/2 parameters describing the movements
and comovements in time of the k assets, i.e., the total number of parameters to be estimated
is k+k(k+1)/2. Even in a moderately sized market, this is a substantial number for numerical
methods; therefore, the following approximative three-stage method is suggested.

The first step consists of decomposing each individual series into signal and noise, as

described in Témasson (2000), i.e., for each individual stock, j, estimate the model:

yi(t) = a;(t) +e5(t)  where  V(g(t)) =02, (17)
dOtj (t) = O'dej (t) (18)

where o, ; denotes the microstructure noise, and o; in equation (18) describes the daily dy-
namics. The Kalman filter is used to calculate the likelihood function and maximized with
numerical routines. This step consists of k two-dimensional optimization problems. Having
got the signal-noise parameters for each of the k stocks, one proceeds to the second step, es-
timating the pairwise correlations. The matrix, @, consists of g;; = 0;0;p;;. Having obtained
the estimates of o; and o; in the first step, the Kalman-filter algorithm is used to calculate
the likelihood, and then it is maximized numerically. This step thus consists of k x (k — 1)/2

one-dimensional optimization problems. The setup is as follows:

y(ti) = z(ti)ee(t;) + () (19)

o(t;) = afti—1) +&(tio1,ts) (20)

where z is a two-dimensional vector, (1,0) or (0,1), depending on whether the transaction at
time ¢; is on stock [ or j. Similarly, the variance of e(t;) is taken as either 612 or &]2-, from
the first step, depending on which stock is traded. The likelihood is calculated using equation
(16) and maximized numerically with respect to q;; = o;0;p;;-

Repeating this for all pairs would yield an estimate, Q, for the matrix Q. However, this is
generally not a valid correlation matrix, i.e., due to sampling error, the matrix Q, would not
necessarily be non-negative definite. To find a valid way of estimating the correlation matrix,

it is necessary to enforce the matrix to be non-negative definite.

10



A way out is to estimate the k x (k —1)/2 correlations recursively, using Choleski decom-
position. The Choleski method assumes that we write the correlation matrix p = LL' where

L is a lower triangular matrix. The recursions are as follows:

i—1
pij = 3 linljp +lijly; fori=1, ... j1 (21)
r=1
1—1
ie. lij = (pij — ) lirlyie) /1 (22)
r=1
i—1
1=pz=» I+ fori=l, ...k (23)
r=1

(24)

ie. l; =

First, the likelihood equation (16) is maximized for, say, the two most frequently traded assets,
giving an estimate, la1, of ly; = p21/1, that gives an estimate, lye, of lyy = m Next,
one maximizes the likelihood with respect to l3; = r31/l11, then l3a = (r32 —l31l21) /122, giving
l33 = m, then ly1 = 7r41/l11, etc. It is clear that the first element of L that
is estimated is not restricted at all, except being smaller than 1 in absolute value. Due to
equation (24), subsequent estimates of [;; are subject to the condition, (1 — Zf;ll 2)>0. A
large value of |i,J| will therefore restrict later [im’s, for m > j, more than a small one would
do. For correlation where there is a lot of information in the data, this restriction is not
likely to be binding, but for pairs where data is sparse, it is likely that the maximum of the
likelihood function will be on the boundary of the parameter space. It is therefore a good
idea to estimate the correlations, [;;, of the most frequently traded stocks first to prevent
low-information data-pairs from enforcing restrictions on high-information data-pairs. Having
an estimate of /;; hitting the boundary results in a zero element of the diagonal, l;;, as well as
the remaining elements of the i-the line of L being zero. This is infeasible and would result
in breakdown of the method. A natural remedy is to shrink the estimate of /;; away from
the boundary towards zero. There are a number of various principles for shrinkage, empirical

Bayes, pre-test, James-Stein estimators (Judge and Bock, 1978). Here, a very simple shrinkage

11



estimator for /;; is proposed:

. )
lij = l;j m (25)
The idea is that if [;; is poorly estimated, then the maximum-likelihood estimate will be
shrunken more than those that are well estimated. The new estimates will never be on the
boundary, and all l;; will be strictly positive. This will result in an estimate of L, and the

corresponding estimate of @ is given by

A A

Q=6LL¢ (26)

The estimate of @ given by equation (26) is not a maximum-likelihood estimate. A third
step towards a global maximum-likelihood estimator is therefore proposed. Maximizing the
likelihood directly with gradient methods is not feasible due to the dimensionality. However,
with reasonably good starting values, e.g., given by equation (26), one can approximate the
maximum-likelihood estimator using a version the EM algorithm. The following version is
based on a discrete time version shown in Harvey (1989). Considering the states as given,

the log-likelihood for the measurements and states is given by equation (27)

n 1 1
log(L(y, Aloe, @) = —log(2m) — 5 D log(o:5)) — 5 D (wlts) — =(t)ex(ti))?/o? 55 (27)
i=1 i=1
~rogam) — 5 3 log(6) — L log(1Ql) — 5 3 (exlt) — exti1))'s; @ (exlt) — x(ti-1)) (28)
2 2
(5 >0 ;>0
where y = (y(t1),y(t2),--- ,y(ty)) is a vector consisting of the measurements, and A =
a(t),...,a(ty) is a matrix consisting of the states, a(t) at each time point of measurement.
The parameter, ¢ = (0¢,1,... ,0 %) is a vector of the standard deviation of the measurement

noise for the k assets, and @, is the covariance matrix of the k-dimensional innovations for
the diffusion process of states. The time between measurements is denoted by &; = t; — t;_1,
the function j(i) gives the numerical code of the asset traded at time point ¢;, and z(t;) =
(0,...,1,0,...) is a vector of zeroes except at coordinate j(), i.e., 2(t;) is designed to pick the
relevant coordinate of e(t;). The value of n* denotes the number non-zero 4;’s. Conditional
on y and A, solving the equations:

dlog(L)

£,

oQ

) =0 (29)

12



for Q and o, ; gives:

Q= Bul 1 Y (alh) — i) exlt) — xlti )5, (30)
;>0
62 =13 (ylt) — 900/ £ (5) (31)
7 j(ts)=g

where n; denotes the number of transactions with stock j and Ej; denotes the expectation,
conditional on information available at time %,. The innovation from ¢;_; to t; can be written

as:

E(ti-1,ti) = a(t) — a(tilty) — ati-1|ts) + a(ti-1) + &E(ti-1,tiltn) (32)

which gives

En(&(tim1,t:)&(tio1, 1)) =

P(ti|tn) + P(ticaltn) — P(tis tic1ltn) — P(tis tiza|tn)' + EGim1, tiltn)E(tiz1, tiltn)' (33)
where

E(tistim1ltn) = a(tiltn) — a(ti-1|ts) (34)

and
P(ti ti-1|tn) = E(a(t:) — a(tilts))(a(ti-1) — a(ti-1]tn))’ (35)

The expression in equations (34) and (35) can be calculated using the smoothing rules of the
Kalman filter. Having calculated the smoothed values, a(t;|t,) and P(t;,t;—1|t,), substituting
equations (34) and (35) into equation ( 30) gives an new estimate of Q. That estimate can
then be used to get a new estimate, and so on, until convergence is achieved. Calculating the
entire smoothed history is a tedious process, so an approximation of a(t;|t,) is possible, i.e.,
only smoothing a fixed lag of the history. This can be achieved on-line by augmentation of
the state-vector. This is illustrated as follows; to get an on-line estimate of e(¢;—1|t;) one can

write:
a(ti)

a(ti_l)

13



The state equation of the augmented system is given by:

ot = ot + | | &) @7
Ok

Running the Kalman filter on the augmented state equation with the same measurement equa-
tion gives the smoothed estimate of &€(¢;—1, t;|t;) as well as the matrix given in equation (35). If
it is assumed that a(t;—1|t;) = a(t;|n) and &(t;—1,t;|t;) =~ &(ti—1,ti|tn), these approximations
can substituted into to equation (30) to get a new estimate of Q. This type of augmenting
of the state space is a version of the fixed interval smoother (Anderson and Moore, 1979). If
smoothing further back is deemed necessary, further augmentation or direct smoothing algo-

rithms will be needed. In both cases the computation effort will be substantial if k is, say, of

the order 100.

6 Application to Icelandic stock market data

These ideas were tested on data from the Iceland Stock Exchange (ISE). The ISE is an
automated, computerized market, which opened in 1991. Active trading started in 1993 and
has gradually increased, in both the number of companies registered and trading intensity.
By the year 2000, over 70 companies were registered. The accessible data consist of every
registered transaction since the opening of the ISE. The distribution of the transactions is
tabulated in Table 1. For the years 1995-1999, the extreme quantiles seem pretty much
constant, whereas there might be some upward drift in the center of the distribution. The
one-percent quantile in this period is very close to the tax-deduction limit. There seems to be
an upward trend in the center of the distribution.

Data for all transactions on the market were available from the opening till February
24th 2000. The variables observed were, the stock code, price per share, volume in number of
shares and time of transaction. The dates of each company’s annual meeting of shareholders
were also available. A total of 76 stocks were traded in a little over 76000 transactions with
the least traded stock only traded three times. The number of transactions has increased on
average by 5% each month from 1993 to 2000, see Figure 4. The outliers in Figure 4 are due

to heavy trading in December, in particular on December 31st.
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Year

q0.01 q0.1 q0.25 q0.5 q0.75 g0.90 40.99 n
1993 20185 68629 100188 150415 252241 853120 6073847 1878
1994 24634 74605 117000 172000 335997 879500 5698800 2605
1995 130168 139100 200800 324000 757770 1815000 11400000 2701
1996 130020 150500 240000 400256 921000 1904000 10909000 5256
1997 130002 154724 244096 456000 971508 2190000 10500000 11821
1998 130074 176000 272337 555000 1010005 1944200 8080400 12350
1999 131078 197626 331500 773499 1320000 2860287 9900000 30153

log(#transactions +1)

Table 1: Quantiles of transactions in Icelandic kronur.

Logarithm of number of transactions in time

- 000 O 00 0000000 — 2.88+0.05dt

T T T T T
1992 1994 1996 1998 2000

year

Figure 4: Logarithm of the number of monthly transactions.
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The ordering of stocks affects the estimation procedure. The ordering used here is the
entry date on the market, so stock 1 is the first one registered on the market. The stepwise
procedure described in Section 4 was applied to the total history of transactions on the
Iceland Stock Exchange in the period 1991-2000. The first step consists of getting estimates
of the standard deviation of the noise and daily innovations of each stock, using the procedure
described earlier (Témasson, 2000). Conditional on these estimates all pairwise correlations
are estimated one at a time. The calculation of the likelihood was performed using the
author’s FORTRAN subroutines, using GNU-fortran for Linux on a 200MHZ computer. For
maximization of the likelihood, the nlm-function of the R-statistical language was used (Thaka
and Gentleman, 1996). The nlm-routine is for unconstrained problems but the restriction on
the parameter space given by equations (22) to (24) was enforced by transforming the interval

(—00,00) to (—a,a), using the transformation:

where a is the bound on [;; set by equation (24).

For computational reasons the condition of equation (24) was sharpened. If, after shrink-
ing the estimates of /;;, the sum of the fijs in a particular row, is to close to one, the corre-
sponding diagonal element will be to close to zero or even negative. Such an event will corrupt

the procedure, so the following extra condition was added. If;

m—1
Y lp>1-1/i
r=1
all of the remaining line, except for the diagonal element, was set to zero, i.e., fij, j=m,...,i—

1 were set to zero. This condition affected 83 fij’s, starting at ¢ = 22,7 = 11. A total of 53 pairs
were deleted from the the Choleski optimizations because the stocks in question did not have
overlapping trading intervals. The estimates of the correlations between those 53 + 83 = 136
pairs of data series, are then directly decided indirectly by estimates earlier in the scheme
rather than directly by their own data. Data for three stocks considered too sparse to be
included at all which resulted in that, 147 correlations of of the original 75 % 74/2 = 2775 were

set to zero.
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Figure 5: Histogram of correlation estimates

Figure 5 shows a histogram of the estimated correlations. Roughly 10% of the correlations
are negative. The most extreme one, p = —0.76, is based on a pair where one of the stocks
had only 18 transactions. However, some estimates around -0.5 are based on a pair of more
than 1000 transactions each in overlapping periods. Brief analysis suggests that most of
the correlations are poorly estimated. In Table 2 the first 45 estimates of [;; are shown
together with the corresponding correlation. The column labeled, “st.err”, represents a pseudo-
standard-error, which is based on the inverse-hessian of the log-likelihood. The procedure is
sequential in nature, i.e., an element in a line is restricted by earlier estimates in that line, so
the Hessian is a measure of added information due to the (7, 7) pair in question. It is not a
direct measure of the significance of the particular correlation coefficient.

The fundamental problem of infrequent trading, i.e., lack of observations, cannot be
avoided. The amount of information about the correlation of two assets depends on the
number of transactions that have taken place as well as the timing of these transactions. If
the trading of the two assets takes place in disjoint intervals, no information about the cor-
relation is available. Regular transactions increase the information about the daily volatility,

simultaneous observations or ones close together in time increase the information about the
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>

i ] l;j sterr  py i g l;j sterr  pyj
2 1 0.06 0.07 0.06 8 3 0.00 011 0.02
3 1 0.08 0.08 0.08 8 4 000 011 0.01
3 2 0.06 0.09 0.06 8 5 081 027 0.82
4 1 0.06 0.03 0.05 8 6 0.01 0.05 0.06
4 2 0.04 0.07 0.04 8 7 0.06 0.08 0.18
4 3 027 0.09 0.27 9 1 024 011 0.24
5 1 0.08 0.03 0.08 9 2 020 0.08 0.21
5 2 0.09 0.08 0.09 9 3 008 006 0.11
5 3 0.01 0.07 0.02 9 4 0.02 020 0.06
5 4 0.01 0.08 0.01 9 5 001 015 0.05
6 1 023 0.09 0.23 9 6 024 028 0.30
6 2 0.03 0.05 0.05 9 7 029 0.09 041
6 3 0.14 0.06 0.16 9 8 -0.00 0.12 0.07
6 4 0.05 0.07 0.09 10 1 012 0.08 0.12
6 5 0.03 0.12 0.05 10 2 029 012 0.29
7 1 030 0.09 0.30 10 3 021 0.09 0.23
7 2 029 022 031 10 4 044 0.11 0.50
7 3 0.07 011 0.10 10 5 055 0.25 0.59
7 4 0.01 0.07 0.05 10 6 020 0.20 0.30
7 5 0.08 0.07 0.13 10 7 026 020 043
7 6 0.09 014 0.18 10 8 0.02 0.05 0.52
§ 1 0.10 0.11 0.10 10 9 013 010 0.36
§ 2 010 0.12 0.11

Table 2: The first 45 estimates of /;; and p;;.
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standard deviation of bargaining. Similarly, two stocks traded closely in time will give more
information about their correlation than those traded far apart in time. For the Icelandic
stock data, a 73 x 73 correlation matrix, consisting of 73 x 72/2 = 2628 correlation coefficients
was estimated by numerically maximizing the log-likelihood. The elements below the diago-
nal of the corresponding Hessian are plotted in Figure 6. This shows that the information
is very unevenly distributed across the 2628 pairs. Actually only a few correlations can be
estimated precisely with the available data. The third step in the estimation procedure, the
EM iterations, was based on smoothing only one step back. This may be the explanation of
why the correlations only change marginally in that step. The residual diagnostics revealed,
as in analyzing the same data earlier with a different model (Témasson, 2000), that at least
the distribution of the noise component is non-normal, i.e. the kurtosis of scaled prediction
errors for most stocks is much higher than 3. The interpretation of the results is that they
are based on a quasi-maximum-likelihood method, the normal likelihood used for convenience.
Other things might affect the normality assumption, e.g., jumps in the value which violates
the continuous path assumptions. In this study the period around the annual meeting was

assigned an extra-high daily innovation variance, trying to minimize the effects of jumps due
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to dividend payments and stock splits, but other events in the company’s history might have

generated jumps.

7 Discussion

This paper presents a method for estimating correlations in a multivariate Wiener-process
when the sample consists of discrete observations of one or more coordinates of the vector at
the time. The intended application is to stock market data, where such correlations are of
interest, e.g., in risk management, VaR (value-at-risk), CAPM, etc. Despite the computational
simplification steps described in Section 5, computation is still heavy. The efficient market
hypothesis justifies a martingale structure for the dynamics of the value of an asset and thereby
the choice of a multivariate Wiener-process. In practice one can question the efficient market
hypothesis, but that would lead to a completely different, and probably more complex, setup.
Shleifer (2000) gives a review of how agents might react in the environment of non-efficient
markets.

The application to the Icelandic data shows that the method is feasible. It is an objective
method that uses the information of each data point without adding any values, e.g., for non-
trading days. It is also, in some sense, approximately optimal due to the fact that it is an
approximative maximum-likelihood method. In the environment of infrequent trading, it is
vital to preserve all available information.

The calculation of correlation in discrete time demands simultaneous observations. In
general the lack of simultaneous observations distorts the analysis. When the approximation
of simultaneous observations becomes poor, market-microstructure phenomena, as described
in Campbell et al. (1997), are likely to arise. In the method developed in this paper, the
demand for simultaneous observations is replaced by overlapping intervals of transactions.
For good estimates of correlation coefficients, one should have many observations regularly
distributed in time. For the young Icelandic stockmarket, many stocks are so rarely traded
that there is virtually no information about an eventual correlation between stocks, i.e., for
most pairs, observations in overlapping intervals are too few or too far apart in time. An

objective method cannot create information about relations when there are no observations.
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