
Multi-label film genre inference using convolutional neural
networks on film trailers

Hannes Kristján Hannesson
School of Computer Science

Reykjavík University
hanneskh15@ru.is

Sigurður Helgason
School of Computer Science

Reykjavík University
sigurdurhel15@ru.is

Abstract

This paper describes a process for the identification of multiple genres for film trailers. The task of
multi-label genre identification is a difficult task, which we attempt to solve by applying state of the art
machine learning methods for the creation of a deep neural network. We discuss what methods we use
and how we implement them, as well as describe our results. The code is all open source and available to
everyone.[2]

1 Introduction

Multimedia label inference is a task that is of inter-
est to not only the authors, but information reposito-
ries such as The Internet Movie Database, and video
hosting sites such as YouTube.

In this implementation a convolutional neural net-
work was used, but as trailers can be considered time-
series data we decided to model time with another
dimension in the data, this can be considered as a
block where each increment on the Z-axis is the fol-
lowing frame from the previous frame of the trailer.
This allows for a simulation of time-series data.

Throughout out the process we slice these blocks
of trailers into equally sized subblocks, this process is
called slicing and is used extensively in this report.
A pictorial example of this process can be seen in
Figure 1 and a further discussion is provided in 3.2.

Figure 1: Slicing method applied to a trailer.

Using the slicing method, we implemented a deep
convolutional neural network model for multi-label
classification of movie genres.

2 Data

Data was gathered from the GroupLens Research
website, which offered archived csv files containing
film metadata from MovieLens, two of these csv files,
namely ml-youtube.csv[4] and movies.csv[3], were
used.

2.1 ml-youtube.csv

The structure of ml-youtube.csv consists of three
columns, youtubeId (partial URL for the trailer link),
movieId (ID of the movie in the MovieLens database),
and title (title of the movie). A portion of the csv
file can be seen in Table 1

2.2 movies.csv

The structure of movies.csv consists of three
columns, movieId, title, and genres (the film genres

1

youtubeId movieId title
K26_sDKnvMU 1 Toy Story (1995)
3LPANjHlPxo 2 Jumanji (1995)

Table 1: Structure of ml-youtube.csv

listed in the MovieLens database). A portion of the
csv file can be seen in Table 2.

2.3 preprocessed_movies.csv

We did a series of data preprocessing steps on the
data provided by GroupLens, namely joining the two
datasets by their movieId and constructing individual
columns for each of the genres listed for the movies.
The genres were 18 in total: Adventure, Animation,
Children, Comedy, Fantasy, Romance, Drama, Ac-
tion, Crime, Thriller, Horror, Mystery, Sci-Fi, Doc-
umentary, War, Musical, Western, and Film-Noir.
These columns had a binary value 1 representing that
the film was of that genre and 0 otherwise. Initially
the distribution of classes in the dataset was very
skewed towards drama. The models trained with
the initial dataset were biased towards ascribing the
genre drama to all movies, because of this steps were
taken to decrease the gap between classes, namely
removing all instances of films whose only genre was
drama, and to remove all instances whose classes were
both Drama and Comedy. The class distribution be-
fore and after these steps were taken can be seen
in Appendix B. The final preprocessing step was to
prune the instances in the dataset whose trailer was
either too short, too long, or no longer available to
us on youtube.

2.4 Training data

For training, we used video frames from trailers of
5637 films, we extrapolated a frame once every 100
frames, The resulting frames amounted to 30 GiB of
data. The frames extracted were then resized to (64×
64)-pixel size, this was not only to reduce size but also
to try to de-emphasize small details and emphasize
the large details. An example of this can be seen
in Figure 2. One can see that the larger details are

still very visible, and the small details have been de-
ephasized.

Figure 2: Image resizing for detail fuzzing. Left im-
age is original, right image is resized image.

3 Methods

3.1 Data generator

Due to the size of the training data, storing the data
in memory is infeasable. To circumvent this issue, we
load data into memory as needed, this is done via a
generator. This generator was implemented in accor-
dance with the Keras [1] API, as Keras supports using
generators natively and is the recommended way to
handle this memory issue.

3.2 Slicing

The basic operation in training a neural network,
matrix multiplication, requires that matrices be of
the same dimensions. This is a cumbersome fact
when our matrices are based on variable length film
trailers, thus we must find a way to make sure all of
our matrices be of the same size.

This is simple for the width and height di-
mensions, we simply resize the frames to be of
some predetermined size. However, how we ensure

2

movieId title genres
1 Toy Story (1995) Adventure|Animation|Children|Comedy|Fantasy
2 Jumanji (1995) Adventure|Children|Fantasy

Table 2: Structure of movies.csv

ID youtubeId movieId title Romance . . . Action Thriller
0 K26_sDKnvMU 1 Toy Story (1995) 0 . . . 0 0
1 3LPANjHlPxo 2 Jumanji (1995) 0 . . . 0 0

Table 3: Structure of the combined csv file

that the depth (i.e. time) is invariant is a bit trickier.

A few solutions exist for this, one would be to just
trim all the trailers to be of the same length as the
shortest trailer, however, we lose a lot of info this way.
Another solution would be to pad zero-frames, that
is, a frame with RGB values (0, 0, 0) for every pixel.
This is what is done in this implementation, each
slice receives a predetermined amount of frames, and
if this amount is not divisible by the number of slices
we are using, then the last slice is padded with zero-
frames. The amount of zero padded slices is therefore
minimized, and the zero padding has little effect on
the predictions by the model.

3.3 Model

A convolutional neural network (CNN), consisting of
an input layer, followed by 6 convolutional layers, fol-
lowed by 3 fully connected layers, finally followed by
an output layer consisting of 18 nodes. On all hid-
den layers, a rectified linear unit (ReLU) was used
as an activation function; While a sigmoid activation
function was used on the output layer. A sigmoid
activation function was used on the output since a
confidence output for each class is desired.

The Adam optimization algorithm with the hyper-
parameters Learning Rate and Decay set to 0.0001
and 1× e−6 respectively.

The loss function the model utilized was Binary
Cross-entropy, as in multi-label classification a loss
function where the loss of one output tensor doesn’t
affect the update of the other tensors is desired.

Figure 3: 3D visualization of the model architecture,
the layers resembling blocks are the 3D convolutional
layers, the tall and short layers are the dense lay-
ers, Note: Pooling and Normalization layers are not
shown in this visualization

An overview of the Keras model can be seen in
Figure 5 along with a visual representation in Figure
3

3.3.1 Limitations

For the CNN to function, a standardized input is re-
quired, this refers to the fact that all frames must be
of the same dimensions and have the same number
of color channels, likewise, the slices must be of the
same size.

3.4 Accuracy Metrics

The accuracy metric used is categorical accuracy, al-
though we are wary that this function is not the most
applicable for this task, as categorical accuracy only
interprets a single genre which the model is most con-

3

fident on.
We did not have time to implement a custom accu-
racy metric, as we would have to write it with Ten-
sorFlow API calls, which none of the authors have
the experience with.

3.5 Threshold metric

We did implement an auxillary function for use on
the test data results. The function, which we call
the threshold metric, which given a lower and upper
threshold, and a prediction from the model, gives a
report of the set of genres for which the model is
confident that the film belongs to. In our case if the
model has a confidence above 0.75 that a film is of a
given genre, that genre is a part of the set.

4 Results

Using the accuracy metric discussed in Section 3.4,
we achieve ∼ 90% accuracy, with the loss ending at
∼ 0.3, both these metrics seem to plateau at these
values.

Figure 4: Accuracy and loss on 10 epochs

The authors evaluated the model on a number of
hand-picked films, the results can be seen in Figures
7, 8, and 9. Although we did not calculate recall nor
f1-score, we suspect it to be quite bad based on the
results on the hand-picked films we ran the model on.

5 Discussion
The results achieved with this implementation are
unsurprisingly bad. We believe the large factors that
decrease the models performance, is the amount of
data that we had, as can be seen from the results the
confidence levels of the models for each class closely
resembles the initial class distribution of the data;
which indicates that not enough data is trained on in
order to find the corresponding underlying function
for the neural network to learn.

There were some attempts to balance the data (see
Appendix B) in hopes to get a better result, however
this resulted in a lot of the genre confidences to be
more-or-less the same, with value ∼ 0.5.

A second large factor we believe is that we only
took every 100th frame of each film trailer, this makes
it such that each following frame within a trailer slice
is less indicative of the previous one, therefore leading
to less connected data, and therefore lessens the need
for a 3D convolutional neural network.

The last factor is that for time series data like this a
recurrent neural network with LSTM is better suited
for the task.

6 Future Work
Using recurrent neural networks (RNNs) might be
worth taking a look at for this task, as [5] had good
results using RNNs.
Training using more frames per film, might be benefi-
cial to the model and might be worth taking a look at.

7 Related Work
[5] used RNNs with LSTM in conjunction with other
methods to achieve ∼ 85% accuracy on a balanced
dataset with similiar recall, although they only con-
cern themselves with a single-label classification.

4

References
[1] François Chollet et al. Keras. https://keras.

io. 2015.

[2] Hannes K Sigurður H. Github repository
for this project. url: https : / / github .
com / HKH515 / MovieTrailerML / tree /
92ffc9afb6bc5d81b5a4b3bd899c1e92dae3f0ba
(visited on 12/15/2018).

[3] GroupLens Research. MovieLens 20M Dataset.
url: http : / / files . grouplens . org /
datasets/movielens/ml-20m.zip (visited on
12/09/2018).

[4] GroupLens Research. MovieLens 20M YouTube
Trailers Dataset. url: https : / / grouplens .
org/datasets/movielens/20m-youtube/ (vis-
ited on 12/09/2018).

[5] KS Sivaraman and Gautam Somappa. “Movi-
eScope: Movie trailer classification using deep
neural networks”. In: Dept. of computer science,
university of Virginia (2016).

5

https://keras.io
https://keras.io
https://github.com/HKH515/MovieTrailerML/tree/92ffc9afb6bc5d81b5a4b3bd899c1e92dae3f0ba
https://github.com/HKH515/MovieTrailerML/tree/92ffc9afb6bc5d81b5a4b3bd899c1e92dae3f0ba
https://github.com/HKH515/MovieTrailerML/tree/92ffc9afb6bc5d81b5a4b3bd899c1e92dae3f0ba
http://files.grouplens.org/datasets/movielens/ml-20m.zip
http://files.grouplens.org/datasets/movielens/ml-20m.zip
https://grouplens.org/datasets/movielens/20m-youtube/
https://grouplens.org/datasets/movielens/20m-youtube/

6

A Keras model implementation

Figure 5: Keras CNN model

7

B Dataset distribution

Figure 6: Class distribution before (above) and after (below) pruning the dataset.

8

C Model predictions for individual scenes

Figure 7: Frames from a scene from the Avengers: Endgame trailer, along with the model’s predictions, the
true genres are Action, Adventure, and Fantasy

Figure 8: Frames from a scene from the Avengers: Endgame trailer, along with the model’s predictions, the
true genres are Action, Adventure, and Fantasy

9

Figure 9: Frames from a scene from the Spider-Man: Into the Spider-Verse trailer, along with the model’s
predictions, the true genres are Animation, Action, and Adventure

10

	Introduction
	Data
	ml-youtube.csv
	movies.csv
	preprocessed_movies.csv
	Training data

	Methods
	Data generator
	Slicing
	Model
	Limitations

	Accuracy Metrics
	Threshold metric

	Results
	Discussion
	Future Work
	Related Work
	Keras model implementation
	Dataset distribution
	Model predictions for individual scenes

