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1. Introduction

Accurate estimation of basal topography underneath glaciers has remained a difficult task even though much 
progress has been made in the last decades  (Farinotti et al., 2017) Most methods combine surface data (e.g. 
glacier  surface  elevations,  surface  slopes,  and  surface  velocities)  with  existing  radio  echo  sounding  (RES) 
measurements (profiles and/or point measurements) to create bedrock maps. Early attempts utilizing artificial 
intelligence (AI) methods to infer bedrock topography led to promising results (Clarke et al., 2009) and proved 
to be as accurate as many other approaches (Farinotti et al., 2017). 

Bed topography maps are key information for various glaciological research, both theoretical and practical. This 
includes  modelling the  feature  development  of  glaciers  in  response  to  changing climate,  studies  on glacial  
hydrology and how marginal lakes evolves, with glacier retreat. Ice thickness maps provide assessments on the  
amount of water stored in glaciers and their potential contribution to see level rise. Accurate bed topography  
maps are  essential  for  risk assessments  of  jökulhlaups caused by geothermal  and volcanic  activity  beneath 
glaciers,  as  well  when studying potential  changes in  locations of  river  outlets  from glaciers  in  the coming  
decades. The Icelandic Road and Coastal Administration has therefore, a direct interest in glacier bed topography 
mapping being as accurate as possible.       

We investigate two methods which utilize AI technology to generate detailed bedrock maps of Skeiðarárjökull,  
South Iceland, with the aim to improve existing datasets. The first method is based on an inversion approach of  
ice flow physics whereas the second method aims to directly predict bedrock elevations underneath glaciers from 
surface observations.

After describing both methods, we summarize our findings and give an outlook for further research.
The authors of this report take full responsibility of its content. The report results should not be interpreted as the 
Icelandic Road Administration policy or the opinion of the institutes for which the authors work for. 

2. Methods and Data

2.1 Data

Both AI methods heavily rely on surface data, namely surface elevation and surface velocity maps for the region 
of interest. The glacier surface used in this study is a digital elevation model of Skeiðarárjökull in autumn 2021, 
deduced  from optical  stereo  images  acquired  by  the  SPOT7 and  Pléiades  satellites  corrected  using  GNSS 
profiles acquired the mass balance measurement trip in October 2021 (Eyjólfur Magnússon et al., in prep.). The 
velocity field of  Skeiðarárjökull  used in this  study is  annual  velocity field spanning 1 October 2019 to 30  
September  2020,  extracted  from Sentinel-1  high  resolution  radar  images  (Wuite  et  al.,  2022).  This  annual 
velocity field appears free of any clear artifacts, observable for the annual velocity fields in 1 October 2020 to 30 
September 2021 and 1 October 2021 to 30 September 2022. 

Extensive RES surveys have been carried out on Skeiðarárjökull. This includes ~1500 km of survey profiles  
mostly measured in the spring of 1993 and 1994 with low frequency (5 MHz) analogue radar (Björnsson and 
Pálsson, 2020). In the lower part of Skeiðarárjökull ~90 RES point measurements were carried out in 1997, 
1998  (Björnsson et  al.,  1999) and  2008  (Magnússon et  al.,  2009) to  obtain  ice  thickness  and  bedrock 
elevation. Currently available bedrock map deduced from the exiting RES data is from Magnússon (2008) and 
Magnússon et al. (2009). All input data used in the AI methods was subsampled to grid-files with 100 m X 100 
m cell size prior to the inversions (see overview map of RES data in Fig. 1).
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2.2 Methods

We now give a short overview of the two bedrock estimation methods used in this study.

2.2.1 Inversion approach with surrogate model (IASM)

The first method builds upon the assumption that for every physical forward model an exact backward model 
exists that allows for an inversion of the processes at hand.

In our case, the forward model (or process) is ice flow. This process is controlled by basal topography of a  
glacier. Distinct features of the bedrock (eg. hills, troughs and such) result in distinct features within surface data  
such as  surface elevation changes and patterns  in  surface velocity.  It  has  been realized early on that  these 
imprints from the bedrock onto the surface are (1) attenuated by the transfer through the ice body and (2) non 
unique  (Gudmundsson, 2003). Especially both, hills and slippery spots at the base can result in very similar 
surface deformation signals. This ambiguity complicates basal topography estimations from surface data, which 
is the inverse model to ice flow, and hence requires a thorough statistical treatment during this step. Often, 
forward models with sufficiently high fidelity for an inverse approach (Gagliardini et al., 2013) demand a lot of 
computational resources and time. Thus replacing the costly forward model with a fast computing surrogate  
model is often preferred in inverse approaches. Such a surrogate model, however, is required to represent all  
important dynamical features of a system sufficiently well to be useful. 

Convolutional neural networks, a form of AI technology, have been successfully used to speed up ice flow 
models substantially (Jouvet et al., 2022). Building upon this type of surrogate ice flow model, an efficient basal  
topography estimation technique has been presented (Jouvet, 2023), which we have tested for its applicability to 
Skeiðarárjökull. This method attempts to find an optimal balance between known (surface elevation and surface  
speed) and unknown (bed topography) input data to the forward model, and optimizes for bed topography based 
on ice flow dynamics and known bed topography measurements.

Being  an  AI  based  approach,  this  inversion  technique  requires  training  data  which  has  been  generated  by 
glaciating now deglaciated landscape with a suitable numerical forward model (Jouvet et al., 2022), a method to 
produce suitable training datasets already suggested earlier  (Clarke et  al.,  2009).  The used landscape is not 
specific to Iceland nor to large ice caps common in Iceland and we discuss the implications of this later in  
section 4

2.2.2 Direct artificial neural network approach (DANNA)

Another, more direct approach to bedrock topography estimation is to train an artificial neural network (ANN) to  
directly infer bedrock elevations from surface data (surface elevation and surface velocity). Several different 
architectures of ANNs exist, such as feedforward or recurrent neural networks (Bishop, 2016), but we restrict our 
approach to basic feedforward neural networks (FNN) with back-propagation training techniques. Such methods, 
being a substantial extension of statistical models, require lots of training data to learn the process connections  
between bedrock topography and surface data. One could also take the viewpoint that the FNN learns the inverse 
model described in section 2.2.1 directly from data.

For Skeiðarárjökull (cf. Sect. 2.1) a substantial amount of radio sounding data exists, thus this location is ideal to 
test training data intensive methods such as our DANNA approach.

We examine two different FNN architectures: (1) a FNN which utilizes surface elevation along with ice surface  
velocities as well as 250 spatial registration points to predict bedrock elevation in a given location (DANNA1) 
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and (2) a FNN which uses a neighbourhood of 100 points both in surface elevation and surface flow speed 
magnitude above a given location to predict bedrock elevation below that location (DANNA2).

We expect DANNA1 to have more spatial interpolation qualities as it utilizes distances to spatial registration  
points and thus learns spatial patterns to some degree. DANNA2 however is completely independent of location 
and only utilizes pixel neighbourhoods (e.g. 50x50 pixels) in surface data for its predictions. It can, however,  
learn surface data gradients, such as surface slope, from these neighbourhoods. This make DANNA2 generally  
more transferable to different regions, however we did not test for such properties of our AI approaches.

3. Results
First we tested our IASM approach on Skeiðarárjökull, utilizing surface velocity fields (Wuite et al., 2022) and 
surface elevation data (Eyjólfur Magnússon et  al.,  in prep.)  in the inversion approach. As described by the 
optimization function, eq. (5), in  (Jouvet, 2023), several optimization parameters are available and have been 
tested by us. Our best fitting results are presented in Figs 2-4. In Fig 2 the optimization towards surface elevation  
(usurf) is displayed, alongside the error in surface, between optimized and initial surface. Fig 3. displays the 
optimization  of  surface  velocity  (velsurf_mag)  and  in  Fig  3.  our  best  fitting  results  for  ice  thickness  are 

compared to the initial ice thickness estimates (Magnússon, 2008; Magnússon et al., 2009).

Important to note is that outside the region of existing ice thickness radar data, the errors in inversion estimations 
(cf. Figs 2. and 4, right panels) become large, which is expected. However in Fig 5, the resulting ice thickness 
estimates  at  the  tongue  of  Skeiðarárjökull  (blue  spot,  left  panel),  is  a  persistent  pattern  of  thickness  
overestimation and indicate a failure of the method in that location. This error pattern could not be removed by 
variations in inversion parameters,  which points to a fundamental problem in slow flowing, shallow glacier  
tongue regions. 

Our results for the bed elevation estimation methods DANNA1 and DANNA2 are presented in Fig 5 along with  

the initial bed elevation estimates  (Magnússon, 2008; Magnússon et al., 2009).  In contrast to the IASM 
approach, DANNA directly estimates bed elevations (in m a.s.l.). Comparing DANNA1 and DANNA2 to the  
existing bed elevation map (Fig 5 right panel), we see DANNA1 creates smooth bed estimates, similar to the 
existing map. DANNA2 however is more prone to surface data noise and thus creates a somewhat noisier bed 
estimation. However the power of DANNA2 is to be able to estimate bed elevations quite correctly outside the 
data area (red outline in Fig 5), a capability only DANNA2 has, IASM and DANNA1 fail to do so meaningfully.

Comparing results of DANNA1 and DANNA2 to a hold out dataset of radar bed estimations, i.e. bed estimations 
which were not used to train the ANN method, reveals the following error estimates. A mean absolute error in  
bed elevation of MAEDANNA1 = 7.2 m for DANNA1 and MAEDANNA2 = 12.3 m for DANNA2.

4. Conclusion
Even though the IASM approach is scientifically very interesting as it is an inversion approach to a physics base  
ice flow model, it demonstrated downsides in a practical application. As can be seen in Fig 4, right panel, the  
algorithm does perform poorly outside the data region. Also a strong imprint of the radar measurement profiles 
persists through all configurations we have tried.

Another downside of the IASM approach is that the surrogate ice flow model, which is used for this approach, 
has been trained on alpine-style valley glacier data (compare Jouvet et al. (2022), Fig. 6). This also explains the 
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persistent overdeeping estimates in ice thickness (cf. Fig 4, right panel, blue area at terminus). In that case the  
method can not handle slow flowing, Icelandic glacier terminus situations, as the surrogate model has never been 
trained to deal with such configurations.

To make IASM work for Iceland, a substantial amount of resources (financial and computational) would have to 
be  invested to  re-create  a  new surrogate  forward model,  suitable  for  Icelandic  conditions.  This  avenue for 
progress has not been possible in this study.

Our DANNA approaches, however, demand a lot less resources and proofed themselves to be very useful for bed 
topography estimations. They do depend on a large enough training dataset, however such datasets exist for  
Icelandic glaciers. Especially DANNA2 is a promising method and as a next step we suggest to study the data 
noise behaviour of DANNA2 in the attempt to make it even more useful for future applications.
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Expenses in the years 2022 and 2023

Fund to the project from The Icelandic Road and Coastal Administration research fund was 3,600,000 ISK combined in  
2021 and 2022.
Contracted work paid to ThetaFrame Solutions in 2021 (0.7 man months) 578,230 ISK (3,850 €)
Contracted work paid to ThetaFrame Solutions in 2022 (1.0 man month) 782,820 ISK (5,500 €)
Contracted work paid to ThetaFrame Solutions in 2023 (5.0 man months) 4,101,300 ISK (27,500 €)
Work on data preparation by EM (0.6 man months): 600,000 ISK.
Overhead (2.5%): 90,000 ISK.
Total expenses: 6,152,350 ISK
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Figures

Fig. 1: Locations of the RES measurements used in this study as white dots on top of the reference bedrock map.
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Fig. 2: IASM result for surface elevation at Skeiðarárjökull. Initial surface elevation (usurf) on the left, inversion 
optimized surface elevation in the middle and the error between both on the right. Vertical elevation is in meters.

Fig. 3: IASM result for surface velocity magnitude at Skeiðarárjökull. Initial surface velocity (velsurf_mag) on 
the left, inversion optimized surface velocity in the middle and target surface velocity data on the right. Units is 
m/year.
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Fig. 4: IASM ice thickness results Skeiðarárjökull. Initial ice thickness (thk) on the left, inversion optimized ice 
thickness in the middle and the error between both on the right. Ice thickness is in meters.

Fig. 5: DANNA bed elevation results. On the left, DANNA1 results, in the middle DANNA2 results and on the 
right the reference bed elevation map. Bed elevation below sea level are in shades of blue. Red marks the area in 
which we have bed elevation radar measurements.
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