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SUMMARY
Inflammatory bowel disease (IBD) is a chronic inflammatory disease associatedwith increased risk of gastro-
intestinal cancers. We whole-genome sequenced 446 colonic crypts from 46 IBD patients and compared
these to 412 crypts from 41 non-IBD controls from our previous publication on the mutation landscape of
the normal colon. The average mutation rate of affected colonic epithelial cells is 2.4-fold that of healthy co-
lon, and this increase is mostly driven by acceleration of mutational processes ubiquitously observed in
normal colon. In contrast to the normal colon, where clonal expansions outside the confines of the crypt
are rare, we observed widespread millimeter-scale clonal expansions. We discovered non-synonymous mu-
tations in ARID1A, FBXW7, PIGR, ZC3H12A, and genes in the interleukin 17 and Toll-like receptor pathways,
under positive selection in IBD. These results suggest distinct selection mechanisms in the colitis-affected
colon and that somatic mutations potentially play a causal role in IBD pathogenesis.
INTRODUCTION

Inflammatory bowel disease (IBD) is a debilitating disease char-

acterized by repeated flares of intestinal inflammation. The two

major subtypes of IBD, Crohn’s disease (CD) and ulcerative co-

litis (UC), are distinguished by the location, continuity, and nature

of the inflammatory lesions. UC affects only the large intestine,

spreading continuously from the distal to proximal colon,

whereas CDmost commonly affects the small and large intestine

and is characterized by discontinuous patches of inflammation.

In addition to the significant morbidity associated with the dis-

ease, IBD patients have a 1.7-fold increased risk of developing

gastrointestinal cancers compared to the general population.

Cancer risk is associated with the duration, extent, and severity

of disease, and cancers tend to occur earlier in life in IBD patients

(Lutgens et al., 2013; Beaugerie and Itzkowitz, 2015; Adami

et al., 2016). As a result, patients require regular endoscopic

screening and may undergo prophylactic colectomy to mitigate

this risk (Beaugerie and Itzkowitz, 2015; Adami et al., 2016).

That somatic mutations contribute to the development of can-

cer is well established, but their patterns, burden, and functional
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consequences in diseases other than cancer have not been

extensively studied. Methodological developments have now

enabled the analysis of polyclonal somatic tissues, allowing

characterization of somatic mutations in normal tissues such

as skin (Martincorena et al., 2015), esophagus (Martincorena

et al., 2018; Yokoyama et al., 2019), endometrium (Moore

et al., 2020; Suda et al., 2018), lung (Yoshida et al., 2020), and co-

lon (Blokzijl et al., 2016; Lee-Six et al., 2019). In the setting of

non-neoplastic diseases, chronic liver disease has had the

most attention, with studies showing that compared to healthy

liver, hepatic cirrhosis is associated with acquisition of new

mutational processes, increased mutation burden and larger

clonal expansions (Brunner et al., 2019; Kim et al., 2019; Zhu

et al., 2019).

Colonic epithelium is well suited to the study of somatic muta-

tions because of its clonal structure. It is organized into millions

of colonic crypts, finger-like invaginations composed of �2,000

cells (Potten et al., 1992) each extending into the lamina propria

below. At the base of each crypt reside a small number of stem

cells undergoing continuous self-renewal through stochastic cell

divisions (Lopez-Garcia et al., 2010; Snippert et al., 2010). As a
ed by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Mutation Burden in the IBD Colon

(A) Substitution (top) and indel (bottom) burden as a function of age. Each point represents a colonic crypt and is colored by disease status. The line shows the

effect of age on mutation burden as estimated by fitting a linear mixed effects model, correcting for sampling location, sequencing coverage, and the within-

biopsy and within-patient correlation structure, considering both IBD cases and controls. The shaded area represents the 95% confidence interval of the age

effect estimate.

(B) Estimated excess of substitutions (top) and indels (bottom) in crypts from IBD patients as function of disease duration. Shaded area represents the 95%

confidence interval.

(C) A comparison of the effects of age and disease duration on the total mutation burden and on the burden of mutational signatures that associate with IBD

duration. Error bars represent the 95% confidence intervals of the estimates.

IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis; SBS, single base substitution signature; ID, indel signature.

See also Tables S1 and S2.
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result, the progeny of a single stem cell iteratively sweeps

through the entire niche, and the epithelial cells that line the crypt

are the progeny of this single clone. Active IBD disrupts these

normal stem cell dynamics—the epithelial lining is damaged,

the organized crypt structure is ablated, and the barrier between

lumen and mucosa is disrupted.

We hypothesized that the recurrent cycles of inflammation, ul-

ceration, and regeneration seen in IBD could impact the muta-

tional and clonal structure of intestinal epithelial cells. To test

these hypotheses, we isolated and whole-genome sequenced

446 colonic crypts from 46 IBD patients with varying degrees

of colonic inflammation, both active and previous, and

compared themutation burden, clonal structure, mutagen expo-

sure, and driver mutation landscape to colonic crypts from

healthy donors (Lee-Six et al., 2019).

RESULTS

IBD More Than Doubles the Mutation Rate of Normal
Colonic Epithelium
We used laser capture microdissection (LCM) to isolate 446

colonic crypts from endoscopic biopsies taken from 28 UC pa-

tients and 18 CD patients (Table S1). Biopsies were annotated

as never, previously, or actively inflamed at the time of sampling

(STAR Methods). The dissected crypts were whole-genome
sequenced to a median depth of 18.2X, allowing us to call so-

matic substitutions and small insertions and deletions (indels)

with high specificity and sensitivity (Figure S1; STAR Methods).

We also called larger copy number changes, somatic retrotrans-

positions, and aneuploidies affecting whole chromosomes or

chromosome arms (Tables S2 and S3; STAR Methods).

To assess if IBD is associated with a difference in the mutation

burden of the colonic epithelium, we combined our data with

data from 412 crypts sequenced as part of our recent study of

somatic mutations in normal colon (Lee-Six et al., 2019) (here-

after referred to as the control data). We fitted linear mixed-ef-

fects models (LMMs) to estimate the independent effects of

age, disease duration, and biopsy location on mutation burden,

while controlling for the within-patient and within-biopsy correla-

tions inherent in our sampling strategy (STARMethods). Disease

duration was included in the model as a proxy for inflammation

exposure. We estimated the effect of IBD to be 55 substitutions

per crypt per year of disease duration (35–75 95%confidence in-

terval [CI], p = 3.1 3 10�7, LMMs and likelihood ratio test; Fig-

ure 1). These mutations are in addition to the 40 (31–50, 95%

CI) substitutions we estimated are accumulated on average

per year of life under normal conditions, suggesting that muta-

tion rates are increased �2.4-fold in regions of the IBD-affected

colon on average. Compared to controls, patients with IBD had

greater between-patient variance in mutation burden (SD = 776
Cell 182, 672–684, August 6, 2020 673
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versus 383 substitutions and SD = 80 versus 34 indels for cases

and controls, p = 4.2 3 10�8 and p = 1.1 3 10�16, respectively;

LMMs and likelihood ratio test) and greater within-patient vari-

ance (SD = 955 versus 407 substitutions and SD = 81 and 18 in-

dels for cases and controls, p = 0.032 and p = 0.0011, respec-

tively). The increased between-patient variance likely reflects

differences in inflammation exposure not captured by disease

duration, because it does not account for variable disease

severity, response to treatment, etc. among patients. The

increased within-patient variance probably reflects region-to-re-

gion differences in disease severity along the colon. We similarly

estimated an increase in the indel burden in IBD, with an excess

of 6.8 indels per crypt per year of IBD (5.0—8.7 95%CI, p = 5.73

10�11; Figure 1) in addition to the estimated 1.0 (0.3–1.7 95% CI)

indel that is accumulated per crypt per year of life. As shown in

Figure 1B, a handful of clones and patients had a much higher

mutation burden than expected given their age. This is partially

driven by the effect of smoking and cancer driver status, as dis-

cussed below. The effect of IBD on the mutation burden remains

significant if crypts carrying driver mutations, or the five IBD pa-

tients with the highest mutation burdens, are excluded (p =

0.0014 and 0.0099 for substitutions and p = 6.8 3 10�6 and

1.1 3 10�5 for indels, respectively). We found no significant dif-

ference in the mutation burden between UC and CD patients.

Smoking status was available for a subset of the IBD cohort

(35 patients who contributed 362 crypts). In this restricted data-

set, we found an effect of smoking duration of 49 (18–81 95%CI,

p = 0.0024) substitutions and 5.3 (2.3–8.2 95% CI, p = 6.5 3

10�4) indels per crypt per year of smoking. The effect of disease

duration was unchanged, suggesting this effect is not driven by

differences in smoking habits between cases and controls.

Smoking has been reported to increase the risk of CD and be

protective for UC (Mahid et al., 2006), but we found no interaction

effect between smoking and disease type (p = 0.68). Smoking

status was not available for the control cohort. The full details

of all LMMs are available in a GitHub directory accompanying

this submission (https://github.com/Solafsson/somaticIBD/).

IBD Accelerates Age-Related Mutational Processes
The somatic mutations found in the cells of a colonic crypt reflect

the mutational processes that have acted on the stem cells and

their progenitors since conception. Distinct mutational processes

each leave a characteristic pattern, a mutational signature, within

the genome, distinguished by the specific base changes and their

local sequence context (Alexandrov et al., 2013, 2020). We ex-

tracted mutational signatures jointly for IBD and control crypts

and discovered 12 substitution signatures (SBS) and five indel

signatures (ID), all of which have been previously observed in tis-

sues from individuals without IBD (Figure S2; Table S2; STAR

Methods). Comparing our IBD cases and controls, we found

that �80% of the increase in mutation burden in cases is ex-

plained by signatures that are also found ubiquitously in normal

colon (Blokzijl et al., 2016; Lee-Six et al., 2019). These are substi-

tution signatures 1, 5, and 18 and indel signatures 1 and 2, as

defined by Alexandrov et al. (2020) (Figure 1), which cause an in-

crease of 13 (8–18 95%CI), 23 (15–30 95%CI), and 9 (6–12 95%

CI) substitutions per crypt per year of disease, respectively (p =

2.4 3 10�7, 1.0 3 10�7, and 3.2 3 10�7), and 4.3 (3.3–5.4 95%
674 Cell 182, 672–684, August 6, 2020
CI) and 1.7 (1.1–2.3, 95% CI) indels per crypt per year, respec-

tively (p = 4.0 3 10�12 and p = 9.5 3 10�8, LMMs and likelihood

ratio tests, see https://github.com/Solafsson/somaticIBD/ for

full details of the models). Substitution signatures 1 and 5 are

clock-like and thought to be associated with cell proliferation,

whereas signature 18 has been linked with reactive oxygen spe-

cies (Alexandrov et al., 2020). The indel signatures ID1 and ID2

are both thought to be the result of polymerase slippage during

DNA replication (Alexandrov et al., 2020).

The remaining 20% of the increase in substitution burden is a

consequence of rarer mutational processes and treatment. For

example, 96 crypts had over 150 mutations attributed to purine

treatment in a subset of seven IBD patients, five of whom have

a documented history of such treatment. However, the number

of mutations attributed to purine was not associated with purine

therapy duration, and some patients showed large mutation bur-

dens despite brief, or indeed no, documented exposure. For

example, one patient received azathioprine for 2 weeks and

mercaptopurine for 2weeks and had significant adverse reactions

to both drugs. This brief treatment resulted in amedian of 204mu-

tations (range: 120–374) attributed to purine treatment in the

crypts from this individual. Other patients had long-term exposure

to azathioprine without accruing any purine-related mutations

(Figure 2B). There was also great within-patient variation in the

burden of the purine signature. The largest range was observed

for patient 40, which has a 7 year history of purine treatment.

The estimated burden of the purine signature in crypts from this

patient ranged from 69–1,005. The reason for this large variation

in purine-related mutation burden remains unknown, although it

is associated with the number of putative cancer drivers (see

below). Thiopurine use has been associated with higher overall

cancer risk in epidemiological studies, but this is mostly driven

by an effect on lymphoid cancers and possibly on urinary tract

cancers, but not colorectal cancers (Pasternak et al., 2013; Adami

et al., 2016). The relationship between purines and colon cancer is

complicated and requires further study. On one hand, our results

show purine-related mutations accumulating in the crypts of a

subset of patients, but on the other hand, effective purine treat-

ment may prevent disease-related mutagenesis.

Five signatures previously discovered in the normal colon

(Lee-Six et al., 2019), SBSA, SBSB, SBSC, IDA, and IDB were

also present in the context of IBD. SBSA and IDA and SBSB

and IDB are highly correlated (Figure S2B) and likely represent

the same underlying mutational processes. SBSA and IDA are

of particular interest because they have recently been shown

to be caused by the genotoxin colibactin, which is produced

by bacteria harboring a polyketide synthases (pks) pathogenicity

island (Pleguezuelos-Manzano et al., 2020). pks+ E. coli have

been reported at increased frequency in IBD (Arthur et al.,

2012), but we found no relationship between SBSA or IDA

burden and disease status or disease duration after correcting

for higher burden of both in the left-side of the colon (the site pri-

marily affected in UC). As in normal colon, SBSA and SBSBwere

primarily found in early branches of the phylogenetic trees (Fig-

ures S3 and S4). Signatures SBSB, SBSC, and SBS32 have

not been reported in studies of sporadic colorectal cancers

(Alexandrov et al., 2020), perhaps due to the comparative

complexity and diversity of cancer mutation profiles. SBS32,

https://github.com/Solafsson/somaticIBD/
https://github.com/Solafsson/somaticIBD/


Figure 2. Mutational Signatures in Colonic Crypts
(A) A stacked barplot showing the proportional contribution of single-base-substitution (SBS) signatures (top) and indel (ID) signatures (bottom) to the mutation

burden of each crypt. Crypts are grouped by patient and crypts from CD, UC, and controls are shown separately. Signature nomenclature is the same as in

Alexandrov et al. (2020). The ‘‘Unassigned’’ component represents uncertainty of the signature extraction.

(B) Phylogenetic trees of two patients with widespread ulcerative colitis. The colors of the branches reflect the relative contribution of each mutational signature

extracted for those branches as in (A). The patient on the left has received azathioprine treatment for 10 years but shows no SBS32 burden (dark blue). In contrast,

the patient on the right received azathioprine for 2 weeks and mercaptopurine for 2 weeks and had significant adverse reactions to both drugs. SBS32 is found in

most crypts from this patient. All crypts are from inflamed biopsies.

See also Figure S2 and Table S2.
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however, would only be expected in patients receiving purine

therapy and so would not be present in sporadic colorectal can-

cers. These signatures have also not been reported in studies of

colitis-associated colorectal cancers but this is likely due to a

relative lack of power due to the small number of sequenced

exomes (Robles et al., 2016; Baker et al., 2019; Din et al., 2018).

Signatures 2 and 13, which are associated with APOBEC activ-

ity, and signatures 17a and 17b, which are of unknown etiology,

wereactive inasmall numberofcryptswithhighmutationburdens.

SBSB, SBSC, SBS17a/b, and SBS2/SBS13 are too rare for us to

be powered to detect any difference between IBD and controls

or to associate these with any clinical feature documented in our

metadata. Finally,we foundsignature35, associatedwithplatinum

compound therapy, in one patient with a history of platinum treat-
ment for squamous cell carcinoma of the tongue. The patient

received 40 mg/m2 of cisplatin therapy on a weekly basis. He

completed three of six planned treatment cycles with therapy

termination due to toxicity. This relatively brief treatment resulted

in a medium of 430 mutations (range: 350–461) per crypt that

were attributed to signature 35, equivalent to�10 years of normal

mutagenesis. In crypts from this individual, we also observed a

small number of double base substitutions of CT > AA and CT >

AC classes (median 6, range: 5–13), probably indicative of DBS5,

which has also been linked with platinum treatment.

IBD Associates with the Burden of Structural Variants
We called copy number variants (CNVs), somatic retrotranspo-

sitions, and loss-of-heterozygosity events affecting whole
Cell 182, 672–684, August 6, 2020 675



Figure 3. Burden of Structural Variants in Inflammatory Bowel Disease-Affected Colon Compared with IBD-Unaffected Colon
(A) Number of copy number variants in IBD sub-types compared with controls.

(B) Number of somatic retrotranspositions in IBD subtypes compared with controls.

(C) Fraction of crypts with inflammation history that carry chromosomal aneuploidies.

See also Table S3.
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chromosomes or chromosome arms (referred to here as aneu-

ploidies for simplicity) in both our IBD cases and non-IBD con-

trols. The burden of structural variants is modest in both data-

sets (Figure 3), but for IBD, we identified the occasional clone

that carried a large number of CNVs and retrotranspositions

(Figures 3A and 3B). The numbers of CNVs and retrotranspo-

sitions are associated with IBD duration. We estimated the

CNV mutation rate to be 0.067 CNVs per crypt per year of dis-

ease (0.027–0.11 95% CI, p = 1.1 3 10�3, likelihood ratio test

of mixed-effects Poisson regressions) and the retrotransposi-

tion mutation rate to be 0.065 (0.018–0.11, 95% CI, p = 6.9 3

10�3). This corresponds to one CNV per crypt every 14.9 years

of disease duration and one retrotransposition event every

15.4 years of disease duration on average. However, a handful

of clones accumulated many structural variants (SVs),

whereas the majority had none, suggesting that the processes

driving their acquisition may be episodic rather than contin-

uous. This would be in line with findings from other reports

linking rapid accrual of SVs with the transition from normal

to dysplastic mucosa (Baker et al., 2019) and cancers

accruing copy number gains in a punctuated manner (Ger-

stung et al., 2020).
676 Cell 182, 672–684, August 6, 2020
We found a higher fraction of IBD crypts carrying aneuploidies

than in controls (43/419 comparedwith 13/412, Figure 2C). How-

ever, this was driven by large clones carrying aneuploidies, and

the number of events was not significantly associated with dis-

ease duration (p = 0.42). No type of chromosomal abnormality

differed significantly between UC and CD (p = 0.65, 0.83, and

0.67 for deletions, duplications, and loss-of-heterozygosity,

respectively; binomial mixed effects model). The numbers of

CNVs, retrotranspositions, and aneuploidies are associated

with higher substitution burden (112 [49–175 95% CI, p =

6.4 3 10�4], 59 [38–81 95% CI, p = 1.5 3 10�7], and 199

[65–331 95%CI, p = 3.73 10�3], respectively), and retrotranspo-

sitions and CNVs are associated with higher indel burden

(11 [8–14 95% CI, p = 2.6 3 10�12] and 17 [10–24 95% CI,

p = 6.7 3 10�6], respectively).

IBD Creates a Patchwork of Millimeter-Scale Clones
Colonic crypts divide by a process called crypt fission, whereby

a crypt bifurcates at the base, and branching elongates in a zip-

like manner toward the lumen. This process is relatively rare in

the normal colon, wherein each crypt fissions on average only

once every 27 years (Nicholson et al., 2018; Lee-Six et al.,



(legend on next page)
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2019). Compared to normal colon, we found much larger clonal

expansions in IBD patients, evident of numerous crypt fission

events occurring late in molecular time. We observed several ex-

amples of individual clones spanning entire 2–3 mm endoscopic

biopsies (Figures 4, 5A, S3, and S4). Our ability to estimate clone

sizes is restricted by the small size of the biopsies. However,

when we biopsied the same inflamed or previously inflamed re-

gionmore than once, on only one occasion out of 19 biopsy pairs

did we observe a clone stretching between biopsies that were

taken a few millimeters apart (Figures S3 and S4), whereas

most biopsies contained more than one clone. To improve our

ability to detect larger clones, we sampled three patients more

broadly. Nine biopsies, forming a 33 3 grid with 1 cm separating

biopsies, were obtained from each patient. We dissected 187

crypts from the biopsies and performed whole exome

sequencing on individual crypts. Phylogenetic trees were recon-

structed based on somatic mutations identified (Figure 5B–5D).

Although clonal expansions within biopsies are common, we

found clones extending between neighboring biopsies in only

one of these patients. A substantial body of evidence exists doc-

umenting widespread clonal expansions giving rise to dysplasia

and ultimately to colorectal cancer in IBD (reviewed in Choi et al.,

2017). Colitis-associated colorectal cancers, which are enriched

with synchronous lesions (Lam et al., 2014; Choi et al., 2015),

commonly grow from a background of a pre-cancerous field

that has expanded many centimeters or even the whole length

of the colon (Leedham et al., 2009; Galandiuk et al., 2012). Mu-

tations in TP53 are thought to be especially prominent in the

growth of these clones, but aneuploidies and KRAS mutations

are also commonly observed (Holzmann et al., 1998; Leedham

et al., 2009; Galandiuk et al., 2012). In our material of non-

dysplastic tissue from individuals without colorectal neoplasia,

we find smaller clones and mutations in TP53, KRAS, or APC

are rare. In summary, IBD-affected regions are generally not

dominated by a single major clone, but are more accurately

viewed as an oligoclonal patchwork of clones that often grow

considerably larger than in healthy colon.

Distinct Patterns of Selection in IBD Compared with
Normal Epithelium
The recurrent cycles of inflammation and remission that charac-

terize IBD could create an environment in which clones contain-

ing advantageous mutations may selectively spread in the mu-

cosa. This advantage may manifest either through faster cell

division and elevated crypt fission rate or through increased

resistance to the cytotoxic effects of inflammation. To identify

mutations that likely confer selective advantage on the cell, we

searched for mutations occurring in canonical mutation hotspots

from the Cancer Genome Atlas (Table S4A). This revealed a total
Figure 4. Examples of Clonal Expansions in Three IBD Patients

Top: a phylogenetic tree of crypts sampled from a 66-year-old patient with a 25

crypts from the orange shaded area. The clones highlighted in blue and orange co

difference in the mutation burden of these clones is driven by a local activation of s

of crypts sampled from a 61-year-old patient with a 27-year history of ulcerative

millimeters apart. The accompanying biopsy image shows the crypts from the pu

patient with a 25-year history of Crohn’s disease affecting the colon. A biopsy ov

See also Figures S3 and S4.
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of 10 missense mutations in KRAS, BRAF, TP53, ERBB2,

ERBB3, and FBXW7 occurring at canonical hotspots (Table

S4B). Additionally, we found a heterozygous nonsense mutation

in APC and frameshift indels in known colorectal tumor suppres-

sors; ATM, SOX9, RNF43, and ZFP36L2, of likely driver status

(Figure 4A; Table S4B). Furthermore, two large-scale deletions

in our dataset overlap known tumor suppressors, PIK3R1 and

CUX1, and are likely drivers. The number of putative cancer

drivers found in a crypt is associated with increased burden of

both substitutions (269 substitutions per driver, 90–447 95%

CI, p = 5.6 3 10�3) and indels (40 indels per driver, 20–60 95%

CI, p = 1.73 10�4), as well as with each of the replication-related

signatures (SBS1, SBS5, SBS18, ID1, and ID2; Table S4C).

There was also a significant association with the purine signature

(SBS32). We estimated the burden of purine signature to be

increased by 30 (14–47, 95% CI, p = 3.7 3 10�4; Figures S5A

and S5B) substitution per driver, suggesting that rapidly dividing

cells may be particularly susceptible to the mutagenic effect of

purine treatment.

To search for genes under positive selection, we assessed the

ratio of non-synonymous to synonymous mutations (dN/dS)

across all IBD crypts, while correcting for regional and context-

dependent variation in mutation rates (Martincorena et al.,

2017). Genes with dN/dS ratios significantly different from 1

are considered to be under selective pressure. This analysis re-

vealed four genes, ARID1A, FBXW7, PIGR, and ZC3H12A, to be

under positive selection in the IBD colon (Figures 6A and S5C;

Table S4B). ARID1A and FBXW7 are well-established tumor

suppressors and are found mutated at similar frequencies in

sporadic- and colitis-associated colorectal cancers (Martincor-

ena et al., 2017; Baker et al., 2019). In several instances, distinct

heterozygousmutations in the same gene were found in different

crypts from the same patient (Figures S3 and S4). For example,

in one patient suffering from pan-colitis, we found four distinct

PIGR mutations in four biopsies from the right, transverse, and

left side of the colon (Figure 6B). We did not detect a significant

signal of selection of mutation in the two genes, AXIN2 or

STAG2, whichwe previously found to be under positive selection

in the normal colon (Lee-Six et al., 2019) (p = 0.98 and 0.74,

respectively) nor was there any evidence of selection of PIGR

or ZC3H12A mutants in the normal colon (Table S5B). We did

not find a significant difference in the mutation burden of any

of these genes between UC and CD, suggesting that similar se-

lection pressures are operative in mucosal tissue in both

diseases.

Recurrent mutations in PIGR and ZC3H12A are of particular

interest because these have not been described in cancer but

have roles in immunoregulation and reflect distinct mechanisms

of positive selection in the IBD colon. PIGR encodes the poly-
-year history of ulcerative colitis. The accompanying biopsy image shows the

me from the same previously inflamed site and were millimeters apart. A large

ignatures 17a and 17b in the orange shaded clone. Middle: a phylogenetic tree

colitis. The clones highlighted in purple and yellow come from biopsies taken

rple clone. Bottom: a phylogenetic tree of crypts sampled from a 37-year-old

erlaps two clones (in blue and green). Scale bars, 250 mm.
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immunoglobulin (Ig) receptor, which transfers polymeric Igs pro-

duced by plasma cells in the mucosal wall across the epithelium

to be secreted into the intestinal lumen (Johansen and Kaetzel,

2011). Pigr knockout mice exhibit decreased epithelial barrier

integrity and increased susceptibility to mucosal infections and

penetration of commensal bacteria into tissues (Johansen

et al., 1999). ZC3H12A encodes an RNase, Regnase-1 (also

known asMCPIP1). It is activated in response to TLR stimulation

and degrades mRNA of many downstream immune signaling

genes (Matsushita et al., 2009), including PIGR (Nakatsuka

et al., 2018), NFKBIZ (Mino et al., 2015), and members of the

interleukin-17 (IL-17) pathway (Garg et al., 2015). Four of themu-

tations in ZC3H12A occur in a DSGxxS motif that, when phos-

phorylated, marks the protein for ubiquitin-mediated degrada-

tion. Mutations of the corresponding residues in mice

attenuate the phosphorylation (Iwasaki et al., 2011) and stabilize

the protein so these are likely gain-of-function.

We next carried out a pathway-level dN/dS analysis, searching

for enrichment of missense and truncating variants across 15

gene sets that were defined a priori because of their relevance

in either colorectal carcinogenesis or IBD pathology (Figure 6C;

Table S5; STAR Methods). We observed a 6.5-fold (1.8–23.6,

95%CI) enrichment of truncating mutations in genes associated

with colorectal cancer (q = 0.011) as well as a 1.9-fold (1.3–2.8,

95%CI) enrichment in genes significant in a pan-cancer analysis

of selection (Priestley et al., 2019) (q = 0.011). Interestingly, the

pathway-level dNdS also revealed a 4.0-fold (1.7–9.4, 95% CI)

enrichment of truncating mutations in the IL-17 signaling

pathway (q = 0.011) and a 3.3-fold (1.6–6.7, 95% CI) enrichment

in Toll-like receptor (TLR) cascades (q = 0.011) with mutations

from both UC and CD derived crypts contributing to the enrich-

ment (Figures S5D).

DISCUSSION

We have used whole-genome sequencing of individual colonic

crypts to provide the most accurate characterization of the so-

matic mutation landscape of the IBD-affected colon to date.

The increased cancer risk of IBD patients results from a combi-

nation of higher mutation rate, particularly of deleterious muta-

tions such as indels, from increased opportunity for clones car-

rying driver mutations to spread outside the confines of the

crypt and from changes to the selective environment of the mu-

cosa. Our results suggest that somatic substitution rate of the

mucosa is accelerated 2.4-fold in disease, and the indel rate is

accelerated as much as 7- fold. This increase is mostly driven

by acceleration of single base substitution signatures 1, 5, and

18 and indel signatures 1 and 2, which are ubiquitous in the

IBD-unaffected colon and are associated with cell proliferation

and metabolic stress. The relatively large increase in the indel

signatures suggests that IBD affected cells are particularly prone

to DNA polymerase slippage during replication. Driver mutations

are enriched in indels and the relatively high indel burden seen in

IBD may help explain the increased risk of neoplasia, although

this could not be directly tested in the present study.

Metabolic stress also results in an increased burden of

somatic structural variants, which nevertheless remain rare in

the IBD-affected mucosa. Structural variants are common in
colorectal cancers and thus rapid increase in structural variation

may be a hallmark of neoplastic transition, in line with previous

reports (Baker et al., 2019). Increase in structural variation from

healthy tissue to non-neoplastic disease has also been observed

in liver disease (Brunner et al., 2019).

Colitis-associated colorectal cancers commonly arise from a

background of large clonal fields (Choi et al., 2017). In our sample

of non-dysplastic tissue, we find millimeter scale clonal expan-

sions, although we note that for many inflamed regions, only a

single small biopsy is available that limits our ability to detect

large clones. TP53 and KRAS mutations are thought to be key

events in clonal spread in the IBD mucosa, but although we do

observe a number of canonical cancer driver mutations in genes

including TP53 andKRAS, onlyARID1A and FBXW7 show signif-

icant evidence of positive selection.

Although there is substantial overlap in the driver landscape of

IBD and non-IBD colon, important differences also exist. Our

findings of enrichment of mutations in PIGR, ZC3H12A, and in

the IL-17 and TLR pathways suggest there are distinct selection

mechanisms in the colitis-affected colon, and somatic mutations

potentially play a causal role in the pathogenesis of IBD. While

this work was under review, two studies of somatic mutations

in UC patients from the Japanese population were published

that confirm our findings of positive selection of mutations in

ARID1A, FBXW7,PIGR, ZC3H12A, and in the IL-17 pathway (Ka-

kiuchi et al., 2020; Nanki et al., 2020). Importantly, our study

shows that the same selective pressures are operative in

mucosal tissue in both UC and CD.

The two papers also report mutations in additional genes

includingNFKBIZ, IL17RA, TRAF3IP2, andNOS2. We performed

restricted-hypothesis testing of a set of 13 genes reported in

these other two papers and replicated six at q < 0.05 (Table

S5F). Importantly, the enrichments of truncating mutations we

observe in the IL-17 and TLR pathways, which sharemany genes

in common, are not driven by the genes discussed above

because PIGR, ZC3H12A, NFKBIZ, and NOS2 are not part of

these pathways (according to Reactome), and no mutations

were found in TRAF3IP2. This suggests that additional positively

selected genes related to IL-17 and TLR signaling may be

discovered in the IBD colon as sample size is increased. The dif-

ference in the number of NFKBIZ mutant crypts between the

studies is noticeable. We detected only 3 truncating mutations

in NFKBIZ, which is the most commonly mutated gene in Kakiu-

chi et al. (2020). This is reminiscent of our previous description of

how selection of NOTCH2 mutants in normal skin may vary be-

tween individuals of European and South Asian ancestry (Martin-

corena et al., 2015). Together with our observation that distinct

mutations in the same gene are often found in crypts from the

same individual, this leads us to speculate that differences in

local environment or a person’s genetic background affects

the strength of selective advantage posed by somatic variants

and studies with larger sample sizes may be able to detect those

interactions.We also observe smaller clones than those reported

by Kakiuchi et al. (2020), who document clones spanning many

centimeters in surgically resected colons. We speculate this

may be due to patients undergoing colectomies having a more

severe disease or due to different selection pressures between

populations as mentioned above. Kakiuchi et al. (2020) also
Cell 182, 672–684, August 6, 2020 679



Figure 5. Clonal Structure of the IBD Colon

(A) For pairs of crypts from the same biopsy, the figure shows the number of mutations that are shared between a pair as a fraction of the averagemutation burden

of the two crypts, and this is plotted as a function of the distance between the pair.

(B) A phylogenetic tree showing crypts sampled from 9 biopsies from the sigmoid colon of a 36-year-old male diagnosed with Crohn’s disease 19 years prior to

sampling. Biopsies were taken 1 cm apart in a three by three grid for all the patients in (B)-(D).

(C) A phylogenetic tree showing crypts sampled from 9 biopsies from the rectum of a 71-year-old male diagnosed with ulcerative colitis 4 years prior to sampling.

(D) A phylogenetic tree showing crypts sampled from 9 biopsies from the rectum of a 42-year-old female diagnosed with ulcerative colitis 13 years prior to

sampling.

See also Figures S3 and S4.
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argue that some IBD-associated mutations, in particular in

NFKBIZ, may prevent neoplastic transformation, but our data

neither support nor refute this.

In their study, Nanki et al. (2020) show how IL-17A may be

cytotoxic to epithelial cells and argue that clones carrying IL-

17 pathway mutations are able to avert this cytotoxicity and

thereby selectively expand in the inflamed environment. This
680 Cell 182, 672–684, August 6, 2020
has implications for the direction of effect of these mutations

on IBD pathogenesis, because selective pressure would only

be asserted following disease onset as Th17 cells infiltrate the

tissue and secrete IL-17A in the vicinity of the epithelium. How-

ever, it could also be hypothesized that these mutations play a

causal role in the pathogenesis of IBD through an effect on dys-

biosis. Indeed, the discovery by Nanki et al. (2020) that PIGR



Figure 6. Driver Mutations and Positive Selection in IBD

(A) An oncoplot showing the distribution of potential driver mutations mapped to branches of phylogenetic trees. Each column represents a branch of a

phylogenetic tree and amutation may be found in multiple crypts if the branch precedes a clonal expansion. Branches without potential drivers are not shown for

simplicity. *Genes showing significant enrichment of non-synonymous mutations after Benjamini-Hochberg correction for multiple testing (q < 0.05).

(B) A phylogenetic tree of the crypts dissected from a 38-year-old male suffering from ulcerative colitis for 21 years. Crypts are dissected from five biopsies from

three previously inflamed sites of the colon. Crypts carrying distinct PIGR truncating mutations are found in four of the biopsies and in all three colonic sites.

(legend continued on next page)
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mutations do not confer upon cells survival advantage in the

presence of IL-17A may add weight to this hypothesis. Although

ZC3H12A and NFKBIZ are involved in IL-17 signaling, both are

also induced downstream of TLRs (Yamamoto et al., 2004; Mat-

sushita et al., 2009) where they regulate the transcriptional

changes that follow TLR signaling. Disruption of the IL-17

pathway itself may also play a causal role in the disease,

because intestinal epithelial cell-specific knockout of compo-

nents of the IL-17 pathway in mice results in commensal dysbio-

sis through downregulation of Pigr and other genes (Kumar et al.,

2016). Thus, a positive feedback loop may be established, lead-

ing to ever greater spread of a pathogenic clone. It is worth

noting that clinical trials of secukinumab and brodalumab (anti-

IL-17A and anti-IL-17RA antibodies, respectively) for the treat-

ment of CD have been carried out but either show no efficacy

over placebo or worsen the disease (Hueber et al., 2012; Targan

et al., 2016). Case reports of IBD in psoriasis patients receiving

ixekizumab, a second IL-17A antibody, have been reported (Phi-

lipose et al., 2018; Smith et al., 2019), although post hoc analyses

of ixekizumab trials suggest that IBD is a rare adverse outcome

(Reich et al., 2017).

Our understanding of somatic evolution in normal tissues has

improved greatly over the last few years but how and if somatic

evolution contributes to the pathogenesis of complex traits other

than cancer remains poorly understood. Clonal hematopoiesis

has been associated with coronary heart disease (Jaiswal

et al., 2014), and our work suggests that somatic evolution in

the colonic mucosa may initiate, maintain, or perpetuate IBD.

Large-scale analyses of cancers have started to reveal common

themes of cancer evolution across tissues (Gerstung et al.,

2020), and extending this work to other tissues exposed to

chronic inflammation may similarly reveal patterns of remodeling

of the selection landscapes associated with disease, but which

need not drive neoplastic growth. Comparing the evolutionary

forces in the IBDmucosawith those operating in psoriasis, celiac

disease, asthma, and other diseases affecting epithelial cells is

an area of special interest.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

BAM files containing sequencing data from

crypts isolated from IBD patients.

This paper. European Genome-phenome Archive

(EGA) - accession code EGA: EGAD00001006061

Images of microdissections and physical

distances between crypts.

This paper. Mendeley Data: https://doi.org/

10.17632/x3vsxpspn4.2

BAM files containing sequencing data from

crypts isolated from controls.

Lee-Six et al., 2019 European Genome-phenome Archive

(EGA) - accession codes EGA: EGAD00001004192

and EGA: EGAD00001004193

PCAWG mutational signatures. Alexandrov et al., 2020 https://cancer.sanger.ac.uk/cosmic/

signatures

Software and Algorithms

Algorithms and software for calling somatic

substitutions - CaVEMan.

Cancer Genome Project,

Wellcome Trust Sanger Institute

http://cancerit.github.io/CaVEMan/

Algorithms and software for calling somatic

indels - PIndel.

Cancer Genome Project,

Wellcome Trust Sanger Institute

http://cancerit.github.io/cgpPindel/

Algorithms and software for calling somatic

retrotranspositions - TraFiC-mem.

Rodriguez-Martin et al., 2020 https://gitlab.com/mobilegenomesgroup/

TraFiC

Algorithms and software for calling somatic

copy number changes - BRASS.

Cancer Genome Project,

Wellcome Trust Sanger Institute

https://github.com/cancerit/BRASS

Algorithms and software for calling somatic

copy number changes - ASCAT.

Cancer Genome Project,

Wellcome Trust Sanger Institute

https://github.com/cancerit/ascatNgs

Algorithms and software for constructing

phylogenetic trees - MPBoot.

Hoang et al., 2018 http://www.iqtree.org/mpboot/

Algorithms and software for extracting

mutational signatures - HDP.

Roberts, 2018 https://github.com/nicolaroberts/hdp

Algorithms and software for estimating

dN/dS ratios.

Martincorena et al., 2017 https://github.com/im3sanger/dndscv

Custom scripts documenting all other

analyses.

This paper. https://github.com/Solafsson/somaticIBD
RESOURCE AVAILABILITY

Lead Contact
All requests for data and resources should be directed to the Lead Contact, Dr. Carl Anderson (ca3@sanger.ac.uk).

Materials Availability
This study did not generate new unique reagents or other materials.

Data and Code Availability
All sequencing data for the IBD cohort is available via the European Genome Phenome (https://ega-archive.org/). The accession

number for the IBD data reported in this paper is EGA: EGAD00001006061. The accession numbers for the control data are EGA:

EGAD00001004192 and EGA: EGAD00001004193. Phylogenetic trees, pileup read counts, histology images and physical distances

between dissected crypts have been deposited to Mendeley data: https://doi.org/10.17632/x3vsxpspn4.2.

Custom scripts for carrying out the analyses described herein, including fitting of mixed-effect models, selection analyses and

signature extraction, can be found under https://github.com/Solafsson/somaticIBD.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Colonic pinch-biopsies were donated by IBD patients undergoing regular surveillance of their disease at Addenbrooke’s hospital,

Cambridge (Table S1). All samples were obtained with informed consent of the donor and the study was approved by the National
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Health Service (NHS) Research Ethics Committee (Cambridge South, REC ID 17/EE/0338) and by the Wellcome Trust Sanger Insti-

tute Human Materials and Data Management Committee (approval number 17/113). We have complied with all relevant ethical

regulations.

All donors are of white-European ancestry. The time between clinical diagnosis and date of biopsy was used to define the disease

duration of a given individual. We added six months to this number for all patients because symptoms often precede diagnosis by

several months and to avoid setting the disease duration to zero for patients who donated samples at the time of diagnosis. Time of

purine treatment was estimated by consulting electronic health records from NHS databases. Biopsies were annotated as never,

previously or actively inflamed using all available clinical data and NHS histopathology archives. The biopsy images (or an image

of a second biopsy from the same site of the colon) were reviewed by a histopathologist. None of the patients had colorectal cancer,

adenoma or dysplasia. Patients who donated grid biopsies were chosen at random from those who had been diagnosed with IBD for

more than a year, so to allow time for clonal spread to occur.

Biopsies from patients 1-26 were embedded in optimal cutting temperature (OCT) compound and sectioned, stained and fixed as

previously described (Lee-Six et al., 2019). None of the samples were fixed in formalin. Subsequent biopsies were embedded in

paraffin because this better preserved the morphology of the tissue. Biopsies were sectioned (10-20 mm), fixed to 4 mm PEN mem-

brane slides (11600288, Leica) and stained with hematoxylin and eosin. Crypts were dissected using laser capture microdissection

microscopy (LMD7000, Leica) and lyzed using ARCTURUS PicoPure DNA extraction kit (Applied Biosystems) according to the man-

ufacturer’s instructions. DNA libraries were prepared as previously described (Lee-Six et al., 2019).

The control cohort was obtained from our previous publication on somatic mutations in the normal colon (Lee-Six et al., 2019). It

consists of seven deceased organ donors, 31 individuals who underwent colonoscopy following a positive faecal occult blood test in

a screening program (16 of which were not found to have an adenoma or a carcinoma and 15 of which had colorectal carcinoma,

although the biopsies used were distant from these lesions) and three pediatric patients who underwent colonoscopy to exclude

IBD and who were found to have a histologically and macroscopically normal mucosa. We excluded one subject from the control

cohort who had undergone chemotherapy and was a clear outlier in terms of mutation burden and showed an abnormal muta-

tion profile.

We note that the mutation burden of the pediatric subjects is what would be expected given the mutation burden observed in the

other patients in the cohort, and that the crypts dissected from cancer patients did not show a higher mutation burden, distinct muta-

tional processes or distinct driver landscape from biopsies donated from patients without cancer.

METHOD DETAILS

Genome sequencing
Samples from patient 1 through 19 (Table S1) were whole genome sequenced on Illumina XTEN�machines as previously described

(Lee-Six et al., 2019). Samples from other patients were whole genome sequenced on Illumina Htp NovaSeq 6000�machines using

150bp, paired end reads except for patients 60-62, which were whole exome sequenced on the same platform using the Human All

Exon V5 bait set. Reads were aligned to the human reference genome (NCBI build37) using BWA-MEM.

MUTATION CALLING AND FILTERING

Substitutions
Base substitution calling was carried out in four steps: Discovery, filtering of the discovery set, genotyping and filtering of the geno-

types. Mutations were first called using the Cancer Variants through Expectation Maximization (CaVEMan) algorithm (Jones et al.,

2016). CaveMan uses a Bayesian classifier, incorporating base quality, read position, read orientation andmore, to derive a posterior

probability of all possible genotypes at every candidate site. Out of concern for field cancerization effect, patients 1 through 26, and

patients fromwhich only a few crypts were sequenced, were analyzed using a matched normal sample dissected from non-epithelial

tissue from one of the biopsies. As it became apparent that clones did not stretch between biopsies, we stopped sequencing non-

epithelial tissue control samples from patients if crypts were dissected from multiple biopsies.

The substitution calls were next filtered, as previously described (Lee-Six et al., 2019), to removemapping artifacts, common single

nucleotide polymorphisms and calls associated with the formation of cruciform DNA structures during library preparation. When

matched normal samples were unavailable for the calling (see above), a large number of rarer germline variants remained post

filtering. All sites where a somatic mutation was called in any crypt from a given patient were subsequently genotyped in all other

samples from that patient by constructing read pileups and counting the number of mutant and wild-type reads. Only reads with

a mapping quality of 30 or higher, and bases with a base quality of 30 or higher, were counted.

We next performed an exact binomial test to remove germline variants. True heterozygous germline variants should be present at a

variant allele frequency (VAF) of 0.5 in all samples from an individual. Across all samples from a given individual, we aggregated

variant and read counts at sites where a single nucleotide variant was called in at least one sample. We then used a one-sided exact

binomial test to distinguish germline variants from somatic variants. The null hypothesis was that germline variants were drawn from a

binomial distributionwith a probability of success of 0.5, or 0.95 for the sex chromosomes inmen. The alternative hypothesis was that

these variants were drawn from distributions with a lower probability of success. The resulting p values were corrected for multiple
e2 Cell 182, 672–684.e1–e5, August 6, 2020
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testing using the Benjamini-Hochberg method. A variant was classified as somatic if q < 10�3, or q < 10�2 if fewer than five crypts had

been dissected for the patient. For variants classified as somatic, we fitted a beta-binomial distribution to the number of variant sup-

porting reads and total number of reads across crypts from the same patient. For every somatic variant, we determined themaximum

likelihood overdispersion parameter (r) in a grid-based way (ranging the value of r from 10�6 to 10-0.05). A low overdispersion cap-

tures artifactual variants because they appear to be randomly distributed across samples and can bemodeled as being drawn from a

binomial distribution. In contrast, true somatic variants will be present at a VAF close to 0.5 in some, but not in all crypt genomes, and

are thus best represented by a beta-binomial with a high overdispersion. To distinguish artifacts from true variants, we used r = 0.1 as

a threshold, below which variants were considered artifacts. The code for this filtering approach is an adaptation of the Shearwater

variant caller (Gerstung et al., 2014). Finally, we filtered out variants that were supported by fewer than three reads or where the

sequencing depth was less than five.

Indels
Short deletions and insertions were called using the Pindel algorithm (Ye et al., 2009). We applied the same restrictions on median

VAF and read counts as for substitutions, and germline indel calls were filtered using the same binomial filters as described above.

Sensitivity analysis
To estimate sensitivity we dissected and sequenced five crypts twice. Assuming the same sensitivity in both samples, a maximum

likelihood estimate for the sensitivity when mutations not present in either sample go unobserved is:

S =
23 n2

n1 + 23n2
Where n2 is the number of mutations called in both samples and
 n1 is the sum of mutations called in only one sample. As sensitivity

depends on coverage, which is uneven for the members of a pair, this estimate should be considered to be a lower bound.

We compared the sensitivity estimates for our five biological duplicates with internal sensitivity estimation for CaveMan (Fig-

ure S2C). This used 170 samples from the same individual sequenced to varying depths and, to remove the effect of clonality of

the sample, estimated the sensitivity for calling heterozygous germline variants in these samples.

Our samples are expected to have slightly lower sensitivity than this estimate for the following reasons:

1. The curve assumes perfect clonality (median VAF of 0.5), but the median-median VAF in the IBD and control cohorts is 0.44.

2. The curve doesn’t capture indels, for which sensitivity is expected to be slightly lower than for substitutions.

3. To increase specificity, this paper required a coverage of 5 and at least 3 reads supporting the mutation, while standard for

CaveMan is coverage of 4 and 2 mutant reads.
Constructing phylogenetic trees
We used the MPBoot software (Hoang et al., 2018) to create a phylogenetic tree for each patient. MPBoot uses ultrafast bootstrap

approximation to generate a maximum parsimony consensus tree. We assigned mutations to branches using a maximum likelihood

approach, removing mutations which didn’t adhere to the tree structure (p < 0.01, maximum likelihood estimation).

Structural variants
Copy number variants were called using the BRASS algorithm (https://github.com/cancerit/BRASS) as previously described (Lee-Six

et al., 2019). Calls were filtered using AnnotateBRASS (https://github.com/MathijsSanders/AnnotateBRASS) as previously described

(Moore et al., 2020). When a matched normal sample was not available for a patient, we used a clonally unrelated sample from the

same individual to filter germline variants. All variants passing filters were manually reviewed in a genome browser. For discovery of

deletions at fragile sites of the genome, we manually reviewed the three regions in all the genomes.

Somatic retrotranspostions were called using TraFic algorithm (Rodriguez-Martin et al., 2020). Somatic events supported by read

clusters without exact breakpoints were also included. To further identify somatic transduction events, translocation calls (i.e., read

clusters) related with known L1 germline sources (Rodriguez-Martin et al., 2020) from BRASS algorithm were examined. All somatic

retrotransposition events were manually reviewed.

Chromosome aneuploidies and deletions or duplications affecting large areas of chromosomes or whole chromosome arms were

called using the ASCAT algorithm (Van Loo et al., 2010; Raine et al., 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

Mutation rate comparisons between IBD patients and controls
Any test for a difference inmutation burden between cohorts must take into account all factors, biological and technical, which corre-

late with disease and/or affect mutation calling sensitivity. For our comparison of IBD and normal, we fitted linear mixed effects

models taking the following factors into account:
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1. Age is the most important predictor of mutation burden and the age distribution of the two cohorts is different. We included a

fixed effect for age in the models to account for this.

2. Mutation burden differs for different sectors of the colon (Lee-Six et al., 2019). The IBD cohort is enrichedwith samples from the

left side, as this is the area predominantly affected in UC patients. We included a fixed effect for location within the colon to

account for this.

3. Observations are non-independent. We included in the models random effects for patient and for biopsy, with the random ef-

fect for biopsy nested within that for the patient.

4. Most embryonic mutations will be filtered as germline so at birth themutation count is near zero. We therefore did not include a

random intercept in the models but constrained the intercept to zero. The biological interpretation of this is that there are no

somatic mutations present at birth.

5. The between-patient variance is likely greater in the IBD cohort as patients vary in the duration, extent and severity of their dis-

ease. Thewithin-patient variance is also likely greater in the IBD cohort as biopsies taken from different sites of the colon vary in

their disease exposure, number and duration of flares etc. To model this, we constructed a general positive-definite variance-

covariance matrix for the random effects of patient and biopsy by cohort.

6. Any difference in the clonality of the colon between IBD patients and controls will affect the relative sensitivity to detect somatic

mutations. To account for this, we adjusted the branch lengths of the phylogenetic trees and used the adjusted mutation

counts as the response variable in the models. The adjustment was carried out as follows. Mutations with low variant allele

frequencies (VAFs) will be missed at low coverage. Therefore, for each crypt, we first fitted a truncated binomial distribution

to the VAF distribution of the crypt to estimate the true underlying median VAF (this is different from 0.5 because recent mu-

tations may not yet have been fixed in the stem cell niche, and because of contamination of lymphocytes and other cells from

the lamina propria, which do not carry the same somatic mutations as the epithelial cells). We next simulated 100,000mutation

call attempts by drawing the coverage of each call from a Poisson distribution, with the lambda set as the median coverage of

the sample, and multiplying that with the median VAF estimate from the truncated binomial. The resulting value represents the

number of reads that carry themutated allele. We calculated sensitivity for the sample, Ss, as the fraction of draws that resulted

in four or more mutant reads, which is the number required by CaVEMan to call a mutation. The sensitivity of a branch with n

daughter crypts, Sb, was then calculated as:

Sb = 1� ð1�Ss1Þ � ::: � ð1�SsiÞ � ::: � ð1�SsnÞ:
The adjusted mutation count is thus the observed mutation coun
t divided by the sensitivity of the branch. In this way, the mutation

count of clones formed of stand-alone crypts is augmented more than that of branches with multiple daughter crypts. Even after

these steps, a small but significant effect of coverage remained and a fixed effect for coverage was included in the models.

We compared models thus fitted with ones which additionally included disease duration as a fixed effect using a likelihood ratio

test. The disease durations for never inflamed regions of the colons of IBD patients were set to zero.

As comparatively few structural variants are found in the dataset, we used Poisson regression within a generalized linear mixed

effects framework to test for differences in structural variant number between cases and controls. We included the same random

and fixed effects described above for base substitutions and indels and compared models with and without disease duration using

a likelihood ratio test. The above statistical tests are two-sided as are all statistical tests performed in this manuscript. Full details and

outputs of all statistical models used in this work are available in an R-markdown file accompanying the submission.

Mutational signature extraction and analyses
Define amutational signature as a discrete probability distribution over a set of categorical mutation classes (for example, 96 classes

for single base substitutions - according to the identity of the pyrimidine-mutated base pair, and the base 50 and 30 to it, see Alex-

androv et al. (2013), 2020). We extracted mutational signatures using a hierarchical Dirichlet process (Roberts, 2018) (HDP, see

the hdp R package https://github.com/nicolaroberts/hdp). This has the advantage of allowing simultaneous fitting to existing signa-

tures and discovery of new signatures. We pooled the control and the IBD data and extracted signatures from both datasets as pre-

viously described for indels and single base substitutions separately (Lee-Six et al., 2019). We mapped mutations to branches of a

phylogenetic tree and treated each branch with more than 50 mutations as a sample. We used signatures reported in colorectal can-

cer as priors and also included as priors signature 32, which is attributed to azathioprine therapy (Alexandrov et al., 2020), and signa-

ture 35, attributed to platinum-based chemotherapy, as there are patients in our cohort with history of using these drugs. Using the

PCAWG terminology (Alexandrov et al., 2020), the priors used were SBS1, SBS2, SBS3, SBS5, SBS13, SBS16, SBS17a, SBS17b,

SBS18, SBS25, SBS28, SBS30, SBS32, SBS35,SBS37, SBS40, SBS41, SBS43, SBS45 and SBS49 for substitutions and ID1, ID2,

ID3, ID4, ID5, ID6, ID7, ID8, ID10 and ID14 for indels.

We used expectation maximization to deconvolute the HDP components into known PCAWG signatures. The cosine similarity be-

tween the HDP component corresponding to SBS1was < 0.95 andwe used expectationmaximization to break the component down

into PCAWG signatures.We then reconstituted the components using only those PCAWG signatures that accounted for > 10%of the

mutations (this was done so as to avoid overfitting). This helped resolve the correlation between SBS1, SBS5 and SBS18.Wemerged
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components corresponding to SBS5 and SBS40 under the name of SBS5, as both are flat and difficult to distinguish. No other com-

ponents had cosine similarity < 0.95 with their corresponding signatures and other PCAWG signatures accounting for > 10% of the

mutations.

Selection analyses
To search for mutations under positive selection, we used the dNdScv method (Martincorena et al., 2017). We included never in-

flamed samples from the IBD cohort in the analysis as some uncertainty existed regarding the annotation of a handful of never-in-

flamed biopsies and we estimated that our analysis would suffer more from potential exclusion of drivers than from inclusion of

more neutral mutations. We used the Benjamini-Hochberg method to correct for multiple testing.

To look for enrichment of mutations in pathways we defined 15 gene-sets (Table S6) as follows. We included all genes found to be

under selection in colorectal cancer (Priestley et al., 2019) and a list of genes significant in a pan-cancer analysis of solid tumors

(Priestley et al., 2019). We also chose a set of cellular pathways known to be important in IBD pathogenesis and epithelial homeo-

stasis. The Reactome database was used to define the pathways (Fabregat et al., 2018), see Table S6 for accession dates and Re-

actome IDs of pathways. We chose the cytokine pathways TNF-Signaling, TNFR2, IL6, TGFb and IL17 for testing. We also defined a

combined list of cytokines which included all of the above as well as IFNg, IL10, IL20, IL23, IL28, and IL36. We also decided to test

other pathways shown by us and others through genome-wide association studies to be important in IBDpathogenesis (Jostins et al.,

2012; de Lange et al., 2017). These were Toll-like receptor cascades, NOD-signaling, autophagy, unfolded protein response and

epithelial cell-cell junctions. We included the PIP3/AKT signaling pathways as it is downstream of many of the pathways defined

above and we had discovered two large scale deletions affecting genes in this pathway before performing the analysis. Finally,

we defined a list of genes known to cause early-onset, monogenic forms of IBD. Many of the genes defined in the literature affect

myeloid cell development and cause severe immunodeficiencies (Uhlig, 2013; Uhlig et al., 2014). We restricted our analysis to the

union of monogenic-IBD genes which either are specifically thought to affect epithelial cells or were members of any of the pathways

above.

We extracted global dN/dS values formissense and truncating variants for each of the 15 pathways/gene sets (Figure 6C; Table S6)

separately and used the Benjamini-Hochberg method to correct for a total of 30 tests.
Cell 182, 672–684.e1–e5, August 6, 2020 e5



Supplemental Figures

Figure S1. Clonality, Coverage, and Sensitivity of Crypts and Mutations Calls, Related to Figure 1

(A) The median variant allele fraction (VAF) of mutations called in each crypt.

(B) The median coverage of sequenced crypts.

(C) Internal analysis of CaveMan sensitivity. The dashed lines show interpolation of the sensitivity given the median coverage of cases (18.2X - 97% sensitivity)

and controls (16.3X - 95% sensitivity). The yellow dots represent biological duplicates where sensitivity was estimated by dissecting and sequencing the same

crypts twice (STAR Methods).

(D) VAFs of variants called in crypts that were sequenced twice (referred to as sample 1). Each dot represents a variant. The VAFs are compared against variants

called in unrelated crypts (top) and in biological duplicates (bottom). The high concordance between biological duplicates but not between unrelated samples

suggests high specificity.
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Figure S2. Features of Mutational Signatures Extracted, Related to Figure 2

(A) Cosine-similarities between mutational signatures extracted by hdp compared with published PCAWG signatures.

(B) Correlations between identified signatures.
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(legend on next page)
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Figure S3. Phylogenetic Trees for All Crohn’s Disease Patients, Related to Figures 2, 4, and 6

Mutational signatures are overlaid on the trees and putative driver mutations are mapped to the branch in which they occur. Crypts are labeled on the form

PXBY_Z where PX is the patient number, BY the biopsy number (with a,b and c denoting biopsies taken a few millimeters apart from the same site) and Z is the

crypt number. The crypts labeled in red are from never-inflamed regions of the colon.
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Figure S4. Phylogenetic Trees for All Ulcerative Colitis Patients, Related to Figures 2, 4, and 6
Mutational signatures are overlaid on the trees and putative driver mutations are mapped to the branch in which they occur. Crypts are labeled on the form

PXBY_Z where PX is the patient number, BY the biopsy number (with a,b and c denoting biopsies taken a few millimeters apart from the same site) and Z is the

crypt number. The crypts labeled in red are from never-inflamed regions of the colon.
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Figure S5. Driver Mutations and Positive Selection, Related to Figure 6

(A) Burden of the purine-signature, SBS32, as a function of the duration of purine treatment.

(B) Burden of the purine-signature in patients where at least one crypt has over 150 mutations attributed to purine treatment. Large within-patient variation is

apparent.

(C) A lollipop plot showing the location of mutations found in genes that are enriched for non-synonymous coding mutations in the IBD dataset.

(D) Pathway-level dN/dS ratios for mutations in known cancer genes and cellular pathways important in IBD pathogenesis. The plot shows dN/dS for truncating

mutations. Same as Figure 6C but also showing the ratios for controls and ratios obtained when analysis is restricted to Crohn’s disease or ulcerative colitis

crypts. Error bars represent 95% confidence intervals.

(E) same as (D) but showing dN/dS ratios for missense mutations.
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