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Abstract

Streamflow data from ten hydrographic stations in Northeeteind are used to develop
flood-duration-frequency (QDF) curves, using the so-daflentinuous converging model.
The QDF curves are equivalent to the well known intensitsatian-frequency (IDF) curves
used in extreme rainfall modeling, except that they areiegpb discharge data which is
the variable of interest. QDF curves give a complete desonf the flood dynamics of a
basin and allow to directly derive the-year flood peak discharge of any duratibrwith
a unique and straightforward formula. Results obtainedasanidicate that the approach
adopted in this study looks promising for deriving QDF csnand complement the re-
gional flood frequency analysis recently developed at teéaialic Meteorological Office
(IMO) for estimating theT -year flood at ungauged catchments. The QDF curves will also
be useful for deriving extreme flood statistics of any dw@fd from simulated daily dis-
charge series made with the WaSiM-ETH distributed hydrickdgnodel used at IMO and
will thus enhance its usefulness.



1 Introduction

Various water resources applications require the caliouladf the so-called -year flood peak
discharge, i.e. the flood peak magnitude with return perfoti-gears. Such information is usu-
ally needed for the design of bridges or dams and in hydro&gipplications e.g. reservoir
operation and dam safety analysis. Often, such studiegwaited to the analysis of annual max-
imum instantaneous flood statistics or annual maximum diaibd statistics. This information

is not always sufficient to fully describe the flood dynamind analysing flood discharge cor-
responding to various durationB)Y may also be important. Sometimes, only daily streamflow
series are available which may be insufficient temporallsgi®em for small catchments.

Recently, Atladottiret al(2011) made an attempt to estimate Thgear flood at poorly gauged
and ungauged catchments in the West-fjords using the Wd&SiM-distributed hydrological
model. Despite the intrinsic advantages of this model, ongdtion is the temporal resolution
of the simulated streamflow seridd3=24h, imposed by the available input meteorological in-
formation. In practise, some sort of downscaling would bedee for applications requiring
sub-daily or even instantaneotlisyear flood estimates.

The problem of data resolution and multi-duration analydigxtreme floods is explicitely
adressed here. A methodology is presented for derivingdaration-Frequency (QDF) curves
and estimating th&-year flood of any duratioB. The selected approach builds on the so-called
continuous converging model (Javedieal, 2002; Javelleet al., 2003). The report is organized
as follows. Section 2 describes the general methodologtidde3 presents the data used in
the study and Section 4 presents the derivation of the QD¥esupr the selected river basins.
Finally, Section 5 concludes the report.

2 Flood-Duration-Frequency modeling

The Flood-Duration-Frequency (QDF) modeling is similatite Intensity-Duration-Frequency
(IDF) curves commonly used in extreme rainfall modelinge($er instance Eliasson, 2000).
The idea is to provide a description of flood magnitude as @moous function of both return
period (T) and durationD) and give a more comprehensive picture of the dynamics amesg
of extreme floods for a given basin. First, averaged dis&hsegies are computed for different
durations,D, their annual maxima extracted and the quantiles, den@{&dT), estimated by
fitting an appropriate extreme value distribution. The QDétmodology attempts to describe the
relationship between the different distributions cormgting to different durations. For a given
year, the annual maxima of different durations do not nesédgsorrespond to the same flood
event.

2.1 QDF model |

The two underlying hypothesis behind the QDF modeling apginaof Javelleet al(2002) are
that i) the distributions of annual maximum floods for thdfatiént durationsD, converge to-
wards the same poiftfor small return periods and ii) for a given return periddthe evolution
of the quantile QD,T) as a function oD can be described by a hyperbolic form:



Q(D — O7T> B
1+D/A

Q(D,T) = P (1)
whereQ(D = 0,T) is the instantaneous flood quantilejs a parameter with unit of time de-
scribing the shape of the hyperbolic form and related to thedfidynamics an@ is the limit

of the function wherD tends to infinity. A large value ok corresponds to slow and smoothed
floods whereas a small value Afcorresponds to fast and sharp floods. The parandetzm
thus be seen as being characteristic for the basin in queStas function can be simplified by
takingP = 0 with a small loss of performance only:

QD =0,T)

Q(D,T) = 1+D/A

(2)

If the characteristic basin parameteis known, then the instantaneous flood quar@® =
0,T) can be derived from the flood quantile of any duratidand return period, Q(D,T), as
follows:

QD =0,T)=Q(D,T)(1+D/A). 3)

This property may be used to estimate the parandeteirst, each available experimental annual
maximum streamflow series corresponding to durabgrQ(D;, j), is scaled:

X(Di, ,8) = Q(Di, j)(1+Di/9d), (4)

andA is estimated as the optimum valuedthat minimizes the dispersion &fD;, j,d):

A = doptimum= MiIn(Err(9)), (5)

where

1138 3D, J 6 E[x(j,9)]12
Err(3 =uN Z Z[ 5] ] , (6)
andE[x(]j, )] is the mean experimental scaled value for yeaver all duration®;

N

. 1 .
E[X“?a)] - Ni;X(DHJ?é)' (7)
N is the number of analysed duratiobs(i=1, ...,N) andM is the sample size for each duration

(number of years).

Once the parametéy has been found, the parameters of the probability distahdtinction of
Q(D = 0) are estimated by fitting an appropriate extreme value Higion toE [X( , 8optimum)]
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and the quantile®(D, T) for any durationD and return period are estimated by Eq. (2). In
this work, the GEV distribution fitted by the method of probigypweigthed moments (PWM)
(Hoskinget al.,, 1985a) will be used (see also Crochet, 2012).

This approach, described by a unique formula, is a quick &agyktforward way to derive the

distribution of annual maximum flood for any duration. In tg&arlar, this method is attractive

for estimating the distribution of annual maximum instaretaus flood which is often required
in flood design studies and not always available from flow mesments or simulations. Hydro-
logical models, in particular, simulate streamflow avedageer a duration of a few hours or a
day, like for instance the WaSiM-ETH distributed hydrolcglimodel used at IMO.

2.2 QDF model Il

More recently, Javellet al(2003) proposed a refinement of the Javelteal (2002) method
presented above, allowing a more robust fitting of the patande The two main hypothesis
are:

i) The different distributions are invariant when normatizby their meam(D):

Q(DvT) = H(D)Q(T% (8)

whereq(T) is a dimensionless parent distribution with a mean of unity i equivalent to the
growth curve in regional index flood procedures (see Cro@xit?2).

ii) The scaling factop(D) can be modeled as a continuous functiomegimilarly to what was
previously done witfQ(D, T) (see Eq. (2)):

_ M
wherep andA have to be estimated. The parametdras a unit of time and is equivalent to the
A parameter defined in Eg. (2) apds the mean of the annual maximum instantane@us Q)
flood distribution. TheQ(D, T) quantile can then be modeled by:

H
1+D/A

Q(D,T)= q(T), (10)

and the annual maximum instantaneous flood quantile is diyen

QD =0,T) = pq(T). (11)

The optimal model parametefssandp are calculated, considering that:

n=p(D)(1+D/A). (12)

In other words, the sample mep(D) multiplied by the coefficien{1+ D/A) should converge
towards the same valye for all D. The following new optimization procedure was suggested
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by Javelleet al(2003) and is assumed more robust than the earlier one beddn previous
sub-section. For each durati®y and a set of value§, the following quantities are calculated:

Hg(Di,8) = u(Di)(1+Di/3), (13)
1 N
E (D1, )] = N;uq(Di,&, (14)
N
Var(u(D, 8 =y 3 (k(D1.3) ~Elio01.3))* (15)

whereN is the number of analysed duratiobs (i=1, ...,N). The parametef is estimated as
the optimum value od that minimizes the variance @§(Dj,d) (Var{pq(Di,d)}) andu is then
estimated from Eqs. (13) and (14).

The dimensionless parent distributigfil) is then fitted with the regional GEV/PWM algo-
rithm (Hoskinget al., 1985b) using the normalized experimental flood samgBs, j ) for each
durationD;:

Q(Di,j)ZQ(Di,j)l+Di/A

=q(Di, T) =q(T). (16)

The regional GEV/PWM algorithm has recently been used irc@eb(2012) on river basins in
Northern Iceland for estimating regional flood frequencstritbutions on ungauged basins. The
same algorithm will be employed here but appliedtb;, j).

2.3 QDF model refinements

In order to refine the methodologies presented in sectidharad 2-2 and allow more flexibility
in the modeling, the following two additional QDF models areposed and tested:

1) QDF model Il is defined by modifying QDF model | as follows:

QD =0,T)

0T ey

(17)

with 0 < © < 1 and the same optimization method defined in section 2-1eid escept that one
more parameterd) needs to be fitted. It follows that the annual maximum instaeous flood
quantile is estimated by:

Q(D=0,T)=Q(D,T)(1+(D/A)®), (18)

i) QDF model IV is defined by modifying QDF model 1l as follows

11



Q(D,T) = m‘ﬁﬂ: (19)
with
. 3
H(D) = FRGY/NCh (20)

with 0 < ® < 1 and the same optimization method defined in section 2-2ad bat one ad-
ditional parameter®, needs to be fitted. The annual maximum instantaneous floaaititgiis
estimated by:

Q(D=0,T)=uqT), (21)

where the dimensionless parent distributegit ) is fitted as for QDF model Il by the regional
GEV/PWM method, using the normalized experimental floodgesy(D;, j) for each duration
D;:

1+ (Di/0)® N

d(Di, j) = Q(Di, J) a(Di,T) = q(T). (22)

2.4 Maximum flood duration

The maximum flood duratioByaxto be used in the QDF model calibration is basin-dependent.
It should be of the same order of magnitude as the averagéaudd flood events. Following
Javelleet al (2003),Dmaxis estimated by calculating the time during which half of pleak value

of each flood event is continuously exceeded and then bygakanmedian of this duratiatyeq

and by defining discrete duratiobs as follows (see Javelket al.,, (2003) for more details):

1,234 if dmeg< 3 days
Di={ 1,23456 i dmes3days (23)

whereD; is an integer number of days and int() represents the iniegee function.

2.5 Flood probability distribution function and parameter estimation

As mentioned above, the GEV distribution estimated by théhotk of probability weigthed
moments (PWM),(Hoskin@t al, 1985a), is used in this study to model both the individual
flood distributions for each duratio@(D, T), and the dimensionless parent distributiqfi ),
(Hoskinget al.,, 1985b). The GEV Cumulative Distribution Function (CDE) is

(1 —K(I=ENW/K]
SURLCEURS (o S U (24)

a
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whereQ is a random variableg a possible value o, K is the shape parameterthe location
parameter and the scale parameter. This distribution combines into alsifgm the three
types of limiting distributions for extreme values. Extrenalue distribution Type kE0), Type
2 (k<0) and Type 3K>0). The case witlk=0 corresponds to the Gumbel distribution. Tréh
quantile which is the valugp with cumulative probabilityp, (G(qp) = Probl(Q < qp) = p), is
estimated as follows:

- +2(1—[~In(p)]¥) ifk#0
qp:{ i_a|<n<_|[n<8><>p” ) f K 0, (25)

The p-th quantile is associated to the return perioe- 1/(1— p) and can also be written as
follows:

s [ e+ 2(1-[-In(1-1/T)]¥) ifk#0
am) —{ e—aln(—In(1—1/T))  ifk=0. (26)

The calculation ok, € anda is not given here as it can be found in Hoskitgal., 1985a and
1985bh.

3 Data

3.1 River basins

A set of ten river catchments located in Northern Iceland selscted for this study. These
catchments were also studied in Crochet (2012) to develegiamal flood frequency analysis
for ungauged catchments in Northern Iceland. The catchsrienation is presented in Figure
1 with the topographic map and in Figure 2 with the mean anpreipitation map (Crochet
et al, 2007). This region is characterised by complex topogragtd/consequently by a large
precipitation variability. Table 1 gives the mean altitualed mean area-averaged precipitation
for the catchments.
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N

Gauging Name Area | Mean elevation Precipitatior
station (km?) (ma.s.l) (71-00) (mm
VHM-10 Svarté 398 535 813
VHM-12 | Haukadalsga 167 404 1773
VHM-198 Hvala 195 403 1971
VHM-19 | Dynjandisa| 37 529 3018
VHM-200 | Fnjoska | 1096 715 1312
VHM-204 | Vatnsdalsa| 103 456 2937
VHM-38 pvera 43 427 1761
VHM-51 | Hjaltadalsa| 296 730 1711
VHM-92 Beegisa 39 934 1928
VHM-45 | Vatnsdalsa| 456 553 846

Table 1. Main characteristics of the river basins.
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Figure 1. Topography (m a.s.l) and location of catchments.
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Figure 2. Mean annual precipitation (mm) for the standardpe 1971-2000 and location
of catchments.
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3.2 Streamflow data

In this study, daily discharge series and monthly maximustaeintaneous discharge series were
used. Annual maximum instantaneous flood discharge seees extracted from the monthly
maxima for each hydrological year defined from the 1st of &apier to the 31st of August
and years with more than four months missing were omittedy Baeamflow series were used
to calculate average streamflow series of durafior24h, using a moving window of 24h,
and the annual maximum was extracted. Years with more th@rdags of missing data were
omitted. The annual maxima series for>24h do not give the true annual maxima of duration
D because they were built from daily series which are only kmdar a fixed 24h window
defined from OOUTC to OOUTC. The true annual maximum of dardl} can only be calculated

if continuous instantaneous measurements are availableever, ad increases, the estimated
maxima converges towards the true maxima. Finally, onlydhgest continuous period with no
missing years is selected from the annual maximum seriegabf basin.

Depending on the basin under consideration, the year amdidoD, the annual maximum flood
discharge can take place during different seasons. Spoonddlare associated with snowmelt,
winter floods can originate from a mixture of snowmelt andf@i and autumn floods are usu-
ally associated with heavy rain. These different flood-gatneg mechanisms may lead to dif-
ferent types of floods which should from a dynamical and siatl point of view be analysed
separately. However, for the sake of simplicity and becafiiene limitations, the annual maxi-
mum flood will be used in this study without distinguishindween the origin of the generating
mechanism.

4 Results

This section presents the results of the QDF analysis. Twe studies are considered. First, the
four QDF models presented in Section 2 are calibrated usihgflmods of duration® > 24h,
and then by including the instantaneous flodds=0). This is done in order to test the capacity
of the QDF models to estimate instantaneous flood statistien only daily streamflow series
are available. In the results presented here for QDF modeddl 1V, the paramete® was
optimized considering the following range.20< © < 1.

Daily streamflow series were used to calculate the mediad flooationdy,eqand Eg. (23) was
used to define the maximum flood duratidp.x However, in this study, the number of discrete
durations was not limited to 7 as in Eq. (23) but durationgnagnfromD = 0 toD = DyaxWwere
used.

The observed and estimated mean annual maximum figéd,= E[Q(D)], versus duratio

is presented for each catchment in Figures 3 to 5 and Tabled 3 give the RMSE between
observed and estimatedD). One can see that QDF models | and Il produce similar results.
QDF models Il and IV are also very similar to one another heirtincreased flexibility usually
allows a better modeling of the mean annual maximum floodIfaluaations compared to mod-
els I and Il. In particular, when the instantaneous floodesegire not included in the calibration
of the models, the QDF models Ill and IV are usually bettentheodels | and Il to estimate
the mean instantaneous flood because they reproduce theedbsecay ofi( D) with D better.
QDF models | and Il are unable to moggD) for VHM-10, VHM-92, VHM-38, and VHM-198
satisfactorily. Results also indicate that QDF models | Bralibrated without instantaneous
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values systematically underestimate the mean annual nuaximstantaneous floogy D = 0).
On the other hand, it appears th@D = 0) is sometimes overestimated whith QDF models IlI
and IV calibrated wittD > 24h. Increasing the lower limit fa® (perhaps2 > 0.4 or 0.5) could
be necessary in order to avoid this overestimation relateety sharp increase pfD) for low

D.

Outliers in the data set can also account for some of theapacicies between modeled and
observed mean annual maximum flood, in relation for instao¢he uncertainty in the rating
curve used to convert extreme water-levels into extrenwhdige. Also, if the annual maximum
flood samples contain floods with different generating meismas, or if the flood-generating
mechanisms of the annual maximum floods vary with durafipthen the use of a mixed flood
population may introduce uncertainty in the assumptiomgtoethe methodology and the result-
ing relationships between flood statistics and duratiore @bserved optimum in particular
may result from a compromise between different flood typesrany not be representative of
any specific flood type. Javelé al(2003) adressed this problem by focusing on spring floods
only, which was not done in this study since we are mainlyregted in the annual maximum
flood.

Appendix | presents the estimated distributions of annulimum instantaneous floo@(D =
0), derived with QDF model | (Eq. 3) and QDF model Ill (Eq. 18)lilbeated with and without
the use of annual maximum instantaneous floods. The dispen$ithe estimated distributions
is usually low, indicating that the model assumptions aasoeable.

Appendix Il presents the dimensionless parent distrilmstiq(T ), estimated with QDF models
Il'and 1V calibrated with and without the use of annual maximuastantaneous floods. Here too,
the dispersion of the parent distribution is low, indicgtthat the model assumption regarding
invariance of the normalized distributions is reasonable.

In order to compare the skill of the different QDF models vatid without inclusion of instanta-
neous values in their calibration, Figures 6 to 8 presenvbiserved and estimated distributions
of annual maximum instantaneous floD = 0), for each river basin and Tables 4 and 5 give
the RMSE between observed and estimated quar@{&s= 0, T), for return periodsr=1.01,
2,5, 10, 20, 50 and 100 years. The "observed" quantiles vatimaged by fitting directly the
GEV/PWM distribution to the observed annual maximum inttaaous floods. The results con-
firm what was already observed with the mean annual maximuwd {eee Fig. 3to 5 and Tables
2 and 3): QDF models Il and IV often capture the distributidinstantaneous flood better than
QDF models | and Il when the instantaneous values are notingi@ model calibration but
some tendency to overestima@D = 0, T) is observed when the optimu@ is very low (~
0.3) and some limitation in the lower limit of this parametaould be considered (perhaps>

0.4 or 0.5). When instantaneous values are used in the maldefation, all models improve,
as expected. Except for a few cases, the estimated distrisubf annual maximum instanta-
neous floods made with the different QDF models are withirdf confidence interval of the
observed distribution.

Finally, Figures 9 presents an example of observed and a&stithannual maximum flood distri-
butions,Q(D, T), for all durationsD >24h and Figure 10 presents the observed and calculated
QDF curvesQ(D,T), as a function of duratior, for all durationsD >0 and return periods
5< T <100 years, for basin VHM-45.
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Gauging | QDF model || QDF model || QDF model Il | QDF model Il
station (D >=24h) (D>=0) (D >=24h) (D >=0)

VHM-10 5.3 3.3 1.7 0.7
VHM-51 1.2 1.0 0.89 0.58
VHM-92 0.99 0.76 1.03 1.11
VHM-200 10 5.2 5.5 7

VHM-45 1.03 0.87 1.34 0.44
VHM-12 1.07 1.51 1.07 1.51
VHM-19 0.88 0.5 2.4 0.25
VHM-38 0.82 0.79 0.82 0.13
VHM-198 9.98 7.9 18.7 2

VHM-204 1.36 0.98 1.36 0.9

Table 2. RMSE between observed and estimatBd pusing QDF models | and Il1.

Gauging | QDF model Il | QDF model Il | QDF model IV| QDF model |

station (D >=24h) (D>=0) (D >=24h) (D>=0)
VHM-10 5.2 3.2 2 0.27
VHM-51 1.12 0.93 1 0.5
VHM-92 1 0.78 0.99 0.09
VHM-200 59 4.7 2.5 1.6
VHM-45 1.15 0.92 0.71 0.42
VHM-12 1.37 0.79 1.37 0.79
VHM-19 0.83 0.49 0.65 0.21
VHM-38 0.82 0.80 0.35 0.07
VHM-198 10 8.1 6.16 1.8
VHM-204 0.58 0.48 0.58 0.43

Table 3. RMSE between observed and estimatBg using QDF models Il and IV.
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Gauging | QDF model || QDF model || QDF model Il | QDF model Il
station (D >=24h) (D>=0) (D >=24h) (D>=0)
VHM-10 354 23.7 12.6 16.8
VHM-51 2.8 3 4.32 1.4
VHM-92 6.15 4.6 3.3 2.2
VHM-200 32.3 15.2 19.8 66.5
VHM-45 10.8 9.1 5.8 6.8
VHM-12 22.6 21.2 22.6 21.2
VHM-19 4.5 2.8 7.8 1.8
VHM-38 11.8 10.9 6.3 8.6
VHM-198 76.4 63.2 60.3 39.3
VHM-204 10.4 7.8 10.4 6.7

Table 4. RMSE between observed and estimated annual maximstantaneous flood

quantiles, @D =0, T), using QDF models | and IlI.

Gauging | QDF model Il | QDF model Il | QDF model IV| QDF model |

station (D >=24h) (D>=0) (D >=24h) (D >=0)
VHM-10 35.2 25.7 12 16.9
VHM-51 9. 8 4 5.9
VHM-92 6.2 4.9 3.1 2.2
VHM-200 19 18 23.8 33
VHM-45 11.2 10.1 6.4 7.7
VHM-12 17.1 19.9 17.1 19.9
VHM-19 4.4 3. 2.0 2.1
VHM-38 11.8 11.5 7.6 8.7
VHM-198 77 67 25.8 40
VHM-204 11.2 10.4 11.2 9.9

Table 5. RMSE between observed and estimated annual maximstantaneous flood

quantiles, @D = 0, T), using QDF models Il and IV.
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Figure 3. Observed and estimated mean annual maximum fl¢Bd,ys. duration D, at
VHM-10 (top-left), VHM-51 (top-right), VHM-92 (bottomflpand VHM-200 (bottom-
right). The black symbols and solid black line correspondhi® observations. The solid
colored lines correspond to QDF models | to IV calibratedhsitt instantaneous values
(D >24h). The dashed colored lines correspond to QDF models Vtodlibrated with
instantaneous values (B0).
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Figure 4. Observed and estimated mean annual maximum fld@d, ys. duration D,
at VHM-45 (top-left), VHM-12 (top-right), VHM-19 (bottoleft) and VHM-38 (bottom-

right). See caption of Fig. 3.
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Figure 5. Observed and estimated mean annual maximum fl¢Bd,ys. duration D, at
VHM-198 (top) and VHM-204 (bottom). See caption of Fig. 3.
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Figure 6. Observed and estimated cumulative distributiemctions for annual maxi-

mum instantaneous flood,Q = 0), at VHM-10 (top-left), VHM-51 (top-right), VHM-92
(bottom-left) and VHM-200 (bottom-right). The solid bldiile represents the reference
GEV/PWM distribution estimated on the observed instardaaa@dood sample (black sym-
bols), the grey shaded region represents the 95% confidetee/al and the dotted black
line the 95% bootstrap confidence interval. The solid caldiees correspond to the GEV
distributions estimated with QDF models I to IV (Egs. (31)(X18) and (21)) calibrated

without using the instantaneous valuesXR4h) and the dashed colored lines correspond
to the GEV distributions estimated with QDF models | to IMlmated with instantaneous

values (D>0).
23




GEV distribution of annual maximum instantaneous Q, Q(D=0), VHM 45

GEV distribution of I maximum inst

Q, Q(D=0), VHM 12

1961 - 1983 1961 - 1987
1 2 5 10 50 1 2 5 10 50
! ! ! ! ! LT (years) ! ! ! ! ! . T (years)
—— Obs +/- 95% CI (grey) o —— Obs +/- 95% CI (grey)
95% bootstrap CI Q 7 95% bootstrap CI
—— QDF model I, D>=1d —— QDF model I, D>=1d
(e} --- QDF model I, D>=0 --- QDF model I, D>=0
Y —— QDFmodelIl, D>=1d 8] —— QDFmodel I, D>=1d
---  QDF model II, D>=0 o ---  QDF model I, D>=0
—— QDF model ITI, D>=1d —— QDF model IIT, D>=1d
--- QDF model III, D>=0 o ---  QDF model III, D>=0
@ QDF model IV, D>=1d A0 QDF model IV, D>=1d
= QDF model TV, D>=0 > QDF model TV, D>=0
g g
~O ~8
=t Ea
T T
=) 22 ]
(o4 o=
o
S 4
= —
R
o |
wn
T T T T T T T T T T
-2 0 2 4 6 -2 0 2 4 6
—In(-In(1-1/T)) —In(-In(1-1/T))
GEYV distribution of annual maximum instantaneous Q, Q(D=0), VHM 19 GEYV distribution of I maximum inst Q, Q(D=0), VHM 38
1990 - 1998 2000 - 2009
1 2 5 10 50 1 2 5 10 50
| | ! | | . T (years) | | ! | | | T (years)
—— Obs +/- 95% CI (grey) o + =) —— Obs +/-95% CI (grey)
o 95% bootstrap CI +/ <t 7 95% bootstrap CI
" —— QDF model I, D>=1d ——  QDF model I, D>=1d
---  QDF model I, D>=0 / ---  QDF model I, D>=0
——  QDF model II, D>=1d + ——  QDF model II, D>=1d
-~~~ QDF model I, D>=0 / -~ QDF model I, D>=0
——  QDF model 111, D>=1d F + ——  QDF model 11, D>=1d
Q- - QDFmodel I, D>=0 / Lo+ © | --- QDF model III, D>=0
I~ QDF model TV, D>=1d - ’/¢ i~ @ QDF model TV, D>=1d
- QDF model IV, D>=(0,/ += = QDF model IV, D>=0
g g
~ . ~—
Ho | & =
oo (@]
l] =3
a aXs\
=2 -’
o o
o |
N
o |
=
o |
=
T - T T T T T T T 1 T
-2 0 2 4 6 -2 0 2 4 6

—In(=In(1-1/T))

—In(=In(1-1/T))

Figure 7. Observed and estimated cumulative distributiamctions for annual maxi-
mum instantaneous flood,Q = 0), at VHM-45 (top-left), VHM-12 (top-right), VHM-19
(bottom-left) and VHM-38 (bottom-right). See caption af.Fa.
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Figure 8. Observed and estimated cumulative distributiorctions for annual maximum
instantaneous flood, @ = 0), at VHM-198 (top) and VHM-204 (bottom). See caption of
fig. 6.
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Figure 9. Example of observed and estimated cumulativellision functions of annual
maximum flood of duration D, @), at VHM-45. The solid lines represents the reference
GEV/PWM distribution estimated on the observed flood sasnghambols). The dashed
lines correspond to the GEV distributions estimated with @DF models | to IV cali-
brated without using the instantaneous values(®4h).
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Figure 10. Example of observed and estimated QDF curvéB, Q), at VHM-45 for
T=5, 10, 20, 50 and 100 years. The symbols corresponds toefleeence QDF curves
calculated from the GEV distributions directly adjustedtba observed flood samples for
the duration D and the lines the QDF curves estimated from Qiddels | to 1V and
calibrated without using the instantaneous values<(®24h).

26



5 Conclusion and future research

A methodology for modeling QDF curves based on the so-caltedinuous converging model
has been applied to ten river basins in Northern Icelandei@éwnodels were tested and the
model assumptions were found to be valid in most cases. THer@@lels allow the calculation
of extreme flood quantiles as a continuous function of danaéind return period with a single
and straightforward formula. These QDF curves give a cotaplescription of the flood dynam-
ics of a basin which is very useful in flood studies. This mdtiiogy looks promising and should
be extended to other river basins in Iceland. QDF modelipgisntially useful for deriving ex-
treme flood statistics of any durati@and in particular instantaneous flodd=0) from daily
discharge series simulated with the WaSiM-ETH distributgdrological model used at IMO
and will enhance its application. Several applicationshed methodology will be investigated
in the future such as separately analysing the floods acaptditheir generating mechanisms.
The development of a regional QDF modeling by merging thall@DF analysis presented
in this study with the regional flood frequency analysis préed in Crochet (2012) also looks
promising and will be investigated.
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Appendix-I: Estimated GEV/PWM cumulative distribution
functions (CDF) of annual maximum instantaneous flood us-
ing QDF models | and Il
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GEY distribution of annual max. instantaneous Q, Q(D=0),
derived from QDF models I and III, for VHM 10
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Figure I.1. Estimated GEV/PWM CDF of annual maximum ingtaabus flood, @ = 0),
derived from QDF models | and IllI, for basin VHM-10. This istaibed by scaling the
CDF of annual maximum flood of duration D(D), with QDF models | and IIl. The solid
black line represents the CDF calculated from the averadaaesover all durations (Eq.
7) and each colored symbol corresponds t@Q= 0) derived from duration D. Top-left:
QDF model | with D>24h, Top-right: QDF model | with D>0, Bottom-left: QDF model
[l with D >24h, Bottom-right: QDF model Il with D>0.



GEY distribution of annual max. instantaneous Q, Q(D=0),
derived from QDF models I and III, for VHM 51

QDF model I: D>=1d
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Figure 1.2. Estimated CDF of annual maximum instantanecasdfl QD = 0), derived
from QDF models | and lll, for basin VHM-51. See caption of.Fidj.



GEY distribution of annual max. instantaneous Q, Q(D=0),
derived from QDF models I and III, for VHM 92

QDF model I: D>=1d
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Figure 1.3. Estimated CDF of annual maximum instantanecasdfl QD = 0), derived
from QDF models | and lll, for basin VHM-92. See caption of.Fidj.
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GEY distribution of annual max. instantaneous Q, Q(D=0),
derived from QDF models I and III, for VHM 200
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Figure 1.4. Estimated CDF of annual maximum instantanecasdfl QD = 0), derived
from QDF models I and lll, for basin VHM-200. See caption af.Fil.
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GEY distribution of annual max. instantaneous Q, Q(D=0),
derived from QDF models I and III, for VHM 45
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Figure 1.5. Estimated CDF of annual maximum instantanecasdfl QD = 0), derived
from QDF models | and lll, for basin VHM-45. See caption of.Fidj.
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GEY distribution of annual max. instantaneous Q, Q(D=0),
derived from QDF models I and III, for VHM 12
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Figure 1.6. Estimated CDF of annual maximum instantanecasdfl QD = 0), derived
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from QDF models | and lll, for basin VHM-12. See caption of.Fidj.
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GEY distribution of annual max. instantaneous Q, Q(D=0),
derived from QDF models I and III, for VHM 19
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Figure 1.7. Estimated CDF of annual maximum instantanecasdfl QD = 0), derived
from QDF models | and lll, for basin VHM-19. See caption of.Fidj.
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GEY distribution of annual max. instantaneous Q, Q(D=0),
derived from QDF models I and III, for VHM 38
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Figure 1.8. Estimated CDF of annual maximum instantanecasdfl QD = 0), derived
from QDF models | and lll, for basin VHM-38. See caption of.Fidj.
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Figure 1.9. Estimated CDF of annual maximum instantanecasdfl QD = 0), derived
from QDF models I and lll, for basin VHM-198. See caption af.Fil.
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Figure 1.10. Estimated CDF of annual maximum instantandtmed, QD = 0), derived
from QDF models | and Ill, for basin VHM-204. See caption af.Fil.



Appendix-Il: Estimated dimensionless parent cumulative ds-
tribution functions (CDF), q(T), using QDF models Il and
1V
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Figure II.1. Estimated dimensionless parent CDH ¢ for basin VHM-10, using the re-
gional GEV/PWM (black dashed line). The other distribusigooloured symbols) repre-
sent the individual parent CDFs derived from each flood sangplduration D. Top-left:
QDF model Il with D>24h, Top-right: QDF model IV with D>24h, Bottom-left: QDF
model Il with D>0, Bottom-right: QDF model IV with D-0.
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fig. II.1.

42

q(T)

q(T)

1.5 2.0 25

1.0

0.5

1.5 20 25

1.0

0.5

QDF model IV, D>=1d

I — T T 71 T (yeay

1 2 5 10 50

¢ E[q(D=0,T)]
-1 X q(D=0,T)

%
g4

4 %

| I I I I
-2 0 2 4 6

“In(=In(1-1/T))
QDF model 1V, D>=0

o — T 11 T (yeay
1 2 5 10 50
* E[q(D=0,T)]
-1 X qD=0,T)
X
] X
ox ®
1 il
-4 %
T I I T T
-2 0 2 4 6

—In(=In(1-1/T))

Figure 11.2. Estimated dimensionless parent CDH ¢ for basin VHM-51. See caption of
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Figure 11.3. Estimated dimensionless parent CDH ¢ for basin VHM-92. See caption of

fig. II.1.
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Figure I1.4. Estimated dimensionless parent CDF ¢ for basin VHM-200. See caption
of fig. II.1.
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Figure 11.5. Estimated dimensionless parent CDH ¢ for basin VHM-45. See caption of

fig. II.1.
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Figure 11.6. Estimated dimensionless parent CDH ¢ for basin VHM-12. See caption of

fig. II.1.



Parent distribution q(T)

QDF model II, D>=1d
- | — T T T 1 T (eay
S 2 5 10 50
¢ E[q(D=0,T)]
x q(D=0,T) e
2 7] o )
Q % oﬁ/ * §
o | xxgj
| &
s
T T l l T
-2 0 2 4 6
—In(=In(1-1/T))
QDF model 11, D>=0
o | — 1T T 1 | (eay
S 2 5 10 50
e E[q(D=0,T)]
x q(D=0,T) e
2 7] o )
6 X & '%/ %
o | 2
= S
% K
| K
s

B R D R
—In(=In(1-1/T))

VHM 19

1.5 2.0

q(T)
1.0

0.5

1.5 2.0

q(T)
1.0

0.5

- 1 2 5 10 50

- 1 2 5 10 50

QDF model IV, D>=1d

| — T T T 1 T (eay

* E[q(D=0,T)]
X q(D=0,T) .

-2 0 2 4 6
“In(=In(1-1/T))
QDF model 1V, D>=0

| — T T T 11 T (eay

¢ E[q(D=0,T)]
x q(D=0.T) .

O N D R
—In(=In(1-1/T))

Figure 11.7. Estimated dimensionless parent CDH ¢ for basin VHM-19. See caption of

fig. II.1.
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Figure 11.8. Estimated dimensionless parent CDH ¢ for basin VHM-38. See caption of

fig. II.1.
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Figure I1.9. Estimated dimensionless parent CDF ¢ for basin VHM-198. See caption

of fig. II.1.
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Figure 11.10. Estimated dimensionless parent CDH g for basin VHM-204. See caption

of fig. II.1.
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