
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00445-022-01541-z

RESEARCH ARTICLE

The effect of wind and plume height reconstruction methods 
on the accuracy of simple plume models — a second look at the 2010 
Eyjafjallajökull eruption

Tobias Dürig1  · Magnús T. Gudmundsson1 · Thorbjörg Ágústsdóttir2 · Thórdís Högnadóttir1 · Louise S. Schmidt3

Received: 3 November 2021 / Accepted: 7 February 2022 
© International Association of Volcanology & Chemistry of the Earth's Interior 2022

Abstract
Real-time monitoring of volcanic ash plumes with the aim to estimate the mass eruption rate is crucial for predicting atmos-
pheric ash concentration. Mass eruption rates are usually assessed by 0D and 1D plume models, which are fast and require 
only a few observational input parameters, often only the plume height. A model’s output, however, depends also on the 
plume height data handling strategy (sampling rate, gap reconstruction methods and statistical treatment), especially in 
long-term eruptions with incomplete plume height records. To represent such an eruption, we used Eyjafjallajökull 2010 to 
test the sensitivity of six simple and two explicitly wind-affected plume models against 22 data handling strategies. Based 
on photogrammetric measurements, the wind deflection of the plume was determined and used to recalibrate radar-derived 
height data. The resulting data was then subjected to different data handling strategies, before being used as input for the 
plume models. The model results were compared to the erupted mass measured on the ground, allowing us to assess the 
prediction accuracy of each combination of data handling strategy and model. Combinations that provide highest prediction 
accuracies vary, depending on data coverage, eruption intensity and fragmentation mechanism. However, for this type of 
moderate-to-weak eruption (VEI 3 in terms of maximum intensity), the most important factor was found to be the prevail-
ing wind speed. When wind speeds exceed 20 m/s, most combinations of strategies and models provide predictions that 
underestimate the erupted mass by more than 40%. Under such conditions, the optimal choice of data handling strategy and 
plume model is of particular importance.
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Introduction

Volcanic ash injected into the atmosphere during explosive 
eruptions can pose a serious threat for aviation and air 
travel infrastructure (Kienle et al. 1980; Grindle and Bur-
cham 2002). Next to direct observations of the ash cloud 
(e.g. satellite imagery and lidar retrievals) predictions of 

movement of volcanic ash clouds are based on atmospheric 
ash dispersion models (Dacre et al. 2011; Kristiansen et al. 
2012; Dioguardi et al. 2016, 2020). Inaccurate predictions 
can on the one hand lead to severe damage to and even 
loss of aircraft (Guffanti et al. 2010) or on the other hand 
to airport closures framed or perceived as overcautious 
(Harris et al. 2012; Harris 2015) and flight diversions or 
cancellations, which involve large preventable costs (e.g. 
Brannigan 2011; Macrae 2011; Ragona et al. 2011). This 
underlines the need for accurate, reliable and confident 
model forecasts, the lack of which is the current bottleneck 
in our forecasting capability. Key to achieving such fore-
casts is thus to be able to provide an ash dispersion model 
with accurate near-term eruption source parameters, i.e. 
physical quantities, which characterize the eruptive source. 
In this regard, the most important eruption source param-
eter is the mass eruption rate (MER) (e.g. Degruyter and 
Bonadonna 2012; Mastin 2014; Bonadonna et al. 2016), 
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that is, the mass flux of the eruptive gas-ash mixture, 
expressed in kg/s (Wilson and Walker 1987).

MER cannot be directly measured. However, methods 
have been developed that infer MER using observable 
properties of the plume. These include using video analy-
ses of ash plumes and ejecta (e.g. Wilson and Self 1980; 
Valade et al. 2014; Dürig et al. 2015b, a; Pioli and Harris 
2019; Tournigand et al. 2019), emitted infrasound waves 
(Johnson and Ripepe 2011; Ripepe et al. 2013), thermal 
infrared signatures (e.g. Harris 2013; Ripepe et al. 2013; 
Harris et al. 2013; Cerminara et al. 2015), electrostatic 
field (Büttner et al. 2000; Calvari et al. 2012), interpreta-
tion of microwave radar signals (Montopoli 2016; Mar-
zano et al. 2020) or satellite-based estimates (e.g. Pouget 
et al. 2013; Pavolonis et al. 2018; Gouhier et al. 2019; 
Bear-Crozier et al. 2020). For real-time MER assessment, 
however many of these approaches are still in an experi-
mental state or struggle with high uncertainties as they 
often depend on data that are hard to obtain in situ, e.g. 
the vent geometry (Dürig et al. 2015a). These methods will 
thus not be considered here.

The most straightforward and reliable observable in an 
explosive eruption is usually the height of the eruptive 
column H. A number of plume models linking H with the 
mass eruption rate at the vent have been developed (for in-
depth overview, see Costa et al. (2016)). These range from 
“simple” theoretical (Wilson and Walker 1987; Woods 
1988) and empirical 0D models (Sparks et al. 1997; Mas-
tin et al. 2009), through explicitly wind-affected steady 
1D models (Bursik 2001; Degruyter and Bonadonna 2012; 
Devenish 2013; Woodhouse et  al. 2013; Mastin 2014; 
de’Michieli Vitturi et al. 2015; Folch et al. 2016; Aubry 
et al. 2017) to elaborate time-dependent multiphase mod-
els in 2D (Neri et al. 1998) or 3D space (Esposti Ongaro 
et al. 2007; Suzuki and Koyaguchi 2012; Cerminara et al. 
2016).

At present, real-time MER assessments must rely on sim-
ple 0D and explicitly wind-affected 1D models, which have 
the advantage of providing fast results (e.g. Sparks et al. 
1997; Bursik 2001; Woodhouse et al. 2013). A monitoring 
system that uses a suite of such models to assess the mass 
eruption rate in near real time is the software REFIR (Real-
time Eruption source parameters FutureVolc Information 
and Reconnaissance system) (Dürig et al. 2018; Dioguardi 
et al. 2020). Simple 0D models are limited by initial assump-
tions, accuracy of measured parameters (plume height and 
mass) and simplifications on which they are based. To assess 
the effect of these shortcomings, this study explores three 
aspects that might limit the models’ accuracies:

1. The effect of plume height uncertainties resulting from 
a stepwise horizontal ground-based radar scanning tech-
nique on MER estimates.

2. The sensitivity of data handling strategies on model pre-
dictions when dealing with incomplete sets of plume 
height recordings.

3. The impact of wind on MER prediction by non-explic-
itly wind-affected plume models in comparison to the 
impact of using different data handling strategies.

The term “data handling strategies” refers to the statisti-
cal treatment of plume height data before it is used as a 
model input. Note that with “plume height”, we refer to the 
maximum elevation of the plume above vent, unless stated 
otherwise. Since plume height H and mass eruption rate 
Q are related in a highly nonlinear way, the time-averaged 
mass eruption rate Q(t) is in most cases not identical to Q 
resulting from using the time-averaged plume height H(t) 
as input. Thus:

Although rarely acknowledged, this fact implies that not 
only the plume height H itself, but also the time interval 
over which it is measured, as well as the statistical strategy 
for its assessment, are expected to affect a model’s outcome.

In our model sensitivity study, we focus on the 2010 
Eyjafjallajökull (Iceland) eruption. This event featured a 
wind-affected plume (Gudmundsson et al. 2012), which 
was monitored by a stepwise horizontally scanning radar. 
The resulting plume height records were incomplete (Arason 
et al. 2011). The 2010 Eyjafjallajökull eruption therefore 
represents an ideal test case for the exploration of the three 
aspects mentioned above.

The Eyjafjallajökull 2010 eruption

The 2010 eruption of Eyjafjallajökull had four phases of 
activity.

• Phase I: lasting from 14 April 2010 until noon of 18 
April, was an initial explosive phase with phreatomag-
matic activity (Gudmundsson et al. 2012; Dellino et al. 
2012).

• Phase II: (second half of 18 April–4 May) was a phase of 
low discharge that was effusive with relatively weak but 
sustained explosive activity (Gudmundsson et al. 2012).

• Phase III: (5–17 May) saw a significant increase of explo-
sive activity, coinciding with a change in melt composi-
tion from benmoreite to trachyte (Gudmundsson et al. 
2012). This phase was characterized by the emission of 
distinct explosive ash pulses (Dürig et al. 2015b, a) and 
is often referred to as “second explosive phase” (Gud-
mundsson et al. 2012; Dellino et al. 2012).

(1)Q(t) ≠ Q
(

H(t)
)
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• Phase IV: (18–22 May) was characterized by a decline 
in eruption activity and plume height. Although the end 
of eruption is set on 22 May, minor isolated explosive 
events occurred on 4–8 June 2010 (Gudmundsson et al. 
2012). No ash plumes were detected on radar after 10:20 
UTC on 21 May, when the plume fell below the detection 
limit of 2.5 km (Arason et al. 2011).

The eruption’s fallout was measured in considerable 
detail at about 400 locations in Iceland (Gudmundsson 
et al. 2012), allowing us to compare model predictions on 
the erupted mass with the actual amount of mass deposited 
as tephra. For the part of the tephra that fell into the ocean 
south and southeast of Iceland, a considerable uncertainty 
exists, but the magnitude of this component can neverthe-
less be estimated using well-established thinning behaviour 
of tephra layers with distance (e.g. Thorarinsson 1954; Pyle 
1989; Fierstein and Nathenson 1992). On 14–16 April, dur-
ing phase I, westerly upper-tropospheric winds prevailed, 
changing to northerly winds by 17 April, directing the plume 
to the south (Gudmundsson et al. 2012). As a result, the 
erupted mass could be assessed separately as phases Ia and 
Ib (see Table 1).

The monitoring conditions of this eruption are classified 
as relatively challenging since it is a moderate-to-weak erup-
tion that took place under adverse weather conditions (fre-
quent clouds at low and medium altitudes and strong wind) 
(Arason et al. 2011; Gudmundsson et al. 2012; Björnsson 
et al. 2013), which meant direct observations of the volcanic 
plume were often not possible.

Data

The data used in this study are as follows:

i) Plume height obtained by the Icelandic Meteorological 
Office (IMO) from the C-band radar in Keflavík (Arason 
et al. 2011).

ii) Plume height as measured from photographs taken from 
inspection aircraft (Fig. 1).

iii) Plume height as measured on photographs taken from 
the ground from areas to the west of the volcano.

iv) Wind speed and direction at plume-relevant altitudes 
retrieved either from ERA5 or ICRA. ERA5 is a global 
reanalysis product by the European Centre for Medium-
Range Weather Forecasts with a horizontal resolution of 
30 km (Hersbach et al. 2020). ICRA is a local reanalysis 
product by the Icelandic Met Office over Iceland, using 
the non-hydrostatic numeric weather prediction model 
HARMONIE-AROME with a horizontal resolution of 
2.5 km (Nawri et al. 2017; Schmidt et al. 2018). Both 
models have a temporal resolution of 1 h. Since ICRA 
data were only available up to an altitude of 6 km a.s.l., 
we used composite data sets for the ICRA labelled wind 
speed profiles: ICRA reanalysis data below 6 km and 
ERA5 reanalysis data above.

Radar data

Located at 155-km distance from the vent, the C-band radar 
at Keflavík airport was the only weather radar operating in 
Iceland at the time of the eruption. The radar’s sampling 
strategy was to scan at vertical angles of 0.5°, 0.9°, 1.3°, 
2.4°, 3.5°, 4.5° and 6° (Arason et al. 2011). The width of 
the beam was 0.9° providing some overlap between scans. 
For Eyjafjallajökull, the vertical distance between the beams 
of the lowest scanning angles was about 1.1 km and about 
3 km between 1.3° and 2.4°. For a target above the volcano, 
this leads to a stepping in the plume height records, with 

Table 1  Modelled eruptive phases and ground truth. Modelled phases 
of the 2010 Eyjafjallajökull eruption are listed, together with the esti-
mated ranges of erupted airborne tephra mass, as reported in Gud-
mundsson et al. (2012). The errors of erupted mass are denoted ME. 
In our study these values were used as ground truth for testing the 
model predictions with different plume height data handling strate-

gies. Additional columns indicate duration, number of recorded radar 
measurements, data points (i.e. plume height measurements) per hour 
and time-averaged wind speed for each phase. Computation of wind 
speeds were based on ERA5 reanalysis data for the (radar-detected) 
plume heights

Phase From (dd/mm) Until (dd/mm/yy) Duration (min) Erupted 
mass ± ME 
(×  1010 kg)

Number of radar 
measurements

Data points 
per hour

Wind speed m/s

Ia 14/04 16/04/10 3785 9.80 ± 2.10 511 8.1 36.4
Ib 17/04 18/04/10 2165 3.50 ± 0.98 335 9.3 19.2
I (total) 14/04 18/04/10 5945 13.30 ± 3.08 846 8.5 30.1
II 18/04 4/05/10 23,765 4.20 ± 1.40 1005 2.5 11.8
III 5/05 17/05/10 18,725 18.90 ± 4.90 2858 9.2 16.2
IV 18/05 21/05/10 4950 1.40 ± 0.42 430 5.2 14.5
All 14/04 21/05/10 53,385 37.8 ± 9.8 5139 5.8 15.6
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preferential sampling at about 2.5-, 3.9-, 5.0- and ~ 8-km 
height above sea level (for details, see Arason et al., 2011).

Photos

The monitoring of vent activity and visual observations of 
plume behaviour took place on inspection flights (see Fig. 1; 
for complete list of surveillance flights, see Appendix. 6.3 
in Thorkelsson et al. (2012)). For flights where the aircraft 
location was recorded with GPS, it was possible to deter-
mine the position of the camera at the time of a photo with 
an accuracy higher than 1 km (Gudmundsson et al. 2015). 
This is the maximum error in the distance between aircraft 
and the volcanic vents or any other reasonably well-defined 
target.

In most cases, the plume was bent over by the wind, and 
its bearing was usually obtained from the position of the 
aircraft when it was upwind and in line with the plume. 
Occasionally, this was also done by flying along the plume 
and determining the location relative to known landmarks. 
Errors in distance to the top of the plume were in this way 
contained within 1 km in most cases and less than 2 km in 
all cases. In the vast majority of cases, this amounted to 
5–10% of the distance.

The height of plume was either assessed directly by using 
the altimeter of the plane (Fig. 1d) or calculated using the 
Python software Pixelcalc (Magnússon 2012). The plume 
top was referenced by triangulation, using photos of the 
plume taken in short time intervals from different angles. 
Given a known camera-target distance, Pixelcalc converts 
distances between two points on the photo to actual 3D dis-
tances at the location of the target by using the lens and 
camera specifications, which are derived from the photo’s 
metadata. The software corrects for Earth’s curvature at 
distances where it becomes significant. In most cases, the 
plume height is obtained by measuring the distance on the 
photo between the plume top and the surface, taking into 
account plume deflection by wind and surface elevation 
under the plume top, to obtain height above sea level. In 
some cases, where data on cloud top height are available, 
height over clouds (i.e. the distance between cloud top and 
plume top) is determined. Such cloud heights are in some 
cases obtained by direct observation using aircraft altimeter 
or through independent cloud height measurement using 
Pixelcalc. The uncertainties of the heights and horizontal 
deflection distances vary from one photo to another, depend-
ing on the uncertainties in distances, pixel size and image 
geometry. Assuming maximum errors for these parameters, 

Fig. 1  Examples of photos that were used to validate the plume 
height records from radar. a Aerial picture of the Eyjafjallajökull 
plume, taken on 14 April 2010 at 10:20 UTC. b This photo was taken 
5 min later from a different angle. Since the GPS coordinates of the 
plane were logged, the horizontal location of the plume top could 
be constrained by triangulation. At that time, the plume top reached 
an altitude of (6.0 ± 0.3) km above vent. c Example of a photo taken 
on the ground, from a distance of 29 km from the vent. This picture 

dates from 10 May (19:50 UTC), when the plume was deflected by 
1.7  km towards 193° (SSW), with its top reaching an elevation of 
(2.2 ± 0.2) km above vent. d This photo was taken on the last day of 
the eruption (21 May) at 18:00 UTC. In this case, the elevation of 
the plume was directly assessed by flying at the same elevation as 
the plume top and using the on-board altimeter. The aircraft flew at 
12,000ft a.s.l., which translates into a plume height of (2.3 ± 0.1) km. 
Photo credits: Th. Högnadóttir (a, b); M.T. Gudmundsson (c, d)
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we found the uncertainties of plume height and deflection 
to be less than 0.5 km.

In addition to the airborne imagery, photographs taken on 
the ground were used. For these, the location of the camera 
is accurately known which allowed us to calculate the dis-
tance to the plume top. Independent information of plume 
azimuth was used to correct for plume top deflection relative 
to vents.

The total number of photos taken on inspection flights is 
counted in thousands. Not all flights provided photos that 
allow reliable determination of plume height, e.g. due to 
cloud cover. Only the photos best suited for analysis were 
used, yielding in total 165 observations of plume heights, 
covering 17 of the 38 eruption days examined. From these 
photos, 148 were taken in the air and 17 on the ground. In 
85 cases, these photos could also be used to assess the plume 
deflection (i.e. the horizontal shift of the plume top towards 
the vent location).

Methods

Models

For estimating the MER, we used six simple (non-explicitly 
wind-affected) plume models and two wind-affected models, 
which are for simplicity referred to by the name of their first 
authors:

• Wilson (Wilson and Walker, 1987) — a theoretical model 
based on the theory of buoyant plumes by Morton et al. 
(1956) which estimates the mass eruption rate Q by:

  where H denotes the plume height (in m) and c is a 
constant which is 236 m (s/kg)1/4.

  To the group of non-explicitly wind-affected numerical 
models tested in this study, we include three derivatives 
of the Wilson model, which use Eq. (2), but with differ-
ent constants c based on empirical data from plumes with 
basaltic or andesitic tephra. They are referred to as:

• Wehrmann (Wehrmann et al. 2006), which uses for c a 
value of 295 m(s/kg)1/4

• Scollo (Scollo et al. 2007), using 247 m(s/kg)1/4 for c
• Andronico (Andronico et al. 2008), for which 244 m(s/

kg)1/4 is selected for c
  Two empirical models were used, which are based on 

correlations between plume height during eruption and 
the quantity of tephra found in deposits:

• Sparks (Sparks et al., 1997) — an empirical model which 
approximates Q by:

(2)QWilson = (H∕c)4

  where ρ is the dense-rock equivalent (DRE) density 
of the tephra within the plume. Following Gudmunds-
son et al. (2012), a DRE density of 2600 kg/m3 was 
used for all computations and the constant c is given 
by Sparks et al. (1997) as 1670 m(s/kg)1/3.86.

• Mastin (Mastin et al., 2009) — an empirical model with 
ρ defined as in (3) which estimates the mass eruption 
rate by:

  where c is given by Mastin et al. (2009) as 2000 m(s/
kg)1/4.15.

  Since these models are empirically constrained, they 
reflect the influence of the wind on plume height to 
some degree (Mastin 2014) and can therefore be seen 
as implicitly wind-affected.

  To juxtapose these simple plume models with explic-
itly wind-affected models, we included two examples 
of the latter category:

• Woodhouse (Woodhouse et al. 2013) — an empirical 
relationship of a numerical 1D model, which estimates 
the MER by:

where h denotes the centreline plume height (in km) and ∼

Ws quantifies the strength of the wind shear from the ground 
to a reference height H1, according to:

with V1 being the wind speed at H1 and N being the aver-
age buoyancy frequency. The latter parameter is determined 
by:

with g, C and T being the gravitational acceleration, heat 
capacity and temperature. Parameter z denotes the vertical 
coordinate above the source, subscript a refers to the atmos-
phere, and 0 refers to the volcanic source vent height. Note 
that a plume’s top height H coincides with the elevation of 
its centreline h only for strong eruptions with vertical ash 
columns (Mastin 2014), which introduces an error when 
using H as an input for a weak or moderate eruption. Since 
for Eyjafjallajökull 2010 the exact conversion from H to h is 

(3)QSparks = � ∙ (H∕c)3.86

(4)QMastin = � ∙ (H∕c)4.15

(5)

QWoodhouse =

⎛

⎜

⎜

⎝

h

0.318
∙
1 + 4.266

∼

Ws +0.3527
∼

Ws

2

1 + 1.373
∼

Ws

⎞

⎟

⎟

⎠

3.953

(6)
∼

Ws= 1.44
V1

NH1

(7)N
2

=
1

h∫

h

0

N2(z)dz =
1

h

g

Ca0Ta0∫

h

0

(

1 +
Ca0

g

dTa

dz

)

dz
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unknown, for simplicity, in this study we assumed that the 
centreline height h was always 10% lower than H.

• Aubry (Aubry et al. 2017): A scaling relationship which 
uses multiple linear regression to relate the logarithm 
of the MER to the logarithm of the plume height H (in 
km), the logarithm of the average buoyancy frequency N 
(Eq. (7)) and a windscaling parameter W∗

0
:

where the constants , CN = 2.3 and CW = 1.1 are empiri-
cally determined. The wind scaling parameter W∗

0
 is 

described by:

where W is the horizontal wind speed averaged over the 
plume height, U0 is the eruption exit velocity, R = 461.5 J/K/
kg is the gas constant of volcanic gas at vent, n0 is the 
magma volatile content and T0 is the exit temperature. Here, 
we assume that n0 = 3 wt% (Woodhouse et al. 2013) and 
T0 = 1323 K for Eyjafjallajökull (Keiding and Sigmarsson 
2012).

For the goals of this study, we put our focus on the sim-
ple plume models. These have the advantage that they use 
plume height as the only independent variable. In their 
entirety, the six simple models represent the empirical vari-
ation of the predictions by the theoretical Wilson model. In 
contrast to simple models, the more sophisticated explicitly 
wind-affected models depend on additional variables and 
parameters, (e.g. atmospheric parameters, wind entrainment 
coefficient, volatile content, magmatic temperature, top vs 
centreline height) which are further sources of uncertain-
ties that have to be taken into account when analysing the 
model results.

Plume height data handling strategies

The radar data set is based on sampling intervals of 5 min, 
but the data set is incomplete (Arason et al. 2011). Reasons 
for missing data were as follows (Arason et al. 2011):

i) The plume was below the visible horizon from Keflavík, 
which limited the lowest observable plume to 2.5 km.

ii) The plume was obscured by precipitating clouds.
iii) The radar was malfunctioning.
iv) The plume was absent, and the data gap was “real”.

Here, we explore 22 strategies to construct a data set 
with an improved coverage of the complete eruption 
(see Table 2). In the example of Fig. 2a, a data set was 

(8)
log

(

QAubry

)

= C + CHlog(H) + CN log
(

N
)

+ CWW
∗
0

(9)W
∗
0
=

W

U0

=
W

1.85
√

Rn0T0

segmented into 3-h and 6-h static blocks, composed of 
36 and 72 bundled 5-min slots, respectively, illustrating 
how much of the eruption was covered according to the 
blocks. For example, a data coverage of 50% means for 
a 6-h block that 36 of its 72 entries are missing. In this 
study, we distinguish between data voids and gaps. Voids 
are defined as empty or missing 5-min slots in a block that 
otherwise contain data. In contrast, a completely empty 
block of data is called a gap. Figure 2b and c summarize 
the 3-h and 6-h gaps in the radar records of the Eyjafjal-
lajökull 2010 eruption.

The tested strategies can be divided into five main cat-
egories (see Table 2). Aspects included in the tested strate-
gies are sampling method, void reconstruction, gap recon-
struction, timebase, time steps and a factor introduced to 
correct for data reduction bias (Y-correction).

Static plume height reconstruction (SH)

Static plume height reconstruction (SH) strategies bun-
dle data by splitting the data set into static time inter-
vals (blocks) and using plume height averages. The vast 
majority of studies using plume heights for MER model-
ling apply SH strategies. Studies on Eyjafjallajökull used 
the data by Arason et al. (2011) with blocks typically 
ranging from 1 (Woodhouse et al. 2013) to 6 h (Kamin-
ski et al. 2011; Bursik et al. 2012; Mastin 2014). Others 
report plume heights averaged over eruptive episodes 
that can include multiple eruptive phases (Aubry et al. 
2021).

Sampling method SH strategies applied static sampling, 
whereby the whole data set was simply split into fixed time 
intervals (static blocks) of a given uniform duration (see 
Fig. 2f).

Void reconstruction Voids, i.e. missing plume height values 
within a block, were filled with the mean value of the inter-
val (see Fig. 2e).

Gap reconstruction When applied, the heights of the miss-
ing blocks were reconstructed. The missing blocks were 
replaced by linearly interpolating between the previous 
and following block (see Fig. 2f). Where only void recon-
struction but no gap reconstruction was used, strategies are 
labelled with gap. In contrast, static sampling strategies 
which applied both void and gap reconstruction are termed 
interpolated (int).

Timebase It describes the width (i.e. duration) of a block. 
SH strategies were tested for four timebases, covering the 
range from highest to lowest resolution (see time steps).
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Time steps It describes which time interval is used for data 
sampling. For static sampling strategies, the time step is 
identical to the timebase.

No data bundling is required when using 5-min time 
steps. In this case, the integrated mass M5min over the tested 
eruption period of duration D (in seconds) was calculated 
by:

with the time step Δt = 300 s, f = D/Δt and Qj,model (H5min,j) 
being the mass eruption rate Qj provided by a specific plume 
model with H5min,j as input parameter.

By increasing the time steps, the data coverage is 
increased (see Fig. 2) at the cost of temporal resolution. For 
example, when using static blocks with a time step of 3 h, 
the integrated mass M3h is given by:

where H3h,j is the 3-h averaged plume height and the 
time step Δt = 300 s × 36 = 10,800 s. Correspondingly, Δt 
is doubled when using a 6-h time step, and a 6-h plume 
height average is used as model input. As time step of lowest 

(10)M5min =
∑f

j=1
Qj,model(H5min,j) ∙ Δt

(11)M3h =
∑f

j=1
Qj,model(H3h,j) ∙ Δt

temporal resolution, we used the complete eruptive phase for 
a static block (see Table 1):

with Δt being the phase’s duration and Hphase being 
the phase-averaged plume height. Equation (12) was also 
applied for testing the complete eruption with Δt = E, where 
E is the whole recorded eruption period. The corresponding 
diagrams are labelled as all (for all phases). In total, we used 
four different time steps for SH strategies (5 min, 3 h, 6 h, 
phase). For example, an SH strategy with a timebase of 6 h 
and applied gap reconstruction is denoted SH_6h_int.

Y‑correction To adjust for the bias induced by data reduc-
tion, four of the tested SH strategies multiplied the resulting 
masses with a correction factor 1/Y (see below). Strategies 
with Y-correction use the additional letter “Y” as identi-
fier. For example, if Y-correction was applied to the strategy 
SH_6h_int, it is denoted as SH_Y6h_int.

Static sampling of 5‑min intervals (S_5min_gap)

Being a special case of the SH strategy, the S_5min_gap 
strategy uses Eq.  (10) for the computation of the total 

(12)Mphase = Qmodel(Hphase) ∙ Δt

Table 2  Tested data handling 
strategies. The columns 
list the aspects that were 
varied: sampling method, 
void reconstruction, gap 
reconstruction, timebase (i.e. 
duration of a block), time 
stepping and Y-correction

Strategy Sampling Void recon-
structed vari-
able

Gap recon-
structed vari-
able

Timebase Time step Y-correction

S_5min_gap Static - n. a. - - None - 5 min 5 min - None -
SH_phase Static Height - n. a. - Phase Phase - None -
SH_6h_gap Static Height - None - 6 h 6 h - None -
SH_Y6h_gap Static Height - None - 6 h 6 h Yes
SH_3h_gap Static Height - None - 3 h 3 h - None -
SH_Y3h_gap Static Height - None - 3 h 3 h Yes
SH_6h_int Static Height Height 6 h 6 h - None -
SH_Y6h_int Static Height Height 6 h 6 h Yes
SH_3h_int Static Height Height 3 h 3 h - None -
SH_Y3h_int Static Height Height 3 h 3 h Yes
SH_5min_int Static - n. a. - Height 5 min 5 min - None -
SM_6h_gap Static MER - None - 6 h 6 h - None -
SM_3h_gap Static MER - None - 3 h 3 h - None -
SM_6h_int Static MER MER 6 h 6 h - None -
SM_3h_int Static MER MER 3 h 3 h - None -
SM_5min_int Static - n. a. - MER 5 min 5 min - None -
DHM_3h Dynamic Height MER 3 h 5 min - None -
DHM_1h Dynamic Height MER 1 h 5 min - None -
REFIR_3h Dynamic Height MER 3 h 5 min - None -
REFIR_1h Dynamic Height MER 1 h 5 min - None -
REFIR_30min Dynamic Height MER 30 min 5 min - None -
REFIR_15min Dynamic Height MER 15 min 5 min - None -
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erupted mass and does not apply gap reconstruction. Since 
it uses the highest possible temporal resolution, voids cease 
to exist, and every missing data is a gap, which is treated as 
a “real measurement” by the S_5min_gap strategy.

Static MER reconstruction (SM)

When using average plume heights for reconstructing voids 
and gaps, we would expect to produce a systematic arith-
metic error in the computation of erupted mass by Eqs. 
(10)-(11), since, according to Eq. (1), the average plume 
heights do not yield representative MERs. The static MER 
reconstruction (SM) strategy follows therefore a different 
path. Instead of using average heights, void and gap recon-
struction is applied by reconstructing the “missing” MERs 
for each time step.

Sampling method SM strategies apply static sampling.

Void reconstruction Voids were filled with the average MER 
value of the interval. The erupted mass M of a block B was 
therefore computed by:

where λ is the number of voids in block B and Δt = 300 s.

Gap reconstruction When applied, the MERs of the miss-
ing blocks were reconstructed. The missing intervals were 

(13)M3h,B =
�

∑36

j=1
Qj,model(H5min,j) ∙ Δt

�

∙
36

(36 − �)

(14)M6h,B =
�

∑72

j=1
Qj,model(H5min,j) ∙ Δt

�

∙
72

(72 − �)

Fig. 2  The radar record of the 2010 Eyjafjallajökull eruption. Data 
from Arason et  al. (2011). a) Data coverage of 3-h (blue) and 6-h 
(red) blocks. For example, a 6-h block with 50% data coverage rep-
resents a set of 72 5-min slots, of which 36 contain data. b) Timing 
of data gaps (i.e. blocks that are completely empty). c) Increasing the 
time step (i.e. block width) leads to a reduction of total overall gap 

time. d) Histograms show that data coverage of the blocks differed 
between the eruptive phases. e) Voids in the plume height records are 
reconstructed by filling them with the block’s mean value (orange 
bars). f) Reconstructed gaps (orange bars) are obtained by interpola-
tion
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replaced by linearly interpolating between the masses of the 
previous and following block.

Timebase Two different timebases were tested (3 h and 
6 h) with the SM strategies. In addition, we tested a strat-
egy with a 5-min timebase and MER-reconstructed gap 
(SM_5min_int).

Time steps See timebase

Dynamic plume height and MER reconstruction (DHM)

The DHM strategies combine plume height and MER recon-
struction and apply dynamic sampling, which is particularly 
useful for real-time monitoring purposes (Dürig et al. 2018; 
Dioguardi et al. 2020).

Sampling method Dynamic sampling, using blocks of a uni-
form duration with moving start and end times. The width 
of the block is defined by the timebase, while the temporal 
increment with which the block is moved is described by the 
time step. For example, a dynamic sampling strategy using 
a 3-h timebase means that at any given time the data of the 
last 3 h are considered.

Void reconstruction Voids were filled with the interval-
averaged plume heights, as described for SH strategies.

Gap reconstruction The missing blocks were replaced by 
linearly interpolating between the masses of the previous 
and following block, as described for SM strategies. For the 
presented DHM strategies, gap reconstruction was always 
applied.

Timebase Two different timebases were tested (3 h and 6 h) 
with the DHM strategies.

Time steps All DHM strategies used 5-min time steps.

The REFIR strategies (REFIR)

The strategies discussed so far produce best MER estimates 
independently from plume height uncertainties. To consider 
these, the DHM strategies were modified by computing the 
MER for a dynamic block B with:

where HB is the average height and sB the plume height 
uncertainty of the block at time t.

These strategies were computed with the software REFIR 
(Dürig et  al. 2018; Dioguardi et  al. 2020), which uses 
Eq. (15) to obtain a best MER estimate. We note that while 

(15)
Qmodel,B =

(

Qmodel

(

HB − sB
)

+ Qmodel

(

HB

)

+ Qmodel(HB + sB)
)

∕3

the software is designed to apply a combination of models 
linked by weight factors, here we applied it exclusively to 
individual models.

Sampling method Dynamic sampling, see DHM.

Void reconstruction See DHM.

Gap reconstruction See DHM.

Timebase Four different timebases were tested (15 min, 
30 min, 1 h and 3 h) with REFIR strategies.

Time steps All REFIR strategies used 5-min time steps.

Erupted tephra mass

The erupted mass M was used as validation parameter to 
test the capability of the assessed models and data handling 
strategies in reproducing mass eruption rates. The individual 
model-derived results for the four main stages of the erup-
tion were compared to the total masses obtained for each of 
the analysed phases (Ia, Ib, II, III, IV and all, see Table 1), 
based on the mapped fallout and exponential dispersal mod-
els for the offshore part (Gudmundsson et al. 2012). We 
denote the measured range of uncertainty ME.

Computation of Y‑ratios

To study the impact of data reduction on prediction quality, 
a subset of 49 selected 6-h blocks was used, for which the 
radar data provides high data coverage (containing at least 
60 of 72 data points measured at 5-min intervals). The voids 
were filled with 6-h averages, as described for the SH strate-
gies. For each of the 6-h blocks with the best data coverage, 
the predicted mass erupted Mi was computed, based on the 
following:

 I Five-minute radar height data H5min. The integrated 
mass Mi_5min was calculated by using Eq. (8) with 
f = 72.

 II Mean, median and maximum heights (H3h_avg, 
H3h_med, H3h_max) within two 3-h intervals. The inte-
grated mass Mi_3h over a 6-h interval was quantified 
by:

   with Δt=10,800s (= 3h) and H3h,j being H3h_avg, 
H3h_med and H3h_max.

 III Mean, median and maximum heights (H6h_avg, 
H6h_med, H6h_max) within the 6-h interval, using

(16)Mi_3h =
∑2

j=1
Qj,model(H3h,j) ∙ Δt
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with Δt = 21600 s (= 6 h) and H6h being H6h_avg, H6h_med 
or H6h_max, depending on the tested procedure.

Varying plume model, time interval (3 h, 6 h) and sta-
tistical treatment (mean, median, maximum) result in 24 
estimates for Mi for each of the 49 analysed 6-h blocks. 
These mass estimates were compared to the respective value 
Mi_5min based on the 5-min data sets, by generating the ratios 
Y:

Strategies which apply Y-correction (see Table 2) multi-
ply the estimated mass M with the according time interval-
specific correction factor 1/Y.

Plume height uncertainties

We take two types of plume height uncertainties into account 
for the MER calculations: (i) the observation uncertainty of 
the corrected radar plume heights and (ii) the uncertainties 
introduced by using the average plume height of a block to 
calculate the MER.

The uncertainty of the radar, ΔH , is assumed to be 0.5 km 
based on the maximum uncertainty of the photo heights 
and the uncertainty estimates given in Aubry et al. (2021). 
The uncertainty arising from the block averaging of plume 
heights is assumed to be equal to two standard deviations 
σ within each block, corresponding to a 95% significance 
level. The total plume height uncertainty of a block sB is 
then calculated as:

For strategies where no height averaging is used, σ is 
equal to zero, and therefore only radar uncertainties are 
considered.

Erupted mass uncertainty

The results obtained depend critically on the error in erupted 
mass. The isopach map reported in Gudmundsson et al. 
(2012) is based on about 400 data points obtained during 
and immediately after the eruption. Post-depositional ero-
sion and compaction that often limit the accuracy of tephra 
layer thickness and size (Biass et al. 2013; Engwell et al. 
2013) are therefore considered to be minor for the Eyjafjal-
lajökull data. Good spatial coverage in the near field where 
thicknesses are several metres on a relatively regular glacier 
surface results in relative errors in thickness of only a few 
percent. In the far field, the relative errors rise, reaching up 

(17)Mi_6h = Qmodel(H6h) ∙ Δt

(18)Yi = Mi∕Mi_5min

(19)sB =

√

ΔH2 +
(

2 ⋅ �
(

Hblock

))2

to 40% for thicknesses < 0.2 cm. The resulting error reported 
for volume on land is 15% (Gudmundsson et al., 2012). For 
the offshore part, the error was estimated as 40%, based on 
minimum and maximum extrapolations that are consist-
ent with observations in the Faroe Islands and mainland 
Europe (for more details, see methods in Gudmundsson et al. 
(2012)). The resulting best estimate of maximum total error 
was 25%. The contemporary measurements of density of the 
tephra yielded 1400 + / − 40 kg  m−3 (Gudmundsson et al., 
2012) a relative error of 3%. Treating these two errors as 
independent, the effect of the error in density is negligible, 
resulting in a relative error in mass of 25%.

Results

Plume heights and ERA5 wind speeds

In Fig. 3, the radar-derived plume heights are compared 
with plume heights obtained by photos. The comparison 
of the 165 data pairs suggests that on average, photo-based 
plume heights show an offset from the radar data of 0.5 km 
(see Fig. 3b and c). As a first step for data quality improve-
ment, this systematic shift was therefore corrected by adding 
0.5 km to all radar-derived plume heights (see Fig. 3d).

Figure 4a shows the wind speed profiles over the vent 
during the Eyjafjallajökull 2010 eruption, based on the 
ERA5 reanalysis data. The highest wind speeds, with up to 
64 m/s, occurred during phase I in regions above 6000 m 
at a time when the recorded plume heights reached similar 
altitudes (for more detailed, phase-specific plots, see Online 
Resource 1). In Fig. 4b, we show the differences in wind 
speeds between ICRA and ERA5.

Evaluation of plume height data handling strategies 
and models

Mean values and standard deviations of the resulting 
Y-ratios based on the 49 selected 6-h blocks are presented 
in Table 3. Three statistical treatments were tested for 
model input, using average, median and maximum plume 
height, respectively. The larger the deviation of Y from 
1, the less reliable the tested method of approximation 
(assuming Mi_5min to be the true value). The Y-ratios clos-
est to 1 are found using median plume heights. However, 
using the median also results in significantly larger stand-
ard deviations compared to average plume heights. When 
using 3-h or 6-h blocks, all models must be corrected with 
1/Y to be comparable to the summation of masses with 
5-min time step. For Y-corrections, we focused on aver-
aged heights, for which Y is almost constant for all mod-
els. Y ranges between 0.89 and 0.91 for 6-h blocks and 
0.91–0.92 for 3-h blocks. Therefore, Y-correction strategies 
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for 6-h blocks (denoted Y6h, see Table 2) were tested by 
using average heights and a model-independent correction 
factor of 1/0.9 = 1.1. Accordingly, a correction factor of 
1/0.915 = 1.09 was used for Y3h strategies.

Figure 5 demonstrates how the temporal evolution of the 
erupted mass varies, depending on the applied plume height 
strategy and plume model. In both cases, the whole erup-
tion was used as the reference period, with the measured 
range of the erupted mass (reported in Gudmundsson et al. 
2012) indicated by the red error bar. The curves of Fig. 5a 
show the modelled erupted mass using strategy SH_3h_gap. 
This strategy uses 3-h averaged plume heights in combi-
nation with applied void reconstruction but without gap 
reconstruction (see Table 2). While for this strategy both 
wind-affected models provide estimates that lie within the 
measured range, this applies only for one out of the six sim-
ple plume models tested (Wilson). Figure 5b–d show the out-
come of Wilson when applying different strategies. Compari-
son of model estimates to the measured mass for individual 
eruptive phases is illustrated in Fig. 6. When using strategy 
SH_3h_gap for phase I, most of the models underestimate 
the erupted mass, while for phases II to IV Wilson, Andron-
ico, Scollo and Sparks provide estimates that coincide with 
the measured range. The same applies to Woodhouse for the 
phases I, II and III, while this wind-affected model provides 
too large estimates for phase IV. The other wind-affected 
model tested with SH_3h_gap, Aubry, provides estimated 

masses that are above the measured range suggested by Gud-
mundsson et al. (2012) but provides estimates that are on 
the lower margin for phase I. This combination results in 
a coinciding estimate, when considering the whole erup-
tive period (see Fig. 5a). Systematically on the lower end of 
the estimated range of modelled masses are Wehrmann and 
Mastin, suggesting that SH_3h_gap is not the optimal choice 
for these models. This overview is an example for just one 
of the 22 tested strategies with reference to the whole erup-
tion. The phase-specific results for Wilson model outcomes 
according to the strategies in Fig. 5b can be found in Online 
Resource 2.

Figure 7 compares the measured masses of all reference 
periods with the estimates of four models using six different 
strategies with a timebase of 3 h. The ranges of measured 
mass for each eruption phase are marked in green. For exam-
ple, for phase III, the Mastin model (see Fig. 7b) achieves 
best fitting estimates when applying the REFIR_3h strategy. 
Figure 7 demonstrates the impact that the choice of a strat-
egy has on the modelled MER prediction. Phase II is the 
phase with the most abundant gaps in the radar records (see 
Fig. 2). Thus, it is not surprising that this is also the phase 
where the selected strategy has the biggest influence on the 
predicted MER. For example, for Mastin the prediction with 
sampling strategy REFIR_3h is 246% larger than that with 
SH_3h_gap.

Fig. 3  Plume height validation by means of photographic plume anal-
ysis. a) Radar-based plume height records of the Eyjafjallajökull 2010 
eruption were compared with elevation data retrieved from photos. 
b) Photo plume heights are systematically shifted upwards by 0.5 km 
relative to radar plume heights. c) This means that, statistically, the 

radar signal underestimated the actual plume height by 0.5  km. d) 
Due to windy conditions, the ash plume showed at times a considera-
ble deflection d, which would lead to an underestimation of the plume 
if the distance to the plume top is assumed to equal the distance to the 
vent s 
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As a general finding, applying sampling strategies with 
gap reconstruction (int) always results in larger masses 
than applying no gap reconstruction methods (gap). The 
SM_3h_int strategies provide systematically larger results 
than DHM_3h or SH_3h_int strategies, due to the nonlinear 
relation between H and Q. For the same reason, the mass 

eruption rates Qmodel(HB + sB) and Qmodel(HB—sB) in Eq. (15) 
are not symmetrically distributed towards Qmodel(HB). Con-
sequently, the REFIR_3h strategy provides larger values as 
best MER estimate compared to other strategies.

When using the whole eruption as the reference period, 
the effect of the selected timebase for the REFIR strategy 

Fig. 4  Wind speeds above 
Eyjafjallajökull during the 2010 
eruption. a Plume height (red 
curve) is plotted together with 
altitude-specific wind speeds 
above the vent, based on ERA5 
reanalysis data. Altitude refers 
to sea level. Vertical dashed 
white lines mark margins of 
eruptive phases. b Overall, the 
absolute differences in wind 
speeds between ICRA and 
ERA5 were relatively small, 
with only sporadic disparities, 
mainly at ground level on day 
14
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on the model outcome (i.e. the erupted mass estimates) is 
at maximum 6.8% and therefore small in comparison to the 
modelled mass uncertainties (see Online Resource 3). The 
largest effect of the selected timebase on the outcome is 
found for phase IV, where the model results vary with 12.0% 
at maximum (see Online Resource 4). Presented results for 
REFIR methods in the following are limited to the two end 
members (REFIR_3h and REFIR_15min).

For the static sampling strategies SH and SM, the time-
base can have some considerable impact on the model out-
come, especially for phases with abundant gaps. For exam-
ple, for phase II, the mass predictions increase by 39 to 42% 
(depending on the model), if strategy SH_6h_gap is applied 
instead of SH_3h_gap.

Discongruence indices and congruency maps

A result table containing the modelled masses for all phases, 
data handling strategies and models can be found in Online 
Resource 5. In order to systematically assess how well the 
model estimates coincide with the measured data, we defined 
discongruence indices (DIs) in Table 4, based on the error 
ME of measured mass data (Table 1). A model prediction 
that lies within the range of the measured mass is character-
ized by a discongruence index of 0. The more the model 
output deviates from the ground truth, the larger the DI. To 
better visualize the results, we produced congruency maps, 
where each index is assigned a colour. Examples for such 
congruency maps are shown in Fig. 8. There, the dark blue 
fields mark methods and strategies that lead to estimates that 
coincide with the range of mass from ground-based measure-
ments. Combinations of strategies and plume models, which 

provide estimates that are just outside of the range of the 
measured values, are marked in light blue. Predictions that 
considerably over- or underestimate the erupted mass (DI of 
5) are displayed in orange. The resulting congruency map for 
the complete phase is presented as Online Resource 6, and 
all phase-specific results are provided in Online Resource 7.

Based on the resulting DIs, it was possible to construct 
tables with their averaged values that allow us to analyse the 
prediction qualities of models and data handling strategies 
for individual eruptive phases, as well as for the complete 
eruption (Tables 5 and 6).

Phase‑specific comparison of plume height data handling 
strategies

Table 5 lists for each phase the strategies’ success, represented 
by discongruence indices averaged over all tested plume mod-
els (separated between simple and explicitly wind-affected 
models). When using the entire eruption (all) as the reference 
period, the overall average DI for all strategies is 0.7. Accord-
ing to the results, the most successful strategy for the simple 
models is REFIR_3h with a DI of 0.3. For wind-affected mod-
els, a number of strategies resulted in predicted mass val-
ues congruent to the measured mass, including SH_6h_gap, 
SH_6h_int, SM_3h_gap, DHM_6h and DHM_3h.

According to the model-specific DIs averaged over all 
strategies (Table 6), the models by Wilson and Sparks were 
found to have the highest prediction success rate, with DIs 
of 0.05 and 0.015, respectively, when considering the entire 
eruption. When studying individual phases, Andronico and 
Sparks turn out to be most successful, with an average DI 
of 0.05 for phase III.

Below, we summarize the results for each of the phases:

Phase Ia The overall average DI is 2.16, significantly larger 
than for any other phase. According to Table 6, the most 
successful strategy for both simple and explicitly wind-
affected models is REFIR_15min with DIs of 1.7 and 0.5, 
respectively.

Phase Ib Here, strategies provide higher success rates. Opti-
mal strategies for simple models are the REFIR strategies, 
as well as SM_6h_gap and SM_6h_int, featuring DIs of 0.5. 
For wind-affected models, however, other strategies (e.g. 
SH_6h_int or DHM_6h) provide better results, while REFIR 
strategies result in overestimates of predicted masses.

Phase II Due to relatively weak activity, phase II has the 
lowest data coverage per block (see Fig. 2d). Many strategies 
and models tend to overestimate the erupted mass of this 
phase. This applies especially to strategies where gaps were 
filled by interpolated data (DHM, REFIR and static sam-
pling methods with gap reconstruction). For simple models, 

Table 3  Results for Y-values, based on 49 static 6-h blocks with 
a data coverage of 60/72 or higher. Numerical 0D models stand for 
Wilson, Wehrmann, Scollo and Andronico models. For Woodhouse, 
ERA5 weather data was used. Y-correction strategies multiplied the 
predicted mass with 1/Y

6 h 3 h

Mean stdev Mean stdev

Numerical 0D models Average 0.90 0.10 0.91 0.09
Median 0.95 0.25 0.95 0.19
Maximum 2.36 2.15 2.06 1.45

Sparks Average 0.91 0.09 0.92 0.08
Median 0.96 0.24 0.95 0.19
Maximum 2.29 2.00 2.01 1.36

Mastin Average 0.89 0.11 0.91 0.10
Median 0.95 0.26 0.95 0.20
Maximum 2.44 2.31 2.12 1.55

Woodhouse Average 0.91 0.09 0.92 0.09
Median 0.97 0.26 0.95 0.19
Maximum 2.37 2.13 2.08 1.46
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the best results with a DI of 0.3 are found for SM_6h_gap, 
SH_6h_gap and SH_phase, which are strategies with large 
timebases and no gap reconstruction. For wind-affected 
models, the best results were achieved with SM_3h_gap, 
SH_3h_gap and SH_Y3h_gap.

Phase III It featured increased explosive eruption at rela-
tively low wind speeds. There, strategies showed the highest 
success rates of all phases with an average DI of 0.45 (0.5 
for simple models, 0.2 for explicitly wind-affected mod-
els). The most successful strategies for simple models were 
the REFIR strategies with a DI of 0.3. For Woodhouse and 
Aubry, most of the tested strategies result in predictions that 

coincide with the measured mass. Exceptions are the REFIR 
strategies (DI = 1.0) and strategies that apply Y-correction 
(DI = 0.5).

Phase IV For the weaker final eruptive phase, the optimal 
strategies for simple and explicitly wind-affected models 
were found to be REFIR_15min (DI = 0.2) and S_5min_gap 
(DI = 0), respectively.

Effect of using ERA5 vs ICRA weather data

So far, the results presented for the explicitly wind-affected 
models (Woodhouse, Aubry) are based on ERA5 wind speed 

Fig. 5  Modelled erupted mass. Erupted mass is computed by mul-
tiplying the modelled mass eruption rates by the block duration and 
summing the results over the reference period (here, the entire erup-
tion). The range of measured erupted mass as reported by Gudmunds-
son et al. (2012) (see also Table 1) is displayed as red error bar with 
width ME. a For each of the 8 tested models, 6-h averaged plume 

heights were used as input with void but no gap reconstruction, thus 
applying strategy SH_3h_gap (see Table 2). Wind speeds from ERA5 
were used for Woodhouse and Aubry. b Results for S_5min_gap and 
SH plume height strategies applied to the Wilson model. c Results for 
Wilson with SM strategies. c Predicted mass by Wilson with DHM 
and two REFIR strategies
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data. How much do the results of these models (i.e. esti-
mated erupted mass) change, when the ICRA data of (con-
siderably) higher spatial resolution are used? In most cases 
(except for phase IV), the ICRA data leads to slightly larger 
mass estimates, but these changes are almost insignificant, 
considering the uncertainties (see Online Resource 8 for 
Woodhouse). For example, when applying the REFIR 3 h 
strategy to Woodhouse, the difference between model results 
based on ERA5 versus ICRA wind speeds is only approxi-
mately 2% for the whole eruption (and 1.3% of the uncer-
tainty). The absence of sizeable changes can be explained by 
the fact that both sets of weather data feature similar wind 
speeds over most of the eruption period (see Fig. 4b). The 
only major difference (of more than 10 m/s) occurred during 
phase II, on 29 April below 2000 m a.s.l. For this phase, the 
modelled mass differed by 4.7%, which is small considering 
the model uncertainties. We thus conclude that for reanalysis 
of the Eyjafjallajökull 2010 eruption, using weather data of 
higher spatial resolution only affects the overall outcome 
in a minor way. However, this result should not be general-
ized. A reanalysis of other eruptions, especially short-termed 

ones, will probably benefit from a higher spatial resolution 
of weather data.

Wind effect on plume deflection and plume model 
predictions

The horizontal deflection of the plume top plotted over 
the contemporary wind speed at plume top level, based on 
ICRA reanalysis weather data (Fig. 9a), shows an approxi-
mately linear correlation between these parameters. This 
is also indicated by a Pearson correlation coefficient (R) 
of ~ 0.68. For Fig. 9a, wind speeds at variable elevation 
were used. To find out which fixed altitude the wind speeds 
correlate best with deflection, the according correlation 
coefficients were plotted, using wind speeds of both ERA5 
and ICRA data (Fig. 9b). Next to the raw data (ERA5 1 h 
and ICRA 1 h), wind speeds averaged over 2 h and 3 h 
were also used. The best correlation at fixed elevation is 
observed for 2-h averaged ERA5 wind speeds at 2900 m 
a.s.l. (R = 0.65). At that altitude, ICRA wind speeds cor-
relate slightly less with deflection (R = 0.63) but below 

Fig. 6  Modelled curves of erupted mass for each eruptive phase, applying strategy SH_3h_gap for eight models. The range of measured erupted 
mass (ground truth) is indicated with a red error bar. Reference periods are a phase I, b phase II, c phase III, d phase IV
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2500 m a.s.l. It is the ICRA data that shows a better cor-
relation with wind speeds compared to ERA5.

From the models tested, not only Woodhouse and 
Aubry incorporate a wind effect. There is an implicit 
dependency on wind for the other (simple) models as 
well, as revealed by Fig. 10. There, the ratio of mod-
elled vs measured mass was plotted over phase-averaged 
wind speeds. For the modelled mass, three non-explicitly 
wind-affected models were investigated in combination 
with four strategies: Wilson (Wil, as representative for the 
simple numerical 0D models), Sparks (Spa) and Mastin 
(Mas). Here, we selected strategies that do not apply gap 
reconstruction, to avoid the bias caused by the fact that 
there is a large variance in data gaps between the differ-
ent phases. Two general trends (indicated by trendlines) 
can be observed:

Fig. 7  Phase-specific comparisons of modelled versus measured 
mass. Results for six strategies (marked by different symbols) are pre-
sented for the whole eruption (all) and individual phases. The plots 
show the model-specific outcomes for a Wilson, b Mastin, c Wood-
house and d Aubry (with using wind speeds from ERA5 for both 

wind-affected models). The green lines indicate the range of erupted 
mass, interpolated according to ground measurements. A symbol 
lying within this corridor indicates that the respective strategy and 
plume model provide a “successful” prediction under the tested erup-
tive conditions

Table 4  List of discongruence indices (DIs). A DI of 0 refers to 
a model estimate, which lies within the range of measured mass 
according to Gudmundsson et al. (2012). This range is illustrated by 
red error bars in Fig.  5 and Fig.  6 and specified by the uncertainty 
ME. A DI of 0 is therefore congruent with the “ground truth”. The 
larger the discongruence index, the more the model-output deviates 
from the ground truth

Discongruence 
index (DI)

Minimum deviation from 
measured mass

Maximum deviation 
from measured mass

0 0 ME
1 ME 1.5 ME
2 1. 5 ME 2 ME
3 2 ME 2.5 ME
4 2.5 ME 3 ME
5 3 ME  > 3 ME
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1) At low wind speeds, the different strategies and mod-
els lead to predictions with a large span. This range 
decreases for larger wind speeds.

2) With higher wind speeds, all shown strategies and non-
explicitly wind-affected models tend to increasingly 
underestimate the actual erupted mass. While for a wind 
speed of 14.5 m/s Mmodelled/Mmeasured averages at around 
103%, this ratio drops for 16.2, 19.2 and 36.4 m/s to 
79%, 67% and 46%, respectively. Thus, for wind speeds 
over 20 m/s, the model predictions underestimate the 
erupted mass on average by more than 40%.

Both trends are also confirmed in Fig. 8, which com-
pares the congruency maps of high-wind eruptive phase Ia 
(Fig. 8a) with the phase of lowest wind speeds (phase II, 
Fig. 8b), thus contrasting the two end members of Fig. 10. 
Compared to phase Ia, phase II was of much longer dura-
tion, and it was characterized by abundant data gaps, which 

should result in large differences between gap-reconstructing 
strategies and those which ignore them. Yet, for phase II, 54 
combinations of strategies and models provide predictions 
that lie within the uncertainties of the measurements ME 
(tiles marked with dark blue colour), as opposed to only 14 
combinations found for phase Ia. While for most combina-
tions, the explicitly wind-affected models Woodhouse and 
Aubry appear to be robust against this wind effect, for the 
simple models only very few combinations give predictions 
close to the measurements.

Discussion

The comparison between radar and photographic data sug-
gests that the former systematically underestimated the 
plume height by 0.5 km. This finding is in contrast to the 
assessment of webcam images analysed by Arason et al. 

Fig. 8  Congruency maps for combinations of strategies and models. 
ERA5 wind speeds were used for Woodhouse and Aubry. Each cell’s 
colour indicates how well the estimate of a strategy and model pair 
fits with the measured data. Dark blue tiles indicate predictions that 

coincide with measurements. a Congruency map of all strategies and 
models for phase Ia, which was characterized by the highest wind 
speeds. b Congruency map for phase II, the phase with the most gaps 
in the radar records
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(2011), which suggested that the radar overestimated the 
plume heights. These webcams were, however, located 
to the north and west-northwest of the volcano, while the 

plume was deflected away from the cameras, towards the 
south to southeast. Using the distance to the vents instead 
of the plume top would therefore lead to an underestimation 

Table 5  Average discongruence 
indices listed by data handling 
strategy and reference period. 
The first value is the resulting 
DI for the six simple models 
tested (Wilson, Andronico, 
Scollo, Wehrmann, Sparks, 
Mastin); the second column 
presents the averages for the 
two wind-affected models 
(Woodhouse, Aubry). The 
smaller the value, the more 
often fits the modelled result 
with the measured mass. Values 
representing the most successful 
strategies for a phase are printed 
in italic.

Row Ia Ib II III IV All Average

S_5min_gap 3.0 0.5 1.5 0 2.8 1.0 0.8 0 2.3 0 1.7 0 2.0 0.3
SH_phase 3.0 0.5 2.0 0 0.3 2.0 1.3 0 0.5 1.0 1.0 1.0 1.4 0.8
SH_6h_gap 2.8 0.5 1.5 0 0.3 1.5 0.5 0 0.5 1.0 1.3 0 1.2 0.5
SH_Y6h_gap 2.5 0.5 1.3 0.5 0.5 1.5 0.5 0.5 0.5 1.0 0.7 1.0 1.0 0.8
SH_3h_gap 3.5 0.5 1.7 0 0.5 0.5 0.5 0 0.5 1.0 1.3 0 1.3 0.3
SH_Y3h_gap 2.8 1.0 1.3 0 0.5 0.5 0.5 0 0.5 1.0 1.2 0 1.1 0.4
SH_6h_int 2.8 0.5 1.5 0 0.7 2.0 0.5 0 0.5 1.0 1.0 0 1.2 0.6
SH_Y6h_int 2.5 0.5 1.3 0.5 0.7 2.5 0.5 0.5 0.3 1.5 0.5 1.0 1.0 1.1
SH_3h_int 3.0 1.0 1.7 0 0.8 2.0 0.5 0 0.5 1.0 0.8 0 1.2 0.7
SH_Y3h_int 2.8 0.5 1.3 0 0.7 2.0 0.5 0.5 0.3 1.5 0.5 1.0 1.0 0.9
SH_5min_int 2.7 1.0 1.3 0 0.7 2.0 0.5 0 0.5 1.0 0.5 1.0 1.0 0.8
SM_6h_gap 2.2 0.5 0.5 0.5 0.3 1.5 0.5 0 0.5 1.0 0.5 0.5 0.8 0.7
SM_3h_gap 2.8 1.0 0.7 0.5 0.5 0.5 0.5 0 0.5 1.0 0.8 0 1.0 0.5
SM_6h_int 2.2 0.5 0.5 0.5 0.7 2.5 0.5 0 0.3 1.5 0.5 1.0 0.8 1.0
SM_3h_int 2.5 0.5 0.7 0.5 0.8 2.0 0.5 0 0.3 2.0 0.5 1.0 0.9 1.0
SM_5min_int 2.5 0.5 1.3 0 0.7 2.0 0.5 0 0.5 1.0 0.5 1.0 1.0 0.8
DHM_6h 3.0 1.0 1.7 0 0.7 2.0 0.5 0 0.5 1.0 0.8 0 1.2 0.7
DHM_3h 3.0 1.0 1.7 0 0.7 2.0 0.5 0 0.5 1.0 0.7 0 1.2 0.7
REFIR_3h 1.7 1.0 0.5 1.0 1.0 3.0 0.3 1.0 0.5 2.0 0.3 1.0 0.7 1.5
REFIR_15min 1.7 0.5 0.5 1.0 0.8 2.5 0.3 1.0 0.2 2.0 0.5 1.0 0.7 1.3
average 2.7 0.7 1.2 0.3 0.7 1.8 0.5 0.2 0.5 1.2 0.8 0.5 1.1 0.8

Table 6  Average discongruence 
indices over all strategies, listed 
by reference period and plume 
model

Row Wilson Wehrmann Scollo Andronico Sparks Mastin Woodhouse Aubry Average

Ia 1.55 4.90 2.20 1.85 1.85 3.55 0.95 0.40 2.16
Ib 0.40 3.10 0.70 0.70 0.70 1.75 0.10 0.40 0.98
II 1.05 0.80 0.70 0.70 0.80 0.35 1.10 2.45 0.99
III 0.10 2.00 0.10 0.05 0.05 0.95 0.10 0.25 0.45
IV 0.10 1.85 0.10 0.10 0.10 1.00 1.10 1.25 0.70
All 0.05 2.55 0.45 0.20 0.15 1.30 0.55 0.50 0.72
Average 0.54 2.53 0.71 0.60 0.61 1.48 0.65 0.88

Fig. 9  Wind-induced deflection 
of plume top. a Photo-derived 
deflection of plume top is plot-
ted versus wind speeds at maxi-
mum plume height, according to 
ICRA reanalysis data. The data 
plots with a Pearson correlation 
coefficient of 0.68. b Correla-
tion between deflection of the 
plume top and wind speeds at 
different altitude levels (eleva-
tion above sea level)
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in webcam-derived plume heights which might explain the 
differences with our results (see Fig. 3d). For example, a 
plume top of 5-km height that is shifted towards the south 
with a deflection d of 6 km would be perceived as being only 
3-km high on images produced by the webcam at Þórólfs-
fell, located 9 km to the north from the vents. The differ-
ence between photos and radar measurements is mainly a 
consequence of the radar’s horizontally stepping scanning 
procedure and the eruptive and atmospheric circumstances 
during the 2010 eruption. This implies that such an offset 
could change in a future eruption at Eyjafjallajökull, even if 
the same radar sensor is applied.

The data sets on which the empirical models are based 
include observations for various situations regarding wind 
speed, but it is known that scenarios of weak eruptions 
under strong wind conditions are underrepresented (Mastin 
2014). Furthermore, under high wind speeds, plume height 
is reduced, due to the facts that the plume is bent-over and 
that there is more efficient turbulent entrainment of air into 
the column (Bursik 2001). For the phases of weak activ-
ity and relatively low wind speeds, however, the empirical 
models by Mastin (phase II with 0.35) and Sparks (phase 
IV with 0.10) still have shown to be among the ones with 
highest prediction success.

As a general finding, the explicitly wind-affected models 
tend to have larger ranges of uncertainty and over rather 
than underestimate the measured mass (see, e.g. Figure 11). 
Results from the simple models fall at the other end of the 

modelled range, with Wehrmann being the most extreme 
example, which tend to systematically underestimate the 
mass eruption rates, especially under windy conditions. This 
discrepancy between estimates from simple and explicitly 
wind-affected models under windy conditions is consistent 
with previous findings (Bursik 2001; Mastin 2014).

When analysing the entire eruptive period by compar-
ing the strategy-averaged DIs for simple plume models (see 
Table 5), the REFIR_15min approach turned out to be the 
optimal strategy. In contrast, using REFIR strategies with 
explicitly wind-affected models lead often to overestimated 
mass predictions. These models are affected by larger uncer-
tainties than the simple plume models (see, e.g. Figure 11), 
which leads to larger MER predictions, due to the definition 
of the best estimate by Eq. (15).

Of particular interest is also the comparison between 
phase Ib and III, which were similarly well covered (9.3 vs 
9.2 plume height measurements per hour), had only slightly 
dissimilar prevailing wind speeds (19.2 vs 16.2 m/s), but 
differed in eruptive styles: phase Ib was phreatomagmatic, 
whereas phase III was magmatic. Despite different outcomes 
for most of the other strategies, the REFIR strategies appear 
to be the most robust for both types of eruptive styles. This 
robustness is noteworthy, considering that phreatomagma-
tism is based on thermohydraulic fuel–coolant interaction 
processes (Wohletz 1986; Büttner and Zimanowski 1998; 
Dürig et al. 2020), which produce more fine-grained ash par-
ticles, release larger kinetic energy and generate steam — all 

Fig. 10  Wind effect on 
simple (i.e. non-explicitly 
wind-affected) model predic-
tions. Using four data handling 
strategies for three models (Wil, 
Wilson; Spa, Sparks; Mas, 
Mastin), the ratio of modelled 
vs measured mass is plotted 
over phase-averaged ERA5 
wind speeds. The black curves 
serve for visualization of what 
appears to be a general trend: 
the stronger the wind, the more 
the simple plume models tend 
to underestimate the mass 
eruption rate, regardless of the 
applied strategy
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of which are factors that are expected to affect the plume rise 
behaviour (Koyaguchi and Woods 1996; Sparks et al. 1997).

An important choice when selecting the plume height 
data handling strategy is the decision of whether gap recon-
struction is applied or not. In a real-time monitoring scenario 
(as well as in reanalyses), where radar is the only source for 
plume heights, it is difficult to distinguish “real” gaps from 
data missing for other reasons. For example, it was suggested 

that the data gap between 15 and 16 April 2010 (within phase 
Ia) was real and a consequence of low plume heights (Mastin 
2014). According to our results, however, the optimal strate-
gies for that phase are those that apply gap reconstruction 
(e.g. REFIR_15min), indicating that the gap was not reflect-
ing the status of the actual plume. This is corroborated by 
photographs taken on that day that prove the existence of a 
plume in that period. In contrast, our findings for phase II 

Fig. 11  Ranges of uncertainty for modelled masses. a Strategy-
specific uncertainties for Mastin and Woodhouse, when modelling 
the complete eruption period (all). For most strategies, the effect of 
plume height errors according to Eq.  (19) is larger than the model 
uncertainties (blue-shaded background for Mastin). b Ranges of pre-

dicted mass uncertainties for strategy SH_phase for all studied erup-
tive phases and the complete eruption (all). Although depending on 
model and phase, for this strategy the error bars are always considera-
bly larger than the range of measured mass, due to the large timebase
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indicate that the gaps during that phase were real. In such sce-
narios of very weak eruptive activities, strategies with large 
timebases (such as SH_phase) or applied gap reconstruction 
(such as SM_6h_int) result in overestimated mass predictions, 
especially for explicitly wind-affected models. For modelling 
long-lasting eruptions with diverse episodes, comparable to 
Eyjafjallajökull 2010, we would therefore recommend a mix-
ture of strategies, tailored to phase and model type.

Similar to applying gap reconstruction, using a too large 
timebase results in real data gaps being missed. Using a 
too short timebase, on the other hand, might lead to errors 
when monitoring an evolving plume that has not reached 
stable buoyancy yet. Since this would violate the steady-
state assumption of the models, the model predictions would 
not be reliable. We consider the latter effect, however, as 
insignificant, when modelling a long-lasting eruption like 
Eyjafjallajökull 2010.

A key finding of this study is the dominating influence 
of the wind speed on the prediction quality of plume height 
data for mass eruption rates, at least for moderate eruptions 
with bent-over plumes. This is highlighted by the results of 
the phase-specific comparison of plume height data handling 
strategies (Table 5) and illustrated in Figs. 8 and 10. Phase 
Ia is characterized by the highest wind speeds, and despite 
having a good data coverage (8.1 measurements per hour, 
see Table 1), the strategies are on average considerably less 
successful than for phases Ib and III. All our results indicate 
that for a moderate-to-weak eruption like Eyjafjallajökull 
2010, it is increasingly challenging for wind speeds exceed-
ing ~ 20 m/s to find combinations of plume models and data 
handling strategies with which the mass eruption rate can be 
accurately predicted in real time. This inference highlights 
how important it is to monitor such eruptions in real time 
and use the “optimal” combination of plume height data 
handling strategy and plume models.

The strategies presented were tested by focusing only on 
the best MER estimates, without considering the ranges of 
uncertainty (with the REFIR strategies being notable excep-
tions). These can become substantial and exceed the span of 
the measured mass by several orders of magnitude (Fig. 11, 
for uncertainty ranges in modelled MERs, see also Online 
Resource 5). The uncertainties for Mmodelled, as defined 
by Eq. (19), depend on model, timebase, strategy and the 
relative data coverage of the studied period. For example, 
when considering the entire eruption period, the uncertain-
ties for SH_3h_int increase by 9–12% (depending on the 
model) compared to SH_3h_gap (15–17% for SM_3h_int 
vs SH_3h_gap). For phase II alone, the uncertainty ranges 
between the two strategies increase by up to 41% (up to 43% 
for SM_3h_int vs SH_3h_gap).

Selecting a short timebase has a significant effect on the 
modelled mass uncertainties. For example, compared to 
the 3-h timebase, the REFIR uncertainties for a timebase 

of 15 min are reduced by up to 24% when considering the 
whole eruption period. For phase IV, this decrease reaches 
32.5%. The largest uncertainties are found for the largest 
possible timebase, with strategy SH_phase (see Fig. 11b).

It is important to note that our error estimates did not 
consider model-inherent uncertainties (an example for the 
uncertainties of the Mastin model is shown in Fig. 11a). For 
some strategies, the model uncertainties could be larger than 
the ranges defined by Eq. (19). A model-strategy combina-
tion with a large DI does not necessarily provide a “wrong” 
prediction, since its uncertainty interval could (at least 
partly) overlap with the measured range. On the other hand, 
combinations that result in predictions affected by a large 
uncertainty range are unfavourable for real-time monitoring 
purposes. Our approach is optimized for finding the model-
strategy pairs which provide the best estimates that are clos-
est to the measurement, but we note that this is not the only 
method to assess the quality of strategies and models, and 
more advanced comparison methods might also consider the 
range and overlap of modelled mass uncertainties.

The radar data by Arason et al. (2011) has been used by a 
plethora of studies on the 2010 ash plume of Eyjafjallajökull 
(e.g. Kaminski et al. 2011; Bursik et al. 2012; Gudmundsson 
et al. 2012; Degruyter and Bonadonna 2012; Devenish 2013; 
Ripepe et al. 2013; Woodhouse et al. 2013; Mastin 2014; 
Dürig et al. 2015b; Dioguardi et al. 2020). Our suggested 
height correction still lies within the reported error margins, 
but when used as input for plume models, it will increase the 
MER predictions. Due to our definition of uncertainties by 
Eq. (19), for strategies that do not apply height reconstruc-
tion, the plume height uncertainties are only dependent on 
the radar height uncertainty itself. In Fig. 11b, the effect of 
the height correction on the modelled mass is represented 
by the distance between the lower error bar and the best 
estimate for these strategies (e.g. all SM strategies).

In their study on Eyjafjallajökull, Woodhouse et al. (2013) 
applied an SH strategy with a timebase of 1 h but using the 
maximum plume height within each block instead of plume 
height averages. We note that the 10% plume height reduc-
tion applied to convert H into h for Woodhouse is in the same 
range as the height correction applied to the radar data. We 
therefore used comparable plume heights as input as Wood-
house et al. (2013). Using the maximum plume heights per 
block instead of averages resulted in MER predictions for 
phase Ia that exceeded our estimates by an order of magni-
tude. We suggest that, when using Woodhouse to remodel 
the Eyjafjallajökull 2010 eruption, using data handling strat-
egies like SH_3h_gap with block-averaged plume heights 
might be the more suitable strategy.

The SH strategies are the most commonly used for plume 
modelling (e.g. Kaminski et al. 2011; Bursik et al. 2012; 
Degruyter and Bonadonna 2012; Woodhouse et al. 2013; 
Mastin 2014; Dürig et al. 2015b), and our findings indicate 
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that these strategies (especially SH_3h_gap) are often a 
good choice when using explicitly wind-affected models, 
but they are far less successful with simple models. From the 
dynamic sampling strategies, which are typically used for 
real-time monitoring, DHM strategies prove to provide best 
results for explicitly wind-affected models. When used with 
simple models, however, the optimal choice is the REFIR 
strategy.

Conclusions

Focusing on the different eruptive phases of the Eyjafjal-
lajökull 2010 eruption, we used aerial and ground-based 
photographs of the plume together with ground-based meas-
urements of the erupted mass to study and compare the pre-
dictive qualities of eight plume models in combination with 
22 data handling strategies. Although the latter has a signifi-
cant influence on the model outcome, their influence has, to 
our knowledge, not yet been studied to this extent before.

The best reanalysis results for simple (non-explicitly wind-
affected) plume models are in most cases obtained by using 
strategies implemented in the software REFIR (Real-time 
Eruption source parameters FutureVolc Information and 
Reconnaissance system), which apply dynamic sampling in 
the form of a moving average and consider the plume height 
uncertainties. The only exception is found for phase II, 
where the eruptive activity was weak, and the plume height 
was under the detection limit of the radar for a consider-
able amount of time, causing data gaps in the records. There, 
interpolating strategies generate ghost data points, which lead 
to an overestimation of the erupted mass. Under such condi-
tions, strategies without gap reconstruction and with long 
timebases (such as SH_phase or SM_6h_gap) are more reli-
able. For explicitly wind-affected models, the best strategies 
were found to be static sampling strategies with short time-
bases and without gap reconstruction (such as SH_3h_gap).

Our findings suggest that no single model has always the 
best answers, and different models and data handling strate-
gies work best under different plume and data conditions. 
Which model and strategy to choose for optimal prediction 
results depends on data coverage, eruption intensity and, 
according to our findings from Eyjafjallajökull, to a lesser 
extent on fragmentation mechanism (e.g. magmatic vs phre-
atomagmatic). The dominant factor on the prediction quality, 
however, was found to be the wind speed. The higher the 
wind speed, the more the non-explicitly wind-affected mod-
els tend to underestimate the MER. Conversely, the explic-
itly wind-affected Woodhouse model overestimates it, when 
applying the REFIR strategies. Namely, for wind speeds over 
20 m/s, only a few combinations of data handling strategies 
and plume models provide accurate predictions when moni-
toring an Eyjafjallajökull 2010 — type of eruption.

A possible solution for obtaining accurate estimates in 
real time for such long-term eruptions of variable and mod-
erate intensity under varying wind speeds would therefore 
be to not rely on a single combination of data handling strat-
egy and plume model, but to be able to use a range of such 
combinations, thus providing the possibility to adapt to the 
scenario monitored.
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