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Abstract

Catch data for cod from the Icelandic groundfish surveys are analyzed in this thesis using mainly
generalized linear models (GLM). The mail goal is to find environmental variables that affect
the expected cod catch.

Two probability distributions are proposed for describing the data, the gamma distribution and
the log-normal distribution. These two distributions have the same variance function, i.e. the
variance is proportional to the mean squared. This relationship is investigated by a regression
of the log sample variance on the log sample mean for small groups of data. This regression
suggests a power relationship with an index slightly larger than 2.

The two proposed distribution are compared via a goodness of fit test. Such tests are complicated
by the fact that the expected cod catch is variable and thus scaling of the data is needed to obtain
a constant mean. The shape parameters are assumed to be constant but need to be estimated.
This is done by a GLM where small survey areas and years are included as qualitative covariates.
The hypothesis that the data, scaled with fitted values from the GLM, follow the G(7,1/7) or
the LN(0,52) distribution is tested. The shape parameters 7 and 52 are estimated by the GLM.
The test results are found to be better for the log-normal distribution. The models of the cod
catch data investigated in this thesis therefore treat the log transformed data as the response
and assume normally distributed errors.

The expected cod catch is assumed to be constant at a given place and time. The most straight-
forward model available is therefore a fully qualitative model with only spatial and time effects.
This model is found to explain 63% of the variation in the cod catch data but that comes with
a high cost of degrees of freedom.

A thorough examination of the environmental data collected in the groundfish surveys is given.
Polynomials are proposed to describe the relationship between each environmental variable and
the cod catch. The effects of these polynomials on the cod catch are then tested within the GLM
framework. The most important environmental effects are found to be the bottom temperature,
depth and surface temperature, although most of the tested effects are found to be significant.

Finally, an attempt is made to locate temperature fronts in the ocean by estimating the temper-
ature gradient vector at each data point. The size of this gradient vector is then included in the
qualitative model. This is a new approach to statistical groundfish analysis. The gradient term
is, however, not found to be important (though significant) in the explanation of variation in the
cod catch data.
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Samantekt

I pessari ritgerd eru rannsokud aflagdgn porsks tir stofnmaelingaleidangrum Hafrannsoknarstofn-
unar. Pessir leidangrar eru i daglegu tali nefndir togararall. Aodferdafraedin sem studst er vid
nefnist alheefd linuleg likén (e. generalized linear models, GLM). Megin markmidid med bessari
rannsokn er ad finna umhverfispeetti sem hafa ahrif 4 porskafla.

Skooadar eru tveer likindadreifingar til ad lysa gdgnunum, gamma dreifingin og log-normal dreif-
ingin. Paer hafa sama dreifnifall, p.e. dreifnin vex i hlutfalli vid medalgildid i 60ru veldi. Petta
samband er rannsakad med adhvarfi drtaksdreifni & urtaksmedaltal litilla gagnahdépa. Pessi
adhvarfsgreining gefur til kynna veldisvisissamband med veldisvisi riimlega tveir.

Pessar tveer likindadreifingar eru bornar saman med méatunarpréfum. Gert er rad fyrir pvi ad
medalgildio sé breytilegt og bvi parf ad stadla gdgnin pannig ad pau hafi sama vaentigildi. Petta er
gert med GLM bar sem tiltolulega litil leidangurssvaedi og ar eru notadar sem skyribreytur. P4 er
profud tilgatan um ad gdgnin, skdlud med metnum gildum fra GLM, lati G(7, 1/7) eda LN (0,52)
dreifingu. Formstikarnir 7 og &2 eru einnig metnir med hjalp GLM likansins. Nidurstédur
profanna eru betri 1 tilfelli log-normal dreifingar. Likonin sem skodud eru i pessari ritgerd nota
bvi logravorpud gogn og gera rad fyrir normal dreifdum skekkjum.

Gert er rad fyrir pvi ad porskaflinn hafi sama veentigildi & litlum svaedum og svipudum tima.
Pattalikan, sem inniheldur adeins stadsetningu og tima sem skyribreytur, er pvi er einfaldasta
mogulega likanid. Petta likan utskyrir 63% af heildar breytileikanum { gégnunum en notar til
bess helst til margar frigradur.

Umbhverfisgdgnin sem safnad er i togararallinu eru rannsckud itarlega. Marglidur af ymsum
stigum er notadar til ad lysa sambandi hverrar umhverfisbreytu og porskafla. Ahrif pessara
marglida 4 porskafla eru sidan préfud med adstod GLM. Mikilvaegustu umhverfispaettir eru botn
hitastig dypi og yfirbords hitastig. Flest pr6fud ahrif eru p6 markteaek.

Ad lokum er gerd tilraun til ad stadsetja hitaskil i sjonum med pvi ad meta hita stigulinn {
hverjum gagna punkti. Lengd stigulsins er svo beett inn sem skyribreytu i GLM likanid. Petta
er ny nalgun i greiningu botnfisks gagna en bad kemur i 1ljos ad pessi stiguls lidur er litilvaegur
(en b6 marktaekur) i utskyringu & breytileika porskafla.
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Chapter 1

Introduction

Every March since 1985 the Marine Research Institute (MRI) in Iceland has conducted an annual
groundfish survey in the Icelandic continental shelf. The purpose of this survey is to gather data
which are used in the process of stock assessment for several demersal species. The data gathered
contain numerous records of environmental measurements such as depth, temperature, weather
etc. which give occasion for investigating the relation of such factors with catch rates. Such
analysis for the Icelandic cod (Gadus morhua) is the subject of this thesis.

The methodology selected for this work is based on generalized linear models. As for any model
type applied to biological data the models considered here will only be correct to a certain extent.
An effort made to examine whether the data fulfill the model assumptions, with emphasis on
which probability distribution function will be selected to describe the variability of the data.

The investigation of environmental effects and the probability distribution functions performed
in this thesis can be utilized in several ways. For example, as an input into the stock assessment
process of MRI (Anon. 2001) and the multi species model currently being developed by the MRI
and other international marine institutes (Anon. 2002).

The main motivation for this work comes from a somewhat different vision. Many Icelandic
trawler captains have since 1973 reported the estimated catch of each species in each tow along
with a number of other parameters such as position, time of catch, depth etc. In 1990 these
reports were made mandatory by law and since then every action of the entire Icelandic fleet
has been recorded, providing a database containing very valuable information. These reports,
along with several other data, are used by the MRI in the process of estimating stock abundance
for several species of fish. The reports are confidential and only used for scientific purposes.
However, the amount of data (over 3 million actions) awoke the idea of using the data for short
term catch forecasts. Such forecasts can potentially be used by vessel captains to help selecting
fishing grounds.

An examination of the current status of information systems used on board of fishing vessels,
along with an analysis of the decisions made by vessel captains and the information that those
decisions were based on was performed in the master’s thesis of Bjarnason (1997). The choice
of fishing grounds was found to be the most important decision and the most complicated one
and it was shown that it could be crucial for the economy of the fishery. The captains currently
make this decision based on experience and the latest information from other fishermen. Thus



it is clear that short term catch forecasts could turn out to be a very helpful device.

The effects of environmental variable on catch rates found in this thesis will be very useful infor-
mation if a forecast model is to be made using the trawler reports, and so will the investigation
of probability distribution functions. Given that the survey data are collected more consistently
than the trawler reports and contain much more complete environmental data, the present anal-
ysis can be used as an indicator of what effects should be considered when developing models
for the commercial fleet.

1.1 Background

1.1.1 Groundfish survey data and generalized linear models

Classical linear models and ordinary least squares date back to the work of Gauss and Legendre
who applied the methodology to astronomical data. The normal, or Gaussian, distribution was
developed to describe measurement errors. Later in the nineteenth century the distribution was
used to describe the variation between individuals in a biological population, leading to the
numerous biological applications of linear models. (McCullagh & Nelder 1989, p.1).

Groundfish trawl surveys are commonly conducted for the purpose of obtaining an average catch
per tow, to be used as an indicator of stock abundance used in a stock assessment process. The
single most common method for estimating means or total abundances and associated variances is
probably the standard formulas for stratified random design. (Stefansson 1996). In such design-
based analysis, all inferences about the estimates of population quantities are based on treating
the measured characteristics (such as number of fish) as fixed. It is the method of choosing the
sample units as specified by the survey design which provides the source of randomness. (Smith
1990).

In general, abundance estimates from trawl surveys have large variance estimates and often the
mean and variance are directly related, i.e. larger means have larger variances associated with
them. A number of statistical models have been suggested for the estimation of mean catch
per tow in an attempt to account for this variability. In such model-based inference the data
are assumed to be generated by some underlying stochastic process whose structure is entirely
known, apart from a fixed number of parameters. (Smith 1990). Many of these methods use
skewed probability distributions, for example the delta-distribution (Pennington 1983). Here
the probability of obtaining an empty tow is modeled as a Bernoulli trial but the distribution
conditioned on positive values is assumed to be the log-normal or the gamma distribution. Smith
(1990) provides an interesting comparison of these two approaches, design-based analysis and
model-based analysis.

Another possibility of model-based analysis is to use a generalized linear model (GLM) where
the survey strata can simply be treated as covariates. Myers & Pepin (1986) were the first
to use the linear regression model as a method for estimating population size in groundfish
surveys and to implement the method on the American plaice. The GLM has the advantage over
the stratified analysis that the underlying spatial pattern of the fish density can be explicitly
modeled, an aspect ignored by the stratified analysis. Also, data from all years of the survey
can be analyzed at once and data from uncompleted surveys can be included. Furthermore, the



use of environmental variables as explanatory variables separates the inter-annual variation in
population size from the variation due to differences in the environmental data. The difficulty of
the model is that the parameter estimates are sensitive to violations of the model assumptions.
In addition, the abundance indices obtained so far in the literature have not performed better
than simple arithmetic or weighted averages when compared to results of virtual population
analysis (VPA) (Anon. 1992).

Survey data often include a large proportion of zeros which causes problems when the log trans-
formation of data is used or when the log link is used in a GLM. Stefansson (1996) combines the
delta-distribution and the GLM framework and develops a maximum likelihood method where
an explicit formula is obtained for the probability distribution of the catch at each station. The
resulting model allows formal testing of which factors influence survey catches, as well as the
computation of abundance indices.

The GLM framework has been used to obtain stock abundance indices from Icelandic marine
data, but is not currently used in the stock assessment process. An example of this can be found
in Stefansson (1988) where cod catch data from Icelandic trawler reports are analyzed using a
GLM. The total catch of a trawler in one month in a single statistical rectangle is assumed to
be dependent on the total towing time of that trawler in that month and area. Other effects in
the model include vessel effects, spatial effect (statistical rectangle) month and year effects. The
year effects give annual cpue (catch per unit of effort) indices. These new indices were found

to give at least as good correlations with stock size as indices computed with methods such as
VPA.

Another example of the use of the GLM can be found in Stefansson (1996). The main purpose of
that paper is to establish a method combining the delta and GLM approaches but it also provides
an example of using a GLM for haddock catch data from the Icelandic groundfish surveys. Only
spatial and depth factors were considered in addition to the year effect and the data consisted of
number of haddock per age and by station. The paper concludes that the smallest survey areas
are needed (in this case statistical rectangles) and yet the model only explains about 40% of the
variation of non-empty tows. The estimated abundance indices obtained in this model are found
to perform well compared to other indices and VPA runs.

Unlike the usual analysis of survey data and any previous analysis of Icelandic marine data
the emphasis in this thesis is on the variability of the survey catch. The purpose is not to
obtain an abundance index, keeping a possible catch forecast in mind. Numerous environmental
measurements from the survey are tested for significance in order to cast light on why the fish is
caught at one place rather than another. This thesis provides a more thorough examination of
the environmental factors measured in the survey than has been done before.

Only the tows where the catch included a positive number of cod (non-empty tows) are included
in this work. This will not undermine the usefulness of this analysis for forecasting purposes
since captains focusing on cod will be concerned with areas where the probability of getting tows
containing no cod is very low. Furthermore a Bernoulli model of empty /non-empty tows can be
combined with the analysis afterwards, following the delta approach of Stefansson (1996).



1.1.2 Gamma distribution versus the log-normal distribution

The cod catch data from the Icelandic groundfish surveys are highly skewed. Several authors
have suggested the use of the gamma distribution to describe skewed marine data. This in-
cludes Stefansson (1996) who used the gamma distribution for age-disaggregated haddock catch
data from the Icelandic groundfish surveys, also Goni, Alvarez & Adlerstein (1999) for Western
Mediterranean fisheries and Ye, Al-Husaini & Al-Baz (2001) for the Kuwait drift net fishery. A
log transformation has frequently been used as a normalizing and/or variance stabilizing method
and the log-normal distribution has therefore also been used to describe skewed marine data.
Examples of this are Myers & Pepin (1986) for the American plaice, Stefansson (1988) for cod
cpue data from the Icelandic trawler reports, Lo, Jacobson & Squire (1992) for northern anchovy
data collected by aircrafts and Pennington (1996) for several marine survey data. Furthermore,
Steinarsson & Stefansson (1986) fitted several probability distributions to the cod catch data
from the Icelandic groundfish surveys 1985-1986 and found that among tested distributions, the
gamma, log-normal and negative binomial distribution had the best fit. In light of this literature,
the adequacy of both the gamma distribution and the log-normal distribution for the cod catch
data will be investigated in this thesis. The negative binomial distribution will not be considered
here.

The gamma and log-normal distributions share some characteristics which often makes it difficult
to choose between them. Both distribution have a positive probability mass only for positive
values and can describe data with the majority of the probability mass on low values but a heavy
tail to the right. They also share the same relationship between the mean and variance:

var(Y) = o?E(Y)? (1.1)

This relationship differs from other distributions like the normal, poisson and the negative bino-
mial distribution and can therefore be used to distinguish these two distributions from others. A
common approach to check this relationship is to examine a plot of log(sample variance) versus
log(sample mean) for homogeneous groups of data, see for example McCullagh & Nelder (1989,
p-306), Stefansson & Pélsson (1997) and Goni et al. (1999). If the points form a straight line
with the slope close to 2, the gamma and log-normal distributions can not be rejected as the true
underlying distribution. This check will be performed in this thesis. That has not been done
before for the cod catch data from the Icelandic groundfish surveys. Such investigation can not,
however, distinguish between these two distributions.

A GLM using gamma distributed errors usually assumes a constant coefficient of variation (CV).

Since the CV is defined as
var(Y)

EY)|
the o in (1.1) is simply the CV. When the CV is small the variance stabilizing transformation
log(Y') has approximate moments

CV =

E(log(Y)) = log(E(Y)) —0?/2 and var(log(Y)) ~ o2

where o denotes the CV. Hence, assuming constant CV for Y is approximately equivalent to
assuming a constant variance for log(Y") for low values of o. Furthermore, if the model assumes
that the independent variables have multiplicative effects on the response on the original scale
the effects are additive on the log scale. Then, with the exception of the intercept or constant
term in the linear model, consistent estimates of the parameters and of their precision may be
obtained by transforming the data to the log scale and applying ordinary least squares. The

4



intercept is then biased by approximately —o2/2. (McCullagh & Nelder 1989, p.285). For small
02 a GLM analysis assuming gamma distributed errors (equivalent to assuming a constant CV)
and a GLM analysis on log transformed data assuming normally distributed errors will therefore
usually produce the same conclusions. Atkinson (1982) concludes that these two methods of
analysis should provide similar results for o2 as large as 0.6. When o? is small, the choice of
distribution function should then depend on the purpose of the investigation. For a dataset
where the exact distribution of Y is unknown, the first method is convenient and desirable if the
analysis is exploratory or if only a graphical presentation is needed. But if Y is a variable with a
physical dimension and we want to present conclusions on the original scale of measurement, it
is preferable to retain that scale and not to transform the response. (McCullagh & Nelder 1989,
p.286). Furthermore, if the distribution is unknown, Firth (1988) compares the efficiencies of
parameter estimates using the gamma model when the errors are in fact log-normally distributed
with using the log-normal model when the errors are really gamma distributed. He concludes
that the gamma model performs slightly better.

When o2 is large, however, these two kinds of analysis can give different results (see for exam-
ple Wiens (1999)). Therefore, a comparison of how well these two distributions fit the data is
desirable. In Stefansson (1988) and Stefansson & Palsson (1997) this is done by scaling the obser-
vations with the fitted values from a GLM. Then a Kolmogorov-Smirnov test on the scaled data
can be used to distinguish between the gamma and log-normal distributions. This comparison
will be conducted in this thesis. That has not been done for the data from Icelandic groundfish
surveys before.

1.1.3 Temperature fronts

It has been suggested that the food for cod, such as capelin, may aggregate in frontal regions
where cold sea meets with warmer sea, i.e. where there is a sudden change in temperature
(Vilhjalmsson 1994). Therefore it could be expected that the cod would pursue such temperature
fronts.

In light of this it would be interesting to test the effect of temperature fronts on the catch rates
of cod. In order to do that, estimates of the size of the temperature gradient in each station
is needed. A temperature surface over the survey area is estimated in this thesis, using locally
weighted regression on bottom temperature which is measured in each station in the survey. This
surface is then used to get an estimate of the size of the temperature gradient at each station,
which is then tested for significance in a GLM.

Incorporation of temperature fronts in the analysis of groundfish catch data has not been done
before!. The analysis in this thesis is limited and it would be interesting to develop this approach
further.

'Tn Sakuma & Ralston (1995) spatial distributions of some late larval groundfish species off central California
where found to be dependent on a temperature front, but no literature was found where temperature fronts are
linked to groundfish catch data.



1.2 Outline of the thesis

In this introduction the motivation of the project was described. An introduction of the back-
ground of this work was given and a discussion was provided on in what sense this thesis is
different from what has previously been done in the field. In chapter 2, the data used in the
analysis of this thesis is described. In chapter 3, an overview of the methodology is given. This
includes mainly subjects related to the generalized linear model, but also a short introduction
to locally weighted regression and additive models. Chapter 4 contains some analysis related
to the choice of a probability function (gamma or log-normal) that will be used to describe the
cod catch data. In chapter 5, three linear models of the cod catch data are considered. Each
model is described and the results are examined. Finally, chapter 6 contains a discussion of the
conclusions of this work and some ideas for future work.



Chapter 2

The Icelandic groundfish surveys

The data analyzed in this thesis are cod catch data from the Icelandic groundfish surveys. These
surveys have been conducted in March every year since 1985 by the Marine Research Institute
(MRI) in Iceland. The survey design is outlined in section 2.1 and in section 2.2 an overview is
given of the data.

2.1 Groundfish survey design

The groundfish survey area contains the Icelandic continental shelf inside the 500 meters depth
contour (see figure 2.1), which covers the fishing grounds for the most important commercial
species of demersal fish in Icelandic waters.

The stratification scheme is based on cod density patterns pre-estimated from historical com-
mercial, as well as research vessel, catch data. The whole survey area is divided into statistical
rectangles of half degree latitude and one degree longitude, on which the stratification scheme is
based. Each statistical rectangle can then be divided into four sub-rectangles. Based on biolog-
ical and hydrographic considerations, the survey area is divided into two main areas, northern
and southern areas, and ten sub areas (strata). Stations are allocated among strata in direct
proportion to the area of each stratum and its estimated cod density. Finally, the trawl stations
of a stratum are allocated to each statistical rectangle within the stratum in direct proportion
to the area of the rectangle. The main areas, sub areas and the statistical rectangles are shown
on the map in figure 2.1.

Stations within each statistical rectangle were initially divided equally between fishermen, and
project members from MRI. MRI selected random places as the middle of a tow and fishermen
decided on the direction. Fishermen were asked to fix their stations in each rectangle in accor-
dance with their knowledge and experience of fishing and fishing grounds. The stratification is
therefore semi-random, but the survey design is systematic since the same stations are repeated
every year. The (middle) locations of the stations which gave positive cod catches in the survey
years 1985-2001 are shown in figure 2.1.

In order to visit all stations in the time limit of 2-3 weeks, five commercial fishing vessels are
leased every year (not necessarily always the same vessels). The bottom trawl was standardized
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Figure 2.1: A map of the survey area showing the 500 meters contour line, main areas, sub areas
and statistical rectangles. The points denote the (middle) locations of stations for all survey
years were positive cod catches were obtained.

in cooperation between the scientists of MRI and the trawler captains. The main consideration
was that the trawl would effectively sample groundfish species, especially cod, of different lengths
ensuring adequate data for the catchable stock as well as the recruiting year-classes.

Fishing methods are standardized as far as possible. Standard towing speed is 3.8 knots over
the bottom and the towing distance is 4.0 nautical miles. Trawling is done uniformly over the
24 hours in the day. The vessels are supposed to stop trawling when the wind force exceeds 8 on
the Beaufort scale.

For a more detailed description of the survey design see Péalsson, Jonsson, Schopka, Stefansson
& Steinarsson (1989).

2.2 Collected data

The collected data can be categorized into trawl station data, trawl catch data and environmental
observations.



year 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993
no. stations | 579 | 576 | 533 | 531 | 556 | 556 | 535 | 535 275
year 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | Total
no. stations | 579 | 578 | 535 | 525 | 498 | 521 | 515 | 516 | 9303

Table 2.1: Number of stations visited each year of the survey.

The trawl station data recorded are position, time, direction and depth of the tow, distance
towed and trawling speed. In addition, information on trawl performance was recorded.

The trawl catch data include length measurements, age determination from otolith samples and
sex determination. The sampling of otoliths is performed in a length stratified procedure for
each fish species in each of the 10 sub areas. The total catch per species is not weighted but can
be obtained by length-weight relationships.

In the environmental category the following meteorological and hydrographic data are recorded
for each trawl station: wind force (Beaufort scale) and direction, air-, surface- and near-bottom
temperature, weather conditions, cloud coverage, wave height, ice conditions and barometric
pressure.

The survey handbook (Einarsson, Jonsson, Bjornsson, Palsson, Schopka & Bogason 2002) pro-
vides detailed descriptions of the data collection.

A total of 600 stations were initially considered a reasonable number for the objectives of the
survey, such as precision in stock abundance estimates. Over the years the total number of
visited stations has been variable due to a number of reasons, but it has always exceeded 500. In
this analysis, only stations were the cod catch is strictly positive are considered (as explained in
section 1.1.1). Table 2.1 displays the number of such stations per survey year. The total number
of available observations are 9303.
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Chapter 3

Methods

In this chapter an overview of the methodology used in this thesis is given. In section 3.1, subjects
related to the generalized linear model are described and in section 3.2, a short introduction to
locally weighted regression and additive models is given.

3.1 Generalized linear models

The term ‘generalized linear model’ (GLM) was introduced by Nelder & Wedderburn (1972). This
model class unifies many statistical techniques such as analysis of variance, regression analysis,
analysis of covariance, probit analysis and contingency tables. The GLM can be viewed as a
method that aims to describe the mean structure in a set of observations as a linear function
of several explanatory variables or factors. The main goal of the method is often to understand
what affects the behavior of the phenomenon of interest.

A GLM consists of a systematic part and a random part. For the random part, a vector of
observations (the phenomenon of interest) y € RV, also called the response, is assumed to be a
realization of a random variable, Y = (Y7,Y5,...,Yy). The components of Y are assumed to be
statistically independent and belong to the same exponential family of probability distributions
with a constant dispersion parameter (see section 3.1.1). The means, g = (u1, 42, ..., 4N), are
however not required to be equal. The systematic part specifies a transformation of the means
as a linear function of unknown parameters, 8 = (B1,f2,...,8m)", and known explanatory
variables, x1,...,X;,, called covariates. This can be written in matrix form:

g(m) =n=Xp

where z;; is the value of the jth covariate corresponding to observation 4, j = 1,2,...,m and
i=1,2,...,N. The matrix X is called the model matriz and the transformation g(-) is called
the link function as it links together the linear terms and the mean vector. The model matrix is
assumed to be regular. The systematic part of GLMs can also be written in a parametric form:

g(pi) = ni = Biwir + Poxio + -+ + BmTim
(McCullagh & Nelder 1989, p.26-27).
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Both qualitative and quantitative covariates can be included in a GLM. A quantitative covariate
occupies one column of the model matrix where the ith entry in that column is simply the value
of the covariate corresponding to the ith observation. A qualitative covariate, also called a factor,
occupies one column for each level. Then the value of z;; is 1 if observation 4 belongs to level
j but 0 otherwise. This means that more parameters are required in the model for a factor
(one for each level) than for a quantitative covariate. As an example of this, a model with one
quantitative covariate x and one factor that has [ levels, can be written in parametric form as
follows:

1 if observation i belongs to level j,

0 otherwise.

z
mi=zi+ Y B0;(i), where §;(i) = {
Pt

and in matrix form:

1 1

1 T9
1 Li b1
1 Tit1 s
n= ' ' :
1 By
Y

1
L 1 xN =

3.1.1 The exponential family

A random variable Y is said to follow a probability distribution from the ezponential family if it
has a probability density function of the form

y0 — b(0)
a(¢)

where a(+), b(-) and ¢(-) are functions of the canonical parameter @ and the dispersion parameter
¢. The dispersion parameter is sometimes denoted with 0. The function a(¢) is commonly of the
form a(¢) = ¢/w where w is a known prior weight that varies from observation to observation.
(McCullagh & Nelder 1989, p.28).

f(y;0,¢) = exp { + c(y, ¢)}

The definition of the exponential family is merely for the convenience of being able to talk about
many different distributions that have common properties. In addition, the theory of GLMs
is set forth for an arbitrary exponential family. Examples of probability distributions in the
exponential family are the normal-, poisson-, binomial- and gamma distributions.

The variance and mean of Y can be written in terms of the functions a(-) and b(-):
EY)=p=0b(0) and var(Y)="5"(0)a(¢)

Let 7(0) := b'(#) = p. It can be shown that 7 is a bijective mapping from the interior of the
domain of 7 onto the range of 7 so there is a one-to-one correspondence between the canonical
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parameter and the mean, # = 7-!(x). The function b”(#) can therefore be considered as a
function of p

b"(6) = b"(r7 () = V(n)
and is called the wvariance function. This function is characteristic for an exponential family,

i.e. it defines the family uniquely. (McCullagh & Nelder (1989, p.28-29) and Thyregod (1998,
p.31-35)).

The probability distributions considered in this thesis are the gamma distribution and the log-
normal distribution. In what follows, some characteristics of these distributions will be summa-
rized.

The gamma distribution

A random variable Y is said to be gamma distributed, Y ~ G(r, u/r), if it has the probability

function
yrf 1 efyr/ﬂ

1) = Gyt

where I'(-) is the Gamma function,

The gamma distribution is an exponential distribution with mean, variance, variance function
and dispersion parameter as follows:

1
E(Y) = K, var(Y) = 77 V(N’) = /1'21 ¢ = ;
(Thyregod 1998b, p.149-153). A useful fact about the gamma distribution is that if Y ~ G(r, uu/7)
and ¢ € R then ¢Y ~ G(r,cu/r) (Conradsen 1999, p.120). Furthermore, if ¢ = 1/u then

Y
_NG<T,1>
W r

The log-normal distribution

A random variable Y is said to be log-normally distributed, ¥ ~ LN (a,b?), if Z = log(Y) is
normally distributed with mean a and variance b*, Z ~ N(a,b?). The variance and mean of Y
are

E(Y) =" 2" and var(Y) = 20t (b — 1) = B(YV)2(e"” - 1) (3.1)

(Conradsen 1999, p.134-135). The log-normal distribution is not a member of the exponential
family but can be used in the GLM framework by log transforming the data and assume normally
distributed errors.

Although a variance function is not defined for the log-normal distribution it can be seen from
(3.1) that the relationship between E(Y') and var(Y') is the same as for a gamma distributed
variable, i.e.

var(Y) = ¢ - E(Y)?

13



where ¢ = e — 1.

A useful fact about the normal distribution is that if Z ~ N(a,b?) and ¢ € R then Z — ¢ ~
N(a — ¢,b%) (Conradsen 1999, p.125). Furthermore, if ¢ = a then

Z —a~N(0,b>) and e?~%~ LN(0,b%)

3.1.2 Estimation of parameters in GLMs

The parameters in a GLM are estimated with the maximum likelihood method. The log-
likelihood function for an exponential family is

10, ¢;y) = log f(y;0,9)

yo — b(0)
Tald) +c(y, ¢)
yr () — b(r 1 (p))
+ c(y, ¢)
a(9)
= U, b5y) (3:2)

This function measures the likelihood of arbitrary values of the parameters y and ¢ for a given
observation y and for a given distribution family. Assuming that p = g~ '(XB) the maximum
likelihood estimate B of B is the one that maximizes the log-likelihood function (3.2). This is
found as the solution of the score function:

diagd —————=¢ X | diagd ———= ¢ (y—9¢  (XB)) =0 3.3
(e { e | %) e {71000 )
which is the log-likelihood function differentiated with respect to 8. (Thyregod 19984, p.179-180)
For a GLM assuming gamma distributed errors, with a logarithmic link function and w; = 1 V¢

(3.3) becomes:
1
T 3 _x8) _
X dlag{exiﬁ}(y e )—0

For a GLM assuming normally distributed errors, with an identity link function and w; = 1 V4
(3.3) becomes:

X" (y-XB)=0 = pB=(X"X)"x"y
Usually, equation (3.3) has to be solved iteratively with the Newton-Raphson method or the
Fishers scorings method for example. See Thyregod (1998a, p.191) for details.

3.1.3 The deviance

Instead of using the log-likelihood function I(w, ¢;y) directly as a criterion for comparing the
goodness-of-fit of different models, a linear function called the deviance is used:

N
D(y;p) = 26((y,d1y) — L d5y)) =26 > (1yi, 59i) — Uiy 5 i)

=1

N
= 2> wi{pi(r ) — 7 M) = br M (we) + b(r ()}
i=1
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In other words, the deviance measures the difference in log-likelihood between using y and p as
the means. Note that [(y, ¢;y) is the maximum likelihood achievable for an exact fit in which
the fitted values are equal to the observed data. Asl(y, ¢;y) does not depend on p, maximizing
I(p, ¢;y) is equivalent to minimizing D(y, ) with respect to p. (McCullagh & Nelder 1989,
p.24, 33-34).

IfY; ~ G(r,p;/r) and w; = 1 Vi, the deviance becomes

po =3 (2) 1

i=1
If Z; ~ N(a;,b?) and w; = 1 Vi, the deviance simply becomes the sum of squares

N

D(z;p) =) (2 — i)’

=1

If the dispersion parameter is known, the scaled deviance

) D(y, )

D*(y,p) =2((y, ¢;y) — Ulp, ¢5y)) = B
will approximately follow a x?(N — m) distribution and can therefore be used as a measure of
the goodness-of-fit of the model. If the dispersion parameter is not known (as in the analysis of

this thesis) it can be estimated by
~_D(y,p)

¢ = N —-m
(Thyregod 19984, p.219-220). It is obvious that in this case, the scaled deviance can not be used
as a measure of the goodness-of-fit of the model. Instead the deviance is used to measure the
difference in the goodness-of-fit of sub models relative to a given model.

(3.4)

3.1.4 Analysis of deviance

In order to investigate the parameters in a GLM the following fact can be used. If the hypothesis
n = X3 is true then

% N N, (0,3)
5= X | (v ) ) _1

The 3 matrix can be estimated by replacing 8 with B (Thyregod 1998a, 187). For the hypothesis
Hy : Bj = Bo the two sided test statistic

where

~

Bi — Bo
Vbjj
should be compared to the (1 — a/2) quantiles of N(1,0). If the dispersion parameter ¢ is

unknown it can be estimated with (3.4) and the Student’s t-distribution with (N — m) degrees
of freedom should be used instead. (Thyregod 1998a, p.284).

(3.5)
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Usually, one is more concerned with the hypothesis that all parameters of a factor or all param-
eters for an n-degree polynomial can be assumed to be 0 at the same time. In other words, if a
whole term can be left out from the model. Consider two hypotheses:

H;: g(p) =X'B", B € R™ and H;y: g(p) =XT1gitt gitl ¢ Rmin

where m; > m;y; and the columns of the matrix X+ are all contained in X Thgn the
model H;;q is said to be contained in model H;, written H;y1 C H;. Let p; = g_l(XiBl) and
Bip1 = g*I(XZ“,BZ ) where ,BZ and ,Bl are estimated maximum likelihood parameters from

model H; and H;;q respectively. Tests for goodness-of-fit of these models relative to the full
model are

approx approx

G*(H;) = D*(y,p;) "~ X*(N —my) and G*(Hit1) = D*(y, pi1)  ~ X°(N —mis1)
(Thyregod 1998a, p.288-290). In general, a hierarchically organized chain of models
HmmCHkC"'CHQCHlCH()CHfu” (3.6)

can be considered. The minimal model, Hy,;,, is the smallest possible model usually containing
only an intercept n = 3y, i.e. assuming that all observations have the same expected value. The
full model, Hyyy, is the largest possible model containing one parameter for each observation,
assuming that every observation have different expected values. A quotient test for the hypothesis
of H; given the smaller model H;,; is

G*(H;|Hiy1) = G*(H;) — G*(Hi1) = D*(Big1s i) = X*(mi — mig1) (3.7)

The chain in (3.6) usually denotes a sequential addition of terms. The test in (3.7) is then for
the hypothesis that all coefficients of one term are zero (the term can be dismissed) given that
all the terms already included have been accepted. (Thyregod 1998a, p.309).

When the dispersion parameter is unknown, the largest available model, Hy, will have to be
assumed to be correct and successive testings of models are then done relative to that model. A
quotient test for H; given the smaller model H;1; and relative to Hy is then

GQ(Hi|Hz'+1)/(mi —mii1) _ D(Ni+1aﬂi)/(mz' —mii1) approx
G?(Ho)/(N — my) D(y, po)/ (N — my)

F(m; —mijy1, N —mg) (3.8)

since the dispersion parameter is canceled out. (Thyregod 1998a, p.298-300). A general analysis
of deviance table that gives these test statistics is shown in table 3.1.

3.1.5 Residuals and model control

Residuals are used to measure the difference between the observations and the fitted values given
by the model. Let y be the observations and g the fitted values. The response residual is defined
as:

Ti::yi_ﬁia 1=12,...,N

and the deviance residual is defined as:

’T‘Z-D = sign(y; — i)V wid(yi, i), i=1,2,...,N
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Source of variation | Deviance Df Deviance/Df F-Test

From H,,;, to Hy D(/.me, /.Lk) ME — Mmin

D(l‘l’min 7“]9) D(H’mzn’ﬂk)/(mk _mmin)
M —Mmin (Y;No)/(N_mO)

D s > _
From Hs to H; D(pg, py) mi —ma ngfigé) (,(L;,ﬁ;%gxl—mn;;)
D s > _
From H; to Hy D(py,s po) mo —mi ,,Egi,’,ﬁf) (,(L; ZE%%EWT;)
. _ D(ynu‘())
Residuals D(y, po) N —mg (N—myo)

Total D(Ya /J‘min) N — mmin

Table 3.1: A general analysis of deviance table when the dispersion parameter is unknown. The
largest model, Hy, is assumed to be valid and successive testings of models are made relative to
Hy. The terms are added sequentially and each model H; is tested given that H;;; is valid.

where d(y;, 11i) = 26((ys, b3 yi) — (i, #393)). The deviance residual therefore measures the
difference in log-likelihood. If Y is assumed to be normally distributed, these residuals become
equal since d(y;, ;) = (y; — Ji;)%. The standardized deviance residual is defined as

$(1 — hy)

Here h; denotes the ith diagonal element of the ‘hat’ matrix

1
H=W"X(XTWX) ' XTW'2  where W = diag {#} is the
(9" (1i))?V (i)
matrix that maps y into . The standardized deviance residuals have constant variance. (Thyre-
god 1998a, p.202-215).

Informal checks of systematic departures from the model can be made by plotting the stan-
dardized deviance residuals versus the fitted values or a covariate. If there are no systematic
departures from the model, the residuals on these plots have mean 0 and constant range. The
plots can be used to spot systematic departures in the model like curvature in the mean and
systematic change of range with fitted values or covariate values. Curvature of the mean may
arise from several causes, including the wrong choice of the link function, wrong choice of scale
of one or more covariates, omission of a quadratic term in a covariate or simply that the chosen
covariates do not succeed to model the mean structure of the data.

A plot of absolute standardized deviance residuals against fitted values gives an informal check
on the adequacy of the assumed variance function. An ill-chosen variance function will result in
a trend in the mean. A positive trend indicates that the current variance function is increasing
too slowly with the mean and a negative trend indicates the reverse effect. (McCullagh & Nelder
1989, p.398-400).
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3.2 Locally weighted regression

Locally weighted regression is a part of a model class called ‘smoothers’. A smoother is a tool
for summarizing the trend of a response measurement Y as a function of one or more predictor
measurements, X1,...,X,,, similar to the classical linear models. But unlike the classical linear
models, a smoother is nonparametric in its nature since it does not assume a rigid form for the
dependence of Y on X1,...,X,,.

Let y;, « = 1,..., N, be measurements of the dependent variable and let z;1,...,z;, be N
measurements of m independent variables. Suppose that the data has the form

yi = g(xi) + €

where the ¢; are independent normal variables with mean 0 and constant variance 2. In the GLM
framework the function g(-) has to be a parametric function, but here there are no parameters
and the only assumption of g(+) is that it is a smooth function in the independent variables (i.e.
infinitely differentiable). However, the effective number of parameters or degrees of freedom is
defined, see Hastie & Tibshirani (1990, p.52-55).

In the case of a locally weighted regression smoother, ‘loess’, an estimated surface is provided
by fitting a function of the independent variables locally and in a moving fashion, analogous to
how a moving average is computed for a time series. Let ¢ be an integer, where 1 < ¢ < N. A
neighborhood of xg consists of the ¢ observations whose x; values are closest to xo. Each point in
the neighborhood is weighted according to its distance from xg; close points have greater weight
than points further away. A linear or quadratic function of the independent variables is fitted
to the dependent variable using weighted least squares and the estimate g(xg) is taken to be the
value of this fitted function in xy. This procedure is repeated for all observations in the data.

There are of course several possible distance functions p(-,-) that can be used to obtain the
neighborhoods. In the case where the independent variables measures position in physical space

(like in section 5.3) the Euclidean distance is a natural choice.

The weight function used with the loess smoothers is the tricube function:

W (u) (1—u?)? if0<u<l,
w) =
0 otherwise.

Let D(xg) denote the neighborhood of xy. The weight for observation y; becomes:

(x0) = ,O(X(),Xi)
wilk) =W [ — ot (3.9)

x;€D(x0
Thus w;(xp), as a function of 4, has a maximum for x; close to xq. It decreases as the distance
increases and becomes 0 outside the neighborhood.

The size of the neighborhoods is denoted by f = ¢/N and is called the scope. As f increases, g(x)
becomes smoother. If locally linear fitting is used, the fitting variables are just the independent
variables. If locally quadratic fitting is used, the fitting variables are the independent variables,
their squares and their cross-products. Locally quadratic fitting tends to perform better in
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situations where the regression surface has substantial curvature, such as local maxima and
minima.

The statistical properties of the loess smoother will not be discussed here. For more details of
the loess smoother see Cleveland & Devlin (1988) and about smoothers in general see Hastie &
Tibshirani (1990).

An additive model is defined by

m

Y; :a+ij(Xj)+€i
7j=1

where the errors €; are independent of the X;s with mean 0 and constant variance. The f; are
smoothers, arbitrary functions of one or more predictors. This model is an extension of the
classical linear model. It allows an arbitrary function of X instead of one that is linear in some
parameters. It does not achieve an arbitrary regression surface as the terms are assumed to
be additive. This restriction, however, makes statistical inferences about each individual term
[j(X;) possible, since the variance of the fitted response holding all but one predictor fixed does
not depend on the values of the other predictors. This means that the estimated functions f; can

be plotted separately in order to examine the roles of the predictors in modeling the response.
(Hastie & Tibshirani 1990, 82-87).

An additive model can be fitted by a back-fitting algorithm. It fits the smoothers f; one at a
time by taking the residuals

Y =3 fe(Xe)
k#j

and smoothing them against X;. The process is repeated until it converges. (Venables & Ripely
1997, p.327).

The generalized additive models extends the GLM in the same manner as the additive model
extends the linear model. For detailed treatment of this subject see Hastie & Tibshirani (1990).
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Chapter 4

Selecting the probability distribution
function

This chapter deals with deciding which distribution, gamma or log-normal, is more appropriate
for the cod catch data from the Icelandic groundfish surveys 1985-2001. The data are highly
skewed as can be seen on the histograms in figure 4.1. Furthermore, the mean catch in these
surveys is 153 cod but the median is only 53 cod. The histogram to the left in figure 4.1 contains
all the positive cod catch data and because the data contains a few very large catches' almost
all the data appear in one bar. The histogram on the right contains only tows that contained
less than 400 cod and gives a better view of the distribution. A histogram of log transformed
data is shown on figure 4.2. This histogram indicates that the normal distribution can possibly
be used to describe the log transformed data, except that the lower tail is probably too thick.
On the other hand, this skewness could be explained by a mean structure in the data.

The idea here is to divide the data into small homogeneous groups where the expected number
of cod in tow can be assumed to be constant. If there are reasonably many observations in each
group the mean and variance can be estimated for each group. These estimates can be used to
investigate the variance function (section 4.1), the assumption of constant coefficient of variation
(CV) (section 4.2) and the assumption of constant variance of log transformed data (section 4.3).
Furthermore, estimated parameters from a generalized linear model (GLM) where these groups
are treated as qualitative covariates (factors) can be used to test the goodness-of-fit of the two
distributions (section 4.4).

The expected number of caught fish is assumed to be dependent on the environmental conditions
in the sea and annual fluctuations of the size and catchability of the cod stock. Homogeneous
groups of data can therefore be obtained by dividing the survey data into small areas. The
sub-rectangles are well suited for these purposes since they are small (quarter of degree latitude
times a half degree longitude) and the density of fish can therefore be assumed to be constant
throughout that area. The drawback of using the sub-rectangles as homogeneous groups is
that there are few observations in each group, the highest number is 7 observations in one
year. Therefore, the statistical rectangles with up to 16 observations in one rectangle are also
considered. But since they are four times bigger than the sub-rectangles, the assumption of
homogeneity is not as reliable.

!The by far largest tow contained 14918 cod, performed in Skagafjordur 1985.
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Figure 4.1: Histograms of number of cod caught in each tow. Each bar shows the number of
tows that contain the amount of cod shown on the x-axis. On the left all data are included, a
total of 9303 tows. On the right only tows with less than 400 cod caught are shown, a total of

8548 tows.
2 4 6 8

Number of tows
400 600 800 1000 1200
| | | |

200
|

0 10

Log number of cod per tow

Figure 4.2: Histogram of log number of cod caught in each tow. All data are included.

4.1 The variance function

Both the gamma distribution and the log-normal distribution have the following relationship
between the mean and the variance

var(Y) = ¢ - E(Y)? (4.1)

where ¢ is a constant. Furthermore, ¢ is the squared coefficient of variation (CV). The relation-
ship of (4.1) can be written as:

log(var(Y)) = 2log(E(Y)) + log ¢

One way to determine whether the data can be assumed to fulfill the relationship of (4.1) is to
plot the log sample variance, log(s?), versus the log sample mean, log(y;), for sub-rectangles
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j=1,2,...,J and see if the points form a straight line with slope 2. Note that
n;

_ 1 1 _ .
yj:—_Zyji and s?z _1Z(yji_yj)2 j=12,...,J (4.2)

.
J i=1

where n; is the number of observations in sub-rectangle j and J is the total number of sub-
rectangles. If a regression line log(s?) = p1 + B2 log(y;), using 1/n; as weights and assuming

Normal errors, is fitted to the data, the estimated slope B\g will approximately follow a Normal

distribution:

02

5 as
~ N
P2 Pz, 7 log(7;)*
Jj=1 n;

=i N (B, 0%,) (43)
(see equation (3.5)).

Figure 4.3 displays a scatter plot of log(s?) versus log(7;) for sub-rectangles j = 1,2,...,J.
For every 17 years of the survey only sub-rectangles which contain 5 or more observations are
included in this plot (n; > 5), a total of J = 241 points. A weighted linear regression of the log
variance on the log mean gave a slope of 2.23 £+ 0.05 (mean + standard error) and an intercept

of —1.6 £0.2. The CV can be estimated from the intercept, CV = Ve 16 =0.45.

©
—
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|

Intercept: -1.56 , slope: 2.23

12

RA2: 0.88 Cageen e

log(sample variance)

log(sample mean)

Figure 4.3: Scatter plot of log(s?) versus log(y;) for every sub-rectangle j that has 5 or more
observations. The regression line log(s?) = 2.23log(7) — 1.6 is also included.

Calculating the sample variance of only 5 observations does not give a very precise estimate of
the variance. Therefore, the same analysis was done for statistical rectangles, see figure 4.4. Only
rectangles which contained 10 or more observations were included in this plot (n; > 10), a total
of J = 293 points. A weighted linear regression of the log variance on the log mean gave the
same slope as for the sub-rectangles, 2.23 & 0.05, but a different intercept, —1.1 £ 0.3 indicating
a slightly different CV, CV = Ve 11 = 0.58.

It should be noted here that the weighting does not make any difference in this regression since the
size of the groups does not vary much, 5-7 for sub-rectangles and 10-16 for statistical rectangles.
Figure A.1 shows the regression without the weighting.
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Figure 4.4: Scatter plot of log(s?) versus log(7;) for every statistical rectangle j that has 10 or
more observations. The regression line log(s?) = 2.23 log(y) — 1.1 is also included.

In both figures 4.3 and 4.4 the points are close to form a straight line and the regression has a
R? value of 0.88. The two-sided test statistic (4.3) for the hypothesis Hy : 82 = By = 2.00 is

Bo— B0  2.23—2.00

= = 4.60
5 0.05

Since the 0.975 percentile of N(0,1) is 1.96 this hypothesis is rejected on 5% significance level
and the conclusion is that the slope is significantly higher than 2.

In the following analysis it will nevertheless be assumed that the relationship of (4.1) is valid
for the data at hand and the gamma and log-normal distributions are proposed for describing
the data. This assumption will simplify the analysis. A variance function of V(1) = p??3 does
not define any known exponential distribution that could be used within the GLM framework.
On the other hand, it is possible to estimate the parameters of the GLM by constructing a
quasi-likelihood function with the variance function V() = p?2%. This can be considered an
avenue of future research. See McCullagh & Nelder (1989, chapter 9) for further discussion of
quasi-likelihoods.

4.2 The coefficient of variation

For a generalized linear model where the response variable Y; is gamma distributed it is assumed
that the coefficient of variation

var(Y;)

E(Y;)

is constant for all 7. An informal check of this assumption can be made with help of simulation.

CV; =
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Figure 4.5: a) Histogram of estimated CVs, s;/7;, for sub-rectangles that have 5 or more ob-
servations. The mean estimated CV is 0.85 and the standard error is 0.36. b) Histogram of
estimated CVs, s; /yj, for statistical rectangles that have 10 or more observations. The mean
estimated CV is 1.08 and the standard error is 0.42.

Histograms of estimated CVs show that the CVs vary a lot. Figure 4.5 shows estimated CVs,
5j/Y;, for sub-rectangles that have 5 or more observations (on the left) and for statistical rectan-
gles that have 10 or more observations (on the right). It is difficult to tell whether CV is constant
between sub-rectangles or statistical rectangles. In addition, the standard error is 40% of the
mean and the difference between the highest and the lowest value is tenfold. Note that even
though s? and 7 are central estimates of the variance and mean, the ratio s/7 is not necessarily
central estimator of the CV. The mean estimated CV obtained here, 0.85 and 1.08, are therefore
not in contrast with the estimated values of 0.45 and 0.58 obtained in section 4.1.

Simulation was used to investigate whether the CVs estimated from the data vary more than
could be expected of a gamma distributed variable. The idea is to simulate equally large groups
as in figure 4.5 of gamma distributed random variables with mean 1 but the same CV. Since
Sj/yj is a biased estimator of the CV, a gamma distribution with CV equal to 0.85 and 1.08 will
not produce comparable plots to those in figure 4.5. Therefore, the parameter r in the Gamma
distribution G(r,1/r) was tuned until the mean estimated CV was close to 0.85 and 1.08. Figure
4.6 shows estimated CVs for 250 groups containing 5 observations from G(1.05,1/1.05) which
can be compared to the CVs of sub-rectangle data plotted on the left of figure 4.5. Figure 4.7
shows estimated CVs for 300 groups containing 10 observations from G(0.70,1/0.70) which can
be compared to the right hand side of figure 4.5.

In the case of sub-rectangles, the observed CVs do not seem to vary more than can be expected
from a Gamma distributed variable. The simulations gave standard errors of 0.27-0.30 compared
to observed value of 0.36. The simulations gave a highest value of 1.90 and a lowest of 0.22
but the highest observed value of the CV is 2.09 and the lowest is 0.20, which is within the
bounds determined by the simulations. Furthermore, a Kolmogorov-Smirnov two sample test
did not reject the hypothesis that the estimated CVs from data and the estimated CVs from the
simulations come from the same probability distribution. The p-values of these tests are given
in table 4.1.

In the case of statistical rectangles, the observed CVs can on the other hand not be assumed to
be constant. The simulations gave standard errors 0.26-0.28 compared to observed value of 0.42.

The highest observed value of the CV is 2.62 and the lowest is 0.22 which is a wider range than
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Simulation no. 1 2 3 4
Sub-rectangles 0.1038 0.1686 0.2758 0.1080
Statistical rectangles | 0.0129 0.0001 0.0155 0.0076

Table 4.1: p-values for Kolmogorov-Smirnov two sample test, comparing the estimated CVs from
the data and estimated CVs from four simulations.

was found by the simulations, where the highest value is 2.25 and the lowest is 0.40. Furthermore,
a Kolmogorov-Smirnov two sample test rejected the hypothesis that the estimated CVs from data
and the estimated CVs from the simulations come from the same probability distribution. The
p-values of these tests are given in table 4.1. This indicates that sub-rectangles are better suited
as homogeneous areas than statistical rectangles.
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Figure 4.6: Histograms of estimated CVs, s;/y;, for 250 simulated groups of 5 G/(1.05,0.95)
distributed random variables. Each graph shows a different simulation.

4.3 The variance of log transformed data

For a generalized linear model where the log transformed response variable log(Y;) is normally
distributed it is commonly assumed that the variance is constant for all 4. A statistical test called
Bartlett’s test can be conducted in order to test this assumption.
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distributed random variables. Each graph shows a different simulation.

Under the assumption of normally distributed random variables the Bartlett’s test can be used

to test the hypothesis Hy : 07 = 03 = --- = 02. The test statistic is (Conradsen 1999, p. 482):
J
(N = J)log(sy) = Y (nj — Dlog(s7)  ~  x*(J =1«

Jj=1

where
1 & 1
2 T ol )2 2
o = g L lost) —Tosl)) = g Y

The index 7 = 1,2,...,J denote sub-rectangles or statistical rectangles. It should be noted here

that this test is very sensitive to the normality assumption (Montgomery 2001, p.82).

The hypothesis of equal variances is rejected on a 5% significance level in both cases but the
case of sub-rectangles is closer to acceptance. For sub-rectangles with 5 or more observations
the test statistic is 398.1 > X2(240)0-95 = 277.1 and for statistical rectangles the test statistic is
631.7 > x2(292)0.95 = 332.9.

If the Bartlett test is conducted for each year separately the hypothesis is rejected on o = 5%
significance level in 8 years of 17. The test statistics in the case of sub-rectangles are shown in
table 4.2.

As noted in chapter 2, the survey area is divided into main areas and sub areas (also called stra-
tum) based on biological and hydrographical considerations. These considerations can contain
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Year | Test stat. | df | x%(df — 1)o.95 Year | Test stat. | df | x%(df — 1)o.05

1985 17.44 15 23.68 OK || 1994 27.22 14 22.36

1986 20.17 15 23.68 OK || 1995 6.09 14 22.36 OK
1987 30.15 15 23.68 1996 34.31 14 22.36

1988 30.19 14 22.36 1997 27.24 14 22.36

1989 27.22 14 22.36 1998 16.27 11 18.31 OK
1990 23.21 15 23.68 OK || 1999 14.40 13 21.03 OK
1991 25.33 15 23.68 2000 13.13 14 22.36 OK
1992 9.42 15 23.68 OK || 2001 26.20 14 22.36

1993 13.93 15 23.68 OK

Table 4.2: Bartlett test statistics for equality of variance between sub-rectangles and 95% quantile
of the corresponding x? distribution for each year. The years where the hypothesis is accepted
are marked with ‘OK’.

Area Test stat. | df | x*(df — 1)o.05
Stratum 1 251.52 151 179.58
Stratum 2 40.55 26 37.65
Stratum 3 16.59 17 26.30 OK
Stratum 6 73.36 34 47.40
Northern area 386.10 228 263.15
Southern area 9.67 13 21.03 OK

Table 4.3: Bartlett test statistics for equality of variance between sub-rectangles and 95% quantile
of the corresponding x? distribution for different areas. The areas where the hypothesis is
accepted are marked with ‘OK’.

reasons for the unequal variances. The density patterns and behavior of cod can vary between
different survey areas. For example, young fish are known to be more abundant in the northern
area and older fish are more abundant in the southern area (Stefansson 1988). If the variances are
found to differ between in different areas this could be incorporated in the model by introducing
different weights for different areas, or simply by fitting separate models for each area. If the
Bartlett test is conducted separately for the two main areas the hypothesis is accepted for the
southern area which only contains one sub-rectangle. The test statistics are shown in table 4.3.
In light of this it would be interesting to do the Bartlett test for the smaller strata in the northern
area. The strata are shown on a map to the left of figure 4.8 and on the right the sub-rectangles
that contain more than 5 observations are shown. Strata number 4 and 5 did not contain any
sub-rectangles that contained more than 5 observations. Thus, the test was only conducted
for strata number 1,2,3 and 6 and the test statistics are shown in table 4.3. The hypothesis is
accepted in only one case, in stratum 3 where the data contain only one sub-rectangle.

Since the number of observations is almost the same in each sub-rectangle (174 sub-rectangles
have 5 observations, 50 have 6 obs. and 17 have 7 obs.), F-tests for significant factors in the
GLM model will only be slightly affected by the violation of the assumption of constant variances
(Montgomery 2001, p. 80). Furthermore, the Bartlett’s test is very sensitive to the normality
assumption which can effect the test results. For further discussion of the effects of inequality of
variance in regression analysis see Scheffé (1959, chapter 10).
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Figure 4.8: The survey area divided into main areas, northern and southern. The northern area
is divided into 6 strata. On the map to the right the sub-rectangles that contain more than 5
observations are shown.

4.4 Goodness of fit

In this section a goodness-of-fit test with help of a generalized linear model is used to distinguish
between the two proposed probability distributions, the gamma distribution and the log-normal
distribution.

Let Y; be a random variable that represents the number of cod caught in a tow, 7 =1,2,..., N.
It is assumed that either

Yi ~ G(r,pifr) or log(¥i) ~ N(a;,b?)

The mean, u; or a;, is assumed to be different between observations, depending on which sub-
rectangle and which year the observation ¢ comes from. The dispersion parameter on the other
hand, % or b?, is assumed to be constant between sub-rectangles and years (see the investigation
of these assumptions in sections 4.2 and 4.3). The effects of sub-rectangles and years are assumed
to be multiplicative on the original scale of number of cod and hence additive on the log scale.
This leads to the log link if Y; is gamma distributed and the identity link if log(Y;) is normally

distributed.

A linear model where the mean, p;, is dependent of which sub-rectangle and which year the
observation ¢ comes from can be written in parametric form as:

A J A T
log(ui) = Bo + Y a8y (i) + Y Bidj(0) + DY midy(i), i=1,..,N  (44)
y=1 j=1

y=1j=1

The parameter 3y is the intercept (the grand mean), A is the total number of years (A = 17), J
is the total number of sub-rectangles, IV is the total number of observations and

5, (i) 1 if observation ¢ comes from year y,
2 =
Y 0 otherwise.
. 1 if observation ¢ comes from sub-rectangle j,
(1) = :
0 otherwise.
(i) 1 if observation 7 comes from year y and sub-rectangle 7,
(D) =
¥ 0 otherwise.
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It is also useful to look at each year separately. Let Yy;, ¢ = 1,2,...,n,, represent the number
of cod caught in tow ¢ in year y and let j1,; denote the expected value of Y,;. For a fixed year y
the model becomes

J
log(pyi) = Po + Y Bi0;(i), i=1,...,m (4.5)
j=1
where n, denotes the number of observations in year y.

The models in (4.4) and (4.5) were fitted separately for each of the proposed distributions. In
order to get better estimates of the u’s, only data from sub-rectangles with 5 or more observations
where included. In what follows, the fitted values and the estimated dispersion parameters are
used to test the goodness-of-fit of the distributions.

If Y; ~ G(r,p;i/r) then
Y.
W;=—~G(r1/r), i=1,...,N
Hi
This fact can be used to test the goodness-of-fit of the gamma distribution on the data at hand.
Using the fitted values z; and the estimated dispersion parameter 1/7 obtained from model (4.4),
assuming gamma distributed errors, the hypothesis

—~ Y: SR .
Hy: Wy==~G([#1/7), i=1,...,N. (4.6)

Mg

can be tested with the Kolmogorov-Smirnov test.

If Z; = log(Y;) ~ N(a;,b?) then
Z; —a; ~ Normal(0,b?) and W; =e%~% ~ LN(0,b*) i=1,...,N

This fact can be used to test the goodness-of-fit of the log-normal distribution on the data at
hand. Using the fitted values a; and the estimated dispersion parameter b2 obtained from the
model (4.4), assuming normally distributed errors the hypothesis

Ho W, = e%~% ~ LN(0,02), i=1,...,N (4.7)

can be tested with the Kolmogorov-Smirnov test.

Both hypothesis (4.6) and (4.7) are rejected when data from all years are included in one model
(4.4) but the log-normal distribution is closer to acceptance. The Kolmogorov statistic for the
gamma distribution is D,, = 0.075 and D,, = 0.056 for the log-normal distribution but the 95%
quantile of the distribution of D, is 1.36/y/n = 1.36/+v/1289 = 0.038. Figure 4.9 shows the
cumulative distribution functions (CDFs) for the hypothesized distributions G(1.07,0.93) and
LN(0,1.05) along with the empirical CDFs of corresponding W;. On this graph the hypothesized
distribution seem to fit well to the data but due to large number of observations (1289) the
Kolmogorov-Smirnov test is rejected.

On the other hand both hypothesis (4.6) and (4.7) are accepted when data for each years are
considered separately and model (4.5) is used. The hypothesized and empirical CDFs each year
are shown in figures A.2 and A.3. In table 4.4 the p-values of the Kolmogorov test statistics are
listed for each year. The log-normal distribution gives a higher p-value in all years except 1985
and 1987. Therefore, the log-normal distribution is preferred over the gamma distribution in the
following analysis of this thesis.
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Figure 4.9: CDFs for the hypothesized distributions G(1.07,0.93) and LN (0, 1.05) (in red color)
along with the empirical CDFs of corresponding W; (in black color). Although these graphs
indicate a good fit the Kolmogorov test is rejected in both cases.

Year | gamma | log-normal || Year | gamma | log-normal
1985 | 0.3321 0.2869 1994 | 0.3267 0.3893
1986 | 0.1875 0.6959 1995 | 0.4359 0.7097
1987 | 0.3565 0.1982 1996 | 0.0938 0.2857
1988 | 0.5322 0.6667 1997 | 0.1725 0.4851
1989 | 0.3941 0.4948 1998 | 0.5321 0.8703
1990 | 0.4714 0.7693 1999 | 0.6767 0.9760
1991 | 0.3284 0.7975 2000 | 0.3034 0.6911
1992 | 0.3790 0.8302 2001 | 0.1214 0.4780
1993 | 0.3561 0.4042

Table 4.4: p-values of the Kolmogorov test statistics per year. Only sub-rectangles with 5 or
more observations are included. The log-normal distribution gives a better fit except in years
1985 and 1987.

4.5 Conclusions

Based on the goodness-of-fit tests performed in section 4.4 the log-normal distribution will be
used in the remaining analysis of this thesis. There are, however, some unsolved issues that
require further investigation.

First of all the variance of log(Y;) can not be assumed to be constant, as shown in section 4.3.
This will cause problems in drawing conclusions about the predicted values on the original scale:

~ _ a+ie  p_ Dlog(y), xiB)
N'Z & 2 9 N — J .

The predicted values fi; will be biased if b2 is a biased estimate of var(Y;). And if the variance
of Y; is not constant, b2 will be a biased estimate of var(Y;). However, as noted before, unequal
variances will only slightly effect the F-tests for significant factors in a GLM. Since finding such
factors is the main goal of this thesis this will not cause a serious problem here, but this bias has
to be considered if the log-normal distribution is used in a catch forecasting model. It could, for
example, be interesting to test the assumption of constant variances within the strata area with
test methods that are more robust to departures from normality. Fitting a model separately for
each area might prevent the problem of unequal variances from arising.
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Secondly, the relationship between the observed variances and means of Y; does not fully agree
with the assumed variance function var(Y;) = ¢E(Y;)%2. As shown in section 4.1, the power of
E(Y) is significantly higher than 2. Assuming a wrong variance function affects the calculation
of the deviance D(y, i) and hence will affect the F tests for significant factors in a GLM. The
question of how much this violation of the assumed variance function will affect the following
analysis will not be investigated in this thesis.

A useful byproduct of this chapter is that sub-rectangles are found to be better suited as homo-

geneous areas than statistical rectangles since, according to the analysis in section 4.2 the CV
can be assumed to be constant between sub-rectangles but not between statistical rectangles.
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Chapter 5

Linear models for cod catch data

In this chapter, linear models for the cod catch data are investigated. Since the log-normal dis-
tribution was selected in chapter 4, the log transform of the number of cod in tow is considered
here as the response (the dependent variable) and the errors are assumed to be normally dis-
tributed. The analysis of deviance therefore becomes just an analysis of variance, the deviance
simply becomes the sum of squared errors.

In section 5.1, the model that was used in the goodness-of-fit process (4.4) is considered. That
is a fully qualitative model using location (sub-rectangles) and time as main effects.

In section 5.2, several covariables available in the groundfish survey dataset are considered.
A model containing a selected set of these covariates i investigated. That model is mostly
quantitative with a single qualitative factor.

In section 5.3, locally weighted regression is used to estimate a temperature surface which is then
used to estimate the size of the temperature gradient in each data point. This quantity is then
considered as a new covariate in the model built in section 5.2.

5.1 A qualitative model

A generalized linear model (GLM) with sub-rectangles and years as qualitative factors is the most
straightforward model available for the groundfish survey data. As argued in chapter 4, tows
within one sub-rectangle in the same year can be assumed to have the same expected number of
cod. The sub-rectangle factor represents a spatial effect, the effect of the habitation conditions of
that area for the cod. These conditions are likely to be controlled by environmental effects such
as depth, temperature, amount of food available etc. In section 5.2, an attempt will be made
to substitute the sub-rectangle factor with several environmental variables that are recorded in
the survey. The year factor represents the inter-annual fluctuations in the cod stock size and
in catchability. An interaction between sub-rectangles and years represents the difference in
variation between sub-rectangles for different years. In other words, the habitation conditions
do not change in the same way between years in two different sub-rectangles.
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5.1.1 The model

The log number of cod in tow 4, log(u;) is assumed to depend on the sub-rectangle and year of
the ¢th tow:

J
: log(ui) ﬁ0+Zay ')—i—Zﬁj +ZZ’)@UW +e€, i=1,...,N (5.1)
j=1

y=1j=1

The parameter 3y is the intercept (the grand mean), A is the total number of years (A = 17), J
is the total number of sub-rectangles, IV is the total number of observations and

5 (i) 1 if observation ¢ comes from year vy,
2 =
Y 0 otherwise.
5:(0) 1 if observation ¢ comes from sub-rectangle j,
() —
! 0 otherwise.
(i) 1 if observation ¢ comes from year y and sub-rectangle 7,
(1
v 0 otherwise.

The errors ¢; are assumed to be normally distributed with mean 0 and constant variance. This
is the same model as (4.4).

5.1.2 Results

The model (5.1) was fitted to cod catch data from the Icelandic groundfish surveys. In this
analysis the dataset includes all sub-rectangles in a given year that have 3 or more observations.
The total number of observations here is N = 4802 and there are J = 94 different sub-rectangles.
The position of these sub-rectangles is shown in figure 5.1. Not all stations are visited every year
of the survey so the number of different combinations of sub-rectangles and years are 1294 but
not 94 - 17 = 1598.

The analysis of variance is shown in tables 5.1 and 5.2. In both tables, the terms are added
sequentially (first to last) but the main effects are in reverse order. Successive testing of the
models is done relative to Hy. This model accounts for 63.4% of the total variation using
1293/4801 = 26.9% of the total degrees of freedom.

Source of variation Df SS | % explained | SS/Df | F-Test | p-value
Sub-rectangles 93 | 3771.9 37.2 | 40.56 | 38.31 0

+ Years 16 284.6 2.8 | 17.79 16.80 0

+ Interaction 1184 | 2380.5 23.5 2.01 1.90 0
Total model 1293 | 6437.0 63.4

Residuals 3508 | 3713.8 1.059

Total | 4801 | 10150.7 |

Table 5.1: Analysis of variance table for the qualitative GLM of log transformed cod catch data.
The terms are added sequentially (first to last). 63.4% of the total variation is explained by this
model. Both the main effects of sub-rectangles and years are significant and so is the interaction
between them.
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Figure 5.1: The survey area divided into main areas, northern and southern. The northern area
is divided into 6 strata. The sub-rectangles that contain more than 3 observations are shown on
the map.

Source of variation Df SS | % explained | SS/Df | F-Test | p-value
Years 16 313.3 3.1 19.58 | 18.50 0

+ Sub-rectangles 93 | 3743.1 36.9 | 40.25 | 38.02 0

-+ Interaction 1184 | 2380.5 23.5 2.01 1.90 0
Total model 1293 | 6437.0 63.4

Residuals 3508 | 3713.8 1.059

Total | 4801 | 10150.7 |

Table 5.2: Analysis of variance table for the qualitative GLM of log transformed cod catch data.
The terms are added sequentially (first to last). The main effects are in reverse order from table
5.1.

Both the main effects of sub-rectangles and years are significant and so is the interaction between
them. Different order of main effects only slightly changes the sum of squares. This indicates
that these effects are nearly orthogonal, i.e. no parts of the spatial effects of sub-rectangles can
be explained with a time effect and vice versa. Most of the explained variation comes from the
sub-rectangle effect, which explains about 37% of the variation, while the year effect explains
only about 3%. The interaction between sub-rectangles and years explains a lot of variation, or
23.5%, but also uses the majority of the total degrees of freedom of the model.

Figures 5.2 - 5.4 plot the standardized residuals that can be used as an informal model control.
Figure 5.2 shows scatter plots of standardized residuals and absolute standardized residuals
versus the fitted values, which are satisfactory on the whole satisfactory. The residuals should
not show any structure and they should have mean zero and unit variance. The red lines show
the mean values and variances, calculated for groups of 50 residuals. The plot of standardized
residuals (upper right hand corner) shows no curvature in the mean. The variance, although not
entirely stable, is generally close to unity and furthermore there is no obvious structure in the
variances. On this plot, parallel lines can be detected. The data (number of cod) is discontinuous
so when response residuals, y — 1, are plotted against fitted values i, the contours of fixed y
will be parallel straight lines with a slope of —1 (McCullagh & Nelder 1989, p.399). These
lines are therefore perfectly normal, they simply denote observation where 1, 2, 3, etc. cod were
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caught, the standardization has only skewed them a little. On the plot of absolute standardized
residuals (lower right hand corner) there is no obvious curvature in the mean. This indicates
that the variance function is adequate for these modeling purposes. Furthermore, these plots do
not show a strong structure in range, except perhaps that for fitted values 0-1, where the range
is smaller than for other fitted values.

Standardized residuals
Standardized residuals

T T T T T
0 2 4 6 8
Fitted values

Absolute standardized residuals
Standardized absolute residuals

T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
Fitted values Fitted values

Figure 5.2: Scatter plots of standardized residuals (upper row) and absolute standardized resid-
uals (lower row) versus the fitted values. The residuals should be without structure, with mean
zero and unit variance. The red lines on the plot in the upper right hand corner show the mean
values and variances, calculated for groups of 50 residuals, and the line on the plot in the lower
right hand corner show the mean values, also calculated for groups of 50 residuals.

Observations, log number of cod
Residuals

T T T
4 -2 0 2 4
Fitted values Quantiles of Standard Normal

Figure 5.3: On the left: Scatter plot of observations versus fitted values along with the y = «
line. On the right: Normal probability plot of residuals.
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The plot to the left in figure 5.3 shows observations versus the corresponding fitted values. These
points should be scattered around the y = x line, which is also shown on the plot. The plot is
satisfactory although it reveals that the model fails to fit the lowest and the highest observed
values. The plot to the right in this same figure shows a normal probability plot of the residuals.
The residuals fail to be normally distributed. It seems like the tails, especially for low residual
values, are thicker than could be expected for a normally distributed variable.

Standardized residuals
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Figure 5.4: Standardized residuals (black points) of the qualitative GLM per sub-rectangle and
per year. The mean and variances for each level are shown with a red square and are connected
by a line for clarity.

Figure 5.4 shows the standardized residuals per sub-rectangle and years. As for figure 5.2 the
residuals should be without structure, with mean zero and unit variance. The mean and variances
are shown with a red square and are connected with a line. Actually, the residuals on these plots
will automatically have mean zero because the fitted values are simply the average catch in the
corresponding sub-rectangle and year'.

The variances vary a lot between sub-rectangles and can not be considered to be constant, which
is in analogy to the test result in section 4.3. However, there is no systematic structure in these
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differences or in the range of the residuals. This could simply be because the numeric order of
sub-rectangles has no physical meaning. In figure B.1 the sub-rectangles are grouped according
to strata. This does not reveal any obvious structure within strata but there seem to be different
variances between strata. The different variances within strata can possibly be due to different
conditions within sub-rectangles. There could, for example, be more rapid changes in depth or
temperature in some sub-rectangles than in others, which can result in more variable catches in
these sub-rectangles.

The variances are more stable between years, but they show an interesting trend. In years 1988
to 1991 the variance is higher than for the years before and after, there is no obvious change in
range however. Another change in variances occurs in years 1999 to 2001, the variance becomes
50% lower than before and the range of residuals seems to be smaller for these years.

5.1.3 Conclusions

The analysis of variance shown above confirms that this simple model containing only location
and time describes the cod catch data quite well. But the various residual plots also shown above
reveal some shortcomings of the model. The variance of the residuals can not be assumed to
be constant between sub-rectangles or strata, there is some unexplained trend in the variance
and the range of residuals between years and the residuals can not be assumed to be normally
distributed.

The departures from normality are of little concern because the analysis of variance is robust to
the normality assumption, i.e. the F-test are only slightly affected (Montgomery 2001, p.77).

The difference in the variances of the residuals is another matter. According to Montgomery
(2001, p.80) the F-test is only slightly affected in a balanced fixed effects model (equal number
of observations for each level). The years have nearly equal sample sizes so the trend observed
in the residual variances between years is not a serious problem for the analysis above. However,
in unbalanced designs or in cases where one variance is very much larger than the others the
problem is more serious. If factor levels having the larger variances also have smaller sample
sizes, the significance levels are higher than anticipated. Conversely, if factor levels with larger
variances also have the larger sample sizes, the significance levels are smaller than anticipated.
Both of these cases occurs for levels of sub-rectangles. Whether the significance levels of the
F-tests for the effect of sub-rectangles on the analysis above is seriously affected is hard to tell.

All things considered, it can be concluded that the majority of the variation in the cod catch
data can by explained be a spatial effect and a time trend. This spatial effect will be investigated
further in the next section.

5.2 A quantitative model

Although the model in 5.1 fits the data quite well and explains the majority of the variation in the
data it comes with a high cost. The high number of parameters makes the model very unpractical.
Furthermore, the main effects, sub-rectangles and years, do not provide other information than
that the expected cod catch depends on location and time. A more informative model is one
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that relates some environmental variables to the expected catch, variables that can on biological
grounds be expected to effect the behavior of cod for example. These environmental covariates
can be thought of as substitutes for the sub-rectangles effect as they explain why the fish is more
likely to be at one place rather than another.

5.2.1 Selecting covariates

The advantage of using the groundfish survey data collected by the MRI is that it contains
many recorded measurements for every tow, which can be tested within the GLM framework.
Even so, it can not be guaranteed that this dataset contains all the relevant factors. (It would
for example be interesting to investigate if there is a correspondence between the tides and the
expected catch.) But in this thesis, only the records in the groundfish survey database will be
considered.

Figures 5.5-5.9 and B.2-B.3 display box plots of the log number of cod in tow versus several
possible covariates. The shaded boxes show the middle 50% of the data (from the 25% to the
75% percentile) and the white small box shows the mean value. Dotted lines are drawn to the
extreme points but are not made longer than 1.5 times the height of the shaded box and data
outside that range are shown with a horizontal line. The width of the boxes is made proportional
to the square root of the number of observations for the box. These plots can be examined in
order to see how the mean value of log number of cod is affected by the covariate in question,
i.e. they help examine the mean structure of the cod catch data. Such plots can of course only
show one covariate at a time and are therefore not helpful when the combined effect of several
factors are examined. However, the plots can give a good hint of which covariates are likely to
explain the variability in the data and help suggesting the relationship between the response and
the covariate.

The environmental measurements that are most likely to being able to substitute the spatial effect
of sub-rectangles are depth and sea temperature as they directly effect the habitat conditions
for the fish in the sea. Other measurements that might also have such spatial effects and are
considered here are wind speed and direction, wave height, amount of clouds and a weather
factor. The position parameters, latitude and longitude, can then be used to represent what
remains of the spatial effect. The year effect is also considered here, but in order to reduce the
number of parameters of the model it is considered to be a quantitative covariate. Variables that
effect the efficiency of a single tow are trawl station data like the towing time, towing length and
the vessel used. These variables are supposed to be constant in the groundfish survey but need
to be considered all the same.

Depth and temperatures

The depth is measured in the groundfish survey in both the beginning and end of each tow. To
get one representative depth quantity for each tow, the mean value of those two is used in this
analysis. A box plot of log number of cod in tow versus depth is shown in the upper left hand
corner of figure 5.5. From this plot it can be concluded that big cod catches are more likely at
depth below 50 meters than in more shallow places, but when the depth is below 400 meters the
expected catch becomes low again. On the whole, the log number of cod seems to be related
to depth squared and a second degree polynomial in depth is therefore included in the model.
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The measurements of 500 meters and higher do not fit into this polynomial form but since there

are so few observations they can not be expected to reveal the true variation for these depth
quantities.

Figure 5.5 also shows box plots of the log number of cod versus the bottom temperature, surface
temperature and air temperature. The optimal bottom temperature for cod catching seems to
be between 0 and 4°C. The expected catch is lower for bottom temperatures over 4°C and under
0°C even though there are not many observations for bottom temperature under 0°C to confirm
this. On the whole, the log number of cod in tow seems to be related to the bottom temperature
squared and a second degree polynomial is therefore included in the model.
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Figure 5.5: Box plot of log number of cod in tow versus a) depth, b) bottom temperature, c)
surface temperature and d) air temperature. The temperatures (measured in °C) are rounded
down to the nearest integer and the depth measurements are divided into intervals of length 50
meters by the transform floor(depth/50). Number of missing records are a) 150, b) 797, ¢) 590
and d) 1141. a) The response seems to be dependent on the depth squared. b) The response
seems to be dependent of the bottom temperature squared. c) The response decreases with
increasing surface temperature. d) The response decreases with increasing air temperature.
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Figure 5.6: Box plot of log number of cod versus the a) years and b) increasing levels of wave
height. a) The relationship between the response and the years seems to fit a 4-degree polynomial.
b) Except for values of 7 and 9 the response seems to be dependent on the squared wave height
level.

The log number of cod in tow seems to fall with increasing surface temperature. Actually the
response is rather stable for the temperatures —1°C to 3°C, then falls between 3°C and 6°C,
and becomes stable again for surface temperatures over 6°C. It is not obvious how to capture
this trend so the surface temperature is included just as a single quantitative covariate in the
model. The log number of cod decreases with increasing air temperature except perhaps for
the few observations of —16°C to —13°C. The air temperature is therefore included as a single
quantitative covariate in the model.

It would be rational to assume that there is a positive correlation between these three temperature
variables, i.e. if the surface temperature is low then the air temperature would be expected to
be low also and vice versa. Therefore it is likely that whilst one temperature has been included
in the model the others will not have significant effects on the cod catch.

Wave height and other spatial variables

To the right of figure 5.6 is a box plot of the log number of cod versus wave height. The scale is
not linear and the levels 0 to 9 represent increasing wave height as follows:

Level o] 1+ | 2 | 3 | 4 | 5 |6]7] 8] 9
Wave height [m] | 0 | 0-0.1 [ 0.1-0.5 | 0.5-1.25 | 1.25-2.5 | 2.5-4 | 4-6 | 6-9 | 9-14 | Not rec.

If the values of 7 and 9 are excluded, the response seems to decrease with increasing wave
height. Because the mean value for level 1 is a little higher than for level 0, the response could
be dependent on the wave height squared and a second degree polynomial of the wave height
is therefore included in the model. Naturally, records with the value 9 are excluded from the
analysis since they represent missing records. Records the value 7 and higher are also excluded
for the following reason: The survey is not supposed to be continued in such bad weather.? Given

2The vessels are supposed to stop trawling when the wind force exceeds 8 on the Beaufort scale (see section

41



8
L
1
1
ST
i
8
L
m
([
|
il

101

el
Iy

6
I

=il

4
L

1]
.
log number of cod
4
L
I
.

log number of cod

HH i == N’l HI
I

2
I

r
L

4L o4 +4 - _ _ Lo _ _ 44 4 4 -

645 ' 651654 66 66.3 66.9 1011 12 13 14151617 18 19 20 21 22 23 24 25 2627

62.463 63.363.9

latitude [degrees] longitude [degrees]

Figure 5.7: Box plot of log number of cod in tow versus a) latitude (from south to north) and b)
longitude (from east to west). a) The latitudes are divided into intervals of length 0.3 degrees
by the transform floor(latitude/3000). The relationship between the response and the latitude
seems to fit a 4 degree polynomial. b) The longitudes are divided into intervals of length 1
degree by the transform floor(longitude/10000). The relationship between the response and the
longitude seems to fit a 2 or 4 degree polynomial.

that the weather is that bad, the expedition directors are more likely to continue fishing if they
are getting big catches. That makes a bias in the dataset as there are only big catches recorded
in such bad weather.

The spatial variables wind speed, wind direction, weather factor, cloud factor and barometric
pressure are shown on figures B.2, B.3 and B.4. Figure B.4 also shows the time at the beginning
of tows. These covariates are not included in the model but some explanations and considerations
can be found in Appendix B.2.

Latitude, longitude and years

For each tow in the survey, the latitude and longitude is recorded for the position of both the
beginning and the end of each tow. The record is a 6 digit number. The first two digits represents
the degree, the two in the middle represent the minutes (0-59) and the last two a hundreds part
of a minute. The minutes where transformed to the interval of [0,99] to get a continuous 6
digit number for position. To get one representative two-dimensional position variable, the mean
values of both the latitude and longitude are used.

Box plots of the log number of cod in tow versus latitude and longitude are shown on figure
5.7. The general trend on the latitude plot is that cod is more likely to be caught in the
northern survey areas (high values of latitude) than in the southern survey area. But this trend
is not smooth enough to be described with a straight line, a 4 degree polynomial would be more
appropriate. The trend is not as obvious on the longitude plot, but cod seem to be equally likely
to be caught in the eastern survey areas (low latitude values) as in western areas. An interesting
peek occurs around 18 degrees (ca. the middle of the survey area). I should be noted here that
at longitude 18 degrees there are considerably more stations located in the northern area than in

2.1) and according to the survey handbook (Einarsson et al. 2002) the expected wave height in such weather is
over 5.5 meters.
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Figure 5.8: Box plot of log number of cod in tow versus a) towing time rounded down to the
next whole multiple of 10 minutes and b) towing length in nautical miles rounded down to the
nearest half integer. a) The response seems to be related to the towing time squared. b) The
response seems to be related to the towing length squared.
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Figure 5.9: Box plot of log number of cod in tow versus the vessels. There seems to be a
significant difference between the vessels.

the southern area. This peek is therefore just consistent with the latitude trend. On the whole,
the relationship between the log number of cod and longitude can be described with a 2 or 4
degree polynomial.

A box plot of the log number of cod in tow versus the years is shown on the left side of figure
5.6. A 4 degree polynomial seems to fit the inter annual fluctuations for these years. It should
be noted here that such a polynomial is not suitable for prediction of future years because it will
simply predict a decreasing (or increasing) stock for all eternity. Since there was a significant
interaction between sub-rectangles and years in the model in section 5.1 such an interaction can
not be ignored in this model. Therefore, a 4 degree mixed polynomial in latitude, longitude
and years is included in the model instead of one in the years and another one in latitude and
longitude.
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Trawl station data

Box plots of log number of cod versus towing time and towing length are presented in figure 5.8.
The log number of cod seems to be related to the squared towing time. An exception of this
is low towing times, but since the towing time should in fact be constant, the low towing times
are probably mistakes in recording. Therefore towing times under 20 min are not included in
this analysis. The log number of cod also appears to be related to the squared towing length.
Second degree polynomials of both towing time and towing length (separate) are included in the
model. In advance it would be expected that these two covariates are positively correlated and
thus that once one has been included in the model, the other would not be found significant, it
affects the the cod catch in the same way as the first covariate.

A box plot of the log number of cod in tow versus the vessels is shown on figure 5.9. The effects
of a vessel on the log number of cod in tow seem to be significantly different. It is not obvious,
though, whether this is due to different efforts of the vessels or simply different locations that
each vessel was sent to in the survey. Nevertheless, a qualitative factor representing the different
vessels is included in the model.

5.2.2 The model

In accordance to the considerations about possible covariates in the previous section, the following
model will be investigated:

Hy : log(Y;) = B+ poly(Depth;,2) + poly(Bottom temp;, 2) + Surface temp; +  (5.2)
Air temp; + poly(Wave height,;, 2) + poly(lat;,lon;, Year;,4) +
poly(Towing time;, 2) + poly(Towing length,, 2) + factor(Vessel) + ¢;

where log(Y;) denotes the log number of cod in tow i, [y is an intercept and ¢; is assumed to
be normally distributed with mean 0 and constant variance. The notation ‘poly(z1,...,zp,n)’
denotes an orthonormal polynomial of degree n (the degree of combined terms does not exceed
n) in the variables z1,...,2y. There are mainly computational reasons for using orthonormal
polynomials instead of ordinary polynomials (like z+x2 - - -4+2") as it ensures that the model ma-
trix will have full rank. The notation ‘factor(Vessel)’ denotes that the vessel effect is qualitative.
This term could be written

1 if tow 7 is performed by vessel v,

0 otherwise.

\4
Zﬁvév(i), where (5,0(2) = {
v=1

in analogy with the notation of the model (5.1).

5.2.3 Results

The model (5.2) was fitted to cod catch data from the Icelandic groundfish surveys. In this
analysis, all data where any of the covariates have missing records are naturally excluded. The
total number of observations here is 7066 and their locations in the survey area are shown in
figure 5.10.
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Figure 5.10: A map of the survey area showing the 500 meters contour line, main areas, sub
areas and statistical rectangles. The points denote the (middle) locations of stations for all 7066
observations used in the quantitative model analysis.

The results of analysis of variance (ANOVA) is shown in table 5.3. The terms are added sequen-
tially (first to last) and successive testing is done relative to Hy. Tables B.1 and B.2 show the
same kind of ANOVASs but the terms are added in a different order. All covariates are significant
although their contribution to variance explanation is quite different. The complete model Hy
explains 45.2% of the total variation.

Table 5.4 contains information on models that include only one of the terms in the original
model. The fourth column (% explained) shows the percentage of the total variation that each
term explains when it is the only (or first) term in the model, and the fifth column shows the
residual sum of squares (RSS) of each model. The sixth column shows the Mallows’ C), statistic.
This is defined as

Cp, =RSS + 20°p

where p is the total degrees of freedom used by the model and o2 is the dispersion parameter,
estimated from the original Hy model. This C), statistic is helpful for comparing different models.
One criterion for a good model is a low residual sum of squares, i.e. a high proportion of the
total variation explained, and another is a low number of parameters. Models with low C), are
therefore desirable.

Table 5.5 shows the change in the residual sum of squares (RSS) if one term is removed from the
model, along with Mallows’ C), statistic. Tables B.3 to B.5 show t-tests for the hypothesis that
one parameter of the model is zero.

A model containing only the 4-degree polynomial in latitude, longitude and year explains 41.1%
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of the total variation (table 5.4). Such a model is comparable to the qualitative model (5.1) in
the sense that both models include only spatial and time effects and interaction thereof. The
polynomial model does not reduce the variation as much as the qualitative model but considering
the number of degrees of freedom (34 versus 1293) it performs very well. Most of the t-tests
for the parameters of the latitude, longitude and year polynomial (see table B.5) are rejected
on 5% significance level. Since only a few of the tests for 4 degree terms are accepted on a 5%
significance level, there are no grounds for reducing the degree of this polynomial.

The spatial terms, depth, the three temperature variables and wave height, do indeed explain a
part of the spatial effects in the data but not all. These terms explain 27.3% of the variation
(see table 5.3) and when the polynomial in latitude, longitude and year is added it reduces the
variation by 16.8%. Altogether, these terms explain 44.1% of the variation, slightly more than
the latitude, longitude and year polynomial alone so these terms explain something that the big
polynomial can not (the extra 3%). But there is obviously room for improvement here, that is, to
find more covariates that can explain what is left of the spatial effect of the 4 degree polynomial.
One attempt to do this is made in section 5.3.

The temperature terms contribute by far the most of the spatial terms to variance reduction but
the effects of these three terms are highly correlated. The bottom, surface and air temperatures
explain 20.6%, 18.0% and 4.9% of the total variation when fitted separately (see table 5.4).
When put together in one model the total variance reduction is only 23.14% (see table B.1)
which means that the temperature effects are, not surprisingly, positively correlated. It does not
make much difference whether the air or surface temperature comes first (table B.1 versus B.2),
the remaining effect of surface temperature after the bottom temperature has been accounted
for is a good 2% and under 0.5% for air temperature. The hypothesis that the parameter for
air temperature are zero (see table B.4) can not be rejected and in table 5.5 this term is the
only term that reduces the C), (though it is almost not measurable). Due to this and the fact
that air temperature contributes very little to the reduction of variance it can be excluded from
the model. The surface temperature on the other hand with the good 2% of the total variation
can not be disregarded. Even though the majority of the effect of surface temperature can be
explained by the bottom temperature there is still some part left. This might be interpreted
this way: In places where the bottom temperatures are equal, the variation in cod catch can
partly be explained by surface temperature, perhaps because pelagic species like capelin which
cod feeds on pursue certain surface temperatures.

The depth and wave height terms also make significant contribution to the variance reduction.
The depth term explains 5.1% of the total variance when it comes as the first term (table 5.3).
This decreases to 3.4% when the depth effect is tested after the temperature effects (see table
B.2). That means that some of the depth effect can be explained by difference in temperature.
Surprisingly, the sum of squares for the depth term actually increases when the depth effects
is tested after the wave height effect (See table B.2). This means that there is some kind of
negative correlation between the effects of these two terms, i.e. the latter term corrects some of
the errors not captured by the former term. The t-tests in table B.4 show that the second order
term in the wave height polynomial in not needed.

The vessel effect turns out to be mostly explained by the locational terms, i.e. these effects are
mostly due to the fact that the vessels are sent to different survey areas. The vessel effect explains
a lot of the total variation when fitted alone (21.0, see table 5.4). But when this effect becomes
last in the model (table 5.3) this decreases to only 0.7% and it does not matter whether this
effect comes before or after towing time and length (table B.1). This means that almost all the
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Source of Variation Df SS | % explained | SS/Df | F-test | p-value
poly(Depth, 2) 2 893.9 5.1 | 447.0 | 324.0 | 0.00000
+ poly(Bottom temp., 2) 2| 3471.1 19.7 | 1735.6 | 1258.0 | 0.00000
+ Surface temperature 1 290.9 1.6 | 290.9 | 210.9 | 0.00000
+ Air temperature 1 18.0 0.1 18.0 13.1 | 0.00030
+ poly(Wave height, 2) 2 137.5 0.8 68.7 49.8 | 0.00000
+ poly(Latitude,

Longitude, Year, 4) 34| 2961.8 16.8 87.1 63.1 | 0.00000
+ poly(Towing time, 2) 2 52.4 0.3 26.2 19.0 | 0.00000
+ poly(Towing length, 2) 2 15.5 0.1 7.7 5.6 | 0.00369
+ factor(Vessel) 12 131.3 0.7 10.9 7.9 | 0.00000
Total model 58 | 7972.4 45.2

Residuals 7007 | 9666.7 54.8 | 1.380

Total | 7065 | 17639.2 |

Table 5.3: Analysis of variance table for the quantitative GLM of log transformed cod catch
data. The terms are added sequentially (first to last) and they are all significant. 45.2% of the
total variation is explained by this model.

Term | Df SS | % explained | RSS Cp

<none> 17639 | 17642

poly(Depth, 2) | 2| 893.9 5.1 | 16745 | 16752

poly(Bottom temperature, 2) | 2 | 3640.7 20.6 | 13999 | 14006
Surface temperature 1| 3178.1 18.0 | 14461 | 14466

Air temperature | 1 | 862.3 4.9 | 16777 | 16782

poly(Wave height, 2) | 2| 327.2 1.9 | 17312 | 17319
poly(Latitude, Longitude, Year, 4) | 34 | 7252.4 41.1 | 10387 | 10469
poly(Towing time, 2) | 2 | 2184 1.2 | 17421 | 17428
poly(Towing length, 2) 2| 2183 1.2 | 17421 | 17428
factor(Vessel) | 12 | 3698.9 21.0 | 13940 | 13971

Table 5.4: Results for fitting a GLM of log transformed cod catch data with only one term at a
time.

difference in vessel effects seen on figure 5.9 is due to the fact that different vessels are sent to
different survey areas, an effect that has already been explained by former terms in the model.
This term is on the other hand found to be significant, t-tests for the vessel parameters being
zero are all rejected on 5% significance level (except one, see table B.3) and dropping the term
increases the C), (table 5.5) so this term will not be omitted from the model.

The towing time and length contribute very little to the variance reduction (see tables 5.3 and
5.4), which is consistent with the fact that the towing speed is standardized in the survey. There
is, not surprisingly, a strong positive correlation between the effects of these two terms. It does
not matter whether towing time or length comes first (table B.1 versus B.2) the second term
almost disappears and is close to being non-significant. In other words, towing time and towing
length have the same effects on the expected number of cod in tow. Dropping one of them
has almost no effect on the C), statistic so one of these terms can be excluded from the model.
Furthermore, t-tests for the parameters of these terms being zero are accepted on 5% significance
level for both the towing time parameters but not the towing length parameters. It is therefore
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Term | Df SS RSS Cp

<none> 9667 | 9805

poly(Depth, 2) 247.7 | 9914 | 10048

poly(Bottom temperature, 2) 172.6 | 9839 | 9973
Surface temperature 12.0 | 9679 | 9815

Air temperature 2.5 | 9669 | 9805

poly(Wave height, 2) 14.2 | 9681 | 9815
poly(Latitude, Longitude, Year, 4) | 34 | 2183.3 | 11850 | 11909
poly(Towing time, 2) | 2 12.7 | 9679 | 9813
poly(Towing length, 2) | 2 12.7 | 9679 | 9813
factor(Vessel) | 12 | 131.3 | 9798 | 9908

N — = NN

Table 5.5: Effect on the residual sum of squares (RSS) and Mallows’ statistics (C}) of dropping
one term out of the quantitative GLM. Air temperature is the only term that does not increase
Cp.

suggested here that the towing time term is omitted.

5.2.4 Model adequacy checking

Figures 5.11 to 5.13 plot the standardized residuals that can be used as an informal model control.
Figure 5.11 plots the standardized residuals and the absolute standardized residuals versus the
fitted values. The residuals should be without structure, with mean zero and unit variance. The
red lines show the mean values and variances, calculated for groups of 100 residuals. There is
not a systematic structure in the range of the residuals on these two plots except that the range
seems to be smaller for high fitted values (5.5-6.5) than others.

On the plot of standardized residuals (upper right corner of figure 5.11) there is not a serious
curvature in the mean except that it is quite high for the lowest fitted values (0 to 1.5). The
parallel lines that can be detected on this plot are perfectly natural, as described in section 5.1.2.
The variances of the residuals is not entirely stable and furthermore, they are generally greater
than unity.

On the plot of absolute standardized residuals (lower right hand corner of figure 5.11) the mean
values seem to decrease with increasing fitted values, although the trend is not very strong. The
variances of standardized residuals (upper right corner) also display a negative trend. This is
surprising, since it might indicate that the variance function increases too rapidly with the mean,
which contradicts the results of section 4.1.

Figure 5.13 shows the standardized residuals per otolith strata and years. As for figure 5.11 the
residuals should be without structure, with mean zero and unit variance. The mean and variances
are shown with a red square and are connected with a line. There is almost no curvature in the
means in neither of the plots. The variances, however, are generally higher than unity and
different between strata. This trend could possibly be eliminated by weighting observations in
the model according to the variation in cod catch within each strata. The residual variances also
differ between years.
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Figure 5.11: Scatter plots of standardized residuals (upper row) and absolute standardized resid-
uals (lower row) versus the fitted values. The residuals should be without structure, with mean
zero and unit variance. The red lines on the plot in the upper right hand corner show the mean
values and variances, calculated for groups of 100 residuals, and the line on the plot in the lower
right hand corner show the mean values, also calculated for groups of 100 residuals.
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Figure 5.12: On the left: Scatter plot of observations versus fitted values along with the y = z
line. On the right: Normal probability plot of residuals.
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Figure 5.13: Standardized residuals (black points) of the quantitative GLM per otolith strata and
per year. The mean and variances for each level are shown with a red square and are connected
by a line for clarity.

The plot to the right in figure 5.12 shows a normal probability plot of the residuals. This plot
indicates that the residuals fail to be normally distributed.

The plot to the left of figure 5.12 presents the observations versus the corresponding fitted values.
These points should be scattered around the y = x line. It is clear from this plot that the model
fails to fit the low observations, e.g. fitted values corresponding to tows containing only one cod
(the lowest parallel line) range from about 0 to 5 on log scale. Furthermore, fitted values of
about 4 occur for the whole range of observed values. This indicates that there is a considerable
amount of variation in the data that is yet unexplained. The ill behaving variances in the other
plots can of course simply be revealing this fact.

A simple version of cross validation can be used in order to investigate the performance of model
(5.2) in predicting new data. The dataset is divided into two subsets and the model (5.2) fitted
to both of them separately. The model parameters obtained by fitting dataset 1 are then used
to predict the expected log number of cod by using dataset 2 as the new data and vice versa.

In order to get two subsets that both represent the variability of data, tows in a sub-rectangle in
one year were divided randomly into two equally large groups. The results of analysis of variance
for these two datasets are presented in tables 5.6 and 5.7. It turns out that the terms explain
the same percentage of variation in these datasets as they did for the whole dataset (see table
5.3) and the total model explains the same percentage of variation (44.5% and 46.5% compared
to 45.2%).

Let 7i*! denote predicted values of the model fitted by data set k, predicting dataset [. It is
interesting to examine how much of the variation in dataset 2 is explained by the fitted values
7i'? and compare it to the R? value of the model fitted by dataset 2. The explanation percentage
can be defined as:

~12)\2
Ziedataset Q(yi — My )

1—
Ziedataset Z(yi - y)2

where 7 is the grand mean of dataset 2. Table 5.8 shows this ratio along with the R? values for
both datasets. The results are that the explanation percentages are very close to the R? values
in both cases. It can therefore be concluded that prediction within the scope of the model is
stable.
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Source of Variation Df SS | % explained | SS/Df | F-test | p-value
poly(Depth, 2) 2| 433.0 4.9 | 216.5 | 154.6 | 0.00000
+ poly(Bottom temp., 2) 2| 1736.7 19.8 | 868.3 | 619.9 | 0.00000
+ Surface temperature 1| 119.0 14| 119.0 85.0 | 0.00000
+ Air temperature 1 34 0.0 34 24| 0.11815
+ poly(Wave height, 2) 2 89.1 1.0 44.5 31.8 | 0.00000
+ poly(Latitude,

Longitude, Year, 4) 34 | 14204 16.2 41.8 29.8 | 0.00000
+ poly(Towing time, 2) 2 27.8 0.3 13.9 9.9 | 0.00005
+ poly(Towing length, 2) 2 1.2 0.0 0.6 0.4 | 0.64800
+ factor(Vessel) 12 62.5 0.7 5.2 3.7 | 0.00001
Total model 58 | 3893.0 44.5

Residuals 3473 | 4865.1 55.5 | 1.401

Total | 3531 | 8758.1 |

Table 5.6: Analysis of variance table for dataset 1. 44.5% of the total variation is explained by
this model.

Source of Variation Df SS | % explained | SS/Df | F-test | p-value
poly(Depth, 2) 2| 460.9 5.2 | 230.5 | 168.6 | 0.00000
+ poly(Bottom temp., 2) 2 | 1734.0 19.5 | 867.0 | 634.1 | 0.00000
+ Surface temperature 1| 175.0 2.0 | 175.0 | 128.0 | 0.00000
+ Air temperature 1 17.3 0.2 17.3 12.7 | 0.00038
+ poly(Wave height, 2) 2 50.7 0.6 25.3 18.5 | 0.00000
+ poly(Latitude,

Longitude, Year, 4) 34 | 1560.9 17.6 45.9 33.6 | 0.00000
+ poly(Towing time, 2) 2 27.1 0.3 13.6 9.9 | 0.00005
+ poly(Towing length, 2) 2 21.8 0.2 10.9 8.0 | 0.00035
+ factor(Vessel) 12 80.0 0.9 6.7 4.9 | 0.00000
Total model 58 | 4127.7 46.5

Residuals 3475 | 4750.9 53.5 | 1.367

Total | 3533 | 8878.6 |

Table 5.7: Analysis of variance table for dataset 2. 46.5% of the total variation is explained by
this model.

Explanation % for dataset 1

Explanation % for dataset 2

Model fitted on dataset 1

44.5

45.3

Model fitted on dataset 2

43.3

46.5

Table 5.8: R? (the diagonal) compared to the percentage of variation explained by the model
fitted on the other dataset.

ol



5.2.5 Conclusions

The quantitative model (5.2) has revealed how a number of environmental variables effect the
expected cod catch. The bottom temperature polynomial explains 20% of the total variation
in the cod catch data and is the most important environmental factor. Depth and surface
temperature are also important.

The majority of the total variation is, however, still unexplained. The groundfish survey data
does not offer more covariates but other data, like weather and ocean current data could possibly
be linked to the cod catch data. In the next section, a new covariate is introduced, a temperature
gradient estimated from temperature records in the groundfish survey data.

The assumption of constant variance is not fulfilled by this model and the variances of the
standardized residuals turned out to be higher than unity in general. The reason for these
departures from model assumptions can of course be many and “assumptions like this can be
violated in many more ways than they can be satisfied” (Scheffé 1959, p.331). These differences
in residual variances can for example simply be revealing the fact that the majority of the data
is still unexplained.

As noted before (section 5.1.3), the F-tests are are robust to the assumption of constant variances.
The results concerning the environmental effects can therefore be considered valid.

A simple cross validation check indicates that the model gives a stable prediction within the
scope of the model.

5.3 Estimated temperature gradient

It has been suggested that the food for cod, such as capelin, may aggregate in frontal regions
where cold sea meets with warmer sea, i.e. where there is sudden change in temperature (Vil-
hjalmsson 1994). Therefore, it could be expected that cod would pursue such temperature fronts.
The results in section 5.2 seem to support this suggestion, at least to some extent, since the bot-
tom temperature explains a large portion of the total variance.

In light of this, it would be interesting to estimate the size of the gradient of bottom temperature

at each data point and examine if that quantity becomes a significant term in the model of section
5.2. This is done in the following pages with a locally weighted regression.

5.3.1 An additive model for temperature

Here, the procedure used to obtain the estimates of the gradient vector will be described. The
main idea is to use the measured bottom temperature to estimate a surface over the whole survey
area so that temperature estimates on a fine grid can be used to estimate the gradient vector.
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Figure 5.14: a) Histogram of bottom temperature only for tows where no cod was caught. This
distribution is consistent with the trend observed in figure 5.5. b) Box plot of the bottom
temperature versus the years. Tows where no cod was caught are also included.

The data

The data used is all the groundfish survey data from 1985 to 2001 where the bottom temperature
was measured. Here tows with zero number of cod are also included, simply to obtain more
temperature measurements. The total number of observations for this analysis are 8705, 512 per
year on average (see table 5.9). The histogram in figure 5.14 shows how the tows with no cod
are distributed over temperature. This plot confirms the trend observed in figure 5.5 that cod is
more likely to be caught where the temperature is 0 — 4°C (the tows with no cod are unlikely)
than where the temperature is lower or higher (the tows with no cod become more likely).

A box plot of the bottom temperature versus the years is shown in figure 5.14. It is obvious from
this plot that the temperature varies greatly between years and this effect can not be ignored.
But instead of including a year effect into the analysis, a separate temperature surface will be
estimate for each year of the survey.

A grid containing all the survey area was constructed by distributing 101 points equally over the
latitude range and 101 points over the longitude range. That makes a total of 10201 points on
the grid. This grid used is shown on figure 5.15 along with the data points from the year 1995.

The additive model

In order to obtain a bottom temperature surface over the survey area, an additive model with
one, two-dimensional, term was used:

t; = g(lat;,lon;) + €; (5.3)

The t; represents the bottom temperature and ¢; is assumed to be Normally distributed with
mean 0 and constant variance. The function ¢ of latitude and longitude is a second degree loess
smoother. That is, g(lat;,lon;) is the fitted value at ¢; of the weighted regression

t; = Bilat; + Bolon; + Bglat% + ﬂ4lon% + Bslat; - lon; + €;

with weights as defined in (3.9). The scope parameter was set f = 0.2.
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Figure 5.15: The grid (dots) and stations where bottom temperature was recorded in 1995
(circles).

Results for the additive model

Model (5.3) was fitted on 17 datasets, each containing the recorded bottom temperatures, lati-
tudes and longitudes of that year along with the grid points, which were given the temperature
value of 0°C. A point in these datasets (¢;,lat;,lon;) was given a weight of 1 if was a record
from the survey data but a weight of 107! if it was a grid point. The effect of these weights is
that they are simply multiplied to the built-in weights of the loess smoother. The grid points
therefore have negligible effect on the fitted values, except at points that are far from the survey
data, where the fitted temperatures are not needed anyway. On the other hand, the survey data
are dominant for the fitted values at the grid points and hence the fitted values at the grid points
provide a smooth surface of the temperature over the survey area for every year.

In table 5.9, the approximate degrees of freedom used by the loess model are given and the
ratio between the residual deviance of the model (5.3) and the total deviance for each year.
This percentage shows how much of the total temperature variance the model explains, and
gives an idea of how well the smoothed surface represents the data. It appears that the model
does not explain much of the variation, only 16% on average. These numbers suggest that a
considerably better model could be made to fit the temperature data. The scope parameter
could for example be altered or another type of smoother could be used. This model will,
however, not be investigated further in this thesis.

Figures B.5 to B.7 show contour plots of the smoothed temperature surface of model (5.3) for
every year of the survey. The plots all show the same general temperature trend. The bottom
temperature is higher (mostly > 3°C) in the south and east of Iceland than in the north and
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Year 1985 1986 1987 1988 1989 1990 1991 1992 1993
Total obs. 434 485 426 426 500 041 232 044 268
Approx. df | 23.50 24.10 24.04 2298 2293 23.95 24.02 23.93 23.80
% explained | 38.88 24.48 20.18 17.25 835 15.76 19.21 11.95 11.60
Year 1994 1995 1996 1997 1998 1999 2000 2001 Total
Total obs. 291 291 237 470 499 215 015 531 8705
Approx. df | 24.33 23.65 23.29 2348 22.83 23.54 23.29 23.23

% explained | 14.69 12.03 1559 890 9.17 11.66 12.68 18.19

Table 5.9: For each year, this table shows the number of station where the bottom temperature
was measured, the approximate degrees of freedom used by the loess model and the proportion
of total variation explained by the loess model.

west of the the country (mostly < 3°C).

The gradient

Once the estimated temperature ¢ = g(lat;,lon;) has been obtained on the grid points for each
year of the survey, the gradient vector can estimated. The definition of the gradient vector of a
two dimensional function f(z,y) is:

Vf(z,y) = <lim flothy) —fay)  floy+k) —f(a:,y))

h—0 h ’ k—0 k

In analogy to this definition the squared length of the gradient vector at (lat;,lon;) can be
estimated by the difference between adjacent points in the grid:

||6\g(latz~, lon;)|| = \/(ﬁ(latiﬂ, lon;) — g(lat;,lon;))? + (g(lati, lon; 1y — g(lat;, lon;))?

Ideally the g(lat;y1,lon;) — g(lat;,lon;) should be divided with the distance between lat;;1 and
lat; but since this distance is the same for all latitudes this will only have a scalar effect on the
size of the gradient and can therefore be omitted.

Finally, a tow in the survey data is assigned the gradient length value of the grid point that is
nearest to the position of the tow. This gradient value is then considered as a new covariate in
the quantitative GLM model (5.3).

A gradient vector has the property that the maximum rate of increase and decrease in any
direction from a point (a,b) is ||V f(a,b)||. If the suggestion is correct, the expected number of
cod would be high when ||€g(lat,lon)|| is high and low when ||€g(lat,lon)|| is near 0. Figure
5.16 shows a box plot of the log number of cod versus the estimated length of the gradient vector.
There is a weak positive trend on this plot for gradient lengths 0 to 0.3 but the log number of
cod decreases for longer gradient vectors. To be on the safe side, a third degree polynomial in
the gradient length is included in the quantitative model.
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Figure 5.16: Box plot of the log number of cod versus the estimated length of the temperature
gradient vector.

5.3.2 The improved quantitative model

This model is the same as model (5.2) except that the surface temperature and towing time
terms are omitted and a third degree polynomial in gradient length is included after the other
two temperature terms, i.e.

Hy : log(Y;) = B+ poly(Bottom temp,,2) 4+ Surface temp, + (5.4)
poly(Gradient;, 3) + poly(Depth;, 2) + poly(Wave hight,,2) +
poly(lat;,lon;, Year;,4) + poly(Towing length;, 2) + factor(Vessel) + ¢;

log(Y;) denotes the log number of cod in tow i, 3y is an intercept and ¢; is assumed to be normally
distributed with mean 0 and constant variance.

5.3.3 Results

The model (5.4) was fitted to the cod catch data from the Icelandic groundfish surveys along
with the estimated gradient values. The resulting analysis of variance (ANOVA) is shown in
table 5.10. Table 5.11 shows information on model that only includes the gradient polynomial,
table 5.12 shows the change in the residual sum of squares if one term is removed from the model
along with Mallows’ statistic and table 5.13 shows t-tests for removing the parameters belonging
to the gradient polynomial from the model.

The new covariate is found to be significant although its contribution to variance reduction is
small. As the first term in a model, the gradient term explains 1.0% of the total variation
(table 5.11). When added to a model containing only a bottom temperature term (table 5.10)
this percentage is nearly the same, 0.9%. Removing the gradient term does not reduce the
C) statistic (see table 5.12) and the t-test shown in table 5.13 reject the hypothesis that the
parameters are zero on a 5% significance level.
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Source of Variation Df SS | % explained | SS/Df | F-test | p-value
poly(Bottom temp., 2) 2| 3640.7 20.6 | 1820.3 | 1325.2 | 0.00000
+ Surface temperature 1 410.9 2.3 | 410.9 | 299.1 | 0.00000
+ poly(Gradient, 3) 3 153.5 0.9 51.2 37.3 | 0.00000
+ poly(Depth, 2) 2 608.9 3.5 304.4 | 221.6 | 0.00000
+ poly(Wave height, 2) 2 126.2 0.7 63.1 45.9 | 0.00000
+ poly(Latitude,

Longitude, Year, 4) 34 | 2886.6 16.4 84.9 61.8 | 0.00000
+ poly(Towing length, 2) 2 56.0 0.3 28.0 20.4 | 0.00000
+ factor(Vessel) 12 131.5 0.7 11.0 8.0 | 0.00000
Total model 58 | 8014.1 45.4

Residuals 7007 | 9625.0 54.6 | 1.374

Total | 7065 | 17639.2

Table 5.10: Analysis of variance table for the quantitative GLM of log transformed cod catch
data where a polynomial in gradient length has been included. The terms are added sequentially
(first to last) and they are all significant. 45.3% of the total variation is explained by this model.

Term | Df SS | % explained | RSS Cp
<none> 17639 | 17642
poly(Gradient, 3) 31177.0 1.0 | 17462 | 17472

Table 5.11: Results for fitting a GLM containing only a gradient length polynomial to the log

transformed cod catch data.

Term | Df SS RSS Cp

<none> 9625 | 9763

poly(Bottom temp., 2) | 2 | 172.1 | 9797 | 9931

+ Surface temperature | 1 19.2 | 9644 | 9780

+ poly(Gradient, 3) | 3 57.1 | 9682 | 9813

poly(Depth, 2) | 2| 251.5| 9877 | 10010

+ poly(Wave height, 2) | 2 11.2 | 9636 | 9770

+ poly(Latitude, Longitude, Year, 4) | 34 | 2157.5 | 11783 | 11841
+ poly(Towing length, 2) | 2 52.0 | 9677 | 9811

+ factor(Vessel) | 12 | 131.5 | 9756 | 9867

Table 5.12: Effect on the residual sum of squares (RSS) and Mallows’ statistics (C),) of dropping

one term out of the model

Value | Std. Error | t value | Pr(>[t])
poly(Gradient, 3)1 | 8.4535 1.7930 | 4.7147 | 0.0000
poly(Gradient, 3)2 | -3.3220 1.4061 | -2.3625 0.0182
poly(Gradient, 3)3 | -4.4651 1.2434 | -3.5910 | 0.0003

Table 5.13: T-test for the hypothesis that the model parameters belonging to the gradient

polynomial are zero.
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Figures B.9 and B.8 show plots of residuals analogous to those in figures 5.11 and 5.12. These
plots show exactly the same patterns so the discussion made in section 5.2.3 is also relevant here.

5.3.4 Conclusions

The effects of the polynomial in the estimated gradient length does not live up to expectations
as it explains about 1% of the total variation in the cod catch data. There are of course several
possible reasons for this.

The loess model used to estimate the bottom temperature surface does explains a very small
portion of the total variation in the temperature data. The surface is therefore too smooth and
does not capture local changes in temperature but only a global trend over the whole survey
area.

Another problem with this analysis is that the survey data are collected over a 2-3 weeks period

by 5 different vessels. This means that records spatially close need not be close in time, although
that is most often the case.
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Chapter 6

Discussion and conclusions

In this final chapter an overview is given of the conclusions made in this thesis and possible
directions of future work are discussed.

6.1 The probability distributions

Two probability distributions were proposed for describing the data, the gamma distribution
and the log-normal distribution. In chapter 4 several issues concerning these distributions were
investigated and a goodness of fit test was conducted in order to distinguish between them.

The variance function

The gamma distribution and the log-normal distribution have the same variance function, i.e. the
variance is proportional to the mean squared. In section 4.1 this relationship was investigated by
examining a plot of log(s?) versus log(y). The sample variance, s?, and the sample mean, 7, were
calculated for small groups of data. The small groups were on the one hand those sub-rectangles
where 5 or more tows are performed and on the other hand those statistical rectangles are 10 or
more tows were performed. These plots showed a sample of points that were scattered around
a straight line. A weighted linear regression of the log sample variance on the log sample mean
gave a slope of 2.23, suggesting a power relationship for the variance function with index close
to 2.

The s? gives biased estimates of the variance for both a gamma distributed variable and a log-
normal distributed variable. It would therefore be interesting to examine the accuracy of the
investigation described above by simulation. Small groups of gamma and log-normally distributed
variables could be simulated and a plot of log(s?) versus log(7) calculated from these simulations
could be examined. Furthermore a regression could be made for these simulated samples. The
group sizes would be a factor in such analysis, small sample sizes will give a more variable results.

Another approach to future research would be to assume the variance function V(1) = 223 for
the data and estimate the model parameters by constructing a quasi-likelihood function. Other

29



variance functions are of course also possible. For example, V(u) = p + p?/k, which is the
variance function for the negative binomial distribution.

Constant coefficient of variation

A GLM with gamma distributed errors usually assumes a constant coefficient of variation (CV).
This assumption was investigated in section 4.2. The distribution of estimated CVs, s?/y, cal-
culated from the cod catch was compared to the distribution of s/ for simulated gamma dis-
tributed variables. As before, the sample variance, s?, and the sample mean, 7, were calculated
for small groups of data, the same groups as above. A two sample Kolmogorov-Smirnov test
for the hypothesis that the s?/y calculated from data and s?/7 calculated from simulated data
follow the same distribution was accepted for sub-rectangles but not for statistical rectangles.
This indicates that sub-rectangles are more homogeneous areas than statistical rectangles.

Constant variation of log transformed data

A GLM with normally distributed errors usually assumes a constant variance. This assumption
for log transformed data was investigated in section 4.3 by means of Bartlett’s test. These tests
were made firstly for all the data, secondly within each survey year and thirdly within survey
areas but most of the tests were rejected. It should of course be kept in mind that the Bartlett’s
test is very sensitive to the normality assumption.

Goodness of fit

In section 4.4 the two proposed distribution were compared via a goodness of fit test. In order
to estimate the mean values and the shape parameter a GLM with sub-rectangles and years as
factors was fitted to the cod catch data. One model where the errors were assumed to be gamma
distributed and a logarithmic link was used. Another model for log transformed data where
the errors were assumed to be normally distributed. In addition, separate models for each year
including only one factor, the sub-rectangles, were also fitted.

The fitted values from these models where used to scal/e\the observations. Then the hypothesis
that the scaled data follow the G(7,1/7) or the LN(0,0?) were tested. The shape parameters r
and o were estimated by the GLM. Both hypothesis were rejected when data from all years were
included in one model, but the log-normal distribution was closer to acceptance. On the other
hand both hypothesis were accepted when data for each year were considered separately. The
log-normal distribution gave higher p-values in most years. Therefore the log-normal distribution
was preferred over the gamma distribution in the following analysis of the thesis.

6.2 The models

In section 5.1 a fully qualitative model with only spatial and time effects was investigated. Since
the expected cod catch is believed to be constant at a given place and time this is the most
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straightforward model available. This model explained 63% of the total variation but used far
too many parameters.

A quantitative model was investigated in section 5.2. The environmental data collected in the
groundfish surveys were examined by means of box plots. Other data, like position (latitude
and longitude) and trawl station data were examined in the same way. Based on these plots
polynomials were proposed to describe the relationship between each variable and the cod catch.
These polynomials were included in a quantitative model and tested for significance.

A second degree polynomial in bottom temperature explained 20% of the total variation in the
cod catch data and was the most important environmental factor. Depth and surface temper-
ature were also found important. On the whole, the quantitative model explained 42% of the
total variation. The majority of the variation in cod catch is, therefore, still unexplained. The
groundfish survey data does not offer more covariates but other data like weather and ocean
current data could possibly be linked to the cod catch data. A search for other variables to
explain what remains of the variation in cod catch could be an avenue of future research. One
step down that avenue was taken in section 5.3.

In section 5.3 the size of the gradient vector of bottom temperature at each data point was
estimated. Locally weighted regression (loess) was used to obtain estimated temperatures on a
fine grid and the gradient norm estimated from these grid points. A third degree polynomial
was suggested for the relationship with the cod catch and that polynomial was included in the
quantitative model. The effect of this polynomial did, however, not live up to expectations since
it explained less than 1% of the total variation in the cod catch data. There are of course several
possible reasons for this.

The loess model used to estimate the bottom temperature surface explained a very low portion
of the total variation in the temperature data, only a 16% on average. The surface was therefore
probably too smooth to capture local changes in temperature. Furthermore, the data collected
in the survey could be too sparse to give an exact surface estimate. Since the capelin is a
pelagic species and it is known that cod preys on capelin, it might have been more appropriate
to use surface temperature in this analysis.! Furthermore, satellite pictures of ocean surface
temperature could be used in this purpose. That would at least give a more accurate estimate
of the temperature fronts.

Model adequacy

Various plots of residuals from both of the models revealed some shortcomings of these models,
which were more serious for the quantitative model. The most obvious one was that the residual
variances could not be assumed to be constant. The models fail to predict the smallest and the
largest observations and furthermore, some of the fitted values occurred for the whole range of
observed values. The ill behaving variances can of course simply be revealing this fact.

A simple cross validation check indicated that the model gives a stable prediction within the
scope of the model.

'A quick examination revealed however that surface temperature gradients do not explain more of the variation
than the bottom temperature gradients.
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6.3 Other considerations

An alternative to GLM

In this thesis, possible covariates were examined by means of box plots. Based on these plots
polynomials of different degrees were suggested for the relationship with the response. The
disadvantage of this method is however that it is difficult to guess the most appropriate degree
of such polynomials. This is especially the case for combined effects, i.e. when the polynomial
contains more than one variable. Another disadvantage is that the estimated surface of such a
polynomial regression becomes very limited since the fit of one data point depends on all the
independent data.

Generalized additive models (GAMs) provide a method where less restrictive function of covari-
ates can be used for modeling data. In this method no rigid parametric assumption are made
about the dependence of the response to the covariates. The loess smoother used in this thesis
is one example of these models. GAMs are therefore an important area of future research of the
groundfish survey data.

Catch forecasts

Some adjustments has to be made before the analysis in this thesis can be utilized in catch
forecasting model for the commercial fleet. The data used in such a model would be the trawler
reports described in chapter 1. They include the estimated catch in weight per species for every
action of the Icelandic fleet for several years.

First of all, the data investigated here is the number of cod by tow. Analysis of the trawler
reports would be in weights. The total weight per species is not recorded in the surveys but
a sample of the catch is weighted and age determined for every station. The age-distribution
obtained for the otolith strata can therefore be used to estimate the total catch in weight per
station.

The actions recorded in the trawler reports are of course not standardized like those made in
the survey. Several trawl station data would therefore be necessary in a forecasting model using
these data. For example the gear used, towing time and length the actual vessel used and so
forth. Furthermore, a more detailed time factor is necessary, a month or perhaps a week factor
would have to be included.

The environmental variables that in this thesis were found to explain an important part of the
variation in cod catch, could be included in a forecasting model based on trawler reports. The
depth and position is recorded in the trawler reports but not ocean temperatures. If historical
temperature data exists that can be used. Surface temperature can be used if the bottom
temperature is not known since this factor can explain 18% of the total variation. Surface
temperature can for example be obtained by satellite pictures.
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Appendix A

Additional figures for chapter 4

Figure A.1 displays an unweighted regression for the analysis of the variance function in section
4.1.
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Intercept: -1.05 , slope: 2.22
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Figure A.1: Scatter plot of log(sg) versus log(y;) for a) every sub-rectangle j that has 5 or more
observations and b) every statistical rectangle j that has 10 or more observations. a) A classic
regression (without weights) gave a slope of 2.23 £ 0.05 and an intercept of —1.6 + 0.2 and the
regression line is shown on the graph. b) A classic regression (without weights) gave a slope of
2.22 £ 0.05 and an intercept of —1.0 0.3 and the regression line is shown on the graph.

Figures A.2 and A.3 on the following two pages show hypothesized cumulative distribution
functions (CDFs) in red color and empirical CDFs for the goodness-of-fit tests in section 4.4 in
black color.
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Figure A.2: CDFs for the hypothesized gamma distributions (in red color) along with the em-
pirical CDFs of W; estimated with parameters from a GLM assuming gamma distributed errors
(in black color). All the hypothesized distributions are accepted but the log-normal distribution
gives a better fit (see figure A.3).
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Figure A.3: CDFs for the hypothesized log-normal distributions (in red color) along with the
empirical CDFs of W; estimated with parameters from a GLM with log transformed data assum-
ing normally distributed errors (in black color). All the hypothesized distributions are accepted
and give a better fit than the gamma distribution (see figure A.2).
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Appendix B

Additional figures and tables for
chapter 5

B.1 Residuals per survey area (section 5.1.2)

Figure B.1 shows the standardized residuals of the qualitative model (5.1) per sub-rectangle
divided by survey areas (strata). The plot on the right hand side in the lowest row shows the
standardized residuals per stratum. As for figure 5.2 the residuals should be without structure,
with mean zero and unit variance. The mean and variances for each sub-rectangle are shown
with a red square and are connected by a line for clarity.

There is no systematic change in range or variances but the variances are not stable. Some
sub-rectangles have very large variances but few observations, e.g. sub-rectangle 7184 in stratum
3 and sub-rectangle 3191 in the southern area. There are also sub-rectangles that have large
variances and many observations, e.g. 5701 and 6712 in stratum 2 and 6121 in stratum 4. One
possible explanation for this is that there can be different conditions within a sub-rectangle, for
example changes in depth and temperature. The variances are more stable between strata but
are still different.
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Figure B.1: Standardized residuals (black points) of the qualitative GLM per sub-rectangle
divided by otolith strata. The mean and variances for each sub-rectangle are shown by a red
square and are connected with a line for clarity. The plot in the last row to the right shows the
residuals for all sub-rectangles within each strata.
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B.2 Variables not included in the quantitative model (section
5.2.1)

Figure B.2 displays box plots of the log number of cod in tow versus the wind speed and the wind
direction. A problem with these records is that according to the survey handbook (Einarsson
et al. 2002), the possible values for wind speed are 0 to 12, measured in Beaufort scale, but a
lot of higher values are actually recorded. This may be due to a switch from measuring wind
speed in the Beaufort scale to measuring it in meters per second. If that is the case, there is
no way of knowing whether a wind speed of, for example, 6 means 6 on Beaufort scale or 6m/s.
A similar situation occurs for the wind direction records. Most of the boxes which are thinner
than the others represent numbers that are not defined by the handbook (Einarsson et al. 2002).
Possibly they represent directions that are in between the two on either side. Since there seems
to be some chaos in the recording of both the wind speed and direction and that there is no
obvious relationship with the cod catch on the plots, these two variables are not included in the
quantitative model.
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Figure B.2: Box plot of log number of cod in tow versus a) wind speed and b) direction of wind.
a) There is uncertainty about on which scale the wind speed is measured (Beaufort scale or m/s).
b) The levels 0 and 99 represent calm weather and changeable directions, 2 to 36 represents wind
directions from NNE to N . Some recorded numbers (mostly the thin boxes) are not defined in
the handbook.

Figure B.3 shows box plots of the log number of cod in tow versus a weather factor and cloud
levels. The weather factor tells if it’s raining, snowing etc., and clouds levels represents the
proportion of sky covered in clouds. There is no striking relationship apparent on these figures
and since there is no reason to believe in advance that these factors could have significant effect
of the number of cod in a tow, they are not included in the model.

Figure B.4 shows box plots of log number of cod in tow versus barometric pressure and the
time, in hours, when the tow began. Even though a quadratic relationship can be spotted for
the barometric pressure, this variable is not included in the model because there were too many
records missing. There is no obvious diurnal trend and this variables is not included in the
model.
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Figure B.4: Box plot of log number of cod in tow versus a) barometric pressure and b) the hour
when the tow began. There are 3169 missing record of barometric pressure.

B.3 Additional tables for results of the quantitative model (Sec-

tion 5.2.3)

The following tables B.1 and B.2 show ANOVAs for the quantitative GLM where the terms are
in different order than in table 5.3. Tables B.3 and B.4 show t-tests for removing one parameter

from the model.
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Source of Variation Df SS | % explained | SS/Df | F-test | p-value
poly(Bottom temp., 2) 2| 3640.7 20.6 | 1820.3 | 1319.5 | 0.00000
+ Surface temperature 1 410.9 2.3 | 4109 | 297.8 | 0.00000
+ Air temperature 1 29.7 0.2 29.7 21.5 | 0.00000
+ poly(Depth, 2) 2 592.8 34| 296.4 | 214.8 | 0.00000
+ poly(Wave height, 2) 2 137.5 0.8 68.7 49.8 | 0.00000
+ poly(Latitude,

Longitude, Year, 4) 34 | 2961.8 16.8 87.1 63.1 | 0.00000
+ factor(Vessel) 12 136.1 0.8 11.3 8.2 | 0.00000
+ poly(Towing time, 2) 2 50.3 0.3 25.2 18.2 | 0.00000
+ poly(Towing length, 2) 2 12.7 0.1 6.3 4.6 | 0.01000
Total model 58 | 7972.4 45.2

Residuals 7007 | 9666.7 54.8 | 1.380

Total | 7065 | 17639.2 |

Table B.1: Analysis of variance table for the quantitative GLM of log transformed cod catch
data. The terms are added sequentially (first to last) but in a different order from table 5.3.
Depth comes after the temperatures and the vessel effects comes before towing time and length.

Source of Variation Df SS | % explained | SS/Df | F-test | p-value
poly(Bottom temp., 2) 2 | 3640.7 20.6 | 1820.3 | 1319.5 | 0.00000
+ Air temperature 1 79.2 0.4 79.2 57.4 | 0.00000
+ Surface temperature 1 361.3 2.0 | 361.3 | 261.9 | 0.00000
+ poly(Wave height, 2) 2 103.2 0.6 51.6 37.4 | 0.00000
+ poly(Depth, 2) 2| 627.0 3.6 | 313.5 | 227.3 | 0.00000
+ poly(Latitude,

Longitude, Year, 4) 34 | 2961.8 16.8 87.1 63.1 | 0.00000
+ factor(Vessel) 12 136.1 0.8 11.3 8.2 | 0.00000
+ poly(Towing length, 2) 2 50.3 03| 252| 182 0.00000
+ poly(Towing time, 2) 2 12.7 0.1 6.4 4.6 | 0.01005
Total model o8 | T7972.4 45.2

Residuals 7007 | 9666.7 54.8 1.380

Total | 7065 | 17639.2 |

Table B.2: Analysis of variance table for the quantitative GLM of log transformed cod catch
data. The terms are added sequentially (first to last). The order differs from table B.1 in that
the air and surface temperatures have switched places, wave height is now before the depth and
the towing time and length have been switched.
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Coefficient | Value | Std. Error | t value | Pr(>[t])
factor(Vessel)1273 | 1.1536 0.2790 | 4.1345 0.0000
factor(Vessel)1274 | 1.1838 0.2681 | 4.4155 | 0.0000
factor(Vessel)1275 | 1.2459 0.2905 | 4.2883 0.0000
factor(Vessel)1276 | -0.4652 0.3545 | -1.3122 | 0.1895
factor(Vessel)1277 | 1.5880 0.2888 | 5.4984 | 0.0000
factor(Vessel)1278 | 1.2455 0.2765 | 4.5051 | 0.0000
factor(Vessel)1279 | 1.1586 0.2743 | 4.2235 0.0000
factor(Vessel)1280 | 1.0027 0.2712 | 3.6977 | 0.0002
factor(Vessel)1281 | 0.8733 0.2652 | 3.2932 0.0010
factor(Vessel)1307 | 1.1140 0.2828 | 3.9390 0.0001
factor(Vessel)1325 | 1.1235 0.2951 | 3.8074 | 0.0001
factor(Vessel)1459 | 1.4287 0.3442 | 4.1513 0.0000

Table B.3: T-tests for the hypothesis that vessel parameters in the quantitative GLM are zero.
The effect of a vessel is relative to the effect of vessel 1131 which is included in the intercept.
These parameters are all found to be significant on the 5% significance level, except for vessel
1276. It makes no sense, however, to exclude the effect on one vessel only.

Coefficient Value | Std. Error | t value | Pr(>|t])

(Intercept) 2.8671 0.2672 | 10.7302 0.0000

poly(Depth, 2)L | 0.5679 17601 | 0.3210 | 0.7482

poly(Depth, 2)2 | -19.9251 1.4894 | -13.3778 | 0.0000

poly(Bottom temperature, 2)1 7.7329 2.7915 2.7702 0.0056
poly(Bottom temperature, 2)2 | -16.1365 1.6004 | -10.0828 0.0000
Surface temperature | -0.0458 0.0155 | -2.9551 0.0031

Air temperature | -0.0059 0.0044 | -1.3440 0.1790

poly(Wave height, 2)1 | -4.1341 1.3438 | -3.0765 0.0021
poly(Wave height, 2)2 0.7525 1.4939 0.5037 | 0.6145
poly(Towing time, 2)1 | 0.6450 3.7699 | 0.1711 | 0.8642
poly(Towing time, 2)2 4.8670 2.8844 1.6873 0.0916
poly(Towing length, 2)1 6.3089 2.7645 2.2821 0.0225
poly(Towing length, 2)2 | -3.5838 1.3477 | -2.6592 0.0079

Table B.4: T-tests for the hypothesis that parameters in the quantitative GLM are zero. Based
on these tests the air temperature term, the towing time term and the second order wave height
term can be omitted from the model. It should be noted, however, that these tests are not valid
simultaneously for all parameters.
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Coefficient Value | Std. Error | t value | Pr(>]t])
poly(Lat, Lon, Year, 4)1.0.0 60.6716 3.0839 | 19.6735 0.0000
poly(Lat, Lon, Year, 4)2.0.0 -12.0800 2.0503 | -5.8920 0.0000
poly(Lat, Lon, Year, 4)3.0.0 -10.7460 1.8129 | -5.9275 0.0000
poly(Lat, Lon, Year, 4)4.0.0 2.8393 15972 | 17777 | 0.0755
poly(Lat, Lon, Year, 4)0.1.0 -24.0321 2.9641 | -8.1078 0.0000
poly(Lat, Lon, Year, 4)0.2.0 |  -12.2279 2.2544 | -5.4240 |  0.0000
poly(Lat, Lon, Year, 4)0.3.0 -19.9232 1.8937 | -10.5206 0.0000
poly(Lat, Lon, Year, 4)0.4.0 -9.4316 1.9616 | -4.8081 0.0000
poly(Lat, Lon, Year, 4)0.0.1 -11.8645 1.9203 | -6.1786 0.0000
poly(Lat, Lon, Year, 4)0.0.2 8.5198 1.8822 | 4.5265 | 0.0000
poly(Lat, Lon, Year, 4)0.0.3 -8.4709 1.6912 | -5.0089 0.0000
poly(Lat, Lon, Year, 4)0.0.4 -9.4647 1.4174 | -6.6776 0.0000
poly(Lat, Lon, Year, 4)0.1.1 528.2320 169.9462 3.1082 0.0019
poly(Lat, Lon, Year, 4)0.2.1 |  358.2318 | 157.1354 | 2.2798 | 0.0227
poly(Lat, Lon, Year, 4)0.3.1 336.1328 150.5563 2.2326 0.0256
poly(Lat, Lon, Year, 4)0.1.2 | -1429.4737 160.6377 | -8.8987 | 0.0000
poly(Lat, Lon, Year, 4)0.2.2 |  484.5911 |  144.3935 | 3.3560 | 0.0008
poly(Lat, Lon, Year, 4)0.1.3 |  201.1883 | 148.6102 | 1.3538 | 0.1758
poly(Lat, Lon, Year, 4)1.1.0 -784.0654 224.5959 | -3.4910 0.0005
poly(Lat, Lon, Year, 4)2.1.0 257.6674 172.0477 1.4977 0.1343
poly(Lat, Lon, Year, 4)3.1.0 | -1540.8319 149.9445 | -10.2760 0.0000
poly(Lat, Lon, Year, 4)1.2.0 |  -547.4902 | 202.8398 | -2.6991 | 0.0070
poly(Lat, Lon, Year, 4)2.2.0 -56.5769 208.4136 | -0.2715 0.7860
poly(Lat, Lon, Year, 4)1.3.0 285.8522 155.9633 1.8328 0.0669
poly(Lat, Lon, Year, 4)1.0.1 -650.3923 182.1696 | -3.5703 0.0004
poly(Lat, Lon, Year, 4)2.0.1 |  411.2486 |  142.5950 | 2.8840 | 0.0039
poly(Lat, Lon, Year, 4)3.0.1 249.0225 132.6895 1.8767 |  0.0606
poly(Lat, Lon, Year, 4)1.0.2 | 1244.5853 |  147.6033 | 8.4320 | 0.0000
poly(Lat, Lon, Year, 4)2.0.2 |  -41.6809 | 120.5669 | -0.3217 | 0.7477
poly(Lat, Lon, Year, 4)1.0.3 |  -670.4026 | 134.9444 | -4.9680 | 0.0000
poly(Lat, Lon, Year, 4)1.1.1 | 23049.7946 | 16283.8343 | 1.4155 | 0.1570
poly(Lat, Lon, Year, 4)2.1.1 | -27700.9674 | 15575.9505 | -1.7784 0.0754
poly(Lat, Lon, Year, 4)1.2.1 | -10521.3914 | 15815.4562 | -0.6653 | 0.5059
poly(Lat, Lon, Year, 4)1.1.2 | -37833.5335 | 14067.3085 | -2.6895 0.0072

Table B.5: T-tests for the hypothesis that parameters for the 4 degree polynomial in latitude,
longitude and year in the quantitative GLM are zero. Most of the parameters are significantly
different from zero on the 5% significance level. Some of the tests for 4 degree terms are accepted
on the 5% significance level but there are no grounds for reducing the degree of this polynomial.
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B.4 Contour plots of bottom temperatures (section 5.3.1)

Figures B.5 to B.7 show contour plots of the fitted bottom temperature surfaces obtained by a
loess smoother. The plots all show the same general trend, the bottom temperature is higher
(mostly > 3°C) in the south and east of Iceland than in the north and west of the the country
(mostly < 3°C).
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Figure B.5: Contour plots for years 1985 - 1990 of the smoothed temperature surface inside the
500m depth line. Darker colors represent higher temperatures than brighter colors.
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Figure B.6: Contour plots for years 1991 - 1998 of the smoothed temperature surface inside the
500m depth line. Darker colors represent higher temperatures than brighter colors.
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Figure B.7: Contour plots for years 1999 - 2001 of the smoothed temperature surface inside the
500m depth line. Darker colors represent higher temperatures than brighter colors.

B.5 Residual plots for the model containing a gradient term (sec-
tion 5.3.3)

Figures B.8 and B.9 show plots of the standardized residuals that can be used for an informal
model control. These plots show exactly the same patterns as figures 5.11 and 5.12.

Observations, log number of cod
Residuals

T T T T T
-4 -2 0 2 4
Fitted values Quantiles of Standard Normal

Figure B.8: To the left: Scatter plot of observations versus fitted values along with the y = «
line. To the right: Normal probability plot of residuals.
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Figure B.9: Scatter plots of standardized residuals (upper row) and absolute standardized resid-
uals (lower row) versus the fitted values. The residuals should be structureless, with mean zero
and unit variance. The red lines on the plot in the upper right hand corner show the mean values
and variances, calculated for groups of 100 residuals, and the line on the plot in the lower right
hand corner show the mean values, also calculated for groups of 100 residuals.
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