
BORMICON
Programmer�s manual

Draft

Halld�r Nar� Stef�nsson

Hersir Sigurgeirsson

H�skuldur Bj�rnsson

November �� ����

Contents

� Concurrency� �
��� Left to do �

� Streams� ��
��� CommentStream ��

� Fundamental classes� ��
��� TimeClass ��
��� AreaClass ��

� Base classes� ��
��� LivesOnAreas ��
��� HasName ��
��� BaseClass ��
��� Descendants ��

� Error messages and optimization� ��
��� StrStack ��
��� Keeper �	
��� Formula �

��� Formulavector ��
��� Formulaindexvector �	
��
 ErrorHandler ��
��� StochasticData ��

	 Data repositories� ��

�� vector�T ��

�� doublevector ��

�� doubleindexvector ��

�� bandmatrix �	

�� bandmatrixvector ��

�
 Agebandmatrix �

�� Agebandmatrixvector �
	

�� BinarySearchTree �
�

�

� CONTENTS

� Lengths and conversion� 	�
��� LengthGroupDivision �
�
��� ConversionIndex ��

 Predator � prey� ��
��� Overview ��
��� Suitability �	
��� Predator ��
��� PopPredator ��
��� StockPredator ��
��
 LengthPredator ��
��� TotalPredator �

��� LinearPredator ��
��� Prey �		
���	 LengthPrey �	�
���� StockPrey �	

���� Notes on Predator� �	�
���� Eating functions � details �	�

� Catch� ���
��� CatchData ���
��� Catch ���

�� Stock and supplamentary� ���
�	�� Transition ���
�	�� NaturalM ���
�	�� InitialCond ��	
�	�� Migration ���
�	�� Grower ��

�	�
 GrowthImplementparameters ���
�	�� GrowthCalc ���
�	�� Maturity ���
�	�� MaturityA ���
�	��	MaturityB ���
�	���Spawner ���
�	���Renewaldata ���
�	���Stock ��

�� Supplamentary classes� ���
���� ActionAtTimes ���

�� Standard aggregation and printing� ���
���� Overview ���
���� Printer ���

CONTENTS �

���� StockStdPrinter ���
���� PredPreyStdPrinter ���
���� PredPreyStdLengthPrinter �
	
���
 PredPreyStdAgePrinter �
�
���� StockFullPrinter �
�
���� AbstrPreyStdInfoByLength �
�
���� PreyStdInfoByLength �
�
����	StockPreyStdInfoByLength �

�����PredStdInfoByLength �
�
�����AbstrPreyStdInfo �
�
�����PreyStdInfo ���
�����StockPreyStdInfo ���
�����AbstrPredStdInfo ���
����
PredStdInfo ��

�����StockPredStdInfo ���
�����Details of computations� ���

�� Nonstandard aggregation and printing� �
�
���� Overview ���
���� StockPrinter ���
���� PredatorPrinter ���
���� PredatorOverPrinter ���
���� PreyOverPrinter ���
���
 StockPreyFullPrinter ���
���� StockAggregator ��

���� PredatorAggregator ���
���� PredatorOverAggregator ���
����	PreyOverAggregator ���

�� Statistics� ���
���� LinearRegression ���
���� LogLinearRegression ���
���� PopStatistics �		

�� Likelihood� ���
���� Overview �	�
���� Likelihood �	�
���� SurveyIndices �	

���� SIOnStep �	�
���� SIByLengthOnStep ���
���
 SIByAgeOnStep ���

 CONTENTS

Chapter �

Concurrency�

��� Left to do

Almost all of the classes are designed so as to allow for a simulation to make use of
a multiprocessor machine� using an appropriate library� The classes that handle the
simulation should be able to handle simultaneously the simulation of the areas on a
given time step� And the classes that handle the writing to �le should be able to write
to �le all at the same time�

There are several levels at which a class can support this parallelism� or multi�
threading� Note that the �rst level is a standard level in the classi�cation of multi�
threading safety� but the others are not�

� A class can be fully MT�safe �MT � multi�threading�� I�e� once it has been created�
all its member functions may safely be called in di�erent threads of control�

� A class can be minimally MT�safe� i�e� created and used in only one thread�

� A class can be not MT�safe at all� i�e� the thread creating and using the class must
be the only running thread while the class exists�

All the classes should be considered minimally MT�safe unless explicitly documented
otherwise�

In order to classify the classes and their member functions� the member functions
have been marked�

�

� CHAPTER �� CONCURRENCY�

S The member functions marked this way may be invoked in a running
thread� but they must be the only �S for Single� member function of
that instance of the class that is being called at the time� These member
functions may require synchronization with other member functions� i�e�
the other member functions may return di�erent values after the one
marked S has been invoked�

C The C stands for Care� I�e� care must be taken when using the member
function� The member function is a bit safer than the ones marked with
an S� but it may

� change the status of the object if used in a particular way� consider
e�g� the following code fragment�

doublevector d���� ���	
 ��d is of length ���

��initialized to ���

���

double x � d��
 ��Fully safe usage of d

d�� � ����
 ��Care must be taken �

Here� one must be sure that other threads do not try to access d���
at the same time as it is set as con�icts would arise�

� require some synchronization with other member functions� Th�
ere are e�g� access functions that return objects with reference to
examine a class�s status at the end of simulating one time step� The
reference must be copied before the simulation of the next time step
begins� E�g� StockPredator��FPhi�

N N for Not� I�e� the member function must be in the only running thread�
F F for Fully� The member function is fully MT�safe� but care must be

taken in the use of the member functions marked S and C� though� The
member functions marked F may be each be used in a thread of their
own at wish� with no special need for synchronization�

A A stands for Area� meaning that calls to the member function with di��
erent values of the parameter area may run in parallel�

In some classes� a sequence of member functions should be called in a particular
order� Then it may be possible to thread a group of calls� This should be possible to
infer from the pre� and postconditions of the member functions� but for simplicity a new
token was added�

G G for Group� When a member function is marked with G� it belongs to
a group of functions� that may be threaded�

This is useful if a member function is marked with A and G� because one can quickly
see that the calls to the member functions may be as in Fig� ��� instead of as in Fig�

���� LEFT TO DO �

����

Area 3Area 2 Area 4Area 1

Figure ���� A trivial division of calls to a member function for di�erent areas�

Area 1 Area 2 Area 4Area 3

Figure ���� Threaded sequential calls to member functions� for di�erent areas�

�	 CHAPTER �� CONCURRENCY�

Chapter �

Streams�

��� CommentStream

The class CommentStream is a simple link to istream� It is meant to function in exactly
the same way as istream� except when it �nds a semicolumn ����� � then the rest of that
line is considered a comment which may be ignored�

When CommentStream �nds a semicolumn� it searches for the next line not starting
with a semicolumn �ignoring spaces and tabs�� When that line has been found� or end
of �le reached� it stations the istream pointer at the �rst non�white space character in
the line� �This is in fact a crude description of the function KillComments which handles
this��

Inheritance

class CommentStream

Public messages

CommentStream�istream�	

Use� CommentStream cstr�istr�
Pre� None�
Post� cstr is of type CommentStream� Now� istr can be accessed through

cstr�
NB� The lifetime of istr has to be greater than or equal to the last

operation on cstr�
Note that the user has to close istr�

CommentStream� operator���int�	

CommentStream� operator���char� a	

CommentStream� operator���char� a	

��

�� CHAPTER �� STREAMS�

CommentStream� operator���short� a	

CommentStream� operator���long� a	

CommentStream� operator���float� a	

CommentStream� operator���double� a	

CommentStream� operator���unsigned char� a	

CommentStream� operator���unsigned char� a	

CommentStream� operator���unsigned short� a	

CommentStream� operator���unsigned long� a	

CommentStream� operator�����commentmanip func	

Use� cstr � func
Pre� None�
Post� The operation func has been performed on cstr�

CommentStream� get�char� c	

int peek�	

int bad�	

void clear�int state � �	

int eof�	

int fail�	

int good�	

CommentStream� seekg�streampos Pos	

streampos tellg�	

CommentStream� getline�char� ptr� int len� char delim �

�nn�	

���� COMMENTSTREAM ��

Furthermore� a ws operator is provided� It is a friend of CommentStream�

Friend functions

CommentStream� ws�CommentStream��
The use of ws is identical to that of ws on ios�

Example

Assume that the beginning of test�le is�

A small text
Comment in the end of line

�

 �

�

Then the following program

int main�	

�

ifstream infile��testfile�	

CommentStream cstr�infile	

char text����

for �int i � �
 i � �
 i��	�

cstr �� text

cout �� text

�

int x

for �int i � �
 i � �
 i��	�

cstr �� x

cout �� x

�

infile�close�	

�

will write to the standard output�

Asmalltext��

Protected Characteristics

istream� istrptr ��

�� CHAPTER �� STREAMS�

Chapter �

Fundamental classes�

��� TimeClass

A class that keeps track of time� the beginning and end of a run and the time therein
between�

Inheritance

class TimeClass

Public messages

A step is a subdivision of a year� and is most likely only a synonym for a month� By
�period in question� we mean the period between FirstStep on FirstYear and LastStep
on LastYear� inclusive�

TimeClass�CommentStream�	

Use� TimeClass TimeInfo�in�le�
Pre� in�le has no error bits set and its format is correct�
Post� TimeInfo has read its information from in�le�

F int CurrentStep�	 const

Use� step � TimeInfo�CurrentStep��
Pre� None�
Post� step has the value of current step� In particular� � � step �

TimeInfo�NoStepsInYear��� If the current time is on the last
year� step � TimeInfo�LastStep�� and if it is on the �rst year�
TimeInfo�FirstStep�� � step�

F int CurrentYear�	 const

Use� year � TimeInfo�CurrentYear��
Pre� None�

��

�
 CHAPTER �� FUNDAMENTAL CLASSES�

Post� year has the value of current year� TimeInfo�FirstYear�� � year �
TimeInfo�LastYear���

F int CurrentTime�	 const

Use� time � TimeInfo�CurrentTime��
Pre� None�
Post� time holds current time� � � time � TimeInfo�TotalNoSteps���

This is the same as time � TimeInfo�CalcSteps�
TimeInfo�CurrentYear��� TimeInfo�CurrentStep����

F int FirstStep�	 const

Use� step � TimeInfo�FirstStep��
Pre� None�
Post� step holds the �rst step� � � step � TimeInfo�StepsInYear���

F int FirstYear�	 const

Use� year � TimeInfo�FirstYear��
Pre� None�
Post� year holds the �rst year�

F int LastStep�	 const

Use� step � TimeInfo�LastStep��
Pre� None�
Post� step holds the last step� � � step � TimeInfo�StepsInYear���

F int LastYear�	 const

Use� year � TimeInfo�LastYear��
Pre� None�
Post� year holds the last year�

F double LengthOfCurrent�	 const

Use� len � TimeInfo�LengthOfCurrent��
Pre� None�
Post� len holds the length of the current step� 	 � len �

TimeInfo�LengthOfYear���

F double LengthOfYear�	 const

Use� len � TimeInfo�LengthOfYear��
Pre� None�
Post� len equals the sum of the length of steps in one year� thus len � 	�

F double LengthOfStep�int	 const

Use� len � TimeInfo�LengthOfStep�s�
Pre� � � s � TimeInfo�StepsInYear���

���� TIMECLASS ��

Post� len equals the length of time step s� If s equals
TimeInfo�CurrentStep��� len equals TimeInfo�LengthOfCurrent���

F int CalcSteps�int�int	 const

Use� time � TimeInfo�CalcSteps�year� step�
Pre� The year and step year� step are within the period in question�
Post� time holds the number of steps from the �rst until year year and

step step� beginning the count in � when year is �rst year and step

is �rst step� Thus � � time � TimeInfo�TotalNoSteps���

F int TotalNoSteps�	 const

Use� no � TimeInfo�TotalNoSteps��
Pre� None�
Post� no holds the number of steps in the period in question� This

is the same as no � TimeInfo�CalcSteps�TimeInfo�LastYear���
TimeInfo�LastStep����

F int StepsInYear�	 const

Use� no � TimeInfo�StepsInYear��
Pre� None�
Post� no holds the number of steps in one year�

N void IncrementTime�	

Use� TimeInfo�IncrementTime��
Pre� current year and step are not last year and last step�
Post� The current time has been incremented� meaning that either current

step has been incremented or current step set to � and current year
incremented� the latter if current step was the last step on that
year�

F int IsWithinPeriod�int� int	 const

Use� is � TimeInfo�IsWithinPeriod�year� step�
Pre� The year and step year� step is within the period in question�
Post� is equals � if the step step on the year year is within the period�

N void ResetToBeginning�	

Use� TimeInfo�ResetToBeginning��
Pre� None�
Post� TimeInfo has reset its time to the �rst step on the �rst year�

�� CHAPTER �� FUNDAMENTAL CLASSES�

Protected Characteristics

int currentstep �� current step
int currentyear �� current year
int laststep �� last step
int firstyear �� �rst year
int lastyear �� last year
int firststep �� �rst step
int notimesteps �� number of timesteps in a year�
doubleindexvector timesteps �� �step� � length of timesteps�
double lengthofyear �� The length of a year�

���� AREACLASS ��

��� AreaClass

A class that keeps area information and converts from the area numbers read in input
�les to inner areas used in the program� These inner areas are numbered with 	������n
��� where n is the number of areas�

Inheritance

class AreaClass

Public messages

AreaClass�CommentStream�� const TimeClass� const	

Use� AreaClass Area�in�le� TimeInfo�
Pre� in�le has no error bits set and its format it correct� TimeInfo �� 	�
Post� Area has read information from in�le for the period in question

�that information is got from TimeInfo��
NB� Area rearranges the number of areas� so they are numbered sequ�

entially from 	 to number of areas � � and these are the so called
inner areas� All references to areas in function calls to Area must
be made through inner areas� unless otherwise noted� Also� when
referencing to time� it has to be within the period obtained from
TimeInfo� else it is illegal�

F int NoAreas�	 const

Use� no � Area�NoAreas��
Pre� None�
Post� no holds the number of areas�

F double Size�int	 const

Use� size � Area�Size�area�
Pre� area is an inner area�
Post� size holds the size of area area�

F double Temperature�int� int	 const

Use� temp � Area�Temperature�area� time�
Pre� area is an inner area and time a legal time� i�e� 	 � area �

Area�NoAreas�� and � � time � TimeInfo�TotalNoSteps����
Post� temp has the temperature that Area read for area area on time

time�

F int InnerArea�int	 const

Use� innerarea � Area�InnerArea�area�
Pre� area is one of the areas Area read in the constructor�

�	 CHAPTER �� FUNDAMENTAL CLASSES�

Post� innerarea is the inner area that Area associates with area�

F int OuterArea�int	 const

Use� outerarea � Area�OuterArea�innerarea�
Pre� innerarea is an inner area� i�e� 	 � innerarea � Area�NoAreas���
Post� outerarea has the value of outer area to which Area associated

innerarea�

Protected Characteristics

intvector OuterAreas �� The area numbers read in the constructor�
doublevector size �� Area sizes�
doublematrix temperature �� temperature�time��area� is the temp�

Chapter �

Base classes�

��� LivesOnAreas

The class LivesOnAreas is meant to be a base class for every object that is de�ned on
many areas� The class is a bit too open� though� since its data is only protected� instead
of private�

The class knows the areas on which it lives� and keeps a list of inner areas� The inner
areas are numbered sequentially� starting at 	�

Inheritance

class LivesOnAreas

Public messages

LivesOnAreas�	

Use� LivesOnAreas L
Pre� None�
Post� L is of type LivesOnAreas and does not live on any areas�

virtual �LivesOnAreas�	

Use� �L
Pre� None�
Post� All memory belonging to L has been freed�

LivesOnAreas�const intvector�	

Use� LivesOnAreas L�Areas�
Pre� The elements of Areas are � 	�
Post� L is of type LivesOnAreas and lives on the areas Areas�i�� i � ��

� � � � Areas�Size�� � ��

F int IsInArea�int	 const

��

�� CHAPTER �� BASE CLASSES�

Use� isin� L�IsInArea�area�
Pre� None�
Post� If L lives on area area� isinequals �� else 	�

Protected messages

S void LetLiveOnAreas�const intvector�	

Use� L�LetLiveOnAreas�Areas�
Pre� Areas�Size�� � 	� the elements of Areas are � 	 and all unequal�
Post� L lives on the areas Areas�i�� i � 	� � � � � Areas�Size�� � ��

Since some derived classes will not know on creation time the areas on which they
are de�ned� they have to use this message to inform LivesOnAreas of them�

Protected Characteristics

intvector areas �� The areas on which the object lives�
intvector AreaNr �� For conversion to inner areas�

Data invariant

AreaNr�areas�i�� �� i� i � �� � � � � areas�Size�� � �� If j is not an element of areas� and
� � j � AreaNr�Size�� then AreaNr�j� � ��

This is the method for converting to inner areas� if the object is de�ned on area k

and i is such that areas�i� �� k� then the area k is converted to the inner area i ��
AreaNr�areas�i�� �� AreaNr�k��

���� HASNAME ��

��� HasName

The class HasName is a base class for any object that has a name�

Inheritance

class HasName

Public messages

HasName�	

Use� HasName H
Pre� None�
Post� H is of type HasName and the name of H is the empty string ��n����

virtual �HasName�	

Use� �H
Pre� None�
Post� All memory belonging to H has been freed�

HasName�const char�	

Use� HasName H�givenname�
Pre� givenname is a nullterminated string�
Post� H is of type HasName� H has copied givenname which is now its

name�

F const char� Name�	 const

Use� str � H�Name��
Pre� None�
Post� str points to the beginning of a nullterminated string containing

the name of H�

Private Characteristics

char� name �� Contains the name � nullterminated�

�� CHAPTER �� BASE CLASSES�

��� BaseClass

Warning The description may be obsolete � better look at the header �le
for the functions First�� Second� and ThirdSpecialTransactions�

In the abstract class BaseClass we declare some important member functions� Since
the member functions are pure virtual� they have no pre� or postconditions� On the
other hand� there is a recommended usage which is described below�

Since the class is abstract� an object of this type can not be instantiated� nevertheless�
the constructors are described as if this were possible�

Inheritance

class BaseClass � public HasName� public LivesOnAreas

Public messages

BaseClass�	

Use� BaseClass��

BaseClass�const char�	

Use� BaseClass B�givenname�
Pre� givenname points to a nullterminated string�
Post� givenname is the name of B�

BaseClass�const char�� const intvector�	

Use� BaseClass B�givenname� Areas�
Pre� givenname points to a nullterminated string� Areas is a vector of

integers � 	� Areas�Size�� � 	�
Post� givenname is the name of B and B lives on the areas Areas�

virtual �BaseClass�	

Use� �B
Pre� None�
Post� All memory belonging to B has been freed�

virtual void CalcEat�int� const AreaClass� const� const

TimeClass� const	 � �
Use� B�CalcEat�area� Area� TimeInfo�
NB� As the name suggest� this function should calculate the amount B

wanted to eat and report it to the objects that B wants to eat�

virtual void CheckEat�int� const AreaClass� const�

const TimeClass� const	 � �
Use� B�CheckEat�area� Area� TimeInfo�

���� BASECLASS ��

NB� This function should check if the amount eaten by B was accepted�
� call B�CalcEat�area� Area� TimeInfo� �rst�

virtual void AdjustEat�int� const AreaClass� const�

const TimeClass� const	 � �
Use� B�AdjustEat�area� Area� TimeInfo�
NB� The function should adjust the eating according to the result from

B�CheckEat which should be called �rst�

virtual void ReducePop�int� const AreaClass� const�

const TimeClass� const	 � �
Use� B�ReducePop�area� Area� TimeInfo�
NB� Reduction of the population caused by some internal factors�

virtual void Grow�int� const AreaClass� const� const

TimeClass� const	 � �
Use� B�Grow�area� Area� TimeInfo�
NB� Calculates the growth and updates accordingly�

virtual void FirstSpecialTransactions�int� const

AreaClass� const� const TimeClass� const	 � �
Use� B�FirstSpecialTransactions�area� Area� TimeInfo�
NB� Special transactions may need to be split in three parts� The �rst

transactions are between objects�

virtual void SecondSpecialTransactions�int� const

AreaClass� const� const TimeClass� const	 � �
Use� B�SecondSpecialTransactions�area� Area� TimeInfo�
NB� This is an intermediate stage in the transactions to allow for update

of internal information�

virtual void ThirdSpecialTransactions�int� const

AreaClass� const� const TimeClass� const	 � �
Use� B�ThirdSpecialTransactions�area� Area� TimeInfo�
NB� The �nal stage in the transactions� here we do everything that

depends on SecondTransactions to be �nished�

virtual void CalcNumbers�int� const AreaClass� const�

const TimeClass� const	 � �
Use� B�CalcNumbers�area� Area� TimeInfo�
NB� Internal update�

virtual void Migrate�const TimeClass� const	 � �

Use� B�Migrate�TimeInfo�
NB� Migration between areas�

�
 CHAPTER �� BASE CLASSES�

virtual void Reset�	 � �

Use� B�Reset��
Pre� None�
Post� B has recalculated its internal information and reset its internal

variables and reestimated its error status�

F int Error�	 const

Use� err� B�Error�� const
Pre� None�
Post� erris 	 if B does not have its error bit set� Else err equals �� meaning

that the e�ects of further actions on B are unde�ned until B�Clear��
and B�Reset�� have been successfully called�

F virtual void Clear�	

Use� B�Clear��
Pre� None�
Post� The error status in B equals 	�

virtual void Print�ofstream �	 const � �

Use� B�Print�out�le�
NB� Print internal information to out�le�

Protected messages

N void SetError�	

Use� B�SetError��
Pre� None�
Post� B has set its error bit�

Private Characteristics

int error �� The error status�

���� DESCENDANTS ��

��� Descendants

The classes LivesOnAreas and HasName are widely used� The following picture shows
their descendants�

Figure ���� Descendants of HasName�

Figure ���� Descendants of LivesOnAreas�

Notice how many classes inherit from LivesOnAreas� as they are all area based� And
those who need identi�cation by name� all inherit from HasName�

The class BaseClass is inherited by Stock� OtherFood and Fleet as shown�

�� CHAPTER �� BASE CLASSES�

Figure ���� Descendants of BaseClass�

Chapter �

Error messages and optimization�

The following classes are used for formulas with marked variables which are allowed to
change between simulations in an optimization�

��� StrStack

This is a stack that keeps strings�

Inheritance

class StrStack

Public messages

StrStack�	

Use� StrStack S
Pre� None�
Post� S is an empty StrStack�

�StrStack�	

Use� �S
Pre� None�
Post� All memory belonging to S has been freed�

void OutOfStack�	

Use� S�OutOfStack��
Pre� None�
Post� If S is not empty� the top element has been taken o� else nothing

has been done�

void PutInStack�const char�	

Use� S�PutInStack�str�

��

�	 CHAPTER �� ERROR MESSAGES AND OPTIMIZATION�

Pre� str points to a nullterminated string�
Post� A copy of str is the top element of S�

void ClearStack�	

Use� S�ClearStack
Pre� None�
Post� S is empty�

char� SendAll�	 const

Use� str � S�SendAll��
Pre� None�
Post� str points to a nullterminated string� created with new� The string

contains the concatenation of all the strings in S� with the bottom
string in S �rst and the top string last�
It is the users respolsibility to delete str�

Protected Characteristics

int sz �� The number of strings in the stack�
charptrvector v �� Contains the strings in the stack�

Data invariant

Every sequence of using messages must maintain the following data invariant�

� The size of v is greater than or equal to sz�

Details

When popping from the stack� szis descreased� but the size of vis not decreased� This
is done in order to increase performance both in the pop operation and when the next
push occurs� The length of every characther array keeping a string on the stack is equal
to the constant MaxStrLength� so this is the maximum string length for the stack�

��� Keeper

This class keeps the names and addresses of variables� It is useful for clearer error
messages when reading from �les but is mostly used when doing optimization�

A word of caution When a Keeper has received information on a variable through
KeepVariable�double�� int�� it may be informed to change the value of that variable
through the member function Update� Then it is of course vital that the original variable

���� KEEPER ��

received in KeepVariable�� � � � still exists and is in the same place in memory � else
unde�ned behaviour can be expected� This means e�g� that the member function resize
in vector classes should be used with caution�

As a result of the previous paragraph� every class that allows Keeper to keep some
of its variables must take care to avoid the situation described there� It must also be
aware that every variable it allows Keeper to access may change in value and therefore�
it may be necessary to provide a member function that recalculates inner state of the
object according to the updated value of the variable�s�� That member function should
then be called after calling Update in Keeper� Also� the class has to be aware of the
danger of Keeper assigning illegal values to the variables it has allowed the Keeper to
access� It must then take some action� perhaps by setting an error status indicating a
nonrecoverable error� or assign a new value to the variable and then proceed�

Inheritance

class Keeper

Public messages

Keeper�	

Use� Keeper K
Pre� None�
Post� K is of type Keeper�

�Keeper�	

Use� �K
Pre� None�
Post� All memory belonging to K has been freed�

void KeepVariable�double��int	

Use� K�KeepVariable�var�attribute�
Pre� attribute � 	�
Post� If K�KeepVariable�double�� int� has been called before and K recei�

ved a variable with the same attribute but not the same value� an
error message is emitted �fatal�� Else K keeps var� the address of
var and attribute� and associates the kept strings to it�

void DeleteParam�const double�	

Use� K�DeleteParam�var�
Pre� None�
Post� If K keeps information on the variable var� it is deleted�

void ChangeVariable�const double�� double�	

Use� K�ChangeVariable�pre� post�

�� CHAPTER �� ERROR MESSAGES AND OPTIMIZATION�

Pre� None�
Post� Nothing is done if K has no information on pre� If K has information

on the variable pre� the address of post is kept instead� However�
if pre and post do not have the same value� an error message is
emitted �fatal��

ClearLast�	

Use� K�ClearLast��
Pre� None�
Post� Last kept string� if any� is cleared�

void ClearLastAddString�const char�	

Use� K�ClearLastAddString�str�
Pre� str is a nullterminated string�
Post� The last kept string� if any� in K is cleared� A copy of the string

str is kept in K�

void ClearAll�	

Use� K�ClearAll��
Pre� None�
Post� All kept strings in K� if any� are cleared�

void SetString�const char�	

Use� K�SetString�str�
Pre� str is a nullterminated string�
Post� All previous strings kept in K are deleted� K keeps a copy of str�

void AddString�const char�	

Use� K�AddString�str�
Pre� str is a nullterminated string�
Post� A copy of the string str is kept in K�

char� SendString�	 const

Use� str � K�SendString��
Pre� None�
Post� str is a nullterminated string� containing the concatenation of all

the strings kept in K� It is created with new and it is the users
responsibility to delete it�

void AddComponent�const char�	

Use� K�AddComponent�str�
Pre� str is the name of a likelihood component�
Post� A copy of the string str is kept in K�

���� KEEPER ��

char� SendComponent�	 const

Use� str � K�SendComponent��
Pre� None�
Post� str is a nullterminated string� containing the concatenation of all

names of likelihood components kept in K� separated with a tab
character� It is created with new and it is the users responsibility
to delete it�

void ClearComponents�	

Use� K�ClearComponents��
Pre� None�
Post� All kept names of likelihood components in K� if any� are cleared�

int ErrorInUpdate�	 const

Use� keeper � K�ErrorInUpdate��
Pre� None�
Post� If K has the error bit set� keeper is �� else 	�

void Update�const doublevector�	

Use� K�Update�val�
Pre� None�
Post� If val�Size�� does not equal the number of di�erent attributes K has

received in KeepVariable� the error bit is set and no further action
taken� Else� all the variables with the i�th attribute received in
KeepVariable are given the value val�i�� using the addresses of the
variables received in KeepVariable� 	 � i � val�Size�� � ��

void Clear�	

Use� K�Clear��
Pre� None�
Post� The error bit in K is set to zero�

void ValuesOfVariables�doublevector�	 const

Use� K�ValuesOfVariables�val�
Pre� val�Size�� �� K�NoVariables��
Post� val has the values of the kept variables�

void InitialValues�doublevector�	 const

Use� K�ScaledValues�val�
Pre� val�Size�� �� K�NoVariables��
Post� val has the initial values of the kept variables�

void ScaledValues�doublevector�	 const

Use� K�ScaledValues�val�

�� CHAPTER �� ERROR MESSAGES AND OPTIMIZATION�

Pre� val�Size�� �� K�NoVariables��
Post� val has the scaled values of the kept variables� Scaled values are the

values of the variables divided by the initial values� The purpose
of scaled values is to let all variables in optimization have app�
roximately the same size� The scaled values are then sent to the
optimization routine�

int NoVariables�	 const

Use� n � K�NoVariables��
Pre� None�
Post� n equals the number of attributes K has received through Keep�

Variable�

void OpenFile�const char�	

Use� K�OpenFile�out�le�
Pre� out�le is a nullterminated string� K has the permission to overwrite

a �le with the name out�le�
Post� K has opened the �le out�le and is ready to write to it� starting at

the beginning�

void WriteInitialInformation�const

Likelihoodptrvector�	
Use� K�WriteInitialInformation�Likely�
Pre� K�OpenFile�const char � has been called�
Post� K has written the names of the kept variables to �le� along with

their attributes� the names of the likelihood components� the types
of the likelihood functions� and their weight� according to the in�
formation received in Likely�

void WriteValues�double� const Likelihoodptrvector�	

Use� K�WriteValues�keepFuncValue� Likely�
Pre� K�OpenFile�const char�� has been called�
Post� K has written the values of the variables received through Keep�

Variable to �le and the values of the individual likelihood compon�
ents unweighted� followed by keepFuncValue�

void ScaleVariables�	

Use� K�ScaleVariables��
Pre� None� Values of all variables in the keeper must be set�
Post� Initial values in the keeper are equal to the values of the variables

except the value of a variable is zero� If the value of a variable is
zero the initial value is set to one and the scaled value to zero� Else
the scaled value is set to one�

���� KEEPER ��

Example

void f�ifstream� infile� Keeper keeper	

�

int fvar

keeper�AddString��fvar�	

infile �� fvar

if �infile�fail�		 �

cerr �� �Failed reading variable � �� keeper�SendString�	 �� endl

exit��	

�

keeper�ClearLast�	

�

int main�	

�

Keeper keeper

ifstream infile��testfile�	

keeper�SetString��testfile�	

f�infile� keeper	

infile�close�	

infile�open��secondtestfile�� ios��in	

keeper�ClearLastAddString��secondtestfile�	

f�infile� keeper	

keeper�ClearLast�	

return �

�

This way� clearer error messages can be given� This were especially true if the function
f would call another function to read from in�le�

Protected Characteristics

addr�keepmatrix address �� Information on all the variables received�
doublevector initialvalues �� initial values�
doublevector scaledvalues �� scaled values�
doublevector values �� The values received�
StrStack� stack �� The strings received�
intvector switches �� The switches received�
int error �� Internal error status� Is either � or 	�
ofstream outfile �� The �le for output�
int FileIsOpen ��

 	 i� the �le is open�

�
 CHAPTER �� ERROR MESSAGES AND OPTIMIZATION�

Data invariant

� address�Nrow�� �� values�Size�� �� switches�Size��

� In values�i� is the value of all the variables received with the attribute switches�i��
See also Keeper��KeepVariable�double ���

� In address�i� are all the variables received with attribute switches�i��

��� Formula

This class handles formulas� It is used for variables that are intended for optimization�
It uses an object of type Keeper to change the values of the variables� but the user should
not be concerned exactly how�

These steps should be followed when working with objects of type Formula� Note
that an object of type Formula can only be given value by reading a formula from �le�

�� The object is created with the default constructor�
Formula F

�� A formula is read from �le�
infile �� F

�� keeper is informed about the marked variables in F�
F�Inform�keeper	

�� The formula can be used as an rvalue in any expression as if it were a double�
double d � exp�F	������F	 � F

Inheritance

class Formula

Public messages

Formula�	

Use� Formula F
Pre� None�
Post� F is of type Formula with value 	�

friend CommentStream� operator ���CommentStream��

Formula�	
Use� in�le � F
Pre� None�

���� FORMULA ��

Post� If in�le�s format is correct� F has read the formula from it� and
initialized itself� If in�le�s format is incorrect� in�le�s badbit has
been set� If any switch read is � 	 it has been set to its absoulute
value�

operator double�	 const

Use� double val � F
Pre� operator� and F�Inform�Keeper�� have been called�
Post� val contains the value of F�

void Inform�Keeper�	

Use� F�Inform�keeper�
Pre� operator� has been called�
Post� F has informed keeper of the marked variables in F�

void Interchange�Formula�� Keeper�	

Use� F�Interchange�NewF� keeper�
Pre� F�Inform�Keeper�� has been called�
Post� NewF is a copy of F� and keeperhas been informed of the variables

in NewF instead of F� This should be used when altering the size
of an array of objects of type Formula�

Example

int main�	

�

Keeper keeper

Formula� F� � new Formula

CommentStream infile��testfile�	

if� ��infile �� F�	 	 exit��	
 ��FAILURE

F�Inform��keeper	

Formula� F� � new Formula

F��Interchange�F�� �keeper	

��keeper now has information on F� instead of F�

delete F�

double result � F��F���F� � �	

return �

�

�� CHAPTER �� ERROR MESSAGES AND OPTIMIZATION�

Protected Characteristics

double init �� The �rst variable�
int attr �� The attribute of the �rst variable�
doublevector multipliers �� The multipliers�
intvector attributes �� The attributes of the multipliers�

Data invariant

� attr contains the switch of the �rst variable� if one was read� else it is ���

� multipliers�Size�� �� attributes�Size���

� If multipliers�Size�� 	� attributes�i� contains the switch of the variable multipliers�i�
for � � i � multipliers�Size���

� If failure occurs in operator� �due to wrong format of in�le�� F contains the formula
read upto the error� and its state is ok �i�e� it is usable��

��� Formulavector

When initializing objects of type Formulavector� either either one of the following procedures
can be used�

� The size is set� either with resize or at instantiation� the formulas are read from
�le and keeper informed�

Formulavector Fvec��	

infile �� Fvec

Fvec�Inform�keeper	

double d � Fvec�� � Fvec��

� The vector is created of size 	 and one element added to it at a time�

Formulavector Fvec

for �int i � �
 i � �
 i��	�

Fvec�resize��� keeper	

infile �� Fveci�

Fveci��Inform�keeper	

�

double d � Fvec�� � Fvec��

Inheritance

class Formulavector

���� FORMULAVECTOR ��

Public messages

Formulavector�	

Use� Formulavector Fvec
Pre� None�
Post� Fvec is a Formulavector of size 	�

Formulavector�int	

Use� Formulavector Fvec�sz�
Pre� None�
Post� Fvec is a Formulavector of size sz� if sz 	� else of size 	�

resize�int� Keeper�	

Use� Fvec�resize�sz� keeper�
Pre� None�
Post� Fvec has enlarged its size by sz� The extra positions are added at

the end of Fvec� and Fvec informs keeper of changed positions if
necessary�

friend CommentStream� operator ���CommentStream��

Formulavector�	
Use� in�le � Fvec
Pre� None�
Post� If in�le�s format is correct� Fvec has read the formulas from it� and

initialized itself� If in�le�s format is incorrect� in�le�s badbit has
been set� If any switch read is � 	 it has been set to its absoulute
value�

int Size�	 const

Use� int sz � Fvec�Size��
Pre� None�
Post� sz is equal to the size of Fvec�

void Inform�Keeper�	

Use� Fvec�Inform�keeper�
Pre� operator� has been called�
Post� Fvec has informed keeper of the marked variables in the formulas

in Fvec�

Formula� operator��int	

Use� Formula� F � Fvec�i�
Pre� � � i � Fvec�Size���
Post� F is a reference to the formula Fvec�i��

const Formula� operator��int	 const

�	 CHAPTER �� ERROR MESSAGES AND OPTIMIZATION�

Use� Formula� F � Fvec�i�
Pre� � � i � Fvec�Size���
Post� F is a reference to the formula Fvec�i��

Protected Characteristics

int size �� The number of elements of the vector�
Formula� v �� The Formulas�

Data invariant

� size � ��

� size �� 	 if and only if v �� 	�

� The formulas are contained in v�	�� � � �� v�size � ���

� If failure occurs in operator� �due to wrong format of in�le�� Fvec contains the
formulas read upto the error� and the remaining ones are equal to the zero formula�

��� Formulaindexvector

The use of this vector is almost the same as Formulavector � see the discussion there�

Inheritance

class Formulaindexvector

Public messages

Formulaindexvector�	

Use� Formulaindexvector Fvec
Pre� None�
Post� Fvec is a Formulaindexvector of size 	 with minpos 	�

Formulaindexvector�int� int	

Use� Formulaindexvector Fvec�sz� minp�
Pre� None�
Post� Fvec is a Formulaindexvector with minimum position minp and of

size sz� if sz 	� else of size 	�

���� FORMULAINDEXVECTOR ��

resize�int� int� Keeper�	

Use� Fvec�resize�sz� minp� keeper�
Pre� If Fvec is not empty� minp � Fvec�Mincol���
Post� Fvec has enlarged its size by sz and put its minimum position to

minp� The extra positions are added at the end of Fvec� and Fvec
informs keeper of changed positions if necessary�

friend CommentStream� operator ���CommentStream��

Formulaindexvector�	
Use� in�le � Fvec
Pre� None�
Post� If in�le�s format is correct� Fvec has read the formulas from it� and

initialized itself� If in�le�s format is incorrect� in�le�s badbit has
been set� If any switch read is � 	 it has been set to its absoulute
value�

int Size�	 const

Use� int sz � Fvec�Size��
Pre� None�
Post� sz is equal to the size of Fvec�

int Mincol�	 const

Use� int minp � Fvec�Mincol��
Pre� None�
Post� minp is equal to the minimum position of Fvec�

int Maxcol�	 const

Use� int maxp � Fvec�Maxcol��
Pre� None�
Post� maxp is equal to the maximum position of Fvec�

void Inform�Keeper�	

Use� Fvec�Inform�keeper�
Pre� operator� has been called�
Post� Fvec has informed keeper of the marked variables in the formulas

in Fvec�

Formula� operator��int	

Use� Formula� F � Fvec�i�
Pre� Fvec�Mincol�� � i � Fvec�Maxcol���
Post� F is a reference to the formula Fvec�i��

const Formula� operator��int	 const

Use� Formula� F � Fvec�i�

�� CHAPTER �� ERROR MESSAGES AND OPTIMIZATION�

Pre� Fvec�Mincol�� � � i � Fvec�Maxcol���
Post� F is a reference to the formula Fvec�i��

Protected Characteristics

int minpos �� The lower bound of the indexvector�
int size �� The number of elements of the vector�
Formula� v �� The Formulas�

Data invariant

� minpos � ��

� size � ��

� size �� 	 if and only if v �� 	�

� The formulas are contained in v�	�� � � �� v�size � ���

� If failure occurs in operator� �due to wrong format of in�le�� Fvec contains the
formulas read upto the error� and the remaining ones are equal to the zero formula�

��� ErrorHandler

��	 StochasticData

The class StochasticData is very simple� It handles the repeated reading of vectors from
a �le� This may be used e�g� to read values from a �le that are later supplied to Keeper�

Inheritance

class StochasticData

Public messages

StochasticData�const char� const	

Use� StochasticData S��lename�
Pre� �lename is a nullterminated string and there exists a �le whose

name is �lename and format is correct�
Post� S is ready to read values from its input �le� �lename�
NB� S has to be able to access the �lename during its lifetime�

���� STOCHASTICDATA ��

�StochasticData�	

Use� �S��
Pre� None�
Post� All memory belonging to S has been freed�

int DataIsLeft�	

Use� l � S�DataIsLeft��
Pre� S�Error�� returns 	�
Post� l is � if there is any data left for S to read� else l is 	�

int NoVariables�	 const

Use� n � S�NoVariables�� const
Pre� S�Error�� returns 	�
Post� n keeps the number of variables S reads at a time from its input

�le�

int Error�	 const

Use� err � S�Error��
Pre� None�
Post� err is � if an error has occurred� else err is 	� If err is �� no operation

on S is de�ned�

void ReadData�doublevector�	

Use� S�ReadData�x�
Pre� S�Error�� returns 	� S�DataIsLeft�� returns � and x�Size�� �

S�NoVariables���
Post� S has put the values it read from its data �le into x� S has reexam�

ined its error status�
NB� Since S uses keeps one line in its bu�er� the call to this function is

guaranteed to succeed if the preconditions are met�

Protected messages

void ReadDataFromNextLine�doublevector�	

Use� S�ReadDataFromNextLine�x�
Pre� None�
Post� This function reads the next line from the data �le and puts it in x�

It may change the error status� However� if there is no data left to
read in the input �le �indicated by S�EndOfFile�� equals ��� x has
not been changed� And if an error occurred while reading the data�
S�Error�� may equal � after the function returnes� if it returns at
all�

�� CHAPTER �� ERROR MESSAGES AND OPTIMIZATION�

Protected Characteristics

ifstream infile �� The input �le�
int error �� Error status�
doublevector values �� For bu�ered input�
int EndOfFile �� End of �le status�

Details

The input is bu�ered� the last line read from in�le is kept in values�
There are � possible values of EndOfFile�

� 	� end of �le has not been reached�

� �� end of �le has been reached� but the values last read have not been returned�

� �� end of �le has been reached and there are no more values in the input bu�er to
return�

Chapter �

Data repositories�

��� vector
T�

The class vector should be a template� vector�t� However many of the compilers do
have problems with instantiating the templates� especially the older ones� but that is
rapidly changing�

Therefore�the approach was taken not to let the vectors be a template� but to use
the class tvector instead of vector�t and to automatically generate the declaration and
de�nition �les� And instead of vector�t � the corresponding vector is called tptrvector�
Hence the classes doublevector� intvector and baseclassptrvector�

Note that the type of the template is written in lower case� i�e� baseclassptrvector
instead of vector�BaseClass �

The same note applies for the class indexvector�T � tindexvector�

��� doublevector

The class doublevector is a member of the vector�family�

Inheritance

class doublevector

Public messages

doublevector�	

Use� doublevector d��
Pre� None�
Post� d is an empty doublevector�

doublevector�int	

Use� doublevector d�sz�

��

�
 CHAPTER 	� DATA REPOSITORIES�

Pre� sz � 	�
Post� d is a doublevector with space allocated for sz elements�

doublevector�int� double	

Use� doublevector d�sz� initial�
Pre� sz � 	�
Post� d is a doublevector containing sz elements� initialized to initial�

doublevector�const doublevector �	

Use� doublevector d�initial�
Pre� None�
Post� d is a copy of initial� i�e� d�Size�� � initial�Size�� and d�i� � initial�i��

�doublevector�	

Use� �d
Pre� None�
Post� All memory belonging to d has been freed�

S void resize �int� double	

Use� d�resize�add� value�
Pre� add � 	
Post� d�s length has been increased of add and the extra elements are

initialized to value� The values of the �old� elements are unchanged�
NB� Although the old values of d have not changed� their addresses may

have�

S void resize �int	

Use� d�resize�add�
Pre� add � 	�
Post� Similar to resise�int� double�� except there is no initialization guar�

anteed�
NB� Look at doublevector��resize�int� double��

S void Delete�int	

Use� d�Delete�pos�
Pre� 	 � pos � d�Size��
Post� The element that was accessible through d�i� has now been deleted

from d and its size adjusted accordingly�
NB� Warning A side e�ect of this member function may be that the

position of the elements in memory may be changed�

F int Size�	 const

Use� s � d�Size��
Pre� None�

	��� DOUBLEINDEXVECTOR ��

Post� s equals the number of elements in d�

C double� operator� �int	

Use� d�i� � e
Pre� 	 � i � d�Size��
Post� The number d�i� has been set to e�

F const double� operator� �int	 const

Use� e � d�i�
Pre� 	 � i � d�Size��
Post� e equals the element d�i��

Protected Characteristics

double� v ��
int size ��

��� doubleindexvector

The class doubleindexvector is just a member of the indexvector�family�

Inheritance

class doubleindexvector

Public messages

doubleindexvector�	

Use� doubleindexvector dv
Pre� None�
Post� dv is a empty doubleindexvector�

doubleindexvector�int�int	

Use� doubleindexvector dv�sz� minpos�
Pre� sz � 	� minpos � 	�
Post� dv is of type doubleindexvector� with space allocated for size

elements� indexed from minpos�

doubleindexvector�int� int� double	

Use� doubleindexvector dv�sz� minpos� initial�

�� CHAPTER 	� DATA REPOSITORIES�

Pre� sz � 	� minpos � 	�
Post� dv is of type doubleindexvector� with space allocated for size

elements� indexed from minpos� The elements are initialized to
initial�

doubleindexvector�const doubleindexvector�	

Use� doubleindexvector dv�initial�
Pre� None�
Post� dv is a copy of initial

�doubleindexvector�	

Use� �dv��
Pre� None�
Post� All memory belonging to dv has been freed�

S void resize�int�int� double	

Use� dv�resize�addsize�newminpos�value�
Pre� newminpos � dv�Mincol��� addsize � 	�
Post� dv has increased its size of addsize� dv�Mincol�� equals newminpos

and the extra elements are initialized with initial� The elements
that dv contained before the call can still be accessed through dv����
using the same index� but their position in memory may be di��
erent�

NB� The documentation here above does not explain what happens if
addsize � dv�Mincol�� � newminpos is valid before dv�resize is cal�
led� That call should not be illegal� but its e�ects are not quite
certain�

C double� operator��int	

Use� dv�i� � d
Pre� dv�Mincol�� � i � dv�Maxcol��
Post� dv�i� has been set to d�

F const double� operator��int	 const

Use� d � dv�i�
Pre� dv�Mincol�� � i � dv�Maxcol��
Post� d equals dv�i�

F int Mincol�	 const

Use� m � dv�Mincol��
Pre� None�
Post� m equals number of the �rst element in dv�

F int Maxcol�	 const

	��� DOUBLEINDEXVECTOR ��

Use� m � dv�Maxcol��
Pre� None�
Post� m equals � ! the number of the last element in dv�

F int Size�	 const

Use� sz � dv�Size��
Pre� None�
Post� sz equals the number of elements in dv�
NB� Warning Use this member function with caution� as one might

easily forget that dv is of type doubleindexvector and use it as a
doublevector if one sees this member function called� The error
would then be to let i in dv�i� be in the range of 	� � � � � dv�Size�� �
� instead of dv�Mincol��� � � � � dv�Maxcol�� � ��

S void Delete�int	

Use� dv�Delete�i�
Pre� dv�Mincol�� � i � dv�Maxcol��
Post� The element that was accessible through dv�i� has now been deleted

from dv and its size adjusted accordingly�
NB� Warning A side e�ect of this member function may be that the

position of the elements in memory may be changed�

Protected Characteristics

int minpos ��
int size �� The number of elements�
double� v �� Pointer to array of double�

�	 CHAPTER 	� DATA REPOSITORIES�

��� bandmatrix

The class bandmatrix is just another class for keeping bandmatrices� It has a lot of
constructors� though� and two kinds member functions to access its size� depending on
whether one wants to look at it as a regular bandmatrix� or a bandmatrix where the �rst
index is age and the second number of length group�

Inheritance

class bandmatrix

Public messages

bandmatrix �const bandmatrix�	

Use� bandmatrix B�initial�
Pre� None�
Post� B is a copy of initial� i�e� all the sizes of B and values are the same

as in initial�

bandmatrix�	

Use� bandmatrix B
Pre� None�
Post� B is an empty bandmatrix�

bandmatrix�const intvector�� const intvector�� int � ��

double � �	
Use� bandmatrix B�minl� size� Minage� initial�
Pre� minl�Size�� �� size�Size��� Minage � 	�
Post� B is a bandmatrix with minimum age equal to Minage� minimum

length given with minl and the length of the rows according to size�
initialized with initial�

bandmatrix�const doublematrix�� int � �� int � � 	

Use� bandmatrix B�initial� Minage� minl�
Pre� Minage � 	� minl � 	�

	��� BANDMATRIX ��

Post� B is a bandmatrix� initialized with initial� with the following
changes�

� initial has been shiftedMinage rows andminl columns� so that
B�Minage�� equals Minage� column � in initial corresponds to
column minl in B and the �rst row in initial corresponds to
the row Minage in B�

� Zeros in the beginning and end of lines in initial are cut o��
so that the corresponding lines in B are shorter� If a line
in initial contains only 	� the corresponding line in B may
contain � element �which is then 	�� or it may be an empty
line�

bandmatrix�const doubleindexvector�� int	

Use� bandmatrix B�initial� age�
Pre� age � 	
Post� B is a bandmatrix whose only row is age and it is a copy of initial�

bandmatrix�int� int� int� int� double � �	

Use� bandmatrix B�minl� size� Minage� nrow� initial�
Pre� minl � 	� size � 	� Minage � 	� nrow � 	�
Post� B is a shifted rectangular matrix� I�e� B is a bandmatrix

with B�Mincol�� equal to minl� the lines contain size elements�
B�Minrow�� equals Minage� B has nrow lines and is initialized with
initial�

�bandmatrix�	

Use� �B
Pre� None�
Post� All memory belonging to B has been freed�

C doubleindexvector� operator��int	

Use� dv� �B�row�
Pre� B�Minage�� � row � B�Maxage��
Post� dvis a reference to row number row in B�
NB� This operator is most likely to be used when retrieving whole rows

from B� and as an intermediary when accessing a single element of
B� ie� B�row��col�� where B�Mincol�row� � col � B�Maxcol�row��
Then the usage could be B�row��col� � num� where numis of type
double�

F const doubleindexvector� operator��int	 const

Use� dv� �B�row�
Pre� B�Minage�� � row � B�Maxage��

�� CHAPTER 	� DATA REPOSITORIES�

Post� dvis a reference to a constant doubleindexvector� containing row
number row in B�

NB� This operator is most likely to be used when retrieving whole rows
from B� and as an intermediary when accessing a single element of
B� ie� B�row��col�� where B�Mincol�row� � col � B�Maxcol�row��
Then the usage could be num� B�row��col�� where numis of type
double�

F int Ncol�int	 const

Use� n � B�Ncol�row�
Pre� B�Minrow�� � row � B�Maxrow���
Post� n is the number of columns in row row�

F int Ncol�	 const

Use� n � B�Ncol��
Pre� None�
Post� n is the number of columns in row B�Minrow���

F int Minrow�	 const

Use� m � B�Minrow��
Pre� None�
Post� m is the number of the �rst row in B�

F int Maxrow�	 const

Use� m � B�Maxrow��
Pre� None�
Post� m is the number of the last row in B�

F int Mincol�int	 const

Use� m � B�Mincol�row�
Pre� B�Minrow�� � row � B�Maxrow��
Post� m is the number of the �rst column in the line row in B� i�e� m

equals B�row��Mincol���

F int Maxcol�int	 const

Use� m � B�Maxcol�row�
Pre� B�Minrow�� � row � B�Maxrow��
Post� m equals the length of the line row in B plus B�Mincol�row�� i�e� m

equals B�row��Maxcol���

F int Minage�	 const

Use� m � B�Minage��
Pre� None�
Post� m � B�Minrow���

	��� BANDMATRIX ��

F int Maxage�	 const

Use� m � B�Maxage��
Pre� None�
Post� m � B�Maxrow���

F int Minlength�int	 const

Use� m � B�Minlength�age�
Pre� same as m � B�Mincol�age��
Post� ditto�

F int Maxlength�int	 const

Use� m � B�Maxlength�age�
Pre� Same as for m � B�Maxlength�age�
Post� Ditto�

F void Colsum�doublevector�	 const

Use� B�Colsum�Result�
Pre� Result�Size�� � the maximum of B�Maxcol�row��
Post� The sum of each column in B has been added to Result�

Protected Characteristics

doubleindexvector�� v �� Array of pointers to doubleindexvectors�
int nrow �� The number of rows�
int minage �� The minimum age�

Data invariant

� vwas created with new doubleindexvector �nrow��

� No one of the pointers v�i�� i � �� � � � � nrow � � equals 	�

�� CHAPTER 	� DATA REPOSITORIES�

��� bandmatrixvector

The class bandmatrixvector keeps a vector of matrices� It must be used with some
caution because all the elements of the vector do not have to contain a matrix and these
elements are illegal to access�

Inheritance

class bandmatrixvector

Public messages

bandmatrixvector�	

Use� bandmatrixvector B
Pre� None�
Post� B is an empty bandmatrixvector�

bandmatrixvector�int	

Use� bandmatrixvector B�size�
Pre� size � 	�
Post� B is of type bandmatrixvector� with space allocated for size mat�

rices� However� the matrices themselves are not created� so the user
himself has to take care not to use operator�� before they have been
created� using ChangeElement�int� const bandmatrix���

�bandmatrixvector�	

Use� �B
Pre� None�
Post� All space belonging to B has been freed� i�e� the vector and all the

matrices it contains�

S void ChangeElement�int� const bandmatrix�	

Use� B�ChangeElement�pos� value�
Pre� 	 � pos � B�Size��
Post� Matrix no� pos has been deleted from B� if there was any and now

there is a copy of value�

C bandmatrix� operator��int	

Use� bm � B�pos�
Pre� 	 � pos � B�Size�� and a matrix no� pos has been created�
Post� bm is a reference to matrix no� pos in B � most likely usage is

though in conjunction with the operator���int� on bandmatrix and
indexvector � see bandmatrix�

F const bandmatrix� operator��int	 const

	��� BANDMATRIXVECTOR ��

Use� bm � B�pos�
Pre� 	 � pos � B�Size�� and there is a matrix no� pos�
Post� bm is a reference to matrix no� pos in B � most likely usage is

though in conjunction with the operator���int� on bandmatrix and
indexvector � see bandmatrix�

S void resize�int� const bandmatrix�	

Use� B�resize�add� initial�
Pre� add � 	�
Post� The size of B has been increased o� add and the new elements have

been �lled with copies of initial�

S void resize�int	

Use� B�resize�add�
Pre� add � 	�
Post� The size of B has been increased of add� and no new matrices are

created�
NB� Since there have not been created any new matrices� the user has

to take care to create them before trying to access them through
the operator���int��
This member function does not change the matrices in B in any
way�

F int Size�	 const

Use� s � B�Size��
Pre� None
Post� s is equal to the size of B�

S void Delete�int	

Use� B�Delete�pos�
Pre� 	 � pos � B�Size��
Post� Matrix no� pos has been deleted from B� if one existed� The

elements B�i�� 	 � i � pos are unchanged� the elements that were
accessed through B�i � �� are now in B�i�� pos � i � B�Size���

NB� This member function does not change the previous matrices in any
way�

Protected Characteristics

int size �� The size of the vector�
bandmatrix�� v �� Array of pointers to the matrices�

�
 CHAPTER 	� DATA REPOSITORIES�

Data invariant

v was created with new bandmatrix �size��

��� Agebandmatrix

The class Agebandmatrix is designed to keep agelength keys� both numbers and mean
weights�

Inheritance

class Agebandmatrix

Public messages

Agebandmatrix�int� const intvector�� const intvector�	

Use� Agebandmatrix Ab�Minage� minl� size�
Pre� Minage � 	� minl�Size�� �� size�Size��� all the elements of minl

and size are � 	�
Post� Ab is of type Agebandmatrix� initialized to zero� with the minimum

age Minage� minl�Size�� rows and Minlength given with minl� The
length of the rows is given with size�

Agebandmatrix�int� const popinfomatrix�	

Use� Agebandmatrix Ab�Minage� initial�
Pre� Minage � 	�
Post� Ab is of type Agebandmatrix� with the minimum age Minage and

initialized with a reduced copy of initial � see the constructor for
bandmatrix for details�

Agebandmatrix�int� int� const popinfomatrix�	

Use� Agebandmatrix Ab�Minage� minl� initial�
Pre� Minage � 	� minl � 	�
Post� Ab is of type Agebandmatrix� with the minimum age Minage� min�

inum length minl and initialized with a reduced copy of initial �
see constructor for bandmatrix for details�

Agebandmatrix�int� const popinfoindexvector �	

Use� Agebandmatrix Ab�age� initial�
Pre� age � 	
Post� Ab is of type Agebandmatrix� with only the row age� initialized to

be a copy of initial�

Agebandmatrix�const Agebandmatrix�	

Use� Agebandmatrix Ab�initial�

	�	� AGEBANDMATRIX ��

Pre� None�
Post� Ab is a copy of initial�

Agebandmatrix�	

Use� Agebandmatrix Ab
Pre� None�
Post� Ab is an empty Agebandmatrix�

�Agebandmatrix�	

Use� �Ab
Pre� None�
Post� All memory belonging to Ab has been freed�

F int Minage�	 const

Use� ma � Ab�Minage
Pre� None�
Post� ma has the value of the minimum age in Ab�

F int Maxage�	 const

Use� ma � Ab�Maxage
Pre� None�
Post� ma has the value of the maximum age in Ab�

F int Nrow�	 const

Use� nr � Ab�Nrow��
Pre� None�
Post� nr equals the number of rows in Ab�

C popinfoindexvector� operator��int	

Use� piv � �Ab�age�
Pre� Ab�Minage�� � age � Ab�Maxage��
Post� piv is a reference to the row "age# in Ab�
NB� Of course the usage is more likely to be something like� Ab�age��len�

� pop� where pop is of type popinfo and Ab�Minlength�age� � len

� Ab�Maxlength�age�

F const popinfoindexvector� operator��int	 const

Use� piv � �Ab�age�
Pre� Ab�Minage�� � age � Ab�Maxage��
Post� piv is a reference to the �constant� row "age# in Ab�
NB� Of course the usage is more likely to be something like� pop �

Ab�age��len�� where pop is of type popinfo and Ab�Minlength�age�
� len � Ab�Maxlength�age�

�� CHAPTER 	� DATA REPOSITORIES�

F int Minlength�int	 const

Use� l� Ab�Minlength�age�
Pre� Ab�Minage�� � age � Ab�Maxage��
Post� lis the minimum length of age age in Ab�

F int Maxlength�int	 const

Use� l � Ab�Maxlength�age�
Pre� Ab�Minage�� � age � Ab�Maxage��
Post� lis the maximum length of age age in Ab�

F void Colsum�popinfovector�	 const

Use� Ab�Colsum�Result�
Pre� Result �Size�� � the maxa�Ab�Maxlength�age���
Post� The sum of the rows in Ab has been added to Result� i�e�

P
iAb�i��j�

has been added to Result�j��

S void Multiply�const doublevector�� const

ConversionIndex�	
Use� Ab�Multiply�Ratio� CI�
Pre� CI contains the mapping from Ab to Ratio and CI�TargetIsFiner��

returns 	� All the elements in Ratio are nonnegative �allowing a
small numerical error� though��

Post� The number in each length group in Ab has been multiplied with
the corresponding element in Ratio�

S void Subtract�const doublevector�� const

ConversionIndex�� const popinfovector�	
Use� Ab�Subtract�Consumption� CI� Nrof �
Pre� The same as for Multiply�const doublevector�� const Conversion�

Index��� and Consumption�Size�� � Nrof �Size���
Post� Ab has been multiplied with the vector containing ��

Consumption�i�$Nrof �i��N �and 	 if Nrof �i��N equals 	��
NB� This is well suited for reducing stock size in numbers according to

consumption�

S void Multiply� const doublevector�	

Use� Ab�Multiply�Proportion�
Pre� All the elements of Proportion are � 	�
Post� For each i such that � � i� i � Proportion�Size�� and i �

Ab�Maxage�� � Ab�Minage�� ! �� the number in the age group i

! Ab�Minage�� has been multiplied with Proportion�i��

S void SettoZero�	

Use� Ab�SettoZero��

	�	� AGEBANDMATRIX ��

Pre� None�
Post� Ab has been set to zero�

S void IncrementAge�	

Use� Ab�IncrementAge��
Pre� None�
Post� Ab has shifted every age group upwards of one� keeping the oldest

one in its place and adding to it the one adjacent one� If some
length groups in an age group falls out of length�range when it is
shifted upwards� it is ignored�

S void Grow�const doublematrix�� const doublematrix�	

Use� Ab�Grow�Lgrowth� Wgrowth�
Pre� %%
Post� %%

S void Grow�const doublematrix�� const doublematrix��

Maturity� const� const TimeClass� const� const

AreaClass� const� const LengthGroupDivision� const�

int	
Use� Ab�Grow�Lgrowth� Wgrowth� maturity� TimeInfo� Area� LgrpDiv�

area�
Pre� %%
Post� %%

Protected Characteristics

int minage �� The minimum age�
int nrow �� Number of rows�
popinfoindexvector��v �� Array of pointers to popinfoindexvectors�

Data invariant

v was created with a call to new popinfoindexvector �nrow�

	 CHAPTER 	� DATA REPOSITORIES�

��	 Agebandmatrixvector

The classes Agebandmatrixvector and Agebandmatrix play a center role in the simulati�
on� The format of their member functions lay down the lines for many other classes�

Inheritance

class Agebandmatrixvector

Public messages

Agebandmatrixvector�	

Use� Agebandmatrixvector Av
Pre� None�
Post� Av is an empty Agebandmatrixvector�

Agebandmatrixvector�int	

Use� Agebandmatrixvector Av�size�
Pre� size � 	
Post� Av is of type Agebandmatrixvector� with room for� not containing�

size Agebandmatrices�
NB� Unless further action is taken �using Av�ChangeElement�� the

elements of Av cannot be accessed�
Stat� Not implemented�

Agebandmatrixvector�int� int� const intvector�� const

intvector�	
Use� Agebandmatrixvector Av�size� Minage� minl� len�
Pre� size � 	� Minage � 	� the elements of minl and len are all � 	 and

minl�Size�� �� len�Size���
Post� Av is of type Agebandmatrixvector� containing size Agebandmat�

rices� each of which has the minimum age Minage� minimum length
given with minl and length of the columns with len�

�Agebandmatrixvector�	

Use� �Av
Pre� None�
Post� Memory belonging to Av has been freed� Note the meaning of

"belonging to# here � see resize�int� Agebandmatrix ��

S void ChangeElement�int� const Agebandmatrix�	

Use� Av�ChangeElement�nr� value�
Pre� 	 � nr � Av�Size���
Post� The Agebandmatrix Av�nr� has been deleted� if one existed and

now Av�nr� is a copy of value�

	��� AGEBANDMATRIXVECTOR
�

S void resize�int� Agebandmatrix�	

Use� Av�resize�add� matr�
Pre� add � 	
Post� Av�s size has been increased of add and the extra elements are now

matr�
NB� The extra elements are matr� so behaviour is unde�ned if matr ��

	 and one tries to access the elements where matr is�
This member function may cause errors when Av�s destructor is
called if add � � and the elements have not been changed� because
then matr is deleted more than once� It is the user�s responsibility
to see that this does not happen� either by using this function only
with add �� �� or by changing some or all of the elements� using
Av�ChangeElement�int� const Agebandmatrix��

S void resize�int� int� int� const popinfomatrix�	

Use� Av�resize�add� Minage� minl� matr�
Pre� add � 	� Minage � 	� minl � 	�
Post� Av�s size has been increased of add and the extra elements are now

Agebandmatrices which are reduced copies of matr� only with the
minimum age Minage and minimum length minl�

S void resize�int� int� const intvector�� const

intvector�	
Use� Av�resize�add� Minage� minl� len�
Pre� add � 	� Minage � 	� the elements of minl and len are all � 	 and

minl�Size�� �� len�Size���
Post� Av�s size has been increased of add and the extra elements are

Agebandmatrices with minimum age Minage� minimum length gi�
ven with minl and length of the rows with len� The extra Ageband�
matrices are all initialized to zero�

F int Size�	 const

Use� size � Av�Size��
Pre� None�
Post� size hold the number of elements in Av�

C Agebandmatrix� operator��int	

Use� Av�pos�
Pre�
Post�

F const Agebandmatrix� operator� �int	 const

Use� Av�pos�
Pre�

� CHAPTER 	� DATA REPOSITORIES�

Post�

S void Migrate�const doublematrix�	

Use� Av�Migrate�Migrationmatrix �
Pre� Migrationmatrix is a square matrix� whose dimensions equal

Av�Size���
Post� Av has migrated using Migrationmatrix as a migration matrix�
NB� Descriptions of migration matrices may be found in the �le

description for migration�

int size �� The size of the vector�
Agebandmatrix�� v �� Array of pointers to Agebandmatrices�

Data invariant

v was created with new Agebandmatrix �size��

	�
� BINARYSEARCHTREE
�

��� BinarySearchTree

The class BinarySearchTree is a very simple implementation of a binary search tree� It
does not store duplicates and it does not call destructors for the objects it contains�

It should be implemented as a template� at the moment nodeelem is typedef�ed to
be int�

Inheritance

class TreeNode

Public messages

TreeNode�	

Use� TreeNode T
Pre� None�
Post� T is an empty TreeNode with no left and right siblings�

TreeNode�nodeelem	

Use� TreeNode T�x�
Pre� None�
Post� T is of type TreeNode� containing the value x and has no left or

right sibling�

�TreeNode�	

Use� �T
Pre� None�
Post� The memory belonging to T and its children has been freed� Note

that T�value�s destructor is not called �which is not needed when
nodeelem is typedef�ed to int��

Public Characteristics

nodeelem value �� The content of the node�
TreeNode� left �� Left child�
TreeNode� right �� Right child�

Inheritance

class BinarySearchTree

� CHAPTER 	� DATA REPOSITORIES�

BinarySearchTree�	

Use� BinarySearchTree T
Pre� None�
Post� T is an empty binary search tree�

�BinarySearchTree�	

Use� �T
Pre� None�
Post� All memory belonging to T has been freed� Destructor were not

invoked for the elements of T�

void Insert�nodeelem	

Use� T�Insert�x�
Pre� None�
Post� x has been inserted into T� if it was there not already�

void Delete�nodeelem	

Use� T�Delete�x�
Pre� None�
Post� If x was in T� x has been deleted from T �without calling x�s

destructor��

int IsIn�nodeelem	 const

Use� isin � T�IsIn�x�
Pre� None�
Post� isin equals � if x is in T� else isin is 	�

int IsEmpty�	 const

Use� isempty � T�IsEmpty��
Pre� None�
Post� isempty equals � if T is empty� else 	�

nodeelem DeleteSmallest�	

Use� x � T�DeleteSmallest��
Pre� T is not empty�
Post� x is the previous smallest element of T� it has now been deleted

from T�

Friend functions

� ostream� operator&�ostream�� const BinarySearchTree��

	�
� BINARYSEARCHTREE
�

Private messages

TreeNode� Parent�nodeelem	 const

Use� N � T�Parent�n�
Pre� None�
Post� If x is not in the tree or x is in the root� T is 	� else T one of T�s

siblings contains x�

nodeelem DeleteSmallestRight�TreeNode�	

Use� n � T�DeleteSmallestRight�N�
Pre� T �� 	�
Post� n equals the smallest element in the right child of T�
NB� Pre� and post�conditions are not quite consistent � what if T has

no right child%

void Kill�TreeNode�	

Use� T�Kill�N�
Pre� N �� 	�
Post� N and its subtree has been deleted�

TreeNode� Place�nodeelem� TreeNode�	 const

Use� S � Place�n�N�
Pre� N �� 	
Post� S is the left or right sibling of N� depending on into which subtree

of N x belongs� or S equals N if N�value � x�

Private Characteristics

TreeNode� root �� The root of the tree�

 CHAPTER 	� DATA REPOSITORIES�

Chapter 	

Lengths and conversion�

	�� LengthGroupDivision

This class handles length group divisions� What is the mininum length corresponding to
a length group i% What is the mean length in length group i%

Warning The ��error in the representation of real numbers as double may cause
some problems in this class� especially in the member function NoLengthGroup�double�
of LengthGroupDivision�

Inheritance

class LengthGroupDivision

Public messages

LengthGroupDivision�double� double� double	

Use� LengthGroupDivision L�minlength� maxlength� dl�
Pre� 	 � minlength � maxlength� dl � 	 and dl divides the di�erence

maxlength � minlength�
Post� L is a LengthGroupDivision where the mininum length of the �rst

length group is minlength and the maximum length of the last
length group is maxlength� The length groups are of equal length�
dl�

NB� If dldoes not divide �maxlength � minlength� the error bit in L is
set and no operations on L are de�ned� Use the Error�� member
function to access the error status�

LengthGroupDivision�const LengthGroupDivision�	

Use� LengthGroupDivision L�lgrpdiv�
Pre� None�
Post� L is a copy of lgrpdiv�

�

� CHAPTER �� LENGTHS AND CONVERSION�

LengthGroupDivision�const doublevector�	

Use� LengthGroupDivision L�vec�
Pre� vec�Size�� � �� The elements in vec are all nonnegative and ordered

in a strictly increasing order�
Post� L is a LengthGroupDivision where the mininum length of length

group i is vec�i�� and maximum length vec�i���� 	 � i � vec�Size��
� �� If the preconditions are not met� the error bit is set�

NB� When this constructor is used� it will not be noticed if the length
groups are of even length�

�LengthGroupDivision�	

Use� �L��
Pre� None�
Post� All memory belonging to L has been freed�

F double Meanlength�int	 const

Use� len � L�Meanlength�i�
Pre� � � i � L�NoLengthGroups���
Post� len is the mean length in length group i in L�

F double Minlength�int	 const

Uselen � L�Minlength�i� Pre�� � i � L�NoLengthGroups���
Post� len is the minimum length in length group i in L�

F double Maxlength�int	 const

Use� len � L�Maxlength�i�
Pre� � � i � L�NoLengthGroups���
Post� len is the maximum length in length group i in L�

F double dl�	 const

Use� len � L�dl��
Pre� None�
Post� If L was created with length groups of even length� len is the length

of a length group� Else len is 	�

F int Size�	 const

Use� n � L�Size��
Pre� None�
Post� n equals the number of length groups in L�

F int NoLengthGroups�	 const

Use� n � L�NoLengthGroups��
Pre� None�
Post� n equals the number of length groups in L�

���� LENGTHGROUPDIVISION
�

F int NoLengthGroup�double	 const

Use� no � L�NoLengthGroup�length�
Pre� L�Minlength�	� � � � length � � !

L�Maxlength�L�NoLengthGroups�� � ���
Post� no is the number of the length group such that L�Minlength�no� � �

� length � LMaxlength�no� � �� where � is a small number� if such
a number no exists�
If length is within an distance of � from
L�Maxlength�L�NoLengthGroups�� � �� no equals
L�NoLengthGroups�� � ��
If length does not saitisfy the preconditions� no � ��

S int Combine�const LengthGroupDivision� const	

Use� i�L�Combine�addition�
Pre� L and addition intersect and are the same in the intersection�
Post� L has been changed such that it contains every length group which

is either in L or addition� i is 	 if the preconditions weren�t full�lled�
else ��

NB� This message is currently not fully implemented� It is only fully
safe for lengthgroupdivisions with dl��	�

F int Error�	 const

Use� err � L�Error��
Pre� None�
Post� err is 	 if L is ok� else err equals � and no operation on L is de�ned�

Protected Characteristics

doublevector meanlength �� keeps mean lengths�
int size �� Number of length groups
double Dl �� Length of length groups if equal spacing�
doublevector minlength �� keeps minimum length�
int error �� Error bit�

Details

If the spacing is not equal minlengthkeeps the minimum lengths� else it is empty�

�	 CHAPTER �� LENGTHS AND CONVERSION�

Associated Functions

The error printing functions are useful when creation of LengthGroupDivision failed and
there is the need to print out an fatal error message�

void LengthGroupPrintError�double� double� double�

const char�	
Use� LengthGroupPrintError�minlength� maxlength� dl� str�
Pre� str is a nullterminated string�
Post� An error message has been written to cerr� that creation of a

LengthGroupDivision with minimum length minlength� maximum
length maxlength and interval length dl failed and str is printed as
a string for explanations�

NB� This function is fatal�

void LengthGroupPrintError�double� double� double�

const Keeper� const	
Use� LengthGroupPrintError�minlength� maxlength� dl� keeper�
Pre� keeper �� 	�
Post� Same as for void LengthGroupPrintError�double� double� double�

const char �� except that the string for explanations used here is
keeper�SendString���

NB� This function is fatal�

void LengthGroupPrintError�const doublevector�� const

Keeper� const	
Use� LengthGroupPrintError�breaks� keeper�
NB� To be used for printing error messages when length groups are not

equally spaced�
This function is fatal�

void LengthGroupPrintError�const doublevector�� const

char�	
Use� LengthGroupPrintError�breaks� str�
NB� To be used for printing error messages when length groups are not

equally spaced�
This function is fatal�

���� CONVERSIONINDEX ��

	�� ConversionIndex

This class is for assistance when converting from one length group division to another�
This is done when adding one stock to another� subtracting catch or consumption from
stocks� summing stocks up etc�

Not all of the functions are useful in all cases� Note the preconditions�

Inheritance

class ConversionIndex

ConversionIndex�const LengthGroupDivision� const� const

LengthGroupDivision� const� int � �	
Use� ConversionIndex CI�L�� L�� interp�
Pre� L� and L� are pointers to LengthGroupDivision� interp is � if the

conversionindex is used for interpolation� else 	� If both L��dl��
and L��dl�� return 	� L� is �ner than L�� In all cases L� and L�

have to be comparable� i�e� one has to be �ner than or equal to the
other�

Post� CI contains the mapping from L� to L�� In the description that
follows� L� is Lc and L� is Lf if CI�TargetIsFiner�� equals �� else L�

is Lf and L� is Lc�
NB� Note that c stands for coarser and f for �ner in Lc and Lf�

F int TargetIsFiner�	 const

Use� t � CI�TargetIsFiner��
Pre� None�
Post� t is � if L� is stricktly coarser than L�� else t is 	�

F int Pos�int	 const

Use� P � CI�Pos�j�
Pre� 	 � j � Lf�Size���
Post� P gives the number of the lengthgroup in Lc that lengthgroup j in

Lf corresponds to� Precisely it is the number of the lengthgroup in
Lc that the center of lengthgroup j in Lf is in�

NB� As a consequence of the preconditions in the constructor� all of the
length group j in Lc is contained in a length group in Lc� CI�Pos�j�
is the number of that length group�

F int Minlength�	 const

Use� M � CI�Minlength��

�� CHAPTER �� LENGTHS AND CONVERSION�

Figure ���� Example of Conversion��Pos�

Pre� none
Post� M contains the smallest lengthgroup in Lf that maps to any

lengthgroup in Lc� If any lengthgroups in Lf have lower number
than M then these lengthgroups are below the range of Lc�

Figure ���� Example of Conversion��Minlength and Maxlength�

F int Maxlength�	 const

Use� M � CI�Maxlength��
Pre� none

���� CONVERSIONINDEX ��

Post� M contains the highest lengthgroup in Lf that maps to any
lengthgroup in Lc� If any lengthgroups in Lf have higher number
than M then these lengthgroups are above the range of Lc�

F int Minpos�int	 const

Use� M � CI�Minpos�i�
Pre� 	 � i � Lc�Size�� and CI�SameDl�� � 	�
Post� M gives the lowest lengthgroup in Lf that maps to lengthgroup i

in Lc�

F int Maxpos�int	 const

Use� M � CI�Maxpos�i�
Pre� 	 � i � Lc�Size�� and CI�SameDl�� � 	�
Post� M gives the highest lengthgroup in Lf that maps to lengthgroup i

in Lf�

Figure ���� Example of Conversion��Minpos and Maxpos�

F int Nrof�int	 const

Use� N � CI�Nrof�i�
Pre� 	 � i � Lf�Size��� CI�TargetIsFiner�� � � and CI�SameDl�� � 	�
Post� N gives the number of lengthgroups in Lf that map to the same

lengthgroup in Lc as lengthgroup i in Lf�
NB� Therefore CI�Nrof�i� � CI�Maxpos�CI�Pos�i�� �

CI�Minpos�CI�Pos�i�� ! ��

F int Offset�	 const

Use� O � CI�O�set��

�� CHAPTER �� LENGTHS AND CONVERSION�

Pre� CI is based on two lengthgroupdivisions with the same dl� not equal
to 	 �i�e� CI�SameDl�� � ���

Post� O is an integer such that lengthgroup i � O in L� corresponds to
lengthgroup i in L��

F int SameDl�	 const

Use� S � CI�SameDl��
Pre� none
Post� S is one if and only if L� and L� have the same dl� not equal to 	�

F int InterpPos�int	 const

Use� P � CI�InterpPos�i�
Pre� 	 � i � InterpRatio�i�� CI was created with interp equal to ��
Post� P equals the smallest length group in Lc such that

Lc�Meanlength�P � � Lf�Meanlength�i��

F double InterpRatio�int	 const

Use� R � CI�InterpRatio�i�
Pre� 	 � i � Lf�Size��� CI was created with interp equal to ��
Post� R is equal to %%
NB� This part is used by the program Interp to interpolate from Lc to

Lf using linear interpolation�

F int Nf�	 const

Use� N � CI�Nf��
Pre� None�
Post� N contains the number of lengthgroups in Lf�

F int Nc�	 const

Use� N � CI�Nc��
Pre� none
Post� N contains the number of lengthgroups in Lc�

Protected Characteristics

The protected characteristics have nearly identical names to the public messages so they
will not be described here�

int targetisfiner ��
int samedl ��
int offset ��
int nf ��
int nc ��

���� CONVERSIONINDEX ��

int minlength ��
int maxlength ��
intvector pos ��
intvector nrof ��
intvector minpos ��
intvector maxpos ��
doublevector interpratio ��
intvector interppos ��

Associated Functions

The following functions are among those that use objects of type ConversionIndex� Note
that some of them require the ConversionIndex to map one direction and not the other�
and others do not�

S void popinfovector��Sum�const popinfovector� const�

const ConversionIndex�	
Use� p�Sum�Number� CI�
Pre� Number �� 	� CI contains the mapping between p and vector

Number points to and the length group division of Number has
to be �ner or equal to that of p�

Post� Number has been added to p�
NB� This function is used in Prey��Sum and Grower��Sum� Number is the

number in stock and has to be de�ned with �ner or even resolution
than the length group division corresponding to this

S void PopinfoAdd�popinfoindexvector�� const

popinfoindexvector�� const ConversionIndex�� double

� �	
Use� PopinfoAdd�target� addition� CI� mult�
Use� PopinfoAdd�target� addition� CI�
Pre� CI contains the mapping from addition to target and mult � ��
Post� The value of mult�addition has been added to target�

S void AgebandmSubtract�Agebandmatrix �� const

bandmatrix�� const ConversionIndex�	
Use� AgebandmSubtract�Alkeys� Catch� CI�
Pre� CI contains the mapping from Catch to Alkeys�
Post� The value of Catch has been subtracted from Alkeys�
NB� This function is used to subtract catch directly from a stock� The

length group division of the catch can be �ner� coarser or with even
resolution as the length group division corresponding to Alkeys�
The catch is given as number of �sh in the same units as in Alkeys�

�
 CHAPTER �� LENGTHS AND CONVERSION�

S void AgebandmAdd�Agebandmatrix�� const Agebandmatrix��

const ConversionIndex�� double� int� int	
Use� void AgebandmAdd�Alkeys� addition� CI� Ratio� minage� maxage�
Pre� CI contains the mapping from additionto Alkeys� Ratio� 	�
Post� The part of the intersection of Ratio additionwith Alkeys whose

age is between minage and maxage has been added to Alkeys� �As
usually� that means minage � age � maxage��

NB� This function is used to add one stock to another� The classes in
stock that use this function are Maturity� RenewalData� Initialcond
and Transition� The lengthgroupdivision corresponding to Alkeys

�L�� can be �ner� coarser or with the same resolution as the length
group division of addition�

S void Agebandmatrix��Multiply�const doublevector�� const

ConversionIndex�	
Use� Alkeys�Multiply�Ratio� CI�
Pre� See the documentation of Agebandmatrix�
Post� See the documentation of Agebandmatrix�
NB� Alkeys is multiplied by Ratio� The length group division cor�

responding toRatiomust have less or even resolution than the length
group division corresponding to Alkeys� Used by Agebandmat�
rix��Subtract and AgebandmSubtract�

S void Agebandmatrix��Subtract�const doublevector� �const

ConversionIndex�� const popinfovector�	
Use� Alkeys�Subtract�Consumption� CI� Nrof �
Pre� See the documentation of Agebandmatrix�
Post� See the documentation of Agebandmatrix�
NB� Consumption has been subtracted from Alkeys� The length group

division corresponding to Consumption �L�� has to have even or
less resolution than the length group division corresponding to
this�L���

S void Interp�doublevector�� const doublevector�� const

ConversionIndex�	
Use� Interp�Vf � Vc� CI�
Pre� CI has been created for interpolation and %%%�
Post� %%%

F void CheckLengthGroupIsFiner�const

LengthGroupDivision�� const LengthGroupDivision�� const

char�� const char�	
Use� CheckLengthGroupIsFiner�Lf� Lc� �nername� coarsername�

���� CONVERSIONINDEX ��

Pre� Lf �� 	� Lc �� 	 and �nername and coarsername are nullterminated
strings� assumed to be descriptive names for the objects that the
length group divisions Lf and Lc describe�

Post� If Lf is actually �ner than or equal to Lc� the function returns� else
it aborts and prints error messages on cerr�

�� CHAPTER �� LENGTHS AND CONVERSION�

Chapter

Predator � prey�

��� Overview

The predators introcuded in this section are related as shown in the following picture�

Figure ���� Descendants of Predator�

And the preys are related as follows�

Figure ���� Descendants of Prey�

��

�	 CHAPTER
� PREDATOR � PREY�

��� Suitability

The class Suits keeps suitability data� It allows two forms of suitability data� either
a function and corresponding parameters� or a full suitability matrix� The preys for
which the suitability is given as a function and parameters are called "function preys#
or "FuncPreys# and the other are called "matrix preys# or "MatrixPreys#�

Inheritance

class Suits

Public messages

Suits�	

Use� Suits S
Pre� None�
Post� S is of type Suitability�

�Suits�	

Use� �S
Pre� None�
Post� All memory belonging to S has been freed�

Suits�const Suits�� Keeper� const	

Use� S�initial� keeper�
Pre� keeper �� 	�
Post� S is of type Suits� It has copied all the information from initial

and replaced all the information keeper had on initial with the cor�
responding information for S ' see Keeper��ChangeVariable�const
double�� double���

S void AddPrey�const char�� SuitfuncPtr� const

doublevector�� Keeper� const	
Use� S�AddPrey�preyname� funcptr� Parameters� keeper�
Pre� preyname is a nullterminated string� funcptr is a pointer to a

suitability function� Parameters is a doublevector� containing para�
meters for the function funcptr points to� keeper �� 	�

Post� S has added preyname to its list of FuncPreys� and associated with
it the pointer funcptr and parameters Parameters� S has replaced
the information keeper had on Parameters with that of its internal
objects ' see Keeper��ChangeVariable�const double�� double���

S void AddPrey�const char�� double� const doublematrix��

Keeper� const	

��� SUITABILITY ��

Use� S�AddPrey�preyname� multiplication� suitabilities� keeper�
Pre� preyname is a nullterminated string� multiplication � �� suitabilities

is a nonempty matrix� in which all lines are nonempty� keeper �� 	�
Post� S has added preyname to its list of MatrixPreys and associated the

suitability you get when multiplying suitabilities withmultiplication
to it� S has replaced the information keeper had on multiplication

and suitabilities with that of its internal objects�

S void DeletePrey�int� Keeper� const	

Use� S�DeletePrey�prey� keeper�
Pre� keeper �� 	� 	 � prey � S�NoPreys���
Post� S has deleted its information on the prey prey from itself and keeper�

F int NoPreys�	 const

Use� no � S�NoPreys��
Pre� None�
Post� no is the number of preys S has suitabilities for�

F const char� Preyname�int	 const

Use� preyname � S�Preyname�p�
Pre� 	 � p � S�NoPreys���
Post� preyname points to a nullterminated string containing the name of

S�s prey number p�

S void Reset�const Predator� const	

Use� S�Reset�pred�
Pre� pred �� 	� pred�SetPrey�Preyptrvector�� Keeper � has been called�
Post� S has calculated the suitability pred has for its preys� according to

the information S keeps and S accesses from pred�

F const bandmatrix� Suitable�int	 const

Use� bm � S�Suitable�prey�
Pre� 	 � prey � S�NoPreys�� and S�Reset�const Predator � has been

called since the last call to AddPrey�� and DeletePrey�int� Keeper
const��

Post� bm is a reference to a bandmatrix containing the suitability S keeps
for the prey prey according to the last calculations in S�Reset�const
Predator �� It is indexed with length group in predator and length
group in prey�
bm�Minage�� returns 	�

NB� The matrix bm is on the format of suitability matrices� I�e� no entry
in it is less than 	� If any of the elements was read or calculated to
be less than 	� it is changed to 	�

�� CHAPTER
� PREDATOR � PREY�

Protected messages

S void DeleteFuncPrey�int� Keeper� const	

Use� S�DeleteFuncPrey�prey� keeper�
Pre� keeper �� 	� 	 � prey � S�NoFuncPreys���
Post� S has deleted its information on the FuncPrey prey from keeper and

those objects of S that contain only information on the function�
preys�

S void DeleteMatrixPrey�int� Keeper� const	

Use� S�DeleteMatrixPrey�prey� keeper�
Pre� keeper �� 	� 	 � prey � S�NoMatrixPreys���
Post� S has deleted its information on the MatrixPrey prey from keeper

and those objects of S that contain only information on the matrix�
preys�

Protected Characteristics

charptrvector FuncPreynames �� �funcprey� � names of function preys�
charptrvector MatrixPreynames �� �matprey� � names of matrix preys�

� doublematrix FuncParameters �� �funcprey� � for function preys�
SuitfuncPtrvector FunctionPtrs �� �funcprey� � for function preys�

� doublevector Multiplication �� �matprey� � for matrix preys�
doublematrixptrvectorMatrixSuit �� �matprey��predL��preyl��for matpreys
bandmatrixvector PrecalcSuitability �� �prey�

Data invariant

� The sizes of FuncPreynames� FuncParameters and FunctionPtrs are equal�

� The elements FuncParameters�i� and FunctionPtrs�i� correspond to FuncPreynames�i��

� The sizes of MatrixPreynames� Multiplication and MatrixSuit are all equal�

� The elements Multiplication�i� and MatrixSuit�i� correspond to MatrixPreynames�i��

Details

PrecalcSuitability�i� contains a precalculated suitability matrix for the prey S�Preyname�i��

��� PREDATOR ��

��� Predator

The class Predator is a abstract front end to an object that eats from other classes� Since
this class is abstract� the usage shown is only how we recommend the usage to be in
derived classes� The same applies for the pre� and post�conditions for the pure virtual
functions�
The recommended order of the functions� after the object has been fully initialized is�

� P�Sum�� � � �

� P�Eat�� � � �

� P�AdjustConsumption�� � � �

The thing is that we don�t want Sum�� � � � to have the same arguments for
all derived classes � � � � You have to check with the derived classes�

Inheritance

class Predator � public HasName� public LivesOnAreas

Public messages

Predator�const char�� const intvector�	

Use� Predator P�givenname� areas�
Pre� areas is a nonempty vector whose elements are all unequal and �

	� givenname points to a nullterminated string�
Post� P has the name givenname and is exists on the areas areas�
NB� P has not been fully initialized until P�SetPrey�� � � � and

P�Reset�� � � � have been called�

virtual �Predator�	

Use� �P
Pre� None�
Post� All memory belonging to P has been freed�

S void SetPrey�Preyptrvector�� Keeper� const	

Use� P�SetPrey�preyvec� keeper�
Pre� keeper �� 	� preyvec is a nonempty vector of non�null pointers to

Prey and contains pointers to all the preys of P�
For every prey of P� preyvec has to keep at the most one pointer to
a prey with that name�
�Programmers of derived classes must ensure that they have called
the protected function SetSuitability�� � � ���

�� CHAPTER
� PREDATOR � PREY�

Post� P keeps pointers to its preys� If P had a prey that was not in
preyvec� a warning was given and information on that prey has been
deleted �For programmers� information� using the virtual function
DeleteParametersForPrey�� � � ���
preyvec has not been changed�
P has calculated the suitability for each of the preys found in preyvec
and resized its objects �For programmers� information� using the
virtual function ResizeObjects�� � � ���

NB� It is the users responsibility to guarantee enough lifetime of the
objects pointed to in preyvec� It has to be at least equal to that of
the last call to P�

F int DoesEat�const char�	 const

Use� eats � P�DoesEat�preyname�
Pre� preyname points to a nullterminated string�
Post� eats is � if P has a prey whose name is preyname� else eats is 	�
NB� If this function is called before P�SetPrey�� � � � has been called�

we only know that that P wants to eat preyname if eats is �� If
P�SetPrey�� � � � has been called and eats equals �� we know that P
wants to eat preyname and that it exists�

virtual void Eat�int� double� double	 � �

Use� P�Eat�area� Temperature� AreaSize�
Pre� P is de�ned on the area area� P�Reset�� � � � has been called and

P�Sum�� � � � has been called for the area area� Temperature is the
temperature on that area and AreaSize denotes its size�

Post� P has calculated what it wants to eat on the area and informed its
preys of it through appropriate member functions�

virtual void AdjustConsumption�int	 � �

Use� P�AdjustConsumption�area�
Pre� P lives on the area area� P�Eat�� � � � has been called for the area

area�
Post� P has checked if it was allowed to eat what it wanted of its preys

on the area area� if not� it has made some adjustments�

virtual void Print�ofstream�	 const

Use� P�Print�out�le�
Pre� out�le has no badbits set and P�Reset�� � � � has been called�
Post� P has written internal information to out�le�

virtual const bandmatrix� Consumption�int� const char�	

const � �
Use� bm � P�Consumption�area� preyname�

��� PREDATOR ��

Pre� P is de�ned on the area area and preyname is the name of one of
P�s preys� P�AdjustConsumption�� � � � has been called since last
call to P�Eat�� � � � and P�Sum�� � � � for the area area�

Post� bm is a reference to a bandmatrix indexed by ��undecided predator
index�� ��undecided prey index��� containing the amount eaten in
biomass units by �undecided predator index� of �undecided prey
index� in the prey preyname on area area�
bm�Minage�� returns 	�

virtual const doublevector� Consumption�int	 const � �

Use� vec � P�Consumption�area�
Pre� P lives on the area area and P�AdjustConsumption�� � � � has been

called since last call to P�Eat�� � � � and P�Sum�� � � � for the area
area�

Post� vec is a reference to a vector indexed by �undecided�� containing
the total amount they ate in the area area in biomass units�

virtual const doublevector� OverConsumption�int	 const

� �
Use� vec � P�OverConsumption�area�
Pre� P lives on the area area and P�AdjustConsumption�� � � � has been

called since last call to P�Eat�� � � � and P�Sum�� � � � for the area
area�

Post� vec is a reference to a vector indexed by �undecided�� containing
the overconsumption of P in area area in biomass units�

virtual const LengthGroupDivision�

ReturnLengthGroupDiv�	 const � �
Use� lgrpdiv � P�ReturnLengthGroupDiv��
Pre� None�
Post� lgrpdiv points to the LengthGroupDivision for P�

virtual int NoLengthGroups�	 � �

Use� no � P�NoLengthGroups��
Pre� None�
Post� no keeps the number of length groups in P�

virtual double Length�int	 const � �

Use� l � P�Length�length�
Pre� length is a length group in P� i�e� 	� length� P�NoLengthGroups���
Post� l contains the mean length in length group length�

S virtual void Reset�	

Use� P�Reset��
Pre� P�SetPrey�� � � � has been called�

�
 CHAPTER
� PREDATOR � PREY�

Post� P has �re�calculated its suitability for the preys� �For programmers�
information� This has e�ects on the return value of Suita�
bility�� � � ���

Data invariant

In the protected access messages� all matrices and vectors are ordered the same way as
P�Preyname�� � � �� i�e� in every vector �and matrix� returned from the access functions�
the i�th element contains information for the prey whose name is P�Preyname�i��
The description above applies after P�SetPrey�� � � � has been called�

Protected messages

S virtual void DeleteParametersForPrey�int� Keeper�

const	
Use� P�DeleteParametersForPrey�prey� keeper�
Pre� 	 � prey � P�NoPreys��� keeper �� 	�
Post� P has deleted the information it had on the prey whose name is

P�Preyname�prey� and informed the keeper of it� The elements of
P�Preyname�� � � � which come after prey will be shifted down one
place�
Of course� this function keeps the data invariant concerning
Preyname�� � � ��

NB� This function is called in SetPrey�� � � �� The programmer of a deri�
ved class of this one may want to supply it with a new instance of
this function� one that calls this one and adds its own code in order
to make its keep its data invariants�
Note that this function is called before ResizeObjects�� � � � is
called� I�e� this function resizes objects whose size is set in the
constructor�

S virtual void ResizeObjects�	

Use� P�ResizeObjects��
Pre� P�SetPrey has been called�
Post� P has resized its internal objects�
NB� This function is called at the end of SetPrey�� � � �� The programmer

of a derived class may want to do the same with this function
as DeleteParametersForPrey�� � � �� that is supply the class with a
replacement of this method� one that calls this function and adds
its own code�

S void SetSuitability�const Suitability� const� Keeper�

const	

��� PREDATOR ��

Use� P�SetSuitability�S� keeper�
Pre� S �� �� keeper �� 	� P�SetSuitability�� � � � has not been called before�
Post� P has set its preys and the corresponding suitability to be that of

S� The information keeper had on S has now been replaced with
that of an private object of P�

F int NoPreys�	 const

Use� sz � P�NoPreys��
Pre� P�SetPrey�� � � � has been called�
Post� sz contains the number of P�s preys�

F const char� Preyname�int	 const

Use� preyname � P�Preyname�i�
Pre� � � i � P�NoPreys��
Post� preynamepoints to a nullterminated string� containing the name of

P�s i�th prey�

F Prey� Preys�int	 const

Use� preyptr � P�Preys�i�
Pre� P�SetPrey�� � � � has been called and � � i � P�NoPreys���
Post� preyptr points to the prey whose name is P�Preynames�i��
NB� In this function� there is a const cast away� Any one who can come

up with a better solution is encouraged to do so�
Even though preyptr is not of type const Prey � it does not mean
that a programmer can delete it� In fact he is strictly discoura�
ged from doing so� this const cast away is only made to allow
the programmer to call non�const member functions of Prey within
const functions of Predator� not to allow him to delete the pointers
at wish�

F const bandmatrix� Suitability�int	 const

Use� bm � P�Suitability�i�
Pre� P�Reset�� � � � has been called�
Post� bm is a reference to a bandmatrix� That matrix is indexed with

length group of predator and length group of prey� The name
of the prey� whose matrix of suitabilities is bm is given with
P�Preyname�i��
The matrix bm is not necessarily a square one� If the beginning or
end of lines in it are missing� it is because the calculated suitability
was � 	�

�� CHAPTER
� PREDATOR � PREY�

Friend classes

class Suits�
The class Suits has to access the protected member functions of Predator� NoPreys and
Preys to be able to calculate the suitabilities�

Private Characteristics

Preyptrvector preys �� Pointers to the preys�
Suits� Suitable �� Keeps suitability information�

��� POPPREDATOR ��

��� PopPredator

The class PopPredator is an abstract base class � it is a bit closer to an actual class than
Predator� but not quite enough to be instantiated�
The di�erence between PopPredator and Predator is mainly that in PopPredator it has
been decided how to store the abundance numbers� the consumption and information
concerning length�
This documentation serves two purposes� to explain those member functions that are not
rede�ned in a derived class� so that a user of the derived class can access it somewhere�
and this document has also to be of some assistance to the programmer of derived classes�
This can readily be seen from notes in the class descriptions�

Inheritance

class PopPredator � public Predator

Public messages

PopPredator�const char�� const intvector�� const

LengthGroupDivision� const� const LengthGroupDivision�

const	
Use� PopPredator P�givenname� areas� OtherLgrpDiv� GivenLgrpDiv�
Pre� areas is a nonempty vector whose elements are all unequal and �

	� givenname points to a nullterminated string� OtherLgrpDiv �� 	�
GivenLgrpDiv �� 	� The lenght group division OtherLgrpDiv points
to has to have equal spacing �i�e� OtherLgrpDiv�dl�� �� 	� and
GivenLgrpDiv has to be coarser than or equal to OtherLgrpDiv�

Post� P has the name givenname and is exists on the areas areas� The
length group division of P is given with GivenLgrpDiv and P expects
to receive abundance numbers according to OtherLgrpDiv�
For programmers� information� The conversion index has been set
to convert from OtherLgrpDiv to GivenLgrpDiv�

NB� P has not been fully initialized until P�Reset�� has been called�

virtual �PopPredator�	

Use� �P
Pre� None�
Post� All memory belonging to P has been freed�

virtual void Print�ofstream�	 const

Use� P�Print�out�le�
Pre� out�le has no badbits set and P�Reset�� has been called�
Post� P has written internal information to out�le�

�	 CHAPTER
� PREDATOR � PREY�

C virtual const bandmatrix� Consumption�int� const char�	

const
Use� bm � P�Consumption�area� preyname�
Pre� P is de�ned on the area area and preyname is the name of one of

P�s preys� P�AdjustConsumption�� � � � has been called since last
call to P�Eat�� � � � and P�Sum�� � � � for the area area�

Post� bm is a reference to a bandmatrix indexed by �predLenght�
Group��PreyLengthGroup�� containing the amount eaten by length
groups in P of lengths groups in the prey preyname on area area in
biomass units�

C virtual const doublevector� Consumption�int	 const

Use� vec � P�Consumption�area�
Pre� P lives on the area area and P�AdjustConsumption�� � � � has been

called since last call to P�Eat�� � � � and P�Sum�� � � � for area area�
Post� vec is a reference to a vector indexed by length groups in P� contain�

ing the total amount they ate in the area area in biomass units�

C virtual const doublevector� OverConsumption�int	 const

Use� vec � P�OverConsumption�area�
Pre� P lives on the area area and P�AdjustConsumption�� � � � has been

called for area area since last call to P�Eat�� � � � and P�Sum�� � � � for
area area�

Post� vec is a reference to a vector indexed by length groups in P� contain�
ing the overconsumption of P in area area in biomass units�

F virtual const LengthGroupDivision�

ReturnLengthGroupDiv�	 const
Use� lgrpdiv � P�ReturnLengthGroupDiv��
Pre� None�
Post� lgrpdiv points to a LengthGroupDivision describing P�

F virtual int NoLengthGroups�	

Use� no � P�NoLengthGroups��
Pre� None�
Post� no is equal to the number of length groups in P�

F virtual double Length�int	 const

Use� l � P�Length�length�
Pre� length is a length group in P� i�e� 	� length� P�NoLengthGroups���
Post� l is equal to the mean length in length group length�

S virtual void Reset�	

Use� P�Reset��
Pre� P�SetPrey�� � � � has been called�

��� POPPREDATOR ��

Post� P has called Predator��Reset���
For programmers� information� P has changed consumption� so that
its size is the same as of P�Suitabilities�� � � ��

Protected messages

The protected functions DeleteParametersForPrey�� � � � and ResizeObjects�� � � � are
mere additions to these same functions in Predator�

S virtual void DeleteParametersForPrey�int� Keeper�

const	
Use� P�DeleteParametersForPrey�prey� keeper�
Pre� 	 � prey � P�PreySize��� keeper �� 	�
Post� See Predator��DeleteParametersForPrey�� � � �� This function calls

it� and also updates the protected variables declared in Pop�
Predator�

S virtual void ResizeObjects�	

Use� P�ResizeObjects��
Pre� P�SetPrey�� � � � has been called�
Post� See Predator��ResizeObjects��� This function calls it and also up�

dates the protected variables declared in PopPredator�

Protected Characteristics

LengthGroupDivision�LgrpDiv ��
ConversionIndex� CI �� Conv� betw� int� and ext� lengths�
popinfomatrix Prednumber �� Abundance numbers � �area��predLengthgroup��
doublematrix overconsumption �� � �area��predLengthgroup��
bandmatrixmatrix consumption �� � �area��prey��predLengthgroup��preylengthgr��
doublematrix totalconsumption �� � �area��predLengthgroup��

Details

In the indices above� the maximum range is �inclusive��
area 	 areas�Size�� � �
predLengthGroup 	 LgrpDiv�NoLengthGroups�� � �
prey 	 Preynames���Size�� � �
preyLengthGroup 	 Preys�prey��NoLengthGroups�� � �

However� the actual range can be less �in bandmatrix��

�� CHAPTER
� PREDATOR � PREY�

��� StockPredator

The class StockPredator can be instantiated� It implements eating and has an access
function for the feeding level�

Inheritance

class StockPredator � public PopPredator

Public messages

StockPredator�CommentStream�� const intvector��

const char�� const LengthGroupDivision� const� const

LengthGroupDivision� const� int� int� Keeper� const	
Use� StockPredator P�in�le� areas� givenname� OtherLgrpDiv�

GivenLgrpDiv� minage� maxage� keeper�
Pre� in�le has no badbits set and its format is correct and according to

areas and GivenLgrpDiv� keeper �� 	� minage � maxage� Refer also
to the preconditions for the constructor of PopPredator�

Post� P is of type StockPredator and lives on the areas areas�i� and has
the name givenname� The length group division of P is given with
GivenLgrpDiv and P expects to receive abundance numbers accord�
ing to OtherLgrpDiv� using minage as its minimum age group and
maxage as the maximum age group�

NB� P has not been fully initialized until P�SetPrey�� � � � has been called�

virtual �StockPredator�	

Use� �P
Pre� None�
Post� All memory belonging to P has been freed�

AG virtual void Sum�const Agebandmatrix�� int	

Use� P�Sum�Alkeys� area�
Pre� Alkeys is according to the OtherLgrpDiv received in the constructor

and P is de�ned on the area area�
Post� P has set its abundance numbers on the area area according to

Alkeys� using the part of Alkeys whose age is between minage and
maxage� inclusive�

AG virtual void Eat�int� double� double	

Use� P�Eat�area� Temperature� AreaSize�
Pre� P�SetPrey�� � � � has been called� P is de�ned on the area area�

Temperature is the temperature on that area and AreaSize its size�
Post� P has calculated what it wants to eat on the area and called

AddConsumption�� � � � in its preys�

��� STOCKPREDATOR ��

AG void AdjustConsumption�int	

Use� P�AdjustConsumption�area�
Pre� P lives on the area area� P�Eat�� � � � has been called for the area

area�
Post� P has checked if it was allowed to eat what it wanted of its preys

on area area� if not� it has made some adjustments�

virtual void Print�ofstream�	 const

Use� P�Print�out�le�
Pre� out�le has no badbits set and P�SetPrey�� � � � has been called�
Post� P has written internal information to out�le�

C const bandmatrix� Alproportion�int	 const

Use� bm � P�Alproportion�area�
Pre� P is in area area and P�Eat�� � � � has been called on the area area�
Post� bm�a��l� contains the age�length group �a� l��s proportion in the

predation of the length group l on the area area� i�e�

bm�a��l� � biomasspredatedby�a� l�

biomasspredatedby�l��

C const doublevector� FPhi�int	 const

Use� vec � P�FPhi�area�
Pre� P is in area area and P�AdjustConsumption�� � � � has been called

for the area area�
Post� vec is a reference to a doublevector of length P�NoLenghtGroups��

containing the feeding level on area area�see eq� �	 of Bogstad et�al
��������

C const doublevector� MaxConByLength�int	 const

Use� vec � P�MaxConByLength�area�
Pre� P is in area area and P�AdjustConsumption�� � � � has been called

for the area area�
Post� vec is a reference to a doublevector of length P�NoLengthGroups��

containing P�s maximum consumption on the area area�
NB� Warning %%%

Protected messages

S virtual void ResizeObjects�	

Use� P�ResizeObjects��
Pre�

�� CHAPTER
� PREDATOR � PREY�

Post� P has called PopPredator��ResizeObjects�� � � � and adjusted the size
of its own protected variables�

S virtual void CalcMaximumConsumption�double� int	

Use� P�CalcMaximumConsumption�T � area�
Pre� P is in the area area and T is the temperature on it�
Post� P has calculated the maximum consumption on the area area and

set Alproportion�
NB� Currently� this function is called in the beginning of the member

function Eat�� � � ��

Protected Characteristics

� doublevector Maxconsumption �� Parameters for function�
� double HalfFeedingValue �� Feeding level half value �mass units�km��

doublematrix Phi �� � �area��predLengthgroup��
doublematrix fphi �� Feeding level � �area��predLengthgroup��
bandmatrixvector Alprop �� �area��age��length group�
doublematrix MaxconByLength �� �area��length group�
Agebandmatrixvector Alkeys �� �area��age��length group�

�	� LENGTHPREDATOR ��

��� LengthPredator

The class LengthPredator is for those predators that are only length based�

Inheritance

class LengthPredator � public PopPredator

Public messages

LengthPredator�const char�� const intvector�� const

LengthGroupDivision� const� const LengthGroupDivision�

const	
Use� LengthPredator P�givenname� areas� OtherLgrpDiv� GivenLgrpDiv�
Pre� givenname is a nullterminated string� areas is a nonempty vector

containing unique nonnegative integers� OtherLgrpDiv �� 	 and
GivenLgrpDiv �� 	�

Post� P is a LengthPredator with the name givenname that lives on the
areas areas� Its length group division is given with GivenLgrpDiv

and is expects to communicate through the length group division
OtherLgrpDiv�

virtual �LengthPredator�	

Use� �P
Pre� None�
Post� All memory belonging to P has been freed�

AG virtual void Sum�const popinfovector�� int	

Use� P�Sum�NumberInArea� area�
Pre� NumberInArea is according to the OtherLgrpDiv received in the

constructor and P is de�ned on the area area�
Post� P has set its abundance numbers on the area area according to

NumberInArea�

F double Scaler�int	 const

Use� s � P�Scaler�area�
Pre� None�
Post� s is equal to the scaler used to scale ������

Protected Characteristics

doublevector scaler ��

�
 CHAPTER
� PREDATOR � PREY�

��	 TotalPredator

The class TotalPredator tries to let the total amount eaten on each area be equal to
the biomass received in Sum� distributed on preys and length groups according to the
suitability functions�

Inheritance

class TotalPredator � public LengthPredator

Public messages

TotalPredator�CommentStream�� const char�� const

intvector�� const LengthGroupDivision� const� const

LengthGroupDivision� const� Keeper� const� const char�	
Use� TotalPredator P�in�le� givenname� areas� OtherLgrpDiv�

GivenLgrpDiv� keeper� �nalstring�
Pre� in�le has no badbits set and its �le format is correct� givenname is a

nullterminated string� areas is not a nullvector and its elements are
distinct and � 	� OtherLgrpDiv �� 	� GivenLgrpDiv �� 	� keeper �� 	�
�nalstring is a nullterminated String� See also the documentation
of PopPredator�s constructor�

Post� P has read its information from in�le� P read until the end of
in�le� or until the string �nalstring was read from in�le� in which
case in�le is positioned after the occurence of �nalstring�
P has set its length group division to be that of GivenLgrpDiv and
expects that OtherLgrpDiv describes the length group division of
the objects it receives in the subsequent calls to P�Sum�
P lives on the areas areas�i�� i � �� � � � � areas�Size�� � ��

NB� Beware� In calls to most of the member functions of P where area
is a parameter� P expects that it is one of the areas on which P
lives�

virtual �TotalPredator�	

Use� �P
Pre� None�
Post� All memory belonging to P has been freed�

AG virtual void Eat�int� double� double� double	

Use� P�Eat�area� LengthOfStep� Temperature� AreaSize�
Pre� See the description in the base classes� In addition� LengthOfStep

is equal to the length of the current time step�
Post� See the description in the base classes�

AG virtual void AdjustConsumption�int	

��� TOTALPREDATOR ��

Use� P�AdjustConsumption�area�
Pre� See the description in the base classes�
Post� See the description in the base classes�

virtual void Print�ofstream�	 const

Use� P�Print�out�le�
Pre� out�le has no badbits set and P�SetPrey�� � � � has been called�
Post� P has written internal information to out�le�

�� CHAPTER
� PREDATOR � PREY�

��� LinearPredator

The class LinearPredator is almost identical to TotalPredator� except for a slightly di��
erent call to a constructor and that the amount each length group of the LinearPredator
eats of its preys is proportional to the biomass of that length group received through the
member function Sum�

Inheritance

class TotalPredator � public LengthPredator

Public messages

LinearPredator�CommentStream�� const char�� const

intvector�� const LengthGroupDivision� const� const

LengthGroupDivision� const� Keeper� const� const char��

int � �	
Use� LinearPredator P�in�le� givenname� areas� OtherLgrpDiv�

GivenLgrpDiv� keeper� �nalstring� ShallReadMultiplicative�
Pre� See TotalPredator� ShallReadMultiplicative is either 	 or ��
Post� See TotalPredator� If ShallReadMultiplicative is ommitted or has

the value 	� the postconditions are identical to those of Total�
Predator�
If ShallReadMultiplicative was �� TotalPredator �nishes its reading
from in�le when a multiplicative constant was read and the value
of �nalstring was ommitted�

virtual �LinearPredator�	

Use� �P
Pre� None�
Post� All memory belonging to P has been freed�

virtual void Eat�int� double� double� double	

Use� P�Eat�area� LengthOfStep� Temperature� AreaSize�
Pre� See the description in the base classes� LengthOfStep is equal to

the length of the current time step�
Post� See the description in the base classes�

virtual void AdjustConsumption�int	

Use� P�AdjustConsumption�area�
Pre� See the description in the base classes�
Post� See the description in the base classes�

virtual void Print�ofstream�	 const

�
� LINEARPREDATOR ��

Use� P�Print�out�le�
Pre� out�le has no badbits set and P�SetPrey has been called�
Post� P has written internal information to out�le�

Protected Characteristics

� double Multiplicative ��

�		 CHAPTER
� PREDATOR � PREY�

�� Prey

The class Prey is a abstract front end to some other object� Derived classes should
inform it of abundance through a member function and then it can be eaten through the
member function AddConsumption�� � � ��
Derived classes need to provide a way of informing Prey of its abundance� in the docu�
mentation below that is referred to as the member function P�Sum�� � � �� The functiona�
lity of that member function is described below�

Inheritance

class Prey � public HasName� public LivesOnAreas

Public messages

Prey�CommentStream�� intvector� const char�� Keeper�

const	
Use� Prey P�in�le� areas� givenname� keeper�
Pre� in�le has no badbits set� its format is correct and according to areas�

which is a nonempty intvector whose elements are � 	 and unique�
givenname is a nullterminated string and keeper �� 	�

Post� P is of type Prey and has read its information from in�le� It is
de�ned on the areas areas�i�� i � �� � � � � areas�Size�� � � and its
name is givenname�

NB� The initialization of P is not complete until P�SetCI�� � � � has been
called�

Prey�const doublevector�� const intvector�� const

char�	
Use� Prey P�lengths� areas� givenname�
Pre� lengths�Size�� � 	� the elements of lengths are unique and in ascend�

ing order� givenname is a nullterminated string and the elements
of areas are unique and � �� areas�Size�� � 	�

Post� P is of type Prey whose length group division has its endpoints in
lengths�i�� i � �� � � � � lengths�Size�� � ��

NB� The initialization of P is not complete until P�SetCI�� � � � has been
called�

virtual �Prey�	 � �

Use� �P
Pre� None�
Post� All memory belonging to P has been freed�
NB� The destructor is declared pure virtual in order to make Prey an

abstract class� The destructor is still provided�

��� PREY �	�

AG void Subtract�Agebandmatrix�� int	

Use� P�Subtract�Alkeys� area�
Pre� P is in area area� P�SetCI�� � � � has been called and Alkeys is accord�

ing to the LengthGroupDivision received there�
Post� P has subtracted the amount eaten of P on area area from Alkeys�

The mean weights in Alkeys are unchanged�

AG void AddConsumption�int� const doubleindexvector �	

Use� P�AddConsumption�area� predconsumption�
Pre� P�SetCI�� � � � has been called� predconsumption is consistent with

the length group division of P�
Post� P has added predconsumption to the consumption of P on area area�

where predconsumption is taken to be in biomass units�

S void SetCI�const LengthGroupDivision� const	

Use� P�SetCI�OtherLgrpDiv�
Pre� P�SetCI�� � � � has not been called before� OtherLgrpDiv �� 	�

OtherLgrpDiv�dl�� �� 	 and OtherLgrpDiv is �ner than or equal
to P�s length group division�

Post� P is fully initialized� When receiving information on numbers or
when subtracting amount eaten� P will assume that the objects
received are divided into length groups according to OtherLgrpDiv�

virtual void Print�ofstream�	 const

Use� P�Print�out�le�
Pre� P�SetCI�� � � � has been called�
Post� P has written internal information to out�le�

F double Biomass�int� int	 const

Use� b � P�Biomass�area� length�
Pre� P is de�ned on the area area� length is a length group of P and

P�Sum�� � � � has been called for the area area�
Post� b contains the biomass of length group length in P on area area�

F double Biomass�int	 const

Use� b � P�Biomass�area�
Pre� P is de�ned on area area and P�Sum�� � � � has been called for area

area�
Post� b contains the biomass of P on the area area�

F int TooMuchConsumption�int	 const

Use� t � P�TooMuchConsumption�area�
Pre� P is de�ned on the area area and P�CheckConsumption�� � � � has

been called for area area�

�	� CHAPTER
� PREDATOR � PREY�

Post� t is � if the consumption of P in area area exceeded the number of
P in that area in any length group�

AG void CheckConsumption�int	

Use� P�CheckConsumption�area�
Pre� P is de�ned on the area area and P�Sum�� � � � has been called for

area area�
Post� P has checked whether the consumption of P� received through

P�AddConsumption�� � � � since last call of P�Sum�� � � � for area area�
exceeds the population of P on area area�

F double Ratio�int� int	 const

Use� r � P�Ratio�area� length�
Pre� P is de�ned on area area� P�CheckConsumption�� � � � has been cal�

led for area areasince last calls to P�AddConsumption�� � � � and
P�Sum�� � � � for area area� and length is a length group in P�

Post� r equals the ratio between the consumption that P received through
AddConsumption�� � � � since last call to P�Sum�� � � � and the pop�
ulation of P� received through last call of P�Sum�� � � �� on area area
and in length group length�

F double Length�int	 const

Use� l � P�Length�j�
Pre� j is a length group in P�
Post� l is the mean length of length group j in P�

F int NoLengthGroups�	 const

Use� no � P�NoLengthGroups��
Pre� None�
Post� no is the number of length groups in P�
NB� This function determines whether a number length is a valid length

group in P or not� It is if 	 � length � P�NoLengthGroups���

C const doublevector� Bconsumption�int	 const

Use� dv � P�Bconsumption�area�
Pre� P�CheckConsumption�� � � � has been called since the last call to

either P�Sum�� � � � or P�AddConsumption�� � � � for area area and P
lives in the area area�

Post� dv is a reference to a vector of length P�NoLengthGroups�� � in dv�i�
is the predation in biomass units on length group i in P on area
area�

C const doublevector� OverConsumption�int	 const

Use� dv � P�OverConsumption�area�

��� PREY �	�

Pre� P�CheckConsumption�� � � � has been called since last call to either
P�Sum�� � � � or P�AddConsumption�� � � � for area area�

Post� dv is a reference to a vector of length P�NoLengthGroups�� and in
dv�i� is the overconsumption of length group i in P on area area�

F const LengthGroupDivision� ReturnLengthGroupDiv�	 const

Use� lgrpdiv � P�ReturnLengthGroupDiv��
Pre� None�
Post� lgrpdiv points to a LengthGroupDivision that describes P�s length

group division�

Details

The preconditions here above might seem a bit confusing at �rst� However� they are just
to ensure that complete nonsense is not produced when calling the member functions�
Let P be a fully initialzed object of type Prey� then the sequence of the informative and
consumptions functions should be�
P�Sum�NumberInArea�area�
P�AddConsumption�area� predconsumption�
P�CheckConsumption�area�
As the name suggests� there may of course be several calls to P�AddConsumption�� � � ��
Now the following member function calls make sense�
P�TooMuchConsumption�area�
P�Ratio�area� length�
P�OverConsumtion�area�

Protected messages

S void InitializeObjects�	

Use� P�InitializeObjects��
Pre� None�
Post� P has initialized the size of its objects�

Protected Characteristics

ConversionIndex� CI �� Conversion �see SetCI�� � � �
LengthGroupDivision�LgrpDiv �� The length group division�
popinfomatrix Number �� Number and weight of prey�
doublematrix biomass �� Biomass of prey in Area� �area��length��
doublematrix ratio �� Ratio eaten hopefully � 	� �area��length��

�	� CHAPTER
� PREDATOR � PREY�

doublematrix consumption �� Consumption of prey� �area��length��
intvector tooMuchConsumption �� Set if any lengthgr is overconsumed in area�
doublevector total �� Total biomass of prey in the area�
doublematrix overconsumption �� Indexed with �area��lengthgroup��

Details

The matrices biomass� Number� ratio and consumption are indexed with �area��length
group��
CI converts from OtherLgrpDiv to LgrpDiv�
The member function Sum�� � � � should�

� Set tooMuchConsumption� overconsumption and consumption to 	�

� Set Number� biomass and total�

��� LENGTHPREY �	�

���� LengthPrey

The class LengthPrey is meant for those preys that are only length based�

Inheritance

class LengthPrey � public Prey

Public messages

LengthPrey�CommentStream�� intvector� const char��

Keeper� const	
Use� LengthPrey P�in�le� areas� givenname� keeper�
Pre� in�le has no badbits set� its format is correct and according to areas�

which is a nonempty intvector whose elements are � 	 and unique�
givenname is a nullterminated string and keeper �� 	�

Post� P is of type LengthPrey and has read its information from in�le�
It is de�ned on the areas areas�i�� i � �� � � � � areas�Size�� � � and its
name is givenname�

NB� The initialization of P is not complete until P�SetCI�� � � � has been
called�

LengthPrey�const doublevector�� const intvector�� const

char�	
Use� LengthPrey P�lengths� areas� givenname�
Pre� See the documentation of the base class�
Post� P is of type LengthPrey whose length group division has its endpo�

ints in lengths�i�� i � �� � � � � lengths�Size�� � ��
NB� The initialization of P is not complete until P�SetCI�� � � � has been

called�

�LengthPrey�	

Use� �P
Pre� None�
Post� All memory belonging to P has been freed�

AG void Sum�const popinfovector�� int	

Use� P�Sum�NumberInArea� area�
Pre� P is in area area� P�SetCI�� � � � has been called and NumberInArea

is according to the LengthGroupDivision received there�
Post� P has set its population in the area area to NumberInArea�

�	
 CHAPTER
� PREDATOR � PREY�

���� StockPrey

The class StockPrey is a interface for preys that are divided by age and length� It also
provides access functions to compute the e�ects of the predation on the age groups�

Inheritance

class StockPrey � public Prey

Public messages

StockPrey�CommentStream�� const intvector�� const

char�� int� int� Keeper� const	
Use� StockPrey P�in�le� areas� givenname� minage� maxage� keeper�
NB� Refer to the documentation of Prey� except for minage and maxage�

The preconditions are that � � minage � maxage� The postconditi�
ons include that P is of type StockPrey� with minimum age equal
to minage and maximum age equal to maxage� both included�

StockPrey�const doublevector�� const intvector�� int�

int� const char�	
Use� StockPrey P�lengths� areas� minage� maxage� givenname�
Pre� lengths is in strictly ascending order� lengths�Size�� � �� Refer to

the other constructor for the other parameters�
Post� P�s length group division is given with lengths� Refer otherwise to

the other constructor�

virtual �StockPrey�	

Use� �P��
Pre� None�
Post� All memory belonging to P has been freed�

AG virtual void Sum�const Agebandmatrix�� int	

Use� P�Sum�Alkeys� area�
Pre� P is in the area area and Alkeys is according to the length group

division received in SetCI�� � � ��
Post� P has set its population to be that of Alkeys �using only that age

groups of Alkeys whose age is between minage and maxage� both
included�

C const Agebandmatrix� AlkeysPriorToEating�int	 const

Use� alk � P�AlkeysPriorToEating�area�
Pre� P�Sum�� � � � has been called for the area area�

���� STOCKPREY �	�

Post� alk is a reference to an Agebandmatrix� containing the age�length
keys of P as received in the last call to P�Sum�� � � � for area area�
divided to length groups according to P�s length group division�

virtual void Print�ofstream�	 const

Use� P�Print�out�le�
NB� Refer to the documentation of Prey�

Protected Characteristics

Agebandmatrixvector Alkeys �� The population

Details

Alkeys contains the population as received in P�Sum�� � � �� divided into length groups
according to P�s length group division�

�	� CHAPTER
� PREDATOR � PREY�

���� Notes on Predator�

How to avoid the restriction of length based eating�
Change Predator in the following way�

� Delete the member function ReturnLengthGroupDiv���

� Insert the member functions double Minlength�int� and double Maxlength�int��
which return the minimum and maximum lengths of group i� �Note� the frase
"length group i# was not used here� but "group i#��

� Allow Predator to be somehow divided into groups� each of which has its minimum
and maximum length� not restrict the group division to being a length group
division�

� Change the name of the function NoLengthGroups�� to NoGroups���

This requires hardly any changes in PopPredator or Prey� Some changes are� however�
needed in the aggregator classes PredatorAggregator and PredOverAggregator�
PopPredator could continue to implement eating based on length groups since it does
that fast� using LengthGroupDivision and ConversionIndex� However� a new derived
class from Predator could now be made� one that implements this new strategy of division
of predators� It could be used to implement age dependent eating habits�

���� EATING FUNCTIONS � DETAILS �	�

���� Eating functions � details

This sections describes how the amount a predator eats of its preys is calculated in the
member function Eat of Predator�
In what follows�
prey will be a prey�
pred a �xed predator�
l a length group in prey�
L a length group of the predator in question�
S�l� L� prey� the suitability of length group l in prey as food for length group L of the
predator�
Nprey�l� the number of length group l of prey�
Wprey�l� the mean weight of length group l of prey�
Npred�L� the number of length group L of pred�
Wpred�L� the mean weight of length group L of pred�
��l� L� prey� 	� S�l� L� prey� �Nprey�l�Wprey�l��
Note In the multispecies litterature� there is often used the concept other food to
designate� loosely speeking� "everything that is too small to be modelled#� Here that is
incorporated into the class OtherFood which is also a prey� so that other food is actually
contained in the description that follows�

TotalPredator

The TotalPredator tries to let the total amount eaten of its preys to be Npred�L�Wpred�L��
This means that the amount eaten of length group l of a prey prey is

Npred�L�Wpred�L���l� L� prey�P
prey�l ��l� L� prey�

�

LinearPredator

The relationship between the amount each length group of LinearPredator eats and its
biomass is linear� i�e� the amount each length group L of pred wants to eat of a length
group l of a prey prey is

c �Npred�L�Wpred�L���l� L� prey��

where c is a constant�

StockPredator

De�ne

f�L� 	�

P
l�prey ��l� L� prey�P

l�prey ��l� L� prey� � A � E�
�

��	 CHAPTER
� PREDATOR � PREY�

where E� is a constant and A is the size of the area in question� The amount length
group L of pred eats of length group l of prey is then

Npred�L�Hpred�L� T �f�L�
��l� L� prey�

P
l�prey ��l� L� prey�

�

where T is the temperature of the area andH is a function� calledmaximum consumption�
The function f is often called feeding level�

Chapter �

Catch�

�� CatchData

The class CatchData reads matrices from �le� describing the catch of various species� It
can then be used to access these matrices�

Inheritance

class CatchData � protected LivesOnAreas� protected HasName

Public messages

CatchData�CommentStream�� const char�� const AreaClass�

const� const TimeClass� const	
Use� CatchData CD�in�le� givenname� Area� TimeInfo�
Pre� The format of in�le is correct� givenname is a nullterminated string�

Area �� 	� TimeInfo �� 	�
Post� CD is of type CatchData� It has copied the value of givenname and

considers that to be its name� It has read information from in�le�
using information from Area and TimeInfo�

�CatchData�	

Use� �CD
Pre� None�
Post� All memory belonging to CD has been freed�

F int FindStock�const Stock�	

Use� t � CD�FindStock�stock�
Pre� stock is not a nullpointer�
Post� If CD associates itself with the object pointed to by stock� t is �� else

found is �� To determine the association� CD compares its name
with that of stock�s� using partial match�

���

��� CHAPTER �� CATCH�

F const LengthGroupDivision� ReturnLengthGroupDiv�	 const

Use� lgrpdiv � CD�ReturnLengthGroupDiv��
Pre� None�
Post� lgrpdiv points to a LengthGroupDivision describing the catch data

matrices CD keeps�

F const bandmatrix� GetCatch�int� const TimeClass� const	

const
Use� bmptr � CD�GetCatch�area� TimeInfo�
Pre� TimeInfo �� �� The current time in TimeInfo is within the period

got from TimeInfo in the constructor�
Post� bmptr points to a bandmatrix CD has for the catch in the area area

on the current time if CD has one� else bmptr is 	�
Note that if bmptr �� 	� bmptr�Minage�� does not have to equal 	�

Protected Characteristics

LengthGroupDivision�LgrpDiv �� Describes the matrices�
bandmatrixptrmatrix Catchmatrix �� ��area��time�
int numberofstocks �� How many share the matrices�

Details

The vector areas contains the areas for which catch is kept� In Catchmatrix�a��t� is the
catch for the area areas�a� on the timestep t� Note that � � t � TimeInfo�NoTimeSteps���
If numberofstocks �� �� the values in Catchmatrix were divided with numberofstocks

in the constructor�

���� CATCH ���

�� Catch

The class Catch is a front to CatchData� Each instance of Catch links to a CatchData
and retrieves the catch from it�

Inheritance

class Catch

Public messages

Catch�CatchData�	

Use� Catch C�CD�
Pre� CD �� 	�
Post� C is of type Catch and it will get all its information from CD� Note

that the lifetime of CD has at least to equal that of C� It is the
users responsibility to delete CD�

NB� C has not been fully initialized until C�SetCI�const LengthGroup�
Division const� has been called�

�Catch�	

Use� �C
Pre� None�
Post� All memory belonging to C has been freed�

F void Subtract�Agebandmatrix�� int� const TimeClass�

const	
Use� C�Subtract�Alkeys� area� TimeInfo�
Pre� C�SetCI�const LengthGroupDivision const� has been called and

Alkeys is according to the LengthGroupDivision received in
SetCI�const LengthGroupDivision const�� TimeInfo �� 	 and the
current time in TimeInfo does is within the period CD got when it
was created�

Post� If C found any catch data for the area area and current time� it was
subtracted from Alkeys�

F const bandmatrix� GetCatch�int� const TimeClass� const	

const
Use� bmptr � C�GetCatch�area� TimeInfo�
Pre� The current time in TimeInfo is within the period CD got at creati�

on time�
Post�

S void SetCI�const LengthGroupDivision� const	

Use� C�SetCI�GivenLDiv�

��� CHAPTER �� CATCH�

Pre� GivenLDiv �� 	 and C�SetCI�const LengthGroupDivision const�
has not been called before�

Post� C assumes that the Agebandmatrices it receives will be according
to GivenLDiv�

Protected Characteristics

doublevector Ratio �� ���
ConversionIndex� CI �� Conversion�
CatchData� Catchdata �� To get matrices from�

Details

CI is for converting from the length group division got from CD to the LengthGroupDi�
vision received in SetCI�const LengthGroupDivision const��

Chapter �

Stock and supplamentary�

���� Transition

This class moves an agegroup of one stock to another stock on a given step� If the latter
one has birthday on that step� the age of the agegroup is incremented of ��

Inheritance

class Transition � protected LivesOnAreas

Public messages

Transition�CommentStream�� const intvector�� int� int�

int� Keeper� const	
Use� Transition T�in�le� areas� age� minl� size�keeper�
Pre� areas�Size�� � 	� age � 	� minl � 	� size � 	� keeper �� 	� in�le has

no badbits set and its format is correct�
Post� T has read the name of transition stock from in�le and the transiti�

on step� T can only be called with the parameter area as one of the
elements of areas� Every parameter of type Agebandmatrix must
have a agegroup whose age is age in calls to T�

�Transition�	

Use� �T
Pre� None�
Post� All memory belonging to T has been freed�

S void SetCI �const LengthGroupDivision� const	

Use� T�SetCI�GivenLDiv�
Pre� GivenLDiv �� 	 and T�SetStock has been called�
Post� T is ready to move to transition stock� All Agebandmatrix�es recei�

ved are assumed to be according to GivenLDiv�

���

��
 CHAPTER �� STOCK AND SUPPLAMENTARY�

S void SetStock�Stockptrvector� 	

Use� T�SetStock�stockvec�
Pre� In stockvec there is one and only one pointer to a stock whose name

is the name of the transition stock associated with T�
Post� T has a pointer to its transition stock� A warning message is printed

if transition stock is not de�ned on all the areas that T received in
the constructor�

AG void KeepAgegroup�int� Agebandmatrix�� const TimeClass�

const	
Use� T�KeepAgegroup�area� Alkeys� TimeInfo�
Pre� See the constructor regarding area and Alkeys� TimeInfo �� 	 and

T�SetCI�const LengthGroupDivison const� has been called�
Post� If transition stock is not de�ned on area area� nothing is done� If

TimeInfo�CurrentStep�� equals the transition step in T� Alkeys�s
agegroup age is set to zero and its previous values are kept in T� Else
nothing is done� �Here� age is the parameter in the constructor��

AG void MoveAgegroupToTransitionStock�int� const

TimeClass�� int	
Use� T�MoveAgegroupToTransitionStock�area� TimeInfo� HasLgr�
Pre� See constructor regarding area� TimeInfo �� 	 and

T�SetCI�const LengthGroupDivison const� has been called�
T�KeepAgegroup�� � � � has been called�

Post� If transition stock is not de�ned on area area� nothing is done� If
TimeInfo�CurrentStep�� equals the transition step in T the values
last received in KeepAgegroup�� � � � are added to transition stock
according to the rules described below� Else nothing is done�
If the transition stock has birthday on the current step� the addition
to it is made a year older� else the age of the addition is not changed�
If HasLgr is 	� the addition is just a regular one� made through
Stock��Add�� � � �� If HasLgr is �� the addition is made through
Stock��Renewal�� � � �� using the number in the �rst length group in
the last call to KeepAgegroup�� � � � as the stock abundance number�

void Print�ofstream�	 const

Use� Print�out�le� const
Pre� T�SetCI�const LengthGroupDivison const� has been called�
Post� T has written internal status information to out�le�

���� TRANSITION ���

Protected Characteristics

int TransitionStep �� The step on which movements are possible�
char� TransitionStockName �� Name of target stock�
Stock � TransitionStock �� Pointer to target stock�
Agebandmatrixvector Agegroup �� Data repository�
ConversionIndex� CI �� For conversion when moving to TransitionStock�
int age �� The age of the age group�

Data invariant

� If TransitionStock �� 	� TransitionStock�Name�� �� TransitionStockName�

Details

Transition only works with one agegroup� its age is age�

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

���� NaturalM

This simple class is to keep the natural mortality rates�

Inheritance

class NaturalM

Public messages

NaturalM�CommentStream�� int� int� const TimeClass�

const� Keeper� const 	
Use� NaturalM NM�in�le� minage� maxage� TimeInfo� keeper�
Pre� in�le has no error bits set and its format is correct� 	 � minage �

maxage� TimeInfo �� 	� keeper �� 	�
Post� NM has read natural mortality rates from in�le for the period got

from TimeInfo�

F const doublevector� ProportionSurviving�const

TimeClass� const	 const
Use� mort � NM�ProportionSurviving�TimeInfo� const
Pre� The current year and step are within the period read in the

constructor�
Post� Inmort�i� there is the proportion of the population of age i�minage

that� on the time given with TimeInfo� dies accoring to the natural
mortality rates read in the constructor�

S void ReCalc�	

Use� NM�ReCalc��
Pre� None�
Post� NM has recalculated all the proportions that are returned in

ProportionSurviving�

void Print�ofstream� 	

Use� Print�out�le�
Pre� None�
Post� NM�s internal information has been written to out�le�

Protected Characteristics

� doubleindexvector mortality �� Natural mortality rates�
doublematrix proportion �� The proportion that dies�
doublevector lengthofsteps �� The length of the steps

���� NATURALM ���

Details

proportion is indexed with �step����age�minage� and lengthofsteps with �step����

��	 CHAPTER �� STOCK AND SUPPLAMENTARY�

���� InitialCond

Inheritance

class InitialCond

Public messages

InitialCond�CommentStream�� const intvector�� Keeper�

const	
Use� InitialCond IC�in�le� area� keeper�
Pre� in�le has no badbits set and its format is correct� keeper �� 	�
Post� IC has read data from in�le and associates it with the elements of

area�
NB� When receiving Agebandmatrixvectors� IC will assume that it is

de�ned on all the areas in area�

�InitialCond�	

Use� �IC
Pre� None�
Post� Memory belonging to IC has been freed�

S void Initialize�Agebandmatrixvector�	 const

Use� IC�Initialize�Alkeys�
Pre� IC�SetCI�const LengthGroupDivison const� has been called and

the size of Alkeys is consistent with that call� and Alkeys�Size��
equals areas�Size���

Post� Alkeys has been initialized according to the information read in the
constructor�

S void SetCI�const LengthGroupDivision� const	

Use� IC�SetCI�GivenLDiv�
Pre� GivenLDiv �� 	�
Post� IC is ready to initialize�
NB� When initializing� IC� will assume that Agebandmatrixvectors

received will be according to GivenLDiv�

void Print�ofstream�	 const

Use� IC�Print�out�le�
Pre� SetCI�const LengthGroupDivison const� has been called�
Post� Internal information in IC has been written to out�le�

���� INITIALCOND ���

Protected Characteristics

LengthGroupDivision�LgrpDiv �� Corresponds to read data�
ConversionIndex� CI �� Conversion between read data and target�
Agebandmatrixvector AreaAgeLength �� Data for initialization�
doublematrix Distribution �� Data for initialization � not used�

� doubleindexvector agemultiple �� Multiplication by age�
intvector areas �� The areas to which read data is associated�

Details

For length group l of an age group a on area i� the initial stock size is set to be agem�
ultiple�a� AreaAgeLength�i��a��l��

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

���� Migration

Objects that migrate can use this class to read and access the migration matrices�

Inheritance

class Migration � protected LivesOnAreas

Public messages

Migration�CommentStream�� int� const intvector�� const

AreaClass� const� const TimeClass� const� Keeper�

const	
Use� Migration M�in�le� AgeDepMig� areas� Area� TimeInfo� keeper�
Pre� in�le has no badbits set and its format is correct� Area �� 	�

TimeInfo �� 	� keeper �� 	� AgeDepMig is 	 if M is not age depend�
ent� � if it is�

Post� M has read from in�le the information found for the period in
question �based on TimeInfo��

NB� When calling member functions taking TimeClass as a parameter�
the time must be within the period got from TimeInfo in the
constructor�

�Migration�	

Use� �M��
Pre� None�
Post� All memory belonging to M has been freed�

F const doublematrix� Migrationmatrix�const TimeClass�

const� int � �	
Use� migmatrixptr � �M�Migrationmatrix�TimeInfo� age�
Use� migmatrixptr � �M�Migrationmatrix�TimeInfo�
Pre� TimeInfo�CurrentTime�� must be within the period received from

TimeClass in the constructor� If M was created with age dependent
migration� migration matrices for age must have been read from
in�le�

Post� migmatrixptr points to the migration matrix M keeps for the cur�
rent time �according to TimeInfo� � and agegroup age if M is age
dependent�

S void MigrationRecalc�	

Use� M�MigrationRecalc��
Pre� None�
Post� M has recalculated its migration matrices� If an error occurs� the

error bit is set�

���� MIGRATION ���

NB� See the description of the protected member function AdjustMigL�
istAndCheckIfError�MigrationList�� to see when the error bit mig�
ht be set�

F void Error�	 const

Use� err � M�Error��
Pre� None�
Post� err equals � if an error occurred in the last call to

M�MigrationRecalc and then the migration matrices received from
M may be unusable� If no error occurred in the last call to Migrati�
onRecalc� err equals 	�

S void Clear�	

Use� M�Clear��
Pre� None�
Post� M�Error�� now returns 	�

void Print �ofstream�	 const

Use� M�Print�out�le�
Pre� out�le has no error bits set�
Post� M has written internal information to out�le�

Protected Characteristics

int AgeDepMigration �� Depends migration on age�
intmatrix MatrixNumbers �� Numbers of matrices used�
MigrationList ReadMigList �� Matrices read from �le�
MigrationList CalcMigList �� Precalculated matrices�

� VariableInfoptrvectorOptInfo �� Info about variables�
� doublevector OptVariables �� Values of variables�

int error �� internal error status�
intmatrix ages �� Used if migration is agedependent�
intvector AgeNr �� Used if migration is agedependent�

Protected messages

S void CopyFromReadToCalc�	

Use� M�CopyFromReadToCalc��
Pre� None�
Post� M has copied the values in ReadMigList to CalcMigList�

S void AdjustMigListAndCheckIfError�MigrationList�	

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

Use� M�AdjustMigListAndCheckIfError�MigList�
Pre� None�
Post� If all elements of every matrix in MiglList were � 	 and the sum of

every column in every matrix in MigList was �� the error bit in M
is not set� If these conditions are not ful�lled� it may� however� be
set�
A possible strategy might be to

� take some action if a element of a migration matrix is � 	�

� scale the columns of the migration matrices so their sum
equals �� set the error bit if this is not possible �i�e� the
sum equals 	��

d and the action taken if an element xi�j is � 	 could be one of�

� replace xi�j with �xi�j

� replace xi�j with 	

� set the error bit and return�

Private messages

S void ReadNoMigrationMatrices�CommentStream�� const

TimeClass� const� Keeper� const	
Use� this�ReadNoMigrationMatrices�in�le� TimeInfo� keeper�
NB� This function is called in the constructor to read from in�le� It

reads the numbers of the migration matrices that are to be used in
the period got from TimeInfo�

S void ReadOptVariables�CommentStream�� intvector��

Keeper� const	
Use� this�ReadOptVariables�in�le� novariables� keeper�
NB� This function is called in the constructor to read from in�le� It

reads information on the migration variables�
Pre� novariables is an empty vector�
Post� thishas read information on the migration variables from in�le

and put it in OptVariables� novariables contains the num�
bers of the variables read from in�le� I�e� novariables�Size�� �
OptVariables�Size�� and the variable novariables�i� had the value
OptVariables�i��

���� MIGRATION ���

S void ReadCoefficients�CommentStream�� const AreaClass�

const� Keeper� const	
Use� this�ReadCoe(cients�in�le� Area� keeper�
NB� This function is called in the constructor to read from in�le� It

reads additions to the migration matrices�
Pre�
Post� The vector OptInfo has been set� The areas read from in�le were

converted to the inner areas of this�

S void CheckInfoAndDelete�intvector�� Keeper� const	

Use� this�CheckInfoAndDelete�novariables� keeper�
NB� This function should only be called once� It is currently called from

within the constructor�
Pre� novariables should be the same vector as in the call to

this�ReadOptVariables and so should keeper�
Post� thishas checked if all the migration variables that were read

in ReadOptVariables�� � � � cover the coe(cients read in Rea�
dCoe(cients�� � � � and emitted error messages if not� Also� all
the migration variables that were read but not needed have been
deleted from this�
The references to the numbers of migration variables in OptInfo

have been changed from the numbers read from �le to inner num�
bers that are sequential� starting in 	�
I�e�� now OptInfo�i��coe(cients�j� is the coe(cient for the variable
whose value is kept in OptVariables�OptInfo�i��indices�j���

Details

� If migration is age dependent� all the ages that use the same migration matrices
are in ages�i�� else ages is empty�

� MatrixNumbers keeps numbers of matrices used� If migration is age dependent� the
number of the migration matrix for the ages in ages�i� is in MatrixNumbers�i��t��
else in MatrixNumbers����t�� where t is between � and TimeInfo�TotalNoSteps��
! �� inclusive�

� ReadMigList�i� is a pointer to matrix no� i� if it was read and is needed �meaning
that it will be used in the simulation�� Else ReadMigList�i� equals ��

��
 CHAPTER �� STOCK AND SUPPLAMENTARY�

���� Grower

The class Grower calculates the growth of a population and updates it accordingly�

Inheritance

class Grower � public LivesOnAreas

Public messages

Grower�CommentStream�� const LengthGroupDivision�

const� const LengthGroupDivision� const� const

intvector�� const TimeClass� const� Keeper� const	
Use� Grower G�in�le� OtherLgrpDiv� GivenLgrpDiv� areas� TimeInfo�

keeper�
Pre� in�le has no badbits set and its format is correct� OtherLgrpDiv

�� 	� GivenLgrpDiv �� 	� areas is not empty and all its elements
are unique and � 	� TimeInfo �� 	 and keeper �� 	� The length
group division OtherLgrpDiv points to has to have equal spacing
�i�e� OtherLgrpDiv�dl�� �� 	� and GivenLgrpDiv has to be coarser
or equal to OtherLgrpDiv�

Post� G is of type Grower and has read its information from in�le� G will
work on the length group division determined by GivenLgrpDiv and
expects to communicate through the length group division given
by OtherLgrpDiv� G lives on the areas in areas� In the member
functions where area is a parameter� it has to be one of the elements
of areas�

�Grower�	

Use� �G
Pre� None�
Post� All memory belonging to G has been freed�

AG void GrowthCalc�int� const AreaClass� const�

const TimeClass� const� const doublevector�� const

doublevector�	
Use� G�GrowthCalc�area� Area� TimeInfo� feeding� consumption�
Pre� G was de�ned for the area area� Area �� 	� TimeInfo

�� 	 and feeding�Size�� and consumption�Size�� equal to
GivenLgrpDiv�NoLengthGroups��� G�Sum has been called for the
area area�

Post� G has calculated the growth on the area area� using feeding as
the feeding level and consumption as the consumption in biomass
units�

NB� Call G�GrowthImplement�� � � � to �nish growth calculations�

���� GROWER ���

AG void GrowthCalc�int� const AreaClass� const� const

TimeClass� const	
Use� G�GrowthCalc�area� Area� TimeInfo�
Pre� G was de�ned for the area area� Area �� 	 and TimeInfo �� 	� G�Sum

has been called for the area area�
Post� Has the same e�ects as calling G�GrowthCalc�area� Area� TimeInfo�

feeding� consumption�� with feeding and consumption containing on�
ly 	�

AG void GrowthImplement�int� const popinfovector�� const

LengthGroupDivision� const	
Use� G�GrowthImplement�area� NumberInArea� LgrpDiv�
Pre� G is de�ned for the area area� LgrpDiv �� 	� G�GrowthCalc has

been called for the area area� NumberInArea most likely should
be the same as in the call to G�Sum�� � � �� and LgrpDiv the same as
OtherLgrpDiv�

Post� G has �nished its growth calculations on the area area�

AG const doublematrix� LengthIncrease�int	 const

Use� dm � G�LengthIncrease�area�
Pre� G is de�ned on the area area and G�GrowthImplement has been

called for the area area�
Post� dm is a reference to a doublematrix containing the length

increase G calculated on the area area in the last call to
G�GrowthImplement�� � � �� dm�g��l� is the proportion of length
group l that is to move to length group l � g�

AG const doublematrix� WeightIncrease�int	 const

Use� dm � G�WeightIncrease�area�
Pre� G is de�ned on the area area and G�GrowthImplement�� � � � has

been called for the area area�
Post� dm is a reference to a matrix containing the weight increa�

se G calculated on the area area in the last call to
G�GrowthImplement�� � � �� dm�g��l� is the weight increase �positi�
ve or negative� of the part of the population in length group l that
is to move to length group l � g�

AG void Sum�const popinfovector�� int	

Use� G�Sum�NumberInArea� area�
Pre� G is de�ned on the area area and NumberInArea contains the pop�

ulation of the area area�
Post� G keeps the information on the population for future use�

void Print�ofstream�	 const

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

Use� G�Print�out�le�
Pre� out�le has no badbits set�
Post� G has written internal information to out�le�

S void Reset�	

Use� G�Reset��
Pre� None�
Post� G has reset its internal status � i�e� cleared all previous values

�useful in conjunction with Grower��Print��

Protected Characteristics

LengthGroupDivision�LgrpDiv ��
popinfomatrix GrEatNumber �� The population
ConversionIndex� CI �� Conversion�
doublematrix InterpLgrowth �� Length increase � �area��LengthGroup�
doublematrix InterpWgrowth �� Weight increase � �area��LengthGroup�
doublematrix CalcLgrowth �� Length increase � �area��LengthGroup�
doublematrix CalcWgrowth �� Weight increase � �area��LengthGroup�
doublematrixptrvectorlgrowth �� � �area��LengthGroup��growth�
doublematrixptrvectorwgrowth �� � �area��LengthGroup��growth�
doublevector Fphi �� Not used���
GrowthImplementparameters�GrIPar ��
GrowthCalcBase� growthcalc �� Pointer to growth function�

��	� GROWTHIMPLEMENTPARAMETERS ���

���� GrowthImplementparameters

The class GrowthImplementparameters is a supplamentary class when calculating the
growth�
The class is only a simple data repository as can be seen from the member functions �
they are only access functions to protected data�

Inheritance

class GrowthImplementparameters

Public messages

GrowthImplementparameters�CommentStream�	

Use� GrowthImplementparameters GI�in�le�
Pre� The format of in�le is correct and in�le has no badbits set�
Post� GI is of type GrowhImplementparameters�

void Print�ofstream�	 const

Use� GI�Print�out�le�
Pre� out�le has no badbits set�
Post� GI has written internal information to out�le�

F int Maxlengthgroupgrowth�	 const

Use� m � GI�Maxlengthgroupgrowth��
Pre� None�
NB� m is taken to be the maximum growth� measured in number of

length groups�

F double Resolution�	 const

Use� r � GI�Resolution��
Pre� None�

F double Power�	 const

Use� b � GI�Power��
Pre� None�

F const doublematrix� Distribution�	 const

Use� dm � GI�Distribution��
Pre� None�
Post� dm is a reference to a matrix with GI�Maxlengthgroupgrowth��

columns�
NB� dm�i� is expected to be the distribution of the length increase� given

that the mean length increase is i�GI�Resolution���

��	 CHAPTER �� STOCK AND SUPPLAMENTARY�

Protected Characteristics

double power ��
double resolution ��
int maxlengthgroupgrowth ��
double maxmeangrowth ��
doublematrix distribution ��

���� GROWTHCALC ���

���	 GrowthCalc

The classes derived from the abstract base class GrowthCalcBase are only wrappers
around growth functions� They handle the reading from �le and the possible precalculati�
ons and de�ne the interface to the growthfunction� i�e� the member function GrowthCalc�

Inheritance

class GrowthCalcBase � protected LivesOnAreas

Public messages

GrowthCalcBase�const intvector�	

Use� GrowthCalcBase G�areas�
Pre� areas is a nonempty vector� containing nonnegative unique integers�
Post� G is of type GrowthCalcBase and is de�ned on the areas areas�

virtual �GrowthCalcBase�	

Use� �G
Pre� None�
Post� All memory belonging to G has been freed�

virtual void GrowthCalc�int� doublevector��

doublevector�� const popinfovector�� const AreaClass�

const� const TimeClass� const� const doublevector��

const LengthGroupDivision� const	 const � �
Use� G�GrowthCalc�area� Lgrowth� Wgrowth� GrEatNumber� Area�

TimeInfo� Fphi� Consumption� LgrpDiv�
Pre� G is de�ned on the area area� Lgrowth�Size�� � Wgrowth�Size��

� GrEatNumber�Size�� � Fphi�Size�� � Consumption�Size�� �
LgrpDiv�NoLengthGroups��� Area �� 	 TimeInfo �� 	 and LgrpDiv
�� 	

Post� G has calculated the length increase and weight change for the area
area� using GrEatNumber as information on the population� Fphi
as the feeding level and LgrpDiv as the length group division of the
population�

Inheritance

class GrowthCalcA � public GrowthCalcBase

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

Public messages

GrowthCalcA�CommentStream�� const intvector�� Keeper�

const	
Use� GrowthCalcA G�in�le� areas� keeper�
NB� G contains the Multspec growthfunction�

�GrowthCalcA�	

Use� �G

A virtual void GrowthCalc����	

Use� G�GrowthCalc�� � � �

Protected Characteristics

int NumberOfGrowthConstants ��
� doublevector Growthpar ��

Inheritance

class GrowthCalcB � public GrowthCalcBase

Public messages

GrowthCalcB�CommentStream�� const intvector�� const

TimeClass� const� const LengthGroupDivision� const�

Keeper� const	
Use� GrowthCalcB�in�le� areas� TimeInfo� LgrpDiv� keeper�
NB� B has read the growth from in�le�

�GrowthCalcB�	

Use� �G

A virtual void GrowthCalc����	

Use� G�GrowthCalc�� � � �

Protected Characteristics

doublematrixptrvectorlgrowth �� �area��timestep��length��group�
doublematrixptrvectorwgrowth �� �area��timestep��length��group�

���� GROWTHCALC ���

Inheritance

class GrowthCalcC � public GrowthCalcBase

Public messages

GrowthCalcC�CommentStream�� const intvector�� Keeper�

const	
Use� GrowthCalcC G�in�le� areas� keeper�
NB� G contains the van Bertanlanfy growth function�

�GrowthCalcC�	

Use� �G

A virtual void GrowthCalc����	

Use� G�GrowthCalc�� � � �

Protected Characteristics

int NumberOfWGrowthConstants��
int NumberOfLGrowthConstants��

� doublevector WGrowthpar ��
� doublevector LGrowthpar ��

doublevector Wref ��

Inheritance

class GrowthCalcD � public GrowthCalcBase

Public messages

GrowthCalcD�CommentStream�� const intvector�� const

LengthGroupDivision� const� Keeper� const	
Use� GrowthCalcD G�in�le� areas� LgrpDiv� keeper�
NB� G contains a growth function based on R� Jones�

�GrowthCalcD�	

Use� �G

A virtual void GrowthCalc����	

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

Use� G�GrowthCalc�� � � �

Protected Characteristics

int NumberOfWGrowthConstants��
int NumberOfLGrowthConstants��

� doublevector Wgrowthpar ��
� doublevector Lgrowthpar ��

doublevector Wref ��

Inheritance

class GrowthCalcE � public GrowthCalcBase

Public messages

GrowthCalcE�CommentStream�� const intvector�� Keeper�

const	
Use� GrowthCalcE G�in�le� areas� keeper�
NB� G contains the van Bertanlanfy growth function with additional

year� step and area e�ects�

�GrowthCalcE�	

Use� �G

A virtual void GrowthCalc����	

Use� G�GrowthCalc�� � � �

Protected Characteristics

int NumberOfWGrowthConstants��
int NumberOfLGrowthConstants��

� doublevector WGrowthpar ��
� doublevector LGrowthpar ��

doublevector Wref ��
doublevector YearEffect ��
doublevector StepEffect ��
doublevector AreaEffect ��

��
� MATURITY ���

���� Maturity

The class Maturity is an abstract base class� It should take care of transitions from an
immature stock to mature stocks� Derived classes specify further the nature of these
transactions� the time of the year� the proportion of the immature that becomes mature
etc�

Inheritance

class Maturity � protected LivesOnAreas

Public messages

Maturity�	

Use� Maturity M
Pre� None�
Post� M is of type Maturity�
NB� Not implemented�

Maturity�const intvector�� int� const intvector�� const

intvector�� const LengthGroupDivision�	
Use� Maturity M�areas� minage� minabslength� size� LgrpDiv�
Pre� areas is a non�empty vector of unique positive integers� minage �

	� minabslength�Size�� �� size�Size��� The vector size is not empty
and contains only positive integers� minabslength contains non�
negative integers� LgrpDiv �� 	�

Post� M is of type Maturity� It lives on the areas areas� its minimum age
is minage� the mininum number of length group for age group a is
minabslength�a�minage� and the number of length groups for that
age group is size�a�minage�� M assumes the length group division
of the population it receives to be according to LgrpDiv�

NB� M is not fully functional until SetStock�Stockptrvector�� has been
called�

virtual �Maturity�	

Use� �M
Pre� None�
Post� All memory belonging to M has been deleted�

S void SetStock�Stockptrvector�	

Use� M�SetStock�stockvec�
Pre� stockvec is a non�empty vector of unique non�null pointers� It

contains pointers to the mature stocks that M is associated with�
Post� M keeps pointers to the mature stocks� it is associated with�

��
 CHAPTER �� STOCK AND SUPPLAMENTARY�

virtual void Print�ofstream�	 const

Use� M�Print�out�le�
Pre� M�SetStock�Stockptrvector�� has been called and out�le has no

badbits set�
Post� M has printed internal information to out�le�

S virtual void Precalc�	

Use� M�Precalc��
Pre� M�SetStock�Stockptrvector�� has been called�
Post� M has done the precalculations of maturity ratio it can�
NB� It is quite plausible that derived classes require this function to be

called after Keeper��Update�const doublevector�� has been called�

virtual int IsMaturationStep�int� const TimeClass�

const	 � �
Use� is � M�IsMaturationStep�area� TimeInfo�
Pre� TimeInfo �� 	�
Post� is equals � if these is any probability of the immature stock becom�

ing mature on the current time step and area�

virtual double MaturationProbability�int� int� int�

const TimeClass� const� const AreaClass� const� int	 �

�
Use� r � M�MaturationProbability�age� length� Growth� TimeInfo� Area�

Area�
Pre� M�Precalc has been called� TimeInfo �� 	� Area �� 	� minage � age

� minage ! minabslength�Size�� where minage and minabslength

are from the call to the constructor� M lives on the area area �see
the constructor documentation��

Post� r contains the proportion that becomes mature of immature �sh of
age age� in the length group length that is to grow Growth at the
current step on the area area�

AG virtual int PutInStorage�int� int� int� double� double�

const TimeClass� const	
Use� M�PutInStorage�area� age� length� number� weight� TimeInfo�
Pre� M�IsMaturationStep�area� TimeInfo� equals �� See Maturation�

Probability for the parameters area� age� length and TimeInfo�
number � 	� weight � 	�

��
� MATURITY ���

Post� M keeps the numbers number and weight for the age�length group
�age� length� on the area area� It overwrites any previous informati�
on for that age�length group on that area� These numbers will then
be used as stock numbers and mean weights of the population that
is to be moved to the mature stocks when Move is called� assuming
they have not been overwritten before then�
If iskept �� �� iskept equals 	� and nothing has been done�

AG virtual void Move�int� const TimeClass� const	

Use� M�Move�area� TimeInfo�
Pre� M lives on the area area and TimeInfo �� 	�
Post� M has added to the mature stocks the immature population that is

to be added to it on the current timestep on the area area�

Protected Characteristics

charptrvector NameOfMatureStocks �� Set by derived classes�
doublevector Ratio ��
Stockptrvector MatureStocks �� Pointers to MatureStocks�
ConversionIndexptrvectorCI �� Convert betw� immature and mature�
LengthGroupDivision�LgrpDiv �� The length group division�

Data invariant

� Before SetStock�Stockptrvector�� has been called� Ratio�i� is the proportion of the
population of the immature stock that moves to the mature stock NameOfMatureStocks�i��

� After SetStock�Stockptrvector�� has been called� Ratio�i� is the proportion of the
population of the immature stocks that moves to the mature stock pointed to in
MatureStocks�i��

� After SetStock�Stockptrvector�� has been called CI�i� is a pointer to a Conversion�
Index that converts from the immature stock to the mature stock MatureStocks�i��

� NameOfMatureStocks�i� is either 	 or a nullterminated string� created with new
char����

Details

Derived classes should set Ratio and NameOfMatureStocks before any member function
of M is called� They should not need to change the vectors CI and MatureStocks� M
should do that itself in SetStock�Stockptrvector���

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

Private Characteristics

Agebandmatrixvector Storage �� Keeps immature waiting to be mature�

��� MaturityA

The class MaturityA implements growth dependent maturity� The probability that imm�
ature �sh of length l and age a to become mature is�

�

��M

dM

dt

where

M�l�t�� a�t�� �
�

� � e����l�t���a�t�

is the maturity ogive�
Pre� and postconditions are often omitted in the description below� in which case the
reader should refer to the documentation of the base class�

Inheritance

class MaturityA � public Maturity

Public messages

MaturityA�CommentStream�� const TimeClass� const�

Keeper� const� int� const intvector�� const intvector��

const intvector�	
Use� MaturityA M�in�le� TimeInfo� keeper� minage� minabslength� size�

areas�
Pre� in�le has no badbits set and its format is correct� TimeInfo �� 	�

keeper �� 	� see the documentation of Maturity for explanations and
the precoditions of minage� minabslength� size and areas�

Post� M is of type MaturityA�

virtual �MaturityA�	

Use� �M��
Pre� None�
Post� All memory belonging to M has been freed�

S virtual void Precalc�	

Use� M�Precalc��

F virtual int IsMaturationStep�int� const TimeClass�

const	

���� MATURITYB ���

Use� t � M�IsMaturationStep�area� TimeInfo�

F virtual double MaturationProbability�int� int� int�

const TimeClass� const� const AreaClass� const� int	
Use� r � M�CalcMaturationRatio�age� length� Growth� TimeInfo� Area�

area�

virtual void Print�ofstream�	

Use� M�Print�out�le� const

Protected Characteristics

bandmatrix PrecalcMaturation ��
� doublevector Coefficients �� �� �� �

Details

Since

��M �
e����l��a

� � e����l��a

we obtain that

dM

dt
�

�M

�l

dl

dt
�
�M

�a

da

dt

� ��
dl

dt
� 	

da

dt
�

e����l��a

�� � e����l��a��

� ��
dl

dt
� 	

da

dt
����M�M

Here we regarded age as continous in time� not a step function� Therefore

�

��M

dM

dt
� ��

dl

dt
� 	

da

dt
�M�

so we precalculate M and keep in PrecalcMaturation�

����� MaturityB

The class MaturityB implements annual maturity� It can use several functions to calcula�
te the proportion that becomes mature�
Pre� and postconditions are often omitted in the description below� in which case the
reader should refer to the documentation of the base class�

��	 CHAPTER �� STOCK AND SUPPLAMENTARY�

Inheritance

class MaturityB � public Maturity

Public messages

MaturityB�CommentStream�� const TimeClass� const�

Keeper� const� int� const intvector�� const intvector��

const intvector�	
Use� M�MaturityB�in�le� TimeInfo� keeper� minage� minabslength� size�

areas�

virtual �MaturityB�	

Use� �M

virtual void Print�ofstream�	 const

Use� M�Print�out�le�

S virtual void Precalc�	

Use� M�Precalc��

F virtual int IsMaturationStep�int� const TimeClass�

const	
Use� t � M�IsMaturationStep�area� TimeInfo�

F virtual double MaturationProbability�int�int�int� const

TimeClass� const� const AreaClass� const� int	
Use� M�MaturationProbability�age� length� Growth� TimeInfo� Area�

area�

Protected Characteristics

const int maturitytype ��
intvector maturitystep �� When to become mature�
doublevector maturitylength �� Maturity by length�

����� SPAWNER ���

����� Spawner

The class Spawner handles the spawning process which may include mortality and weig�
htloss�

Inheritance

class Spawner � protected LivesOnAreas

Public messages

Spawner�CommentStream�� int� int� const AreaClass�

const� const TimeClass� const� Keeper� const	
Use� Spawner S�in�le� minage� maxage� Area� TimeInfo� keeper�
Pre� in�le has no error bits set and its format is correct� 	 � minage

� maxage� Area �� 	� TimeInfo �� 	� keeper �� 	� The information
in in�le is given for the age groups from minage to maxage� both
included�

Post� S has read its information from in�le and can handle the spawning
process�

A void Spawn �Agebandmatrix�� int� const AreaClass�

const� const TimeClass� const	
Use� S�Spawn�Alkeys� area� Area� TimeInfo�
Pre� area � 	� Area �� 	� TimeInfo �� 	�
Post� If S handles spawning actions on the area area and spawning takes

place on the current time step� S has changed the age groups in
Alkeys whose age is between minage and maxage� inclusive� accord�
ing to the e�ects of the spawning �spawning mortality and weight�
loss��

Protected Characteristics

intindexvector Spawningstep �� �age�
doubleindexvector Spawningratio �� �age�

� double Spawningmortality ��
doubleindexvector SpawningmortalityPattern�� �age�

� double Spawningweightloss ��
doubleindexvector SpawningweightlossPattern�� �age�
double Eggproduction �� Not used�
doublevector EggproductionPattern �� Not used�

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

Details

The spawning mortality used for age group a is Spawningmortality�SpawningmortalityPattern�a��
similar for weight loss in the spawning�

����� RENEWALDATA ���

����� Renewaldata

This class is meant to handle some of the additions to Stock�

Inheritance

class RenewalData � protected LivesOnAreas

Public messages

Renewaldata�CommentStream�� const intvector�� const

AreaClass� const� const TimeClass� const� Keeper�

const	
Use� Renewaldata R�in�le� areas� Area� TimeInfo� keeper�
Pre� in�le has no error bits set and its format is correct� Area �� 	�

TimeInfo �� 	� keeper �� 	� areas�Size�� contains unique nonnegative
integers�

Post� R has read information from in�le for the period obtained from
TimeInfo and expects area in the consequent calls to be one of the
elements of areas�

�Renewaldata�	

Use� �R
Pre� None�
Post� All memory belonging to R has been freed�

S void SetCI�const LengthGroupDivision� const	

Use� R�SetCI�GivenLDiv�
Pre� GivenLDiv �� 	�
Post� R is ready to add to Agebandmatrix�es�
NB� R assumes that GivenLDiv describes the length group division of

all Agebandmatrix�es received�

S void Addrenewal�Agebandmatrix� �int� const TimeClass�

const �double � �	
Use� R�Addrenewal�Alkeys� area� TimeInfo� Ratio�
Use� R�Addrenewal�Alkeys� area� TimeInfo�
Pre� R�SetCI�� � � � has been called and Alkeys is consistent with that

call� Ratio � 	� Unless R�Reset�� has been called since last call to
R�Addrenewal�� � � �� the current time in TimeInfo has to be greater
than or equal to the current time in the TimeClass in the last call
to R�Addrenewal�� � � ��

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

Post� The renewal data R for area area and the current time has been
added to Alkeys� if one was read when R was created� Else nothing
is done� If Ratio �� 	 and the read number for the renewal data is 	
�see �le format description�� Ratio was regarded as a multiplicative
factor to the length distribution R added to Alkeys� If read number
and Ratio both equal to 	� nothing is done� and also if read number
and Ratio are both di�erent from 	�

NB� Using Ratio �� 	 is a way of transforming from a Stock with no
length group division to one that has one� using a predetermined
length distribution� Then the number R read when created must
be 	�
Warning When using this function with Ratio �� 	� all the length
distributions with number equal to 	 are multiplied with Ratio and
added to Alkeys�

void Print�ofstream�	 const

Use� R�Print�out�le�
Pre� R�SetCI�� � � � has been called�
Post� R has written internal information to out�le�

S void Reset�	

Use� R�Reset��
Pre� None�
Post� R has reset its internal information� so that current time in the

next call to R�Addrenewal�� � � � does not have to be greater than
or equal to the current time in the last call to R�Addrenewal�� � � ��

Protected Characteristics

intvector RenewalTime �� times when renewal takes place�
intvector RenewalArea �� areas on which renewal takes place�
Agebandmatrixvector Distribution �� Lengths and mean weights for renewal�

� doublevector Number �� Total stock numbers�
int Minr �� Used when searching for renewal data�
int Maxr �� Used when searching for renewal data�
ConversionIndex� CI �� Converting between read data and target�
LengthGroupDivision�LgrpDiv �� Describes renewal data�

Details

� The elements of the vector RenewalTime are in the are in the same order as when
they were read at creation time�

����� RENEWALDATA ���

� For the time RenewalTime�i�� further information is in RenewalArea�i�� Number�i�
and Distribution�i��

� When Number�i� is not 	� it is considered a multiplicative factor to the length
distribution in Distribution�i� �See Addrenewal�� � � � for further information��

� Minr and Maxr are set in the constructor and used in Addrenewal�� � � � only� They
are reset to their initial values in Reset���

Data invariant

In the end of each call to Addrenewal�� � � �� RenewalTime�Maxr�� TimeInfo�CurrentTime��
or � RenewalTime�Maxr� �� TimeInfo�CurrentTime�� and Maxr �� RenewalTime�Size��
� ���

��
 CHAPTER �� STOCK AND SUPPLAMENTARY�

����� Stock

The class Stock is capable of doing many things as can easily be seen from the access
functions doeseat� doesmigrate� iseaten� � � �

Inheritance

class Stock � public BaseClass

Public messages

Stock�CommentStream�� const char�� const AreaClass�

const� const TimeClass� const� Keeper� const	
Use� Stock S�in�le� givenname� Area�TimeInfo� keeper�
Pre� in�le has no error bits set and its format is correct� so is the format

of all of its sub�les� givenname is a nullterminated string� Area ��
	� TimeInfo �� 	� keeper �� 	�

Post� S has been created and has read information for the period of time
obtained from TimeInfo�

NB� In all calls to member functions of S� the current time of TimeClass
must be within the period obtained from TimeInfo at the point of
creation� Also� current time must be increasing in calls to S� it may
never decrease between subsequent calls�
In every member function where area is a parameter� it has only
e�ect to S �and perhaps other objects� on that area� This is usually
not mentioned in the postconditions�
S read from in�le on which areas it is de�ned� That can be accessed
through the function BaseClass��IsInArea�int��
To initialize S� the functions SetCatch�CatchDataptrvector��� Set�
Stock�Stockptrvector�� SetCI�� and Reset�� must be called� Fur�
thermore� if S is eaten its Prey has to be initialized� and if S eats
the Predator has to be initialized�

virtual �Stock�	

Use� �S��
Pre� None�
Post� Memory belonging to S has been freed�

AG virtual void CalcNumbers�int� const AreaClass� const�

const TimeClass� const	
Use� S�CalcNumbers�area� Area� TimeInfo�
Pre� S is de�ned on area area� S has been initialized�
Post� S is ready to grow and eat�

����� STOCK ���

AG void ReducePop�int� const AreaClass� const�const

TimeClass� const	
Use� S�ReducePop�area� Area� TimeInfo�
Pre� S is de�ned on area area� Area �� 	� TimeInfo �� 	 and S has been

initialized�
Post� If S is eaten� its population has been reduced accordingly� if it is

caught� the catch has been subtracted� Deaths caused by natural
mortality have been subtracted�

NB� Action if predation or catch exceeds size of S�

AG void Grow�int� const AreaClass� const� const TimeClass�

const	 � �
Use� S�Grow�area� Area� TimeInfo�
Pre� S is de�ned on area area and S has been initialized�
Post� If S grows� it has calculated its growth and updated its lengths and

mean weights on the area area�

virtual void FirstSpecialTransactions�int� const

AreaClass� const� const TimeClass� const	
Use� S�FirstSpecialTransactions�area� Area� TimeInfo�
Pre� S is de�ned on area area� Area �� 	� TimeInfo �� 	 and S has been

initialized�
Post� If S spawns� spawning has been calculated�

virtual void SecondSpecialTransactions�int� const

AreaClass� const� const TimeClass� const	
Use� S�SecondSpecialTransactions�area� Area� TimeInfo�
Pre� S is de�ned on area area� Area �� 	� TimeInfo �� 	 and S has been

initialized�
Post� Maturity movements on the area are �nished� If there is any renewal

in S� it has been added on the area�

AG virtual void FirstUpdate�int� const AreaClass�

const�const TimeClass� const	
Use� S�FirstUpdate�area� Area� TimeInfo�
Pre�
Post� First part of age related update on area area is �nished� i�e� if S

moves to another stock� subtraction for the area is �nished�

AG virtual void SecondUpdate�int� const AreaClass�

const�const TimeClass� const	
Use� S�SecondUpdate�area� Area� TimeInfo�
Pre� S�FirstUpdate has been called for the area area on the current time

step�
Post� Age has been updated on area area�

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

AG virtual void ThirdUpdate�int� const AreaClass�

const�const TimeClass� const	
Use� S�ThirdUpdate�area� Area� TimeInfo�
Pre� S�SecondUpdate has been called for the area area on the current

time step�
Post� Last part of age related update on area area is �nished� i�e� if S

moves to another stock� the transition on the area is �nished�

S void Renewal�int� const TimeClass� const� double � �	

Use� S�Renewal�area� TimeInfo� ratio�
Pre� S is de�ned on area area� TimeInfo �� 	 and S has been initialized�
Post� Renewal for the current time and area has been added to S�
NB� This function should be in a di�erent scope � protected�

A void Add�const Agebandmatrix�� const ConversionIndex�

const� int� double � �� int � �� int � ���	
Use� S�Add�Addition� CI� area� ratio� MinAge� MaxAge�
Pre� CI points to a ConversionIndex converting from Addition to

S�AgeLengthkeys��� S is de�ned on area area�
Post� Addition has been added to the population of S on area area�
NB� Needs expl� of param� ratio� MinAge and MaxAge�

S virtual void Migrate�const TimeClass� const	

Use� S�Migrate�TimeInfo�
Pre� TimeInfo �� 	�
Post� If S migrates� it has done so�

AG virtual void CalcEat�int� const AreaClass� const� const

TimeClass� const	
Use� S�CalcEat�area� Area� TimeInfo�
Pre� S is de�ned on area area� Area �� 	� TimeInfo �� 	 and S has been

initialized� If S eats� CalcNumbers�� � � � must have been called on
the current timestep�

Post� If S eats� its predation has been calculated� else nothing was done�

AG virtual void CheckEat�int� const AreaClass� const�

const TimeClass� const	
Use� S�CheckEat�area� Area� TimeInfo�
Pre� S�CalcEat�area� Area� TimeInfo� has been called�
Post� If S eates� it has checked whether it could eat the amount it wanted

to of its preys� else nothing was done�

AG virtual void AdjustEat�int� const AreaClass� const�

const TimeClass� const	
Use� S�AdjustEat�area� Area� TimeInfo�

����� STOCK ���

Pre� S�CheckEat�area� Area� TimeInfo� has been called�
Post� If S eats it has made some adjustments according to the results of

the last call of CheckEat�� � � �� else nothing was done�

S void Reset�	

Use� S�Reset��
Pre� None�
Post� S has reset its population to the initial value and recalculated its

inner status� including the error status�

S virtual void Clear�	

Use� S�Clear��
Pre� None�
Post� S has cleared its error status�

F StockPrey� ReturnPrey�	 const

Use� prey � S�ReturnPrey��
Pre� None�
Post� prey points to the Prey S uses�

F StockPredator� ReturnPredator�	 const

Use� pred � S�ReturnPredator��
Pre� None�
Post� pred points to the predator S uses�

C const Agebandmatrix� Agelengthkeys�int	 const

Use� alkeys � S�Agelengthkeys�area�
Pre� S�IsInArea�area� �� ��
Post� alkeys is a reference to an Agebandmatrix describing S�s population

on the area area�

S void SetStock�Stockptrvector�	

Use� S�SetStock�stockvec�
Pre� stockvec contains no 	 pointers�
Post� S has set its pointers to other stocks� stockvec has not been changed�

S void SetCatch�CatchDataptrvector�	

Use� S�SetCatch�CDvector�
Pre� CDvector contains no null pointers and one of its elements keeps

catch data for S if S is caught �
Post� S has a pointer to its CatchData and can access its catch�

S void SetCI�	

Use� S�SetCI��

��	 CHAPTER �� STOCK AND SUPPLAMENTARY�

Pre� SetStock�Stockptrvector�� has been called and� if S is caught�
SetCatch�CatchDataptrvector�� has been called�

Post� S has set its conversion indices ready for transactions between
stocks�

void Print�ofstream�	 const

Use� S�Print�out�le�
Pre� SetCatch�CatchDataptrvector��� SetCI�� and Set�

Stock�Stockptrvector�� have been called� if necessary�
Post� S has written internal information to out�le�

F int Birthday�const TimeClass� const	 const

Use� t � S�Birthday�TimeInfo�
Pre� TimeInfo �� 	�
Post� If S�s age will be increased of � on the current timestep� t equals ��

else it is 	�

F const LengthGroupDivision� ReturnLengthGroupDiv�	 const

Use� lgrpdiv � S�ReturnLengthGroupDiv��
Pre� None�
Post� lgrpdiv points to a LengthGroupDivision describing S�s length group

division�

F int Minage�	 const

Use� m � S�Minage��
Pre� None�
Post� m equals the age of the �rst age group in S�

F int Maxage�	 const

Use� m � S�Maxage��
Pre� None�
Post� m eaquals the age of the oldest age group in S�

F int IsEaten�	 const

F int IsCaught�	 const

F int DoesSpawn�	 const

F int DoesMove�	 const

F int DoesEat�	 const

F int DoesMature�	 const

����� STOCK ���

F int HasLgr�	 const

F int DoesRenew�	 const

F int DoesGrow�	 const

F int DoesMigrate�	 const

Protected Characteristics

Agebandmatrixvector Alkeys �� Keeps the population�
Spawner� spawner �� Spawning process�
Catch� catchptr �� For catch subtraction
Renewaldata� renewal �� Addition to stock through import�
Maturity� maturity �� Calculations and movements because of maturity�
Transition� transition �� Transition to other stock�
int AgeDepMigration ��
Migration� migration �� Keeps migration matrices�
StockPrey� prey ��
StockPredator� predator ��
InitialCond� initial �� keeps the initial population�
LengthGroupDivision�LgrpDiv �� Division into length groups�
Grower� grower �� Calculates and updates�
NaturalM� NatM �� Keeps the mortality rates�
popinfomatrix NumberInArea �� Intermediate data repository�
doublematrix ConsumptionInArea �� Intermediate data repository�
int iscaught ��
int doeseat ��
int doesmove ��
int iseaten ��
int doesspawn ��
int haslgr ��
int doesmature ��
int doesrenew ��
int doesgrow ��
int doesmigrate ��

��� CHAPTER �� STOCK AND SUPPLAMENTARY�

Chapter ��

Supplamentary classes�

���� ActionAtTimes

The class ActionAtTimes is made for assisting with events that happen only at prede�ned
times�

The class can read from �le� and information can be added to it through member functi�
ons� Then it can be asked at any time� whether the event is to take place at the current
time or not�

Inheritance

class ActionAtTimes

Public messages

ActionAtTimes�	

Use� ActionAtTimes AAT
Pre� None�
Post� AAT is of type ActionAtTimes�

S int ReadFromFile�CommentStream�� const TimeClass�

const	
Use� ok � AAT�ReadFromFile�in�le� TimeInfo�
Pre� in�le has no badbits set and its format is correct� TimeInfo �� 	�
Post� if ok is 	 an error occurred and no action on AAT is de�ned� Else

AAT has read information from in�le and kept it for the period
TimeInfo marks�

S void AddActions�const intvector�� const intvector��

const TimeClass� const	
Use� AAT�AddActions�years� steps� TimeInfo�

���

��� CHAPTER ��� SUPPLAMENTARY CLASSES�

Pre� years�Size�� �� steps�Size��� TimeInfo �� 	� For all i � �� � � � �
steps�Size�� � �� � � steps�i� � TimeInfo�StepsInYear���

Post� AAT has added to its list of dates those of the dates years�i�� steps�i�
that are within the period from TimeInfo� i � �� � � � � years�Size�� �
��

S void AddActionsAtAllYears�const intvector�� const

TimeClass� const	
Use� AAT�AddActionsAtAllYears�steps� TimeInfo�
Pre� TimeInfo �� 	 and � � steps�i� � TimeInfo�StepsInYear�� for all

i � �� � � � � steps�Size�� � ��
Post� AAT has added to its list of events� all the dates with step equal

to steps�i�� for some i� that are within the period TimeInfo marks�

S void AddActionsAtAllSteps�const intvector�� const

TimeClass� const	
Use� AAT�AddActionsAtAllSteps�years� TimeInfo�
Pre� TimeInfo �� 	�
Post� AAT has added to its list of events all the dates that are within the

period TimeInfo marks� and whose year is in years�

F int AtCurrentTime�const TimeClass� const	 const

Use� t � AAT�AtCurrentTime�TimeInfo�
Pre� TimeInfo �� 	�
Post� t is � if the current time� got from TimeInfo� is in the list of event

times AAT keeps� else t is 	�

Protected Characteristics

Here� �it is true�� means that the function AtCurrentTime returns ��

int EveryStep �� Is it true on every step�
intvector TimeSteps �� The timesteps on which it is true�
intvector Years �� The years on which it is always true�
intvector Steps �� The steps on which it is always true�

Chapter ��

Standard aggregation and printing�

���� Overview

In this section� the following classes that write data to �les will be documented�

Figure ����� Standard Printer classes derived from Printer�

In this section the following classes that collect data on the impact of predation on the
preys are documented�

Figure ����� Classes that collect standard data from Prey and descendants�

And the classes that collect data on the predation by a predator on a prey are�

���� Printer

The class Printer is an abstract base class for handling printing� It is described here as
if it could be instantiated�

���

��
 CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

Figure ����� Classes that collect standard data on predation�

Inheritance

class Printer

Printer�PrinterType	

Use� Printer P�TYPE�
Pre� None�
Post� P is a printer and its type function will return TYPE � see also

Type���

virtual �Printer�	

Use� �P
Pre� None�
Post� All memory belonging to P has been freed�

C virtual void Print�const TimeClass� const	 � �

Use� P�Print�TimeInfo�
Pre� TimeInfo �� 	�
Post� P has printed its information� using TimeInfo to get the current

time�
NB� All derived classes should support to some extent parallelism� i�e�

a call to this member function ought to be able to run in the
background� given that the state of the objects the information
is being printed about does not change during the call�

PrinterType Type�	 const

Use� t � P�Type��
Pre� None�
Post� t is the type of P�
NB� This function is to be used for run�time type identi�cation of deri�

ved classes�

Protected Characteristics

ActionAtTimes aat �� Keeps printing times�

����� PRINTER ���

Private Characteristics

const PrinterType type �� The type of Printer�

��� CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

���� StockStdPrinter

The class StockStdPrinter implements the standard printout of stock abundance and
predation data�

Inheritance

class StockStdPrinter � public Printer

Public messages

StockStdPrinter�CommentStream�� const AreaClass� const�

const TimeClass� const	
Use� StockStdPrinter P�in�le� Area� TimeInfo�

virtual �StockStdPrinter�	

Use� �P��

void SetStock�Stockptrvector�	

Use� P�SetStock�stockvec�
Pre� stockvec contains unique nonnull pointers� P�SetStock has not been

called before� stockvec contains a pointer to a Stock having the
name P read from �le in the constructor�

Post� P has kept a pointer to its stock and is ready to print� stockvec has
not changed�

C virtual void Print�const TimeClass� const	

Use� P�Print�TimeInfo�
NB� Refer to the documentation of the base class� Printer�

Protected Characteristics

char� stockname ��
LengthGroupDivision �LgrpDiv ��
intvector outerareas ��
intvector areas ��
int minage ��
StockAggregator� aggregator �� Collects abundance data�
StockPreyStdInfo� preyinfo �� Collects data on predation�
ofstream outfile ��
double Scale ��

����� PREDPREYSTDPRINTER ���

Details

� LgrpDiv is a copy of the length group division of the Stock�

� preyinfo is 	 if the stock does not eat�

� minage is the minimum age of the stock in question�

���� PredPreyStdPrinter

The classes derived from PredPreyStdPrinter handle the standard printout for predation�
The predation can be printed by length or age�

Inheritance

class PredPreyStdPrinter � public Printer

Public messages

PredPreyStdPrinter�CommentStream�� const AreaClass�

const� const TimeClass� const	
Use� PredPreyStdPrinter P�in�le� Area� TimeInfo�
Pre� in�le has no error bits set and its format is correct� Area �� 	�

TimeInfo �� 	�
Post� P is of type PredPreyStdPrinter and has read its information from

in�le�
NB� P is not fully initialized until the member function SetStocks�

AndPredAndPrey has been called�

virtual �PredPreyStdPrinter�	

Use� �P
Pre� None�
Post� All memory belonging to P has been freed�

void SetStocksAndPredAndPrey�const Stockptrvector��

const PopPredatorptrvector�� const Preyptrvector�	
Use� P�SetStocksAndPredAndPrey�stockvec� predvec� preyvec�
Pre� None of the vectors contains null pointers� The objects in preyvec

and predvec may not be one of the preys and predators in stockvec�
The vectors contain pointers to the predator and prey about which
P is to print information�

Post� P has kept pointers to the predator and prey it is associated with�
NB� The lifetime of P�s predator and prey has at least to equal that of

the last call to P�Print�

�
	 CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

Protected messages

virtual void P�SetPredAndPrey�const PopPredator�� const

Prey�� int� int	 � �
Use� P�SetPredAndPrey�predator� prey� IsStockPredator� IsStockPrey�
Pre� predator �� 	� prey �� 	� If IsStockPredator is �� predator is of type

StockPredator� If IsStockprey is �� prey is of type StockPrey�
Post� P is fully initialized�
NB� This virtual function is called from within

P�SetStocksAndPredAndPrey�

Protected Characteristics

char� predname �� The name of the predator
char� preyname �� The name of the prey
ofstream outfile �� To which output will be written
intvector outerareas �� Outer areas
intvector areas �� Inner areas

���� PredPreyStdLengthPrinter

Inheritance

class PredPreyStdLengthPrinter � public PredPreyStdPrinter

Public messages

PredPreyStdLengthPrinter�CommentStream�� const

AreaClass� const� const TimeClass� const	
Use� PredPreyStdLengthPrinter P�in�le� Area� TimeInfo�
Pre�
Post�

�PredPreyStdLengthPrinter�	

Use� �P

C virtual void Print�const TimeClass� const	

Use� Print�TimeInfo�

���	� PREDPREYSTDAGEPRINTER �
�

Protected messages

virtual void P�SetPredAndPrey�const PopPredator�� const

Prey�� int� int	
Use� P�SetPredAndPrey�predator� prey� IsStockPredator� IsStockPrey�
NB� Works as de�ned in the documentation of PredPreyStdPrinter�

Protected Characteristics

PredStdInfoByLength�predinfo �� Computes the predation
const PopPredator� predator ��
const Prey� prey ��

���� PredPreyStdAgePrinter

Inheritance

class PredPreyStdAgePrinter � public PredPreyStdPrinter

Public messages

PredPreyStdAgePrinter�CommentStream�� const AreaClass�

const� const TimeClass� const	
Use� PredPreyStdAgePrinter P�in�le� Area� TimeInfo�
Pre�
Post�

�PredPreyStdAgePrinter�	

Use� �P

C virtual void Print�const TimeClass� const	

Use� Print�TimeInfo�

Protected messages

virtual void P�SetPredAndPrey�const PopPredator�� const

Prey�� int� int	
Use� P�SetPredAndPrey�predator� prey� IsStockPredator� IsStockPrey�
NB� Works as de�ned in the documentation of PredPreyStdPrinter�

�
� CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

Protected Characteristics

AbstrPredStdInfo� predinfo �� Computes the predation information�
const PopPredator� predator ��
const Prey� prey ��

���	 StockFullPrinter

The class StockFullPrinter implements the "not�completely�standardized# full printout
of stock abundance data�

Inheritance

class StockFullPrinter � public Printer

Public messages

StockFullPrinter�CommentStream�� const AreaClass�

const� const TimeClass� const	
Use� StockFullPrinter P�in�le� Area� TimeInfo�
Pre� in�le has no error bits set and its �le format is correct Area �� 	�

TimeInfo �� 	�
Post� P has read its information from in�le�

virtual �StockFullPrinter�	

Use� �P��
Pre� None�
Post� All memory belonging to P has been freed� P has closed its output

�les�

void SetStock�Stockptrvector�	

Use� P�SetStock�stockvec�
Pre� stockvec�Size�� � 	� stockvec contains unique nonnull pointers and

stockvec contains pointers to the stock P read from in�le�
Post� P has associated itself with the stock it read from in�le�

C virtual void Print�const TimeClass� const	

Use� P�Print�TimeInfo�
Pre� TimeInfo �� 	�

���
� ABSTRPREYSTDINFOBYLENGTH �
�

Post� P has collected information from its stock and written it to its
output �le�

Protected Characteristics

intvector areas ��
intvector outerareas ��
intvector ages ��
int minage �� Minimum age of stock
char� stockname �� Name of stock�
StockAggregator� aggregator �� Collects information�
LengthGroupDivision�LgrpDiv �� The lgrpdiv of the stock�
ofstream outfile �� File for output data�

Details

� P collects information for the areas in P�areas and the ages in P�ages�

� outerareas�i� is the outerarea number for area�i��

���� AbstrPreyStdInfoByLength

The class AbstrPreyStdInfoByLength is an abstract front end to classes collecting in�
formation on the predation on a prey� It de�nes the data structures they should use and
provides public access functions to them�

Inheritance

class AbstrPreyStdInfoByLength � protected LivesOnAreas
The class contains only access functions for the e�ects of predation on length groups�
They return doublevectors� indexed with no� of length group� l� where � � l � prey�NoLengthGroups���
If numbers eaten can not be calculated� 	 should be returned in the corresponding
vector and 	 or MAX)MORTALITY if the mortality induced by the predation cannot
be calculated�

Public messages

AbstrPreyStdInfoByLength�const Prey� p� const

intvector�	
Use� AbstrPreyStdInfoByLength A�prey� areas�
Pre� prey �� 	 and prey occupies the areas in areas

�
� CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

Post� A is ready to collect information from prey on the e�ects of the
predation on its length groups on areas areas�

virtual �AbstrPreyStdInfoByLength�	

Use� �A

AC const doublevector� NconsumptionByLength�int	 const

Use� A�NconsumptionByLength�area�

AC const doublevector� BconsumptionByLength�int	 const

Use� A�BconsumptionByLength�area�

AC const doublevector� MortalityByLength�int	 const

Use� A�MortalityByLength�area�

virtual void Sum�const TimeClass� const� int	 � �

Use� A�Sum�TimeInfo� area�
Pre� TimeInfo �� 	� A calculates information for the area area� prey has

fully calculated its predation on the current time step�
Post� A has accessed information from prey on the predation on it on the

area�

Protected Characteristics

doublematrix MortbyLength �� �area��length group�
doublematrix NconbyLength �� �area��length group�
doublematrix BconbyLength �� �area��length group�

��� PreyStdInfoByLength

The class PreyStdInfoByLength accesses the class Prey and retrieves information from
it on predation and calculates consumption in biomass and the mortality induced� Since
it cannot calculate the predation in numbers� 	 is returned�

The length group division PreyStdInfoByLength uses is that of Prey�s�

Inheritance

class PreyStdInfoByLength � protected LivesOnAreas

����� PREYSTDINFOBYLENGTH �
�

Public messages

PreyStdInfoByLength�const Prey�� const intvector�	

Use� PreyStdInfoByLength P�prey� areas�
Pre�
Post�
NB� In all the subsequent calls to P where area is a parameter� it has to

equal one of the elements of areas�

virtual �PreyStdInfoByLength�	

Use� �P
Pre�
Post�

Note In the access functions� the length of the vectors equals the number of length
groups in prey and they return the values computed from the data received from prey
in the last call to P�Sum for that area�

AC const doublevector� NconsumptionByLength�int	 const

Use� bm � P�NconsumptionByLength�area�
Pre�
Post� bm is a reference to a vector containing only 	�

AC const doublevector� BconsumptionByLength�int	 const

Use� bm � P�BconsumptionByLength�area�
Pre�
Post� bm is a reference to a vector that keeps the consumption in biomass

units of prey� by length�

AC const doublevector� MortalityByLength�int	 const

Use� bm � P�MortalityByLength�area�
Pre�
Post� bm contains the mortality the predation on prey induced on it

calculated on a year�s basis� by length�

AC virtual void Sum�const TimeClass� const� int	

Use� P�Sum�TimeInfo� area�
Pre� All predation on prey on the current time step has taken place�
Post� P has collected information from prey on the predation on the area

aera on the current time step�

�

 CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

Protected Characteristics

doublematrix MortbyLength �� �area��length group�
doublematrix NconbyLength �� �area��length group�
doublematrix BconbyLength �� �area��length group�

Private Characteristics

const Prey� prey ��

����� StockPreyStdInfoByLength

!The class StockPreyStdInfoByLength accesses the class StockPrey� retrieves informati�
on from it on predation and abundance and calculates consumption in numbers� biomass
and the mortality induced�
The length group division StockPreyStdInfo uses is that of StockPrey�s�

Inheritance

class StockPreyStdInfoByLength � protected LivesOnAreas

Public messages

StockPreyStdInfoByLength�const StockPrey�� const

intvector�	
Use� SPBL�prey� areas�
Pre� prey �� 	 and areas is a nonempty vector containing unique nonn�

egative integers� The prey prey exists on all the areas areas�
Post� SPBL is of type StockPreyStdInfoByLength and is set to collect

information from the StockPrey prey on the areas in areas�
NB� When calling the member functions of SPBL� the parameter area

has to equal one of the elements of areas�

virtual �StockPreyStdInfoByLength�	

Use� �SPBL��
Pre� None�
Post� All memory belonging to SPBL has been freed�

AC const doublevector� NconsumptionByLength�int	 const

Use� dv � SPBL�NconsumptionByLength�area�
Pre� See the Sum member function and the constructor�
Post� dv�l� is the predation in numbers of length group l of prey on the

area area�

������ PREDSTDINFOBYLENGTH �
�

AC const doublevector� BconsumptionByLength�int	 const

Use� dv � SPBL�BconsumptionByLength�area�
Pre� Refer to the member function Sum and the constructor�
Post� dv�l� is the predation in biomass of length group l of prey on the

area area�

AC const doublevector� MortalityByLength�int	 const

Use� dv � SPBL�MortalityByLength�area�
Pre� Refer to the member function Sum and the constructor�
Post� dv�l� is the mortality the predation on prey induced on length group

l of prey on the area area�

AC void Sum�const TimeClass� const� int	

Use� SPBL�Sum�TimeInfo� area�
Pre� SPBL is set to collect information on the area area� All the predati�

on on the prey prey on the current time step has taken place�
Post� SPBL has collected information from prey on the predation on the

area area on the current time step�

Protected Characteristics

const StockPrey� prey ��

Private Characteristics

doublematrix MortbyLength �� �area��length group�
doublematrix NconbyLength �� �area��length group�
doublematrix BconbyLength �� �area��length group�

����� PredStdInfoByLength

Inheritance

class PredStdInfoByLength � protected LivesOnAreas

Public messages

PredStdInfoByLength�const PopPredator�� const Prey��

const intvector�	
Use� PredStdInfoByLength P�predator� prey� areas�

�
� CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

Pre� predator �� 	� prey �� 	� areas is a nonempty vector containing
unique nonnegative elements and predator and prey are de�ned on
the areas areas�

Post� P is of type PredStdInfoBylength and can collect information on
the areas areas on predator�s predation on prey� by length group of
predator and prey�

PredStdInfoByLength�const PopPredator�� const

StockPrey�� const intvector�	
Use� PredStdInfoByLength P�predator� prey� areas�
Pre� The same as above�
Post� Ditto�
NB� The di�erence between the two constructors�

virtual �PredStdInfoByLength�	

Use� �P

AC const bandmatrix� NconsumptionByLength�int	 const

Use� bm � P�NconsumptionByLength�area�
Pre� P collects information for the area area and P�Sum has been called

for the area area�
Post� � bm is a reference to a bandmatrix holding the predation in

numbers of P�s predator on P�s prey in the area area�

� bm is indexed with �length group of predator��length group of
prey��

� bm�Minage�� equals 	� do does bm�Minlength�
NB� The e�ect of the constructors�

AC const bandmatrix� BconsumptionByLength�int	 const

Use� bm � P�BconsumptionByLength�area�
Pre�
Post� bm holds the predation in biomass�

AC const bandmatrix� MortalityByLength�int	 const

Use� bm � P�MortalityByLength�area�
Pre�
Post� bm holds the mortality the predation of P�s predator on P�s prey

induced on it� converted to the time scale of one year�

AC virtual void Sum�const TimeClass� const� int	

Use� P�Sum�TimeInfo� area�
Pre� TimeInfo �� 	 and P is de�ned on the area area�

������ ABSTRPREYSTDINFO �
�

Post� P has collected information from its predator and prey for the area
area�

Protected messages

S void AdjustObjects�	

Use� P�AdjustObjects��
Pre� P�AdjustObjects has not been called before�
Post� P has adjusted the size of its objects�

Private Characteristics

PreyStdInfoByLength�preyinfo �� computed info for the prey�
const PopPredator� predator ��
const Prey� prey ��
bandmatrixvector MortbyLength �� �area��pred l��prey l�
bandmatrixvector NconbyLength �� �area��pred l��prey l�
bandmatrixvector BconbyLength �� �area��pred l��prey l�

����� AbstrPreyStdInfo

The class AbstrPreyStdInfo is an abstract base class that de�nes how to obtain in�
formation on the amount and e�ects of the predation on a prey�
It should be possible e�g� to obtain the biomass eaten of each age group of a prey�
The class de�nes the data structures that derived classes should use and public access
functions to them�
The naming convention of the member functions is very simple� all those member functi�
ons whose name begins with �N� return the number consumed� those that begin with �B�
return the biomass consumed and those with �Mort� return the mortality induced by the
predation� converted to the time scale of a year �
Those member functions whose name ends with �AgeAndLength� return the data by age�
and length group� indexed in that order� if they end with �Age� the data is by age and
by length group if it ends with �Length�� � � l �prey�NoLengthGroups�� and minage
� age � maxage�

Inheritance

class AbstrPreyStdInfo � protected LivesOnAreas

��	 CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

Public messages

AbstrPreyStdInfo�const Prey�� const intvector�� int �

�� int � �	
Use� AbstrPreyStdInfo A�prey� areas� minage� maxage�
Pre� prey �� �� 	 � minage � maxage�
Post� A is of thype AbstrPreyStdInfo� ready to work onthe areas areas�
NB� Programmers of derived classes should look at the e�ects of the

parameters on the protected variables�

virtual �AbstrPreyStdInfo�	

Use� �A

AC virtual const doublevector� NconsumptionByLength�int	

const � �
Use� dv � A�NconsumptionByLength�area�

AC virtual const doublevector� BconsumptionByLength�int	

const � �
Use� dv � A�BconsumptionByLength�area�

AC virtual const doublevector� MortalityByLength�int	

const � �
Use� dv � A�MortalityByLength�area�

AC const bandmatrix� NconsumptionByAgeAndLength�int	 const

Use� bm � A�NconsumptionByAgeAndLength�area�

AC const doubleindexvector� NconsumptionByAge�int	 const

Use� div � A�NconsumptionByAge�area�

AC const bandmatrix� BconsumptionByAgeAndLength�int	 const

Use� bm � A�BconsumptionByAgeAndLength�area�

AC const doubleindexvector� BconsumptionByAge�int	 const

Use� div � A�BconsumptionByAge�area�

AC const bandmatrix� MortalityByAgeAndLength�int	 const

Use� bm � A�MortalityByAgeAndLength�area�

AC const doubleindexvector� MortalityByAge�int	 const

Use� div � A�MortalityByAge�area�

virtual void Sum�const TimeClass� const� int	 � �

������ PREYSTDINFO ���

Use� A�Sum�TimeInfo� area�
Pre� TimeInfo �� 	 and A collects information for area area�
Post� A has collected and calculated information for the area area and

will return that data in the calls to the access functions �until the
next call to A�Sum on that area��

Protected Characteristics

bandmatrix NconbyAge �� �area��age�
bandmatrix BconbyAge �� �area��age�
bandmatrix MortbyAge �� �area��age�
bandmatrixvector NconbyAgeAndLength �� �area��age��l�group�
bandmatrixvector BconbyAgeAndLength �� �area��age��l�group�
bandmatrixvector MortbyAgeAndLength �� �area��age��l�group�

����� PreyStdInfo

Inheritance

class PreyStdInfo � public AbstrPreyStdInfo

PreyStdInfo�const Prey�� const intvector�	

Use� PreyStdInfo P�prey� areas�
Pre�
Post�

virtual �PreyStdInfo�	

Use� �P��
Pre�
Post�

AC virtual const doublevector� NconsumptionByLength�int	

const
Use� dv � P�NconsumptionByLength�area�
Post� dv is a vector containing only zeroes�

AC virtual const doublevector� BconsumptionByLength�int	

const
Use� dv � P�BconsumptionByLength�area�

AC virtual const doublevector� MortalityByLength�int	

const

��� CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

Use� dv � P�MortalityByLength�area�

AC virtual void Sum�const TimeClass� const� int	

Use� P�Sum�TimeInfo� area�

Private Characteristics

PreyStdInfoByLength PSIByLength ��
const Prey� prey ��

����� StockPreyStdInfo

The class StockPreyStdInfo communicates with an instance of the class StockPrey� recei�
ves data on the predation on it and abundance numbers and uses these to distribute the
predation �initially only given by length� on age groups and calculates the mortalities
induced�
The length group division StockPreyStdInfo uses is that of StockPrey�s�

Inheritance

class StockPreyStdInfo � public AbstrPreyStdInfo

Public messages

StockPreyStdInfo�const StockPrey�� int� int� const

intvector�	
Use� StockPreyStdInfo SPSI�prey� minage� maxage� areas�
Pre� prey �� 	� minage � maxage and areas is a nonempty vector contain�

ing unique nonnegative integers� The StockPrey prey exists on the
areas in areas�

Post� SPSI is of type StockPreyStdInfo� It collects information from the
prey prey� for the age groups minage to maxage� both included� and
for the areas in areas�

virtual �StockPreyStdInfo�	

Use� �SPSI
Pre� None�
Post� All memory belonging to SPSI has been freed�

AC virtual const doublevector� NconsumptionByLength�int	

const
Use� dv � P�NconsumptionByLength�area�

������ ABSTRPREDSTDINFO ���

AC virtual const doublevector� BconsumptionByLength�int	

const
Use� dv � P�BconsumptionByLength�area�

AC virtual const doublevector� MortalityByLength�int	

const
Use� dv � P�MortalityByLength�area�

AC void Sum�const TimeClass� const� int	

Use� SPSI�Sum�TimeInfo� area�
Pre� TimeInfo �� 	� SPSI is set to collect information for the area area�

All the predation on the prey prey has taken place for the current
time step�

Post� SPSI has collected information on the predation on prey on the area
area�

Private Characteristics

PreyStdInfoByLength PSIByLength ��
const Prey� prey ��

����� AbstrPredStdInfo

The class AbstrPredStdInfo is an abstract base class that de�nes how to obtain in�
formation on the amount and e�ects of the predation of a predator on a prey�
It should be possible e�g� to obtain the biomass eaten by each age group of a predator
of each age group of a prey�

Inheritance

class AbstrPredStdInfo � protected LivesOnAreas

Public messages

AbstrPredStdInfo�const intvector�� int � �� int � ��

int � �� int � �	
Use� AbstrPredStdInfo P�areas� predminage� predmaxage� preyminage�

preymaxage�
Pre� 	 � predminage � predmaxage and 	 � preyminage � preymaxage�
Post� P is of type AbstrPredStdInfo� ready to work on the areas areas�

��� CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

NB� Programmers of derived classes should look at the e�ects of the
parameters on the protected variables�

virtual �AbstrPredStdInfo�	

Use� �A��

Note

� If it is not possible to calculate the data to put in the matrices� 	 should be
returned for the numbers and biomass and either 	 or MAX)MORTALITY for
the mortality�

� The following restrictions are put on the matrices for data by length�

� They are indexed with �length group of predator��length group of prey��

� They have Minrow�� equal to 	 and Mincol�predlengthgroup� equal to 	�

� The following restrictions are put on the matrices for data by age�

� They are indexed with �age group of predator��age group of prey�� meaning
they are shifted� i�e� Minrow�� does not necessarily have to equal 	� nor does
Mincol�predage��

� If it is not possible to divide by age of predator the data for the predator is
presented as if it only had one agegroup� age 	� The same applies when it is
not possible to divide by age of prey�

virtual const bandmatrix� NconsumptionByLength�int	

const � �
Use� bm � P�NconsumptionByLength�area�
Pre�
Post� bm contains the consumption in numbers on the area area� by

length�

virtual const bandmatrix� BconsumptionByLength�int	

const � �
Use� bm � P�BconsumptionByLength�area�
Pre�
Post� bm contains the consumption in biomass units on the area area� by

length�

virtual const bandmatrix� MortalityByLength�int	 const

� �
Use� bm � P�MortalityByLength�area�
Pre�

������ ABSTRPREDSTDINFO ���

Post� bm contains the mortality the predation of P�s predator induced on
P�s prey� by length�

AC const bandmatrix� NconsumptionByAge�int	 const

Use� bm � P�NconsumptionByAge�area�
Pre�
Post� bm contains the consumption in numbers by age�

AC const bandmatrix� BconsumptionByAge�int	 const

Use� bm � P�BconsumptionByAge�area�
Pre�
Post� Consumption in biomass units� by age�

AC const bandmatrix� MortalityByAge�int	 const

Use� MortalityByAge�area�
Pre�
Post� Mortality the predation induced� by age� The mortality is given on

a year�s scale�

virtual void Sum�const TimeClass� const� int	 � �

Use� P�Sum�TimeInfo� area�
Pre�
Post�

Protected Characteristics

bandmatrixvector NconbyAge �� �area��pred� age��prey age�
bandmatrixvector BconbyAge �� �area��pred� age��prey age�
bandmatrixvector MortbyAge �� �area��pred� age��prey age�

Details

The constructor initializes the bandmatrixvector to be of length areas�Size��� its matrices
to be initialized to zero and
Column equals
Minrow predminage
Maxrow predmaxage
Mincol preyminage
Maxcol preymaxage ! �

��
 CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

����� PredStdInfo

The classes PredStdInfoByLength and PredStdInfo compute how the predation of a
predator on a prey is divided by length and age groups�
Note that this class is only conserned with the predator being of type PopPredator which
is not divided into age groups and therefore the output is not divided by age of predator�
It is divided by age of prey if possible�

Inheritance

class PredStdInfo � public AbstrPredStdInfo

Public messages

PredStdInfo�const PopPredator�� const Prey�� const

intvector�	
Use� PredStdInfo P�predator� prey� areas�
Pre� areas is a nonempty vector containing unique nonnegative integers

and predator and prey live on all the areas in areas�
Post� P is ready to collect information on the the predation of predator

on the prey prey on the areas in areas� The ages of predator and
prey are set to 	 in the member functions returning data on age
dependent eating�

PredStdInfo�const PopPredator�� const StockPrey�� const

intvector�	
Use� PredStdInfo P�predator� prey� areas�
Pre� The same as for the other constructor�
Post� Similar to the other constructor� except that now the prey can be

divided into agegroups� but the predator cannot�

virtual �PredStdInfo�	

Use� �P

AC virtual const bandmatrix� NconsumptionByLength�int	

const
Use� bm � P�NconsumptionByLength�area�

AC virtual const bandmatrix� BconsumptionByLength�int	

const
Use� bm � P�BconsumptionByLength�area�

AC virtual const bandmatrix� MortalityByLength�int	 const

Use� bm � P�MortalityByLength�area�

������ STOCKPREDSTDINFO ���

AC virtual void Sum�const TimeClass� const� int	

Use� P�Sum�TimeInfo� area�

Private Characteristics

PreyStdInfo� preyinfo ��
PredStdInfoByLength�predinfo ��
const PopPredator� predator ��
const Prey� prey ��

����	 StockPredStdInfo

The class StockPredStdInfo calculates the e�ects of the predation of a predator on its
preys�
See also the documentation of AbstrPredStdInfo�
The class restricts itself to the predator being of type StockPredator� meaning that it is
divided into age groups� and therefore so is it output� If the prey is of type StockPrey�
the output is also divided by age of prey� else we pretend as if the only agegroup of the
prey is 	�

Inheritance

class StockPredStdInfo � public AbstrPredStdInfo

Public messages

StockPredStdInfo�const StockPredator�� const Prey��

const intvector�	
Use� StockPredStdInfo�predator� prey� areas�
Pre�
Post�

StockPredStdInfo�const StockPredator�� const

StockPrey�� const intvector�	
Use� StockPredStdInfo�predator� prey� areas�
Pre�
Post�

virtual �StockPredStdInfo�	

Use� �P��

��� CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

AC virtual const bandmatrix� NconsumptionByLength�int	

const
Use� bm � P�NconsumptionByLength�area�

AC virtual const bandmatrix� BconsumptionByLength�int	

const
Use� bm � P�BconsumptionByLength�area�

AC virtual const bandmatrix� MortalityByLength�int	 const

Use� bm � P�MortalityByLength�area�

AC virtual void Sum�const TimeClass� const� int	

Use� P�Sum�TimeInfo� area�

Private Characteristics

PreyStdInfo� preyinfo �� Computes the cons� of prey
PredStdInfoByLength�predinfo �� For the predator�s consumption�
const StockPredator�predator ��
const Prey� prey ��

����
� DETAILS OF COMPUTATIONS� ���

����� Details of computations�

In this section we describe the details of the simple computations done in StockPreySt�
dInfo and StockPredStdInfo�
In what follows� we let the predator and prey be �xed� and restrict out attention entirely
to one length group of predator and one length group of prey� These variables will be
used�
A age group of predator
a age group of prey
na number in age group a of prey prior to predation
wa mean weight in age group a of prey

tna total number eaten of age group a of prey

tba total biomass eaten of age group a of prey

tb� total biomass eaten of prey

tn� total number eaten of prey

pna number eaten of age group a of prey by the ��xed� predator

pba biomass eaten of age group a of prey by the ��xed� predator

pn� total number eaten of the prey by the predator

pb� total biomass eaten of the prey by the predator
pA the proportion of the predation accounted for by age group A�

For all predators� the mean weight of the prey eaten from a length group is the same�
equal to the mean weight of the prey in that length group� Therefore

tb�

tn�
�

pb�

pn�
�

P
a� pba�

P
a� pna�

�

so

tb�

pb�
�

tn�

pn�
�

And with similar arguments pA equals both �total number eaten by age group A�$�total
number eaten by all age groups� and �total biomass eaten by age group A�$�total biomass
eaten by all age groups��
According to the current strategy �which should be better documented�� the
predation on the �xed length group of the prey is distributed on the age groups in
proportion to their abundance numbers�
Since

tn� �
tb�P

a
�
n
a
�w

a
�P

a
�
n
a
�

�

we have that

tna � tn�
naP
a� na�

� na
tb�P

a� na�wa�

�

And clearly the biomass subtracted from each age group is wa times the above�

��	 CHAPTER ��� STANDARD AGGREGATION AND PRINTING�

This suits our purposes because now

X

a
tnawa � tb��

The predation by age group A on age group a is then

pA pba � pAtba
pb�

tb�
�

in biomass units� and in numbers it is

pA tna
pn�

tn�
� pA tna

pb�

tb�
�

because of the note here above�
In the code� the biomass eaten of age group a� ba is calculated �rst as

tba 	� nawa
tb�P

a� na�wa�

�

and then

tna 	� na
tb�P

a� na�wa�

�

When calculating the predation of a single age group of the predator we let

prop 	� pA

P
a� pba�

tb�
�

and then the biomass eaten of age group a of the prey by age group A of the predator is

prop tba � pA

P
a� pba�

tb�
tba�

which is immediately seen to be correct� and the number eaten is

prop tna � pA

P
a� pba�

tb�
tna � pA

P
a� pna�

tn�
tna�

Chapter ��

Nonstandard aggregation and

printing�

���� Overview

In this section� the following classes that write data to �les will be documented�

Figure ����� Non�standard Printer classes derived from Printer�

���� StockPrinter

The class StockPrinter writes abundance numbers to �le�

Inheritance

class StockPrinter � public Printer

StockPrinter�CommentStream�� const AreaClass� const�

const TimeClass� const	
Use� StockPrinter SP�in�le� Area� TimeInfo�
Pre� in�le has no badbits set and its format is correct� Area and

TimeInfo are not null pointers�

���

��� CHAPTER ��� NONSTANDARD AGGREGATION AND PRINTING�

Post� SP is of type StockPrinter�
NB� SP is not ready to print until SP�SetStock has been called�

virtual �StockPrinter�	

Use� �SP
Pre� None�
Post�

void SetStock�Stockptrvector�	

Use� SP�SetStock�stockvec�
Pre� stockvec�Size�� � 	� none of the pointers in stockvec is null and it

contains pointers to all the objects of type Stock whose name SP
keeps�

Post� SP keeps pointers to the Stocks it prints information on� stockvec
has not been modi�ed�

C virtual void Print�const TimeClass� const	

Use� SP�Print�TimeInfo�
Pre� SP�SetStock has been called�
Post� SP has printed information for the current timestep�

Protected Characteristics

intmatrix areas �� Areas to aggregate�
intmatrix ages �� Ages to aggregate�
LengthGroupDivision�LgrpDiv �� Describes the output�
charptrvector stocknames �� Names of stocks�
StockAggregator� aggregator �� Handles the aggregation�
ofstream noutfile �� Output �le for abundance numbers�
ofstream woutfile �� Output �le for mean weights�

out�le is opened in the constructor and closed in the destructor�

����� PREDATORPRINTER ���

���� PredatorPrinter

The PredatorPrinter is very much alike StockPrinter� Therefore it will not be described
here� It may also be helpful to read about PredatorAggregator�

Inheritance

class PredatorPrinter � public Printer

PredatorPrinter�CommentStream�� const AreaClass� const�

const TimeClass� const	
Use� PredatorPrinter PP�in�le� Area� TimeInfo�
NB� PP is not fully initialized until SetPredAndPrey has been called�

virtual �PredatorPrinter�	

Use� �PP

void SetPredAndPrey�Predatorptrvector�� Preyptrvector�	

Use� PP�SetPredAndPrey�predators� preys�

C virtual void Print�const TimeClass� const	

Use� PP�Print�TimeInfo�
Pre� PP�SetPredAndPrey has been called�

Protected Characteristics

intmatrix areas �� Areas to aggregate�
LengthGroupDivision�predLgrpDiv �� Describes output�
LengthGroupDivision�preyLgrpDiv �� Describes output�
charptrvector predatornames �� Names of Predators�
charptrvector preynames� �� Names of Preys�
PredatorAggregator� aggregator �� This one aggregates�
ofstream outfile �� Where output is written�

���� PredatorOverPrinter

The class PredatorOverPrinter prints the overconsumption of predators� Look at StockPrin�
ter for pre� and postconditions�

Inheritance

class PredatorOverPrinter � public Printer

��� CHAPTER ��� NONSTANDARD AGGREGATION AND PRINTING�

PredatorOverPrinter�CommentStream�� const AreaClass�

const� const TimeClass� const	
Use� PredatorOverPrinter POP�in�le� Area� TimeInfo�

virtual �PredatorOverPrinter�	

Use� �POP

void SetPredator�Predatorptrvector�	

Use� POP�SetPredator�predators�

C virtual void Print�const TimeClass� const	

Use� POP�Print�TimeInfo�

Protected Characteristics

intmatrix areas �� Areas to aggregate�
LengthGroupDivision�predLgrpDiv �� Describes output�
charptrvector predatornames �� Names of Predators�
PredatorOverAggregator�aggregator �� This one aggregates�
ofstream outfile �� Output written to this one�

���� PreyOverPrinter

The class PreyOverPrinter prints the overconsumption of preyators� Look at StockPrin�
ter for pre� and postconditions�

Inheritance

class PreyOverPrinter � public Printer

PreyOverPrinter�CommentStream�� const AreaClass� const�

const TimeClass� const	
Use� PreyOverPrinter POP�in�le� Area� TimeInfo�
NB� POP is not fully initialized until POP�SetPrey has been called�

virtual �PreyOverPrinter�	

Use� �POP

void SetPrey�Preyptrvector�	

Use� POP�SetPrey�preys�

���	� STOCKPREYFULLPRINTER ���

C virtual void Print�const TimeClass� const	

Use� POP�Print�TimeInfo�
Pre� POP�SetPrey has been called�

Protected Characteristics

intmatrix areas �� Areas to aggregate�
LengthGroupDivision�preyLgrpDiv �� Describes output�
charptrvector preynames �� Names of Preys�
PreyOverAggregator� aggregator �� This one aggregates�
ofstream outfile �� Output written to this one�

���� StockPreyFullPrinter

The class StockPreyFullPrinter is useful for debugging� It prints out all the information
on the consumption of the prey at the level of most disaggregation�

Inheritance

class StockPreyFullPrinter � public Printer

Public messages

StockPreyFullPrinter�CommentStream�� const AreaClass�

const� const TimeClass� const	
Use� StockPreyFullPrinter P�in�le� Area� TimeInfo�
Pre� in�le has no error bits set and its format it correct� Area �� 	�

TimeInfo �� 	�
Post� P has read information from in�le and is ready to print when

P�SetStock has been called�

virtual �StockPreyFullPrinter�	

Use� �StockPreyFullPrinter��

void SetStock�Stockptrvector�	

Use� P�SetStock�stockvec�
Pre� stockvec is a nonempty vector containing unique nonnull pointers�

P�SetStock has not been called before� stockvec contains pointers
to Stocks having the names P read from �le in the constructor and
they are preys�

Post� P keeps pointers to its preys and is ready to print� stockvec has
not changed�

��
 CHAPTER ��� NONSTANDARD AGGREGATION AND PRINTING�

C virtual void Print�const TimeClass� const	

Use� P�Print�TimeInfo�
NB� Refer to the documentation of the base class� Printer�

Protected Characteristics

char� stockname ��
LengthGroupDivision �LgrpDiv ��
intvector outerareas ��
intvector areas ��
StockPreyStdInfo� preyinfo �� Computes the info�
ofstream outfile ��

Data invariant

� areas�Size�� � outerareas�Size���

� outerareas�i� is the outer area number of the area areas�i��

Details

LgrpDiv is a copy of the length group division of the StockPrey�

���	 StockAggregator

����� STOCKAGGREGATOR ���

The StockAggregator receives information in the constructor regarding how to sum up
information on the population of Stocks� It will do so when asked to� using a member
function� and return the sum using another member function�

Inheritance

class StockAggregator

StockAggregator�const Stockptrvector�� const

LengthGroupDivision� const� const intmatrix�� const

intmatrix�	
Use� StockAggregator SA�Stocks� LgrpDiv� Areas� Ages�
Pre� All of the objects are nonzero� Stocks contains no 	 pointers� The

length groups in LgrpDiv have to be unions of the length groups of
the stocks in Stocks�

Post� SA is ready to aggregate� Its length group division is given with
LgrpDiv� For each row i in Areas and Ages� the areas in Areas�i� will
be combined into one and the age groups Ages�i� will be combined
into one when summing up the abundance numbers�

NB� The lifetime of the objects pointed to by Stocks has of course to
exceed that of SA�

�StockAggregator�	

Use� �SA
Pre� None�
Post� All memory belonging to SA has been freed�

C void Sum�	

Use� SA�Sum��
Pre� None�
Post� SA has summed up the abundance numbers from its stocks�

C const Agebandmatrixvector� ReturnSum�	 const

Use� aptr � �SA�ReturnSum��
Pre� SA�Sum has been called�
Post� aptr points to an Agebandmatrixvector containing the result of

the last call to SA�Sum��� In � aptr��i� we have an rectangul�
ar Agebandmatrix containing the sum over the areas Areas�i�� in
� aptr��i��j� we the sum over the age groups Ages�j� and the division
of that vector into length groups is given with LgrpDiv�
The Agebandmatrix � aptr��i� has Ages�Nrow�� lines�
LgrpDiv�NoLengthGroups�� columns� its Minage�� is equal
to 	 and so is its Minlength���

NB� The objects Areas� Ages and LgrpDiv mentioned here are those in
the call to the constructor when SA was created�

��� CHAPTER ��� NONSTANDARD AGGREGATION AND PRINTING�

Protected Characteristics

Stockptrvector stocks �� Pointers to the stocks�
ConversionIndexptrvectorCI �� Conversion from stocks to total�
intmatrix areas �� Areas to aggregate�
intmatrix ages �� Ages to aggregate
intvector AreaNr �� For quicker access�
intvector AgeNr �� For quicker access�
Agebandmatrixvector total �� Keeps the sum�

Details

The ConversionIndex CI�i� converts from the length group division of stocks�i� to total�
i � 	� � � � � stocks�Size�� � �

���
� PREDATORAGGREGATOR ���

���� PredatorAggregator

The class PredatorAggregator is very similar to StockAggregator� Its member functions
serve the same purpose in a new situation� In the case of the StockAggregator we are
concerned about abundance �gures� but in this case out interest is the amount predators
eat of their preys� divided into length groups of predators and prey�

Inheritance

class PredatorAggregator

Public messages

PredatorAggregator�const Predatorptrvector��

const Preyptrvector�� const intmatrix�� const

LengthGroupDivision� const� const LengthGroupDivision�

const	
Use� PredatorAggregator PA�predators� preys� Areas� predLgrpDiv�

preyLgrpDiv�
Pre� None of the objects is null and the vectors predators and preys

contain no null pointers� The length of each row of Areas is grea�
ter than zero�The each length group in predLgrpDiv should be a
union of length groups in predators���� likewise for preyLgrpDiv and
preys����

Post� PA is ready to aggregate consumption numbers from the predators
in predators� regarding their consumption of the preys in preys�
See also description of ReturnSum and the following discussion for
further explanations of the parameters��

C void Sum�	

Use� PA�Sum��
Pre� None�
Post� PA has summed up the consumption numbers from its predators�

C const bandmatrixvector� ReturnSum�	 const

Use� bmvptr � �PA�ReturnSum�� const
Pre� PA�Sum has been called�
Post� bmvptr points to a bandmatrixvector� In � bmvptr��i� we have

the sum over the areas Areas�i�� The matrix � bmvptr��i� is indexed
with �predLength��preyLength�� where predLength is a length group
of predLgrpDiv and preyLength a length group of preyLgrpDiv �see
the constructor��
Each of the bandmatrices in bmvptr has Minage equal to 	�

��	 CHAPTER ��� NONSTANDARD AGGREGATION AND PRINTING�

The postconditions of ReturnSum may be put somewhat clearer� In � bmvptr��i��j��k�
we have�

X

a�Areas�i�

X

pred

X

prey

X

L�predLgrpDiv�j�

X

l�preyLgrpDiv�k�

Consumptionpred�a�l� L� prey�

where Consumptionpred�a�l� L� prey� is the consumption of length group L of the predator
pred of length group l of prey on the area a� and

X

L�predLgrpDiv�j�

is the sum over all length groups L of the predator that are within the length group j of
predLgrpDiv �see the constructor�� Likewise for

X

l�preyLgrpDiv�k�

�

Protected Characteristics

Predatorptrvector predators ��
Preyptrvector preys ��
intmatrix predConv� �� �predator��predatorLengthGroup�
intmatrix preyConv� �� �prey��preyLengthGroup�
intmatrix areas ��
intvector AreaNr ��
intmatrix doeseat� �� �predator��prey� � does predator eat prey�
bandmatrixvector total �� �area��pred�LengthGr���preyLengthGr��

Details

predConv�p� is meant for converting from the length group division of predators�p� to the
length group division according to which total is� If predConv�p��l� is � 	� predConv�p��l�
is the number of length group in total to which length group l of the predator predators�p�
belongs� If predConv�p��l� � 	� length group l of predators�p� falls out of the range of
total�
The same applies for preyConv�

����� PREDATOROVERAGGREGATOR ���

��� PredatorOverAggregator

The class PredatorOverAggregator is just another aggregator class� Its use and meaning
of parameters should be very clear after reading about the classes PredatorAggregator
and StockAggregator� It aggregates the overconsumption of predators�

Inheritance

class PredatorOverAggregator

PredatorOverAggregator�const Predatorptrvector�� const

intmatrix�� const LengthGroupDivision� const	
Use� PredatorOverAggregator POA�predators� Areas� predLgrpDiv�
Pre� See PredatorAggregator�
Post� POA is ready to aggregate overconsumption data of the predators

predators� See also PredatorAggregator�

C void Sum�	

Use� POA�Sum��
Pre� See PredatorAggregator�
Post� See PredatorAggregator�

C const doublematrix� ReturnSum�	 const

Use� dmptr � �POA�ReturnSum��
Pre� See PredatorAggregator�
Post� See PredatorAggregator� Note however that the matrix poin�

ted to by dmptr is indexed with �area��lengthgroup�� where area
is the aggregation of the areas in Areas�areas� and lengthgroup
is a length group in predLgrpDiv � see the constructor and
PredatorAggregator�

Protected Characteristics

Predatorptrvector predators �� Pointers to the predators�
intmatrix predConv �� �pred��predLengthGroup� � faster access�
intmatrix areas �� How areas are aggregated�
doublematrix total �� �area��predLgrp� � keeps the last sum�

Details

predConv�p� is meant for converting from the length group division of predators�p� to the
length group division according to which total is� If predConv�p��l� is � 	� predConv�p��l�

��� CHAPTER ��� NONSTANDARD AGGREGATION AND PRINTING�

is the number of length group in total to which length group l of the predator predators�p�
belongs� If predConv�p��l� � 	� length group l of predators�p� falls out of the range of
total�

����� PREYOVERAGGREGATOR ���

����� PreyOverAggregator

The class PreyOverAggregator is almost just like PredAggregator� It aggregates the
overconsumption of preys� Read the description of PredatorAggregator for a better
description of the parameters and meaning of the functions�

Inheritance

class PreyOverAggregator

PreyOverAggregator�const Preyptrvector�� const

intmatrix�� const LengthGroupDivision� const	
Use� PreyOverAggregator�preys� Areas� preyLgrpDiv�
Pre� See PredatorAggregator�
Post� See PredatorAggregator�

C void Sum�	

Use� POA�Sum��
Pre� See PredatorAggregator�
Post� See PredatorAggregator�

C const doublematrix� ReturnSum�	 const

Use� dmptr � �POA�ReturnSum��
Pre� See PredatorAggregator�
Post� See PredatorAggregator ' dmptr is indexed with

�area��preylength��

Protected Characteristics

Preyptrvector preys �� Pointers to the preys�
intmatrix preyConv �� �prey��preyLengthGroup� � fast access�
intmatrix areas �� areas to aggregate�
doublematrix total �� �area��length group� � the last sum�

Details

preyConv�p� is meant for converting from the length group division of preys�p� to the
length group division according to which total is� If preyConv�p��l� is � 	� preyConv�p��l�
is the number of length group in total to which length group l of the prey preys�p�
belongs� If preyConv�p��l� � 	� length group l of preys�p� falls out of the range of total�

��� CHAPTER ��� NONSTANDARD AGGREGATION AND PRINTING�

Chapter ��

Statistics�

���� LinearRegression

The class LinearRegression �ts a straigt line through a set of given points �x� y�� i�e�
�nds a and b to minimize

X

i

�yi � �a � bxi��
��

If the xi�s are all the same� the �tted line is a �
y� b � ��

Inheritance

class LinearRegression

Public messages

LinearRegression�	

Use� LinearRegression LR
Pre� None�
Post� LR is of type LinearRegression�

S virtual void Fit�const doublevector�� const

doublevector�	
Use� LR�Fit�x� y�
Pre� x�Size�� � y�Size�� � 	�
Post� LR has �tted a line through the points �x�i�� y�i�� � a least squares

�t� See the discussion above�
If the preconditions are not met� LR�Error�� returns �� else 	�

S virtual void Fit�const doublevector�� const

doublevector�� double	
Use� LR�Fit�x� y� b�

���

��
 CHAPTER ��� STATISTICS�

Pre� x�Size�� � y�Size�� � 	�
Post� LR has �tted a line whose slope is b through the points �x�i�� y�i���

See the discussion above� If the preconditions are not met�
LR�Error�� returns �� else 	�

S virtual void Fit�const doublevector�� const

doublevector�� double� double	
Use� LR�Fit�x� y� b� a�
Pre� x�Size�� � y�Size�� � 	�
Post� LR has set its line to have the slope b and the intercept a� If the

preconditions are not met� LR�Error�� returns �� else 	�

S virtual double Funcval�double	

Use� y � LR�Funcval�x�
Pre� LR�Fit�� � � � has been called and LR�Error�� returns 	�
Post� y is the value of the line at the point x�

F int Error�	 const

Use� err � LR�Error��
Pre� None�
Post� err is � if an error occurred in the last call to LR�Fit�� � � �� else err

is 	�

F double SSE�	 const

Use� sse � LR�SSE��
Pre� LR�Fit�� � � � has been called and LR�Error�� returns 	�
Post� sse keeps the sum of the squares of errors in the last �t�

F double intersection�	 const

Use� a � LR�intersection��
Pre� LR�Fit�� � � � has been called and LR�Error�� returns 	�
Post� a is the intersection of the straight line with the y�axis� i�e� a ��

LR�Funcval�	��

F double slope�	 const

Use� b � LR�slope��
Pre� LR�Fit�� � � � has been called and LR�Error�� returns 	�
Post� b is the slope of the �tted line�

Protected Characteristics

int error �� Error status�

����� LINEARREGRESSION ���

double sse �� Sum of squares of erros in last �t�
double a �� Coe�cients for the line y
 a � bx�
double b �� Coe�cients for the line y
 a � bx�

��� CHAPTER ��� STATISTICS�

���� LogLinearRegression

The class LogLinearRegression calculates a log�log �t through given set of datapoints
�x� y�� I�e� the model

y � axb�

The model �tted is
log�y� � log�a� � b log�x��

That is why we often mention the ��tted line� in the class descriptions�

Inheritance

class LogLinearRegression

Public messages

LogLinearRegression�	

Use� LogLinearRegression LLR
Pre� None�
Post� LLR is of type LogLinearRegression�

S void Fit�const doublevector�� const doublevector�	

Use� LLR�Fit�x� y�
Pre� Omitting the point �	�	�� x�Size�� � y�Size�� � 	 and no element

of x or y is � 	� The point �	�	� may be in �x�i�� y�i�� for some i�s
but they are ignored�

Post� LLR has �tted a line through the points �log�x�� log�y��� where
log is base e �natural logarithm�� If the preconditions are met�
LLR�Error�� returns 	� else ��

S virtual void Fit�const doublevector�� const

doublevector�� double	
Use� LLR�Fit�x� y� b�
Pre� See above�
Post� LLR has �tted a line whose slope is b through the points

�log�x�i��� log�y�i���� See the discussion above� If the preconditi�
ons are not met� LLR�Error�� returns �� else 	�

S virtual void Fit�const doublevector�� const

doublevector�� double� double	
Use� LLR�Fit�x� y� b� a�
Pre� See above�
Post� LLR has set its line to have the slope b and the intercept a� If the

preconditions are not met� LLR�Error�� returns �� else 	�

����� LOGLINEARREGRESSION ���

F int Error�	

Use� err � LLR�Error��
Pre� None�
Post� err is � if an error has occured� else err is 	� See the other functions

to �nd out when an error occurs�

F double SSE�	 const

Use� sse � LLR�SSE��
Pre� LLR�Fit�� � � � has been called and LLR�Error�� returns 	�
Post� sse is the sum of squares of error in the �t of the line in the last call

to LLR�Fit�� � � �� If the preconditions are met� LLR�Error�� returns
	� else ��

F double SSE�const doublevector�� const doublevector�	

Use� sse � LLR�SSE�x� y�
Pre� LLR�Fit�� � � � has been called and LLR�Error�� returns 	� x�Size��

�� y�Size�� and all elements of x� y are � 	�
Post� sse is the sum of the squares of �LLR�LogFuncval�x�i�� � y�i��� If

the preconditions are met� LLR�Error�� returns 	� else ��

F double WeightedSSE�const doublevector��const

doublevector�� const doublevector�	
Use� sse � LLR�WeightedSSE�x� y� weights�
Pre� LLR�Fit�� � � � has been called and LLR�Error�� returns 	� x�Size��

�� y�Size�� and all elements of x� y are � 	�
Post� sse is the sum of weights�i��LLR�LogFuncval�x�i�� � y�i���� If the

preconditions are met� LLR�Error�� returns 	� else ��

F double Funcval�double	

Use� y � LLR�Funcval�x�
Pre� x � �� LLR�Fit�� � � � has been called and LLR�Error�� returns 	�
Post� y has the value of the �tted model at the point x� y � axb� If the

preconditions are met� LLR�Error�� returns 	� else ��

F double LogFuncval�double	

Use� y � LLR�LogFuncval�x�
Pre� x � �� LLR�Fit�� � � � has been called and LLR�Error�� returns 	�
Post� y has the value of the �tted line at the point x� y � log�a��b log�x��

compare with the equations above�
If the preconditions are met� LLR�Error�� returns 	� else ��

F double intersection�	 const

Use� a � LLR�intersection��
Pre� LLR�Fit�� � � � has been called and LLR�Error�� returns 	�

�		 CHAPTER ��� STATISTICS�

Post� a is the intersection of the �tted line with the y�axis� Compare
with the equations above �i�e� a equals what is denoted with log�a�
there�

F double slope�	 const

Use� b � LLR�slope��
Pre� LLR�Fit has been called and LLR�Error�� returns 	�
Post� b is the slope of the �tted line� Compare the equations above�

Protected Characteristics

LinearRegression LR �� Calculates the �ts�
int error �� Error status�

���� PopStatistics

The class PopStatistics handles some of the statistics one might want to compute� given
abundance numbers and mean weights by length�
Warning messages If the class receives a popinfo with mean weight equal to 	 but
nonzero abundance numbers� a warning message is printed�

Inheritance

class PopStatistics

Public messages

PopStatistics�const popinfoindexvector�� const

LengthGroupDivision� const	
Use� PopStatistics P�pop� LgrpDiv�

PopStatistics�const popinfovector�� const

LengthGroupDivision� const	
Use� PopStatistics P�pop� LgrpDiv�
Pre� pop is a nonempty vector� LgrpDiv is �� 	 and describes the length

group division of pop�
Post� P is of type PopStatistics� and is ready to give statistics about the

population received in pop�

�PopStatistics�	

Use� �P

����� POPSTATISTICS �	�

Pre� None�
Post� All memory belonging to P has been freed�

F double MeanLength�	 const

Use� m � P�MeanLength��
Pre� None�
Post� m holds the mean length of the population given to P at the time

of creation�

F double MeanWeight�	 const

Use� m � P�MeanWeight��
Pre� None�
Post� m is the mean weight of the population of P�

F double TotalNumber�	 const

Use� t � P�TotalNumber��
Pre� None�
Post� t is the total abundance number of the population of P�

F double StdDevOfLength�	 const

Use� s � P�StdDevOfLength��
Pre� none�
Post� s is the standard deviation of the length distribution of P�

Protected messages

S void CalcStatistics�const popinfovector�� const

LengthGroupDivision� const	
Use� P�CalcStatistics�pop� LgrpDiv�
Pre� pop�Size�� � LgrpDiv�NoLengthGroups��
Post� P has calculated the statistics for the vector pop� assuming LgrpDiv

is its length group division� and keeps the results so they can be
accessed through the member functions�

Protected Characteristics

double meanlength ��
double meanweight ��
double totalnumber ��
double stddevOflength ��

�	� CHAPTER ��� STATISTICS�

Chapter ��

Likelihood�

���� Overview

The classes introduced in this section are related as follows�

Likelihood

CatchDistribution CatchStatistics SurveyIndices StomachContent

������������

�
�
�
�
�
�

S
S
S
S
S
S

HHHHHHHHHHHH

Figure ����� Descendants of Likelihood�

SIOnStep

SIByAgeOnStep SIByLengthOnStep

������������

HHHHHHHHHHHH

Figure ����� Descendants of SIOnStep�

���� Likelihood

The class Likelihood is an abstract base class for all those classes that compute likelihood�

�	�

�	� CHAPTER ��� LIKELIHOOD�

SC

SCRatiosWithStddev SCRatios SCAmountsWithStddev

������������

HHHHHHHHHHHH

Figure ����� Descendants of SC�

As with all abstract base classes� Likelihood will be described as if it could be instantiated
to show the recommended meaning of the member functions�
When using this class in a simulation� the member function AddToLikelihood should be
called on every timestep�

Inheritance

class Likelihood

Public messages

Likelihood�LikelihoodType	

Use� Likelihood L�t�
Pre� None�
Post� L is of type Likelihood and L�Type�� will return t� See below�

virtual Likelihood�	 � �

Use� �L
Pre� None�
Post� All memory belonging to L has been freed�

virtual void AddToLikelihood�const TimeClass� const	 �

�
Use� L�AddToLikelihood�TimeInfo�
Pre� TimeInfo �� 	�
Post� L has added to its likelihood� based on the current time of TimeInfo�

S virtual void Reset�	

Use� L�Reset��
Pre� None�
Post� L has reset itself� i�e� deleted from itself the information it had kept

in the call to AddToLikelihood� so that it can now collect likelihood
information again�

����� LIKELIHOOD �	�

virtual void Print�ofstream�	 const � �

Use� L�Print�out�le�
Pre� out�le has no bad bits set�
Post� L has printed its internal information to out�le�

F double ReturnLikelihood�	 const

Use�
 � L�ReturnLikelihood��
Pre� None�
Post�
 is the current value of L�s accumulated weighted likelihood�

F double UnweightedLikelihood�	 const

Use�
 � L�UnweightedLikelihood��
Pre� None�
Post�
 is the current value of L�s accumulated unweighted likelihood�

F double Weight�	 const

Use� w � L�ReturnLikelihood��
Pre� None�
Post� w is equal to L�s weight� i�e� L�ReturnLikelihood�� �� L�Weight��

� L�UnweightedLikelihood���

F LikelihoodType Type�	 const

Use� t � L�Type��
Pre� None�
Post� t has the type of L� This member function is to be used for run�time

type identi�cation of derived classes�

Protected Characteristics

double likelihood �� Accumulated likelihood�
double weight ��

Private Characteristics

Likelihoodtype type ��

�	
 CHAPTER ��� LIKELIHOOD�

���� SurveyIndices

The class SurveyIndices calculates likelihood based on using survey indices as time series�
It only works with a single set of areas that are joined together in all calculations � better
read the description of the �le format�

Inheritance

class SurveyIndices � public Likelihood

Public messages

SurveyIndices�CommentStream�� const AreaClass� const�

const TimeClass� const 	
Use� SurveyIndices SI�in�le� Area� TimeInfo�
Pre� in�le has no badbits set and the pointers are not null� in�le�s format

is correct with respect to the information in Area and TimeInfo�
Post�

virtual �SurveyIndices�	

Use� �SI
Pre� None�
Post� All memory belonging to SI has been freed�

C virtual void AddToLikelihood�const TimeClass� const	

Use� SI�AddToLikelihood�TimeInfo�
Pre� TimeInfo �� 	�
Post� SI has added to its likelihood function value�

S void SetStocks�Stockptrvector�	

Use� SI�SetStocks�Stocks�
Pre� Stocks�Size�� � 	 and no pointer in Stocks is null� In Stocks all the

names of the stocks read from in�le are found�
Post� SI keeps pointers to its stocks�
NB� The lifetime of the objects pointed to in Stocks has to be at least

equal to that of SI�

S virtual void Reset�	

Use� SI�Reset��
Pre� None�
Post� SI has reset itself� i�e� deleted from itself the information it had

kept in the call to AddToLikelihood�� � � �� so that it can now collect
likelihood information again�

virtual void Print�ofstream�	 const

����� SURVEYINDICES �	�

Use� SI�Print�out�le�
Pre� out�le has no bad bits set�
Post� SI has printed its internal information to out�le�

Protected messages

S void ReadLengths�CommentStream�� const AreaClass�

const� const TimeClass� const 	
Use� SI�ReadLengths�in�le� Area� TimeInfo�
Pre� The usual stu� about error bits in in�le and nonzero pointers� And

in�le is positioned at the beginning of the �le format for survey
indices by length�

Post� SI has created a new SIOnStepByLength and keeps a pointer to the
class there�

S void ReadAges�CommentStream�� const AreaClass� const�

const TimeClass� const 	
Use� SI�ReadAges�in�le� Area� TimeInfo�
NB� This is similar to ReadLengths�� � � �� this function works with survey

indices by age instead of by length� Therefore� SI keeps a pointer
to SIByAgeOnStep� �Note� here SI is the protected variable of type
SIOnStep���

Protected Characteristics

SIOnStep� SI �� Collects the info�
intvector areas �� Our areas�
charptrvector stocknames �� Names of Stock�

The class lets objects of type SIOnStep do really most of the work�

�	� CHAPTER ��� LIKELIHOOD�

���� SIOnStep

The class SIOnStep is an abstract base class� a guideline as to how to write likelihood
classes that compare some data obtained from the stocks to a matrix of values�
The class SIOnStep uses survey indices on a �xed step as time series to use in a regression�
The sum of squares in that regression can be obtained�
The �t of survey indices� �Ii�� v�s� the observed variables� �Ni�� is log�Ni� � ��� log�Ii��
where one of the following applies�

� Both � and � are free�

� � is �xed and � is free�

� Both � and � are �xed�

Inheritance

class SIOnStep

Public messages

SIOnStep�CommentStream�� int� const TimeClass� const	

Use� SIOnStep S�in�le� ncol� TimeInfo�
Pre� in�le has no badbits set and its �le format is correct� TimeInfo

�� �� ncol is the number of columns in the input �le �refer to the
documentation of the �le format in the Users Manual��

Post� S is of type SIOnStep�
NB� The initialization of S is not complete until S�SetStocks�� � � � has

been called�

virtual �SIOnStep�	

Use� �S
Pre� None�
Post� All memory belonging to S has been freed�

virtual void Sum�const TimeClass� const	 � �

Use� S�Sum�TimeInfo�
Pre� TimeInfo �� 	� S�SetStocks�� � � � has been called�
Post� S has summed up information from its stocks�

virtual void SetStocks�const Stockptrvector�	 � �

Use� S�SetStocks�Stocks�
Pre� Stocks�Size�� � 	� no pointer in Stocks is null�
Post� S is ready to obtain data from the objects pointed to in Stocks�
NB� S will use all the objects pointed to in Stocks�

����� SIONSTEP �	�

F int Error�	 const

Use� err � S�Error��
Pre� None�
Post� err equals � if an error has occurred in last call to Regression��� else

	�

S void Clear�	

Use� S�Clear��
Pre� None�
Post� Internal error status is set to 	�

F virtual double Regression�	

Use� SSE � S�Regression��
Pre� S�SetStocks�� � � � has been called�
Post� SSE is the sum of squares of error in the regression S made� if S

had obtained enough data to make the �t� If S did not have enough
data to do the �t� SSE is 	 and the error status in S is set to ��

S virtual void Reset�	

Use� S�Reset��
Pre� None�
Post� S has reset itself� i�e� deleted from itself the information it had kept

from the calls to S�Sum�� � � �� so that it can now collect abundance
information again�

virtual void Print�ofstream �	 const

Use� S�Print�out�le�
Pre� S�SetStocks�� � � � has been called�
Post� S has written internal information to out�le�

Protected messages

S void SetError�	

Use� S�SetError��
Pre� None�
Post� S has set its error bit�

F int IsToSum�const TimeClass� const	 const

Use� t � S�IsToSum�TimeInfo�
Pre� TimeInfo �� 	�
Post� If S is to sum on the current timestep� t equals �� else 	�

��	 CHAPTER ��� LIKELIHOOD�

S void KeepNumbers�const doublevector�	

Use� S�KeepNumbers�numbers�
Pre� S�SetStocks�� � � � has been called� numbers�Size�� equals ncol �the

argument in the constructor� and S�IsToSum�� � � � is true on the
current timestep�

Post� S has added the contents of numbers to its private variable
abundance�

NB� This function is intended for derived classes to use from within the
virtual member function Sum�� � � ��

Private enum

FitType LogLinearFit�	
FixedSlopeLogLinearFit
FixedLogLinearFit

Private messages

F double Fit�const doublevector�� const doublevector�	

Use�
 � S�Fit�stocksize� indices�
Pre� stocksize�Size�� � indices�Size��
Post�
 contains the sum of squares of errors in the �t of stocksize to

indices�

Private Characteristics

doublematrix Indices �� �year������ � survey indices�
doublematrix abundance �� �year������ � abundance numbers�
intvector Years �� Vector of years�
intvector Steps �� Vector of steps�
ActionAtTimes AAT �� Should we sum�
int error �� Error status�
int NumberOfSums ��
FitType fittype �� The type of �t�
double slope �� The slope in the �t�
double intercept �� The intercept in the �t�

Data invariant

� The matrices Indices and abundance are of the same size and their number of

����� SIONSTEP ���

rows equals the length of Years and Steps�

� Each line Indices�i� and abundance�i� corresponds to the elements Years�i� and
Steps�i��

� The list obtained from �Years� Steps� is in chronological order�

Details

The private variable fittype is of the type SIOnStep��FitType and describes what kind
of �t to make in SIOnStep��Fit�� � � �� Depending on the value of fittype� the private
variables slope and intercept may be used�

��� CHAPTER ��� LIKELIHOOD�

���� SIByLengthOnStep

The class SIByLengthOnStep collects abundance numbers from Stock and compares
them with abundance indices� It works by joining together a set of areas into one by
summing over them the up abundance numbers of stocks�

The regression SIByLengthOnStep calculates is described below�

Inheritance

class SIByLengthOnStep � public SIOByOnStep

Public messages

SIByLengthOnStep�CommentStream�� const intvector��

const doublevector�� const TimeClass� const	
Use� SIByLengthOnStep S�in�le� areas� lengths� TimeInfo�
Pre� The format of in�le is correct� areas is a nonempty vector of

nonnegative� unique elements� lengths is a nonempty vector whose
elements are distinct and in ascending order� TimeInfo �� 	�

Post� S is of type SIByLengthOnStep� It has read its information from
in�le and kept the information for the period TimeInfo marks�
lengths is understood to be a length group division for the informati�
on read from in�le�

NB� S is not fully initialized until SetStocks�� � � � has been called�

virtual �SIByLengthOnStep�	

Use� �S
Pre� None�
Post� All memory belonging to S has been freed�

C virtual void Sum�const TimeClass� const	

Use� S�Sum�TimeInfo�
Pre� TimeInfo �� 	�
Post� If the current time TimeInfo shows is in the list of times S keeps�

it sums information from its Stocks� else nothing is done�

S virtual void SetStocks�const Stockptrvector�	

Use� S�SetStocks�Stocks�
Pre� See SIOnStep and� the length group division of S �argument in the

constructor� has to be coarser than or equal to that of all the Stocks
pointed to in Stocks�

Post� See SIOnStep�

����� SIBYLENGTHONSTEP ���

Details

The regression that SIByLengthOnStep calculates is as follows�
Let Ny be stock number on a year y and Iy a measured abundance index for the same
year� Then we calculate the regression of log�I� as a linear function of log�N� to get �
and �� i�e� the relationship log�I� � � � � log�N��
Then we let SSE be the sum of squares of errors from the �t� i�e�

SSE �
X

y

�log�Iy�� ��� � log�Ny���
��

SIByLengthOnStep sums up abundance numbers from several stocks �the argument in
SetStocks�� � � �� on several areas �the argument in the constructor�� It divides the abund�
ance numbers into length groups according to the division given in the constructor and
calculates this sum of squares of errors for every length group�
The value returned from S�Regression�� is the sum of SSE over all the length groups in
S�

Protected Characteristics

StockAggregator� aggregator �� This one aggregates�
LengthGroupDivision�LgrpDiv �� Describes lengths�
intvector Areas �� Over which to sum�

Details

The abundance matrix is indexed with year � just like SIOnStep��Indices� These two
matrices will be compared when calculating the regression�

��� CHAPTER ��� LIKELIHOOD�

���� SIByAgeOnStep

The class SIByAgeOnStep is quite similar to SIByLengthOnStep� except that the survey
indices it uses are to be for age groups� not for length groups�

Inheritance

class SIByAgeOnStep � public SIOnStep

Public messages

SIByAgeOnStep�CommentStream�� const intvector�� const

doublevector�� const TimeClass� const	
Use� SIByAgeOnStep S�in�le� areas� ages� TimeInfo�
Pre� The format of in�le is correct� areas is a nonempty vector of nonn�

egative� unique elements� ages is a nonempty matrix with nonempty
lines� TimeInfo �� 	�

Post� S is of type SIByAgeOnStep� It has read its information from in�le

and kept the information for the period TimeInfo marks� ages is
describe the information read from in�le� i�e� each line in ages

contains the agegroups aggregated to obtain the survey indices�
NB� S is not fully initialized until SetStocks has been called�

�SIByAgeOnStep�	

Use� �S
Pre� None�
Post� All memory belonging to S has been freed�

C virtual void Sum�const TimeClass� const	

Use� S�Sum�TimeInfo�
Pre� TimeInfo �� 	�
Post� If the current time TimeInfo shows is in the list of times S keeps�

it sums information from its Stocks� else nothing is done�

S virtual void SetStocks�const Stockptrvector�	

Use� S�SetStocks�Stocks�
Pre� See SIOnStep�
Post� See SIOnStep�

S virtual void Reset�	

Use� S�Reset��
Pre� None�
Post� S has reset itself� i�e� deleted from itself the information it had kept

from the calls to Sum�� � � �� so that it can now collect abundance
information again�

���	� SIBYAGEONSTEP ���

virtual void Print�ofstream �	 const

Use� S�Print�out�le�
Pre� S�SetStocks�� � � � has been called�
Post� S has written internal information to out�le�

Protected Characteristics

StockAggregator� aggregator �� It aggregates�
intmatrix Ages �� How to aggregate agegroups
doublematrix abundance �� ��year��age�
intvector Areas �� Areas to aggregate�

Details

The line Ages�i�� 	 � i � Ages�Nrow��� is a collection of age groups that are to be merged
into one� See SIByLengthOnStep for further details on� e�g� how the regression is done�

