
Veflausn með daglegum rennslisspám 
sem byggist á hliðstæðri greiningu 
veðurgagna

MPM/ofl/2020-01

Greinargerð

+354 522 60 00
vedur@vedur.is

Veðurstofa Íslands
Bústaðavegur 7–9
108 Reykjavík

Morgane Priet-Mahéo, Andréa-Giorgio R. Massad, Tinna 
Þórarinsdóttir og Matthew J. Roberts





Greinargerð nr. Dags. Dreifing: Opin   Lokuð 
MPM/ofl./2020-01 Mars 2020 Skilmálar: 

Heiti greinargerðar: Upplag: Rafræn útgáfa 
Veflausn með daglegum rennslisspám 
sem byggist á hliðstæðri greiningu veðurgagna / 
Web solution for daily discharge forecasts built on 
analogue-based analysis of weather data 

Fjöldi síðna: 28 

Framkvæmdastjóri sviðs: 
Jórunn Harðardóttir 

Höfundar: Verkefnisstjóri: 

Morgane Priet-Mahéo, Andréa-Giorgio R. Massad, Tinna 
Þórarinsdóttir og Matthew J. Roberts 

TÞ/MJR 
Verknúmer: 
4611-0-0002 

Gerð greinargerðar/verkstig: Málsnúmer: 
2019-0118 

Unnið fyrir: 
Vegagerðina 
Samvinnuaðilar: 

Útdráttur: 
Veðurstofa Íslands hefur á undanförnum árum unnið að verkefnum er snúa að flóðagreiningum 
vatnsfalla á Íslandi í nánu samstarfi við Vegagerðina. Upplýsingar um tíðni og stærð flóða eru 
nauðsynlegar hönnunarforsendur fyrir vegaframkvæmdir og úrbætur sem og fyrir mat á 
áhættuviðmiðum og við svæðisskipulag. Þetta verkefni er unnið í framhaldi af verkefninu 
Daglegar rennslisspár með notkun hliðstæðrar greiningar Harmonie veðurgagna frá 2019. Í 
fyrra verkefni var sýnt fram á að unnt er að setja fram áreiðanlega spá um rennsli og flóð 
vatnsfalla með því að nota aðferðafræði sem byggir á hliðstæðri greiningu (e. analogue sorting) 
gagna. Aðferðin var prófuð á 13 vatnasviðum með góðum árangri þar sem spáð var fyrir um 
rennsli 1–5 daga fram í tímann. Í þessu verkefni er spáin útvíkkuð fyrir 20 vatnasvið og nær 
nú yfir 33 vatnasvið alls, þar á meðal eitt sem er án rennslismælinga. Enn fremur var aðferða-
fræðin endurbætt til að unnt sé að spá betur fyrir um tímasetningu rennslistoppa. Niðurstöður 
eru settar fram á vefsíðu sem er uppfærð daglega með nýrri rennslisspá fyrir hvert vatnasvið. 

Lykilorð: Undirskrift framkvæmdastjóra sviðs: 
Hydrological forecast, flood forecast, 
HARMONIE, flood warning, analogue sorting Undirskrift verkefnisstjóra: 

Yfirfarið af: 
SG 

Lykilsíða 



4 
 

 
  



5 
 

Contents 
 
1 Introduction .................................................................................................................... 7 

2 Clustering of catchments ................................................................................................ 8 

2.1 Classification of the catchments ............................................................................ 10 

3 Assessment of the operational forecasts ....................................................................... 12 

3.1 Lag in peak estimation ........................................................................................... 12 

3.2 Technical problems and ice perturbations ............................................................. 14 

4 Methodology ................................................................................................................ 16 

4.1 Lag in peak estimation ........................................................................................... 16 

4.2 Ungauged station ................................................................................................... 16 

5 Results .......................................................................................................................... 17 

5.1 Rectification of the time-lag .................................................................................. 17 

5.2 Forecast performance at the ungauged station ....................................................... 18 

5.3 Expanded forecasting system ................................................................................ 20 

5.4 Improved operational website ................................................................................ 26 

6 Conclusions .................................................................................................................. 27 

7 References .................................................................................................................... 28 

 
  



6 
 

Höfundar skýrslunnar bera ábyrgð á innihaldi hennar. Niðurstöður hennar ber ekki að túlka 
sem yfirlýsta stefnu Vegagerðarinnar eða álit þeirra stofnana eða fyrirtækja sem höfundar 
starfa hjá. 
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1 Introduction 
Weather-related flooding in Iceland causes significant material destruction and societal 
disruption. Such floods pose a threat to inhabitants and tourists, resulting occasionally in 
traffic disruption due to the closure of roads and bridges. With the rapid development of 
tourism in the country, floods at various times of year can be expected to cause further 
problems. Flood forecasting and the communication of flood risk is therefore a top priority. 
In recent years, the Icelandic Meteorological Office (IMO) has focussed increasingly on 
flood-related research for practical purposes. Tools have been developed to support the work 
of forecasters in predicting floods, including the setup of flood forecasts for three catchments 
based on the physical hydrological model WaSiM (Schulla, 2017), supplemented by forecasts 
from the numerical weather prediction model HARMONIE (Bengtsson et al., 2017; Nawri, 
2014; Nawri et al., 2017). This system produces a daily two- to three-day forecast for these 
three catchments and it has proven to be useful. However, the system is computationally 
heavy, requiring a large amount of data preparation and intensive processing. In response, a 
nowcasting system was developed, combining the latest measurements at selected 
hydrological stations throughout the country with runoff forecasts from HARMONIE. The 
system also offers historical, physical and statistical information about the catchments. The 
system is setup on a webpage with a simple color-coded map, and it provides a first-order 
assessment of catchment status. 
In 2018, a new forecast system was developed, based on findings from previous research at 
IMO (Crochet, 2013). This system is based on the Mahalanobis distance to discriminate past 
events, which has been used previously for climate forecasts (Yates, 2003) and hydrological 
analysis (Akbari et al., 2011; Karlsson & Yakowitz, 1987). It produces a daily five-day 
hydrological prediction, computed from the analogue sorting of historical discharge series 
and weather data. This system was setup for 13 catchments around the country (Priet-Mahéo 
et al., 2019) via a website. The project was funded by The Icelandic Road and Coastal 
Administration (IRCA) and IMO. 
The research presented here is a continuation of the 2018 project with the goals of improving 
the operational forecast and adding 20 additional catchment forecasts to the website, 
including one that is an ungauged catchment. The project continues along the same funding 
path, with support from IRCA and IMO. The original plan was to test the methodology on 
an ungauged catchment and make on-site discharge measurements to validate the results. 
Because the grant was smaller than applied for originally, it was decided to exclude the 
discharge measurements and test the method on a station that is presently ungauged but was 
monitored in the past. 
This report is written as a sequel to the report published in 2019, Daglegar rennslisspár með 
notkun hliðstæðrar greiningar HARMONIE veðurgagna (Priet-Mahéo et al., 2019); for 
further background details, see the previous report. In Section 2 of this report, a classification 
schema is presented for the entire group of catchments, allowing defining catchment 
characteristics to be delineated. The strengths and weaknesses of the existing forecast system 
are assessed in Section 3, both in terms of timeliness and accuracy since becoming 
operational at IMO. Based on these findings, a methodology for the correction of forecast 
results has been developed and it is described in Section 4, along with the forecast 
methodology for the ungauged catchment. Section 5 presents an enhanced forecast for the 13 
catchments from the previous project and a hydrological forecast for 19 new gauged 
catchments, plus one ungauged site; it also summarises the updated webpage. The findings 
of the project are presented in Section 6. 
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2 Clustering of catchments 
In addition to the 13 catchments that are currently within the hydrological forecasting system, 
20 new catchments have been selected and added, in order to cover more of Iceland’s main 
roads. Figure 1 presents a map of the country where the initial catchments are shown in light 
green and the newly added catchments in red.  

 
Figure 1. Map of Iceland showing the location of river catchments from the 2018 study 
in green and the 20 additional catchments as part of the 2019 project. Gauging stations 
are marked by a point and the labelling is according to IMO’s station list. For river 
names, see Table 1. 

 
Table 1 summarises the size and nature of the river catchments used in the 2018 project, as 
well as the present study. Catchment characteristics include area, aspect ratio, longest flow-
path, mean elevation and other geological parameters. 
  



9 
 

Table 1. Physical characteristics of the selected catchments, both from the previous 
and present studies. For station locations, see Figure 1. 

vhm River 
Area 

km2 
Aspect 
ratio 

Longest 
flow-path 
m 

Average 
height 
m a.s.l. 

Glacial 
Cover 
% 

Old 
Bedrock 
% 

Young 
Bedrock 
% 

Total 
Bedrock 
% 

10 Svartá 396.1 2.96 55,167 527 0 99.2 0.5 99.7 

12 Haukadalsá 164.7 1.74 31,960 408 0 96.8 0 96.8 

19 Dynjandisá 38.4 1.7 15,040 510 0 100 0 100 

26 Sandá, Þistilfirði 266.3 3.36 64,555 387 0 61.3 38.7 100 

38 Þverá á 
Langadalsströnd 42.8 2.39 20,971 428 0 100 0 100 

43 Brúará 640.7 1.73 50,958 307 0 3.1 96.9 99.9 

45 Vatnsdalsá 458.3 2.37 58,072 547 0 67.1 32.9 100 

48 Selá 701.4 1.74 74,306 543 0 48.9 51.1 100 

51 Hjaltadalsá 299.6 1.87 34,990 723 2.96 97 0 97 

60 Eystri-Rangá 419.9 1.92 60,336 572 2.02 0 97.4 97.4 

64 Ölfusá 5661.9 2.41 169,493 304 11.84 22 62.9 84.9 

66 Hvítá í 
Borgarfirði 1574.4 2.24 123,017 650 20.3 22.7 53.7 76.4 

68 Tungufljót 201.1 1.33 35,345 245 0 6.2 93 99.2 

92 Bægisá 37.4 1.93 13,904 900 0 77.8 0 77.8 

102 Jökulsá á Fjöllum 5097.1 2.6 189,195 538 28.64 0 71.3 71.3 

116 Svartá í 
Bárðardal 527.1 1.87 62,858 645 0 1.2 98.8 100 

128 Norðurá 513 2.01 58,289 338 0 93.7 1.7 95.4 

145 Vestari-Jökulsá 843.8 1.86 70,333 752 10.9 44.1 40.6 84.6 

148 Fossá 115.1 2.47 28,963 577 0 99.8 0 99.8 

149 Geithellnaá 189.4 3.27 37,033 609 4.83 91 0 91 

150 Djúpá 225.9 3.03 45,563 767 40.23 47 12.8 59.8 

162 Jökulsá á Fjöllum 2023.1 2.01 110,507 1195 56.92 0 43.1 43.1 

183 Skaftá 1627.2 2.36 133,710 249 26.31 10.9 62.1 73 

185 Hólmsá, 
Reykjavík 216.8 1.42 31,189 710 0 0 100 100 

198 Hvalá, 
Ófeigsfirði 192.9 1.31 31,543 399 0 100 0 100 

200 Fnjóská 1102.2 3.51 131,238 723 0 97.1 0.4 97.6 

204 Vatnsdalsá 102.3 2.47 28,106 466 0 100 0 100 

218 Markarfljót 516.9 1.14 53,731 737 12.22 0 71.7 71.7 

233 Kreppa 818.1 3.42 81,106 1130 37.65 0 62.3 62.3 

238 Skjálfandafljót 2163 1.54 118,032 822 4.51 26.5 68.7 95.2 

328 Eldvatn 1496 2.99 146,594 155 28.62 5.8 64.7 70.6 

408 Sandá 581.3 1.13 58,363 756 49.27 0 50.7 50.7 

411 Stóra-Laxá 387.1 3.71 73,405 559 0 97.7 2.3 100 
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2.1 Classification of the catchments 
In order to collect rivers that share the most similarities and find the predictor sets that give 
the best results, a hierarchical cluster analysis has been performed using discharge data 
(seasonality, duration curves, and mass curves) as well as the watershed characteristics 
previously listed in Table 1. This clustering helps us identify the physical similarities of 
catchments, which can in turn simplify the identification of predictors important to the 
analogue sorting. It is expected that catchments within the same cluster behave in a similar 
way so that the same sets of predictors can be applied within each cluster. More details 
regarding the cluster analysis can be found in the previous report (Priet-Mahéo et al., 2019). 
Figure 2 shows the results from the cluster analysis of all the catchments in the form of a 
dendrogram. A cophenetic correlation coefficient is defined as a measure of how well the 
analysis preserves the distances between the data. In this case, results show a value of 0.81 
which indicates a good clustering (the closer to 1, the better the clustering). 
 

 
Figure 2. Results from the cluster analysis on a dendrogram. All the catchments group 
in five clusters with the cophenetic correlation distance equal to 0.81. 
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The five following clusters appear on the dendrogram in Figure 2:  
- Cluster A: vhm 66, vhm 68, vhm 43, vhm 185 
- Cluster B: vhm 102, vhm 162, vhm 408, vhm 233, vhm 150, vhm 183, vhm 328 
- Cluster C: vhm 60, vhm 48, vhm 238, vhm 145, vhm 218, vhm 64, vhm 116 
- Cluster D: vhm 200, vhm 92, vhm 198, vhm 38, vhm 51, vhm 149, vhm 148, 
vhm 19, vhm 204 
- Cluster E: vhm 26, vhm 10, vhm 45, vhm 411, vhm 12, vhm 128 

 
These results show that the gauging stations have been grouped according to river types and 
weather conditions. For further analysis, the clusters have been plotted on a soil map of 
Iceland (Figure 3). 
Cluster A unites spring-fed rivers, some of them originating from glaciers. Those stations are 
all located in the southwestern part of the country and the rivers have a baseflow counting 
for a large part of the total discharge. Note that some rivers are regulated due to hydropower 
generation, although all gauges are located where discharge is unregulated. 
In Cluster B, most rivers are typical glacial rivers (some are affected by jökulhlaup) and all 
watersheds are partially covered by glaciers. 
Cluster C includes rivers that are mostly a mix of spring water and glacial origin and they 
mostly have a direct runoff component. Many of the rivers are located at the border of 
volcanic soil, as seen in Figure 3. 
In Cluster D comprises direct runoff rivers influenced by snowmelt. There catchments have 
a long aspect ratio and they are in mountainous areas where the rivers reach high elevations 
and melting occurs later in the year. 
Cluster E reflects catchments with mostly direct runoff rivers underlain by Histosol soils that 
encourage the formation of groundwater, wetlands, and lakes (Figure 3). Excluding stations 
vhm 26 and vhm 411, all sites in this cluster are in the northwest part of the country. 
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3 Assessment of the operational forecasts 
An operational forecast based on analogue sorting has been running at IMO since mid-2018. 
The main setbacks in forecast has been time-lags in estimated peak discharge. Other problems 
have been observed, such as the disruption of water-level measurements due to river ice. In 
this project, a focus was set on analysing and fixing the time-lag in peak estimation. 
 

3.1 Lag in peak estimation 
When analysing the results of the hydrological forecast, there is sometimes a time-lag 
between forecast and measured discharge. Lags between measurements and forecasts can be 
computed in a variety of ways, including: (i) cross-correlation; (ii) statistical coefficients such 
as the Nash-Sutcliffe Efficiency coefficient (NSE); (iii) the modified Nash-Sutcliffe 
Efficiency coefficient (mNSE); (iv) the Root Mean Square Error (RMSE); and (v) the Mean 
Error (ME). The mNSE uses mean absolute error instead of mean square error in order to 
minimise the effect of extreme values, while the RMSE and the ME are computed to address 
the performance of the model regarding the accuracy of discharge prediction. Table 2 
summarises the main information concerning the 13 stations that have been run operationally 

Figure 3. Soil map of Iceland with gauging stations shown according to their hydrological 
grouping from the cluster analysis. For station names, see Table 1. 
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since mid-2018. A lag of zero days means that the event was predicted accurately, a lag of 
minus one day means a day late and a positive lag of one day means a day too early. While 
the NSE is reasonable (above 0.7 in 62% of the cases for D1 and 23% for D2), a one-day lag 
in the 24-hour prediction was observed for most catchments. Stations vhm 150, 128 and 411 
obtained the best forecasts in terms of timeliness. Stations vhm 68, 198 and 19, on the other 
hand, had the worst forecasts both in terms of timeliness and accuracy. However, it is 
important to consider that the lag value shown in Table 2, is the most significant one, it is 
however not representative of all days. While a main lag of minus one suggests a delay by 
one day of the 24-hour forecast – and therefore a miss – it does not necessarily mean that all 
events were missed. Figure 4 illustrates this phenomenon for the winter season 2018–2019, 
where the predominant lag is minus one for the entire operational season, suggesting that the 
predictions by the best set were mostly missed by a day; however, many of the winter peaks 
are predicted reasonably and they fell in the prediction range. 
 

Table 2. Performances of the 24-hour (D1) and 48-hour (D2) streamflow forecasts for 
the 13 stations running operationally. The results are presented for the best sets 
(highest NSE for lag closest to zero). For details about the statistical parameters, see 
Section 3.1. 

  
D1: 24 hours D2: 48 hours 

Class VHM set lag NSE mNSE RMSE ME set lag NSE mNSE RMSE ME 

A vhm068 set15SR1 -1 0.5 0.58 3.8 0.007 set16S2 0 -0.62 0.3 5 0.71 

B vhm150 set16SR1 0 0.86 0.76 8.3 -1 set20SR2 0 0.71 0.67 12 -0.91 

D vhm019 set7SR1 -1 0.45 0.49 1.9 0.0024 set19SR2 -2 -0.17 0.17 2.7 -0.32 

D vhm149 set15SR1 0 0.81 0.71 9.4 0.28 set15SR2 -1 0.42 0.48 15 0.11 

D vhm198 set15SR1 -1 0.36 0.6 23 2.1 set15SR2 -2 -0.18 0.36 27 2.4 

D vhm200 set19SR1 -1 0.94 0.78 4.4 -0.2 set19SR2 -2 0.85 0.66 6.8 -0.14 

D vhm204 set19SR1 -1 0.7 0.72 3 0.066 set19SR2 -2 0.25 0.45 4.2 -0.02 

E vhm010 set19SR1 -1 0.51 0.58 2.6 0.046 set19SR2 -2 0.0035 0.36 3.6 0.076 

E vhm012 set20SR1 -1 0.88 0.79 2.3 -0.031 set15SR2 0 0.46 0.58 5.1 -0.26 

E vhm026 set20SR1 -1 0.88 0.68 2.7 -0.15 set20SR2 -1 0.76 0.56 3.7 -0.18 

E vhm045 set19SR1 -1 0.88 0.77 4.6 0.38 set3SR2 -2 0.57 0.6 8 0.43 

E vhm128 set15SR1 0 0.74 0.69 12 1.3 set15SR2 0 0.39 0.51 17 1.5 

E vhm411 set15S1 0 0.59 0.45 6.5 0.54 set15S2 0 0.24 0.37 9 0.51 
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Figure 4. Twenty-four hour forecast for station vhm 12 during the winter season 2018–
2019. The black line represents the daily averaged measurements, whereas the red 
band the prediction range (min-max) for the station. The green arrow shows peaks that 
were predicted at the correct time; the orange arrow a peak that was missed. 

 

3.2 Technical problems and ice perturbations 
Technical problems in relation to data collection and processing have affected the operational 
forecast. Disruptions have occurred when input data were not delivered, such as discharge 
measurements or meteorological forecast data from HARMONIE, resulting in large temporal 
gaps, ranging from days to weeks (Figure 5). 
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Figure 5. Twenty-four hour forecast for station vhm 150 during the operational period 
from September 2018 to March 2020. The black line represents the daily averaged 
measurements, the red band the minimum and maximum prediction range for the 
station. 

 
A paucity of input data was not the only impact on the forecasting system. As the discharge 
results are derived from near-real-time measurements of water stage at a fixed cross-section, 
they can be influenced by ice perturbations during the wintertime. This has the effect of 
causing spikes in peak discharge, which need to be identified and corrected manually. The 
issues described in section 3.2 have not been attended to in this project, so they should be 
kept in mind for future improvements of the forecasting system. 
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4 Methodology 
Test runs for analogue sorting were performed over a two-year period (01 September 2015 
to 31 August 2017) for all stations, except the ungauged site. Based on this period, delays in 
the timeliness of the forecast was the main problem with the model, as described in Section 
3. This suggests that the model does not always manage to discriminate and select the 
analogue-based events adequately. Consequently, a correction of the existing methodology 
is necessary. The following sub-sections outline the methodology for correcting the lag and 
the techniques used for discharge forecasts from the ungauged catchment. 

4.1 Lag in peak estimation 
The past events are sorted using the Mahalanobis distance, as described in the previous report 
(Priet-Mahéo et al., 2019). This is the distance between two points in multivariate space. 
However, a major weakness of this distance is the lack of hierarchization between the 
variables in the dataset, as all variables have the same weight in the computation. A solution 
to this problem is to pre-sort the dataset and reduce the number of events that would qualify 
in the final sorting, thereby increasing the weight of a variable used to select past events. 
Therefore, the weight of some variables in the sorting process is increased. A series of tests 
were performed by pre-sorting the dataset once or twice consecutively based on one or 
several variables in the dataset. 

4.2 Ungauged station 
Station vhm 218 on Markarfljót, southern Iceland, was monitored from June 1982 to June 
2001, and it was used as the test-site for an ungauged catchment in this project. Lacking 
modern-day discharge measurements, it was decided that tests with additional variables was 
needed. Variables such as minimum and maximum air temperature were compared between 
the ungauged catchment and other similar catchments within the same class. The goal was to 
find the station that had the most similar set of predictors. Stations vhm 64 and vhm 238 were 
selected as reference stations, and comparisons between vhm 238 and vhm 218 can be seen 
in Figure 6. It was not possible extrapolate discharge values from the existing measurements 
at vhm 218, so it was decided to attempt rescaling using other variables of the predictor set. 
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Figure 6. Comparison of predictors for stations vhm 218 and vhm 238. 

5 Results 
In this section, results for the correction of the lag of forecasted discharge peaks are 
discussed, as well as the discharge forecast for the ungauged catchment. A short summary of 
the expanded forecasting system of 33 catchments is also presented, together with a simple 
description of the operational website for daily discharge forecasts. 

5.1 Rectification of the time-lag 
The hierarchization (pre-sorting) of variables improved significantly the results in terms of 
timeliness (reduction of lag for peak events) and accuracy. Figure 7 shows the analogue 
sorting results for station vhm 48 with hierarchization and without hierarchization. While the 
improvement in the 24-hour forecast is minimal as the performance of the station was 
adequate already, hierarchization still improves the timeliness (e.g. peak discharge in 2016). 
For the 48-hour forecast, the hierarchization increases significantly the accuracy of the 
results, going from an NSE value of 0.65 to 0.92. 
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Figure 7. Comparison and cross-correlation of discharge measurements (red) and 
predictions (blue) (24-hour, up and 48-hour, down) for the analogue sorting with (left) 
and without (right) hierarchization of the predictors for station vhm 48. The lag is 
expressed in days; a negative lag suggests a delay in the predictions. 

5.2 Forecast performance at the ungauged station 
The analysis for the ungauged catchment shows that the added variables in the dataset do not 
necessarily improve the predictions; however, the tests underline the importance of the snow-
water-equivalent (SWE) variable. The predictor sets comprised air temperature (T), 
precipitation (P) and SWE. Figure 8 presents the best results for the test period, based on 
SWE and temperature for the first three days of the forecast; note that the graphs cover three 
intervals: 24, 48 and 72 hours. Despite a relatively low coefficient (NSE ≈ 0.57), the first 
three days of predictions are mostly timely (lag = 0). The results can be assumed acceptable 
for an initial estimate of discharge over longer periods, but further research is needed before 
the approach can be used for short-term flood forecasting. Simple rescaling of the results was 
attempted using P, SWE and the discharge of the neighbouring catchment, but the findings 
were unsatisfactory. 
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Figure 8. Best test results for ungauged station vhm 218 for the three first days of the 
forecast period; the measured discharge is shown in red and the forecast in blue. 
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5.3 Expanded forecasting system 
The new sorting method was applied to all selected catchments to evaluate its validity and 
effectiveness. The hierarchization of variables has a positive effect on most of the stations, 
resulting in a reduced time-lag for most sites and a slight improvement in NSE values (Table 
3). As in the previous report (Priet-Mahéo et al., 2019), a trend was observed in the variables 
identified for successful predictions. This trend is also observed in the results for the new 
classification and appears in the variables used for the hierarchization as well as in the final 
set. 
Table 3 summarises the best results for all the stations for 24-hour (D1) and 48-hour (D2) 
discharge forecasts. The name of the set combined the number of the final set used for the 
sorting followed by the acronym of the two variables used for the hierarchization. The table 
shows that sets 15, 19, 20 and 21 give the best results, and they can be divided into three 
categories: 

1. Set 15 is the simplest and includes the 24-hour forecast for temperature and 
precipitation. 

2. Set 19 focuses on temperature and SWE (present, past and future). 
3. Sets 20 and 21 include the discharge for the previous days, as well as the forecasts 

for temperature, precipitation and SWE. 
Set 20 yields the best results for most of the catchments (20 and 17 out of 33 catchments for 
the 24-hour and 48-hour forecasts, respectively). 
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Table 3. Summary of the best runs over the calibration period for the 33 gauging 
stations. 

  D1: 24 hours D2: 48 hours 

Class VHM Set lag NSE mNSE RMSE ME set lag NSE mNSE RMSE ME 

A vhm043 set21_T_P_SR1 0 0.97 0.87 2.3 0.023 set21_SWE_P_SR2 0 0.95 0.82 3.2 0.15 

A vhm066 set15_P_T_SR1 0 0.75 0.63 8 -0.73 set20_P_T_SR2 0 0.72 0.6 8.5 -0.88 

A vhm068 set20_P_T_SR1 0 0.78 0.72 2.8 -0.067 set20_Q_T_SR2 0 0.72 0.67 3 0.047 

A vhm185 set20_SWE_P_SR1 0 0.97 0.89 0.57 0.045 set21_SWE_P_SR2 0 0.92 0.84 0.84 0.053 

B vhm102 set21_T_Q_SR1 -1 0.97 0.90 16 -1 set21_SWE_T_SR2 -1 0.94 0.85 22 -1.8 

B vhm150 set20_SWE_Q_SR1 0 0.88 0.78 10 -0.23 set20_P_T_SR2 0 0.88 0.75 10 -1 

B vhm162 set21_Q_T_SR1 -1 0.98 0.90 6.3 -0.64 set15_P_T_S2 -1 0.91 0.76 11 -2 

B vhm183 set20_T_P_SR1 0 0.89 0.76 10 -0.055 set21_T_SWE_SR2 0 0.81 0.67 14 -0.72 

B vhm233 set21_SWE_T_S1 0 0.93 0.82 11 -0.021 set19_T_Q_SR2 0 0.96 0.87 8.5 -1.1 

B vhm328 set21_T_P_SR1 -1 0.48 0.7 57 -0.64 set21_SWE_Q_S2 -1 -2.5 0.4 66 9.5 

B vhm408 set19_T_Q_SR1 0 0.98 0.91 0.81 -0.081 set15_T_P_SR2 0 0.93 0.83 1.7 -0.36 

C vhm048 set21_T_SWE_SR1 0 0.97 0.83 3.4 -0.35 set21_P_SWE_SR2 0 0.92 0.74 5.1 -0.64 

C vhm060 set20_T_P_SR1 0 0.83 0.7 2.1 -0.094 set20_Q_T_SR2 0 0.73 0.62 2.6 0.05 

C vhm064 set20_SWE_P_SR1 0 0.96 0.84 20 0.17 set20_P_SWE_SR2 0 0.91 0.75 29 1.8 

C vhm116 set21_T_SWE_SR1 -1 0.94 0.83 0.43 0.023 set21_T_SWE_SR2 -2 0.90 0.76 0.55 0.057 

C vhm145 set20_T_Q_SR1 -1 0.95 0.85 3 -0.018 set19_P_T_SR2 -1 0.89 0.77 4.7 -0.27 

C vhm218 set_5_SWE_T_S1 0 0.56 0.49 16 4.6 set_5_SWE_T_S2 0 0.59 0.51 15 4.6 

C vhm238 set20_P_SWE_SR1 0 0.95 0.80 8 -0.26 set19_T_P_S2 0 0.81 0.58 13 1.4 

D vhm019 set19_Q_SWE_SR1 -1 0.77 0.72 1.1 -0.017 set19_T_Q_SR2 -2 0.53 0.56 1.4 0.025 

D vhm038 set20_SWE_Q_SR1 -1 0.94 0.84 0.68 -0.04 set20_Q_SWE_SR2 -2 0.88 0.77 0.95 -0.07 

D vhm051 set20_Q_P_SR1 0 0.94 0.81 2.1 -0.11 set20_Q_P_SR2 0 0.89 0.74 2.7 -0.15 

D vhm092 set20_T_SWE_S1 0 0.88 0.73 0.6 0.049 set20_T_SWE_S2 0 0.81 0.69 0.74 0.045 

D vhm148 set15_T_Q_SR1 0 0.81 0.71 6.4 0.33 set20_T_Q_SR2 0 0.77 0.65 8 -0.26 

D vhm149 set20_P_T_SR1 0 0.73 0.7 12 0.1 set20_P_T_SR2 0 0.70 0.63 14 -0.35 

D vhm198 set20_P_SWE_SR1 0 0.94 0.84 4.3 -0.04 set20_T_P_SR2 0 0.89 0.77 6.2 -0.35 

D vhm200 set19_Q_SWE_S1 0 0.94 0.82 8.5 1.9 set19_SWE_Q_S2 0 0.90 0.78 11 2.1 

D vhm204 set20_SWE_P_SR1 0 0.95 0.84 1.7 -0.11 set20_Q_SWE_SR2 0 0.85 0.74 2.8 -0.091 

E vhm010 set20_Q_SWE_SR1 0 0.91 0.76 1.7 -0.0099 set20_Q_SWE_SR2 0 0.84 0.68 2.3 -0.067 

E vhm012 set20_Q_P_SR1 0 0.93 0.82 1.8 0.012 set20_SWE_Q_SR2 0 0.80 0.68 2.8 0.21 

E vhm026 set20_Q_P_SR1 0 0.98 0.83 1.7 -0.039 set20_SWE_T_SR2 0 0.95 0.76 2.5 -0.19 

E vhm045 set20_SWE_T_SR1 0 0.89 0.74 2.3 -0.21 set15_Q_SWE_SR2 0 0.84 0.61 2.7 -0.36 

E vhm128 set20_P_Q_SR1 0 0.84 0.73 8.8 0.68 set20_Q_T_SR2 0 0.77 0.63 12 0.62 

E vhm411 set20_Q_SWE_SR1 0 0.94 0.83 3.4 -0.063 set20_Q_SWE_SR2 0 0.89 0.76 4.5 -0.067 
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All catchment clusters benefit from the inclusion of discharge in the set. Forecasts for 
catchments of class A and B rely on temperature. These two classes contain catchments with 
glacial inputs and class A, being spring-fed rivers, can also depend on ice cover affecting the 
infiltration of runoff. Classes C and D have storages in the form of snow and or ice, and they 
perform better with the inclusion of SWE.  In addition, classes D and E (direct run-off rivers) 
benefit from the inclusion of meteorological data; this applies to Class A (spring-fed rivers), 
as well. 
Figure 9 summarises the results for all the gauging stations for the first day of forecast (D1), 
with a circle size representing the NSE obtained and the circle colour representing the main 
time-lag. The figure shows that most forecasts were temporally accurate, except for seven 
stations (marked in blue), which are all located in the northern half of the country, except 
one. The seven sites are vhm 19, vhm 38, vhm 102, vhm 116, vhm 145, vhm 162 and vhm 
328. Several reasons could account for the misfits; for instance, stations vhm 38 and vhm 19 
are affected by ice during the winter, and even though measurements used for these tests were 
screened and corrected, this introduces unreliability in the model. Furthermore, the rating 
curve for station vhm 19 is missing measurements during high discharge, which increases 
the uncertainty in stage-discharge comparisons. For sites influenced by glacial runoff, some 
discharge peaks could relate to the release of stored meltwater or changes in subglacial 
geothermal activity. Such influences cannot be included in the model, which relies on 
meteorological predictors. The stations represented with smaller circles in Figure 9 have 
lower NSE values. Some of these low values can be explained, for example, by the stations 
with the lowest score (vhm 328 and vhm 218), as they have shorter timeseries. Station vhm 
328 is affected by jökulhlaups and vhm 218 is tested as ungauged, hence without a discharge 
reference. Further research is needed to understand some of the lower NSE results. A possible 
explanation could be the quality of the timeseries, as is the case for stations vhm 19, 148 and 
149, where ice perturbations occur. 
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Figure 9. Geographical distribution of the quality of the 24-hour analogue sorting 
results. The circle size represents the Nash-Sutcliffe Efficiency coefficient while the 
colour indicates the lag; red for timely predictions and blue for missed predictions (one 
day late). 

 
Most of the catchments benefit from a rescaling of the results for the first days of forecast 
(Priet-Mahéo et al., 2019). The NSE coefficient for the first day of the forecast is generally 
higher than for the following days (Figure 10), but the coefficients remain high for most 
stations. Only four stations have a coefficient under 0.75 for the first day of the forecast; this 
number increases by three stations for the second day. 
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Figure 10. Nash Sutcliffe Efficiency coefficient (NSE) of the performance of the 
hierarchized analogue sorting method over the entire testing period for the 33 stations. 

 
Figure 11 summarises the results visually for the five-day forecast. Each class returns correct 
predictions for the first three days, although a deterioration in accuracy (NSE) and timeliness 
(lag) occurs for most stations from day four onwards. For five stations (vhm 68, 148, 149, 
183 and 328), the predictions for day five are poor and unreliable as the negative NSE 
indicates. Class E, representing direct run-off rivers, presents the best results over the five-
day forecasts, both in terms of accuracy and timeliness, and all stations within that class, 
except for station vhm 10, have timely forecasts up to four days ahead with NSE above 0.5. 
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Figure 11. Nash-Sutcliffe Efficiency coefficient for the best-simulated discharge over 
the test period for the five days of forecast (D1 = the 24-hour forecast, D5 = the 120-
hour forecast). The main lag associated with these results is represented by the scatter 
shape, and the results are organised by class. 
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5.4 Improved operational website 
All figures presenting the results from the analogue forecast with the added catchments are 
hosted on the following website: 
 http://customer.vedur.is/vegag/analogue_forecast/analogue_sorting.html 
As for the previous version of the webpage, the link opens a map of Iceland that shows the 
location of the catchments used in this project. The colour of each catchment is determined 
by the latest discharge measurements that have been recorded at the corresponding gauging 
station. If the latest discharge measurement is below the value of the 2-year return-period of 
the river, the watershed is coloured green. If the latest discharge measurement reaches 90% 
of the value of the 2-year return-period, the catchment is depicted in yellow. Similarly, if the 
observations reach 90% of the 5-year, 10-year and 25-year return-periods, the colours orange, 
red and brown are displayed, respectively. If a station has not sent data for more than a day, 
a symbol appears on the corresponding catchment as a visual warning. 
By hovering your computer mouse over a catchment, results from the analogue forecast 
appear to the right of the flood-warning map. The lower subplot shows the measured daily-
averaged discharge over the last 30 days, while results from the analogue sorting for the next 
five days are represented by a red line, which shows for each day the results from the most 
efficient predictor-set based on NSE values. A green shading area illustrates the minimum 
and maximum forecast interval for each day of the forecast. Additionally, results from past 
forecasts are shaded in light grey for the past day of the forecast interval. To help with the 
interpretation of discharge values, the horizontal dashed lines denote the 2-year return-period 
for daily averaged and instantaneous discharge values. If the daily threshold is reached, either 
by the observed discharge or by the forecast, the next threshold will be displayed and so on 
until the last threshold (25-year return-period) is reached. The upper subplot shows the 
simulated daily averaged temperature and daily summed rainfall for the last 30 days and for 
the next three days, as predicted by HARMONIE. 
It is also possible to click on a catchment and open a new webpage where results are shown 
for the last three months and the past ten days. Three boxplots also feature on the page; they 
show temperature, precipitation and discharge values for the day in question relative to the 
same day of the year over the analysis period, thus placing today’s values in statistical 
context. For further details about the configuration of the webpage and the plots, see the 
previous report (Priet-Mahéo et al., 2019). 
  

http://customer.vedur.is/vegag/analogue_forecast/analogue_sorting.html
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6 Conclusions 
The analogue sorting method is a fast and powerful method to obtain discharge forecasts. 
The method has been in use for under two years at IMO in the form of a streamflow forecast 
for thirteen gauging stations. Overall, the results have been satisfactory; however, the 
presence of time-lag (a delay of one day) shows that the method was not always able to 
discriminate the relevant past events. In addition, interruptions in the computation of the 
forecast resulted from the data-flow disruptions. In this project, the operational streamflow 
forecast has been expanded from 13 to 33 gauged catchments. Additionally, a streamflow 
forecast has been setup for an ungauged catchment and improvements made on the 
forecasting system by correcting time-lags in peak flows. 
The Mahalanobis distance does not introduce weight between its predictors, leading to some 
errors in the selection of analogue past events. In order to introduce some differential weight 
for these predictors, predictors set have been pre-selected ahead of final sorting, reducing the 
number of events to choose from. This simple approach introduces an hierarchization of the 
predictors. For most stations, the introduction of hierarchization of the predictors improves 
the forecasts significantly, both in terms of timeliness and accuracy. The hierarchization 
facilitates the discrimination of past events and each class of catchments shows some trend 
in preferential predictors that are consistent with their physical characteristics. A similar 
approach was used successfully for the ungauged station. 
The usefulness of the streamflow forecast seems to be affected by factors such as the quality 
of the predictors (vhm 19 and vhm 38), and the existence of additional sources of discharge 
(e.g. vhm 116 and vhm 328). These disturbances would require additional attention before 
they could be included in the model. Ice perturbations could be accounted for through 
correction of the input data. Including water temperature measurements (when available) or 
air temperature could help to define temperature thresholds for possible ice growth. Volcanic 
and geothermal influences on discharge could also be investigated through the analysis of 
conductivity measurements, for example. 
This research extended the analogue sorting forecast successfully to 33 catchments of diverse 
nature in various locations, underlining the usefulness of the method. Although the best 
results were associated with direct runoff catchments, all catchment types gave satisfactory 
forecasts up to three days ahead. 
Further improvements of the forecast system could include: (i) the setup of back-up routines 
in case of data-flow interruptions; (ii) the deployment of the code on a development platform 
such as GitHub; (iii) the investigation of ice perturbations; (iv) correction or warnings and 
the introduction of predictors to account for volcanic and geothermal activity in some of the 
catchments; and (v) the extension of the system to all catchments monitored by IMO, 
including key ungauged catchments prone to flooding. 
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