
doi: 10.1111/j.1469-1809.2010.00571.x

Evaluating differences in linkage disequilibrium
between populations

Birgir Hrafnkelsson1,2∗, Agnar Helgason1, Gudbjorn F. Jonsson1, Daniel F. Gudbjartsson1,
Thorlakur Jonsson1, Sverrir Thorvaldsson1, Hreinn Stefansson1, Valgerdur Steinthorsdottir1,
Nanna Vidarsdottir1, Derek Middleton3, Henning S. Petersen4, Conrado Martinez5,6, Jon Snaedal1,
Palmi V. Jonsson1, Sigurbjorn Bjornsson1, Jeffrey R. Gulcher1 and Kari Stefansson1

1deCODE genetics, Sturlugata 8, 101 Reykjavik, Iceland
2Division of Applied Mathematics, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland
3Northern Ireland Histocompatibility and Immunogenetics Laboratory City Hospital, Belfast BT9 7TS, UK
4Primary Health Care Clinic, 3900 Nuuk, Greenland
5Castellon Province Hospital Foundation, Ave. Doctor Clara 19, 12002 Castellon, Spain
6Institute of Biological Anthropology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

Summary

We propose two methods to evaluate the statistical significance of differences in linkage disequilibrium (LD) between
populations, where LD is measured by the standardised parameter D′. The first method is based on bootstrapping
individuals within populations in order to test LD differences for each pair of loci. Using this approach we propose a
solution to the problem of testing multiple locus-pairs by means of a single test for the number of pairs that exhibit
significant LD differences among populations. The second method provides the Bayesian posterior probability that one
population has greater LD than the other for each locus pair. Both methods can handle genotypes with unknown phase,
and are demonstrated using two data sets. For the purpose of demonstration, we apply the methods to two different sets
of data from humans. First, we explore the issue of LD differences between reproductively isolated populations using a
new data set of twelve Xq25 microsatellites, typed in four European populations. Second, we examine evidence for LD
differences between Alzheimer cases and controls from the Icelandic population using 19 single nucleotide polymorphisms
(SNPs) from a 97 kb region flanking the Apolipoprotein E (APOE) gene on chromosome 19.

Keywords: Alzheimer, Apolipoprotein E gene, Bayesian inference, bootstrap based inference, the D′ parameter as a
measure of linkage disequilibrium

Introduction

Following the publication of the human genome sequence
and the rapid growth in genotyping capacity, research in hu-
man genetics is increasingly focused on the issue of linkage
disequilibrium (LD) - in particular, how the correlation be-
tween alleles at different loci in a population can be exploited
to pinpoint genetic variants underlying the risk of disease
phenotypes. Theory suggests that the extent of LD at a given
region in the genome will vary among human populations
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dependent on the relative influence of demographic factors
such as genetic drift, natural selection and admixture (Slatkin,
1994; Terwilliger et al., 1998; Ardlie et al., 2002; Nordborg
& Tavare, 2002; Wall & Pritchard, 2003). Considerable at-
tention has been given to the question of whether small,
isolated populations (so-called genetic isolates) have higher
background levels of LD than large outbred and heteroge-
neous populations (Wright et al., 1999; Shifman & Darvasi,
2001; Heutink & Oostra, 2002).

A number of studies have examined small segments of the
genome with the aim of assessing LD differences between
populations with varying demographic histories. While some
studies have been interpreted as indicating greater LD in
small isolated populations (Laan & Pääbo, 1997; Shifman &
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Darvasi, 2001; Kaessmann et al., 2002; Katoh et al., 2002;
Latini et al., 2004; Laan et al., 2005; Sawyer et al., 2005),
others indicate that no such differences exist (Dunning et al.,
2000; Eaves et al., 2000; Taillon-Miller et al., 2000). Although
this disagreement may partly be explained by the populations,
genomic regions and types of loci used in these studies, it is
also attributable to the lack of a satisfactory statistical method
for comparing levels of LD in different populations. Con-
clusions in most previous studies were based on informal
comparisons of D′ or r 2 values between populations or of
P-values obtained from the application of the Markov Chain
Monte Carlo (MCMC) adaptation of the Fisher-Exact test
(Guo & Thompson, 1992). More conclusive answers to ques-
tions about LD differences between populations and the level
of background LD in genetic isolates requires more formal
statistical methods that take into account the sampling distri-
bution of the statistics used to measure LD.

Important contributions to the development of such sta-
tistical tests have been made by Ayres & Balding (2001) in a
Bayesian framework and Zapata et al. (2001) in a frequentist
framework. In this paper, we build on these contributions
to develop two statistical procedures for making LD compar-
isons, both of which can handle genotype data with unknown
phase for loci with any number of alleles.

The first procedure is based on bootstrapping individu-
als within each population to obtain a P-value for the null
hypothesis that the difference between the D′ values of two
populations for a given locus pair, �D′, is zero, versus the
alternative hypothesis that �D′ > 0. To obtain a single P-
value for the comparison of D′ values across multiple locus
pairs, and thereby sidestep the problem of multiple testing,
we propose a single test that uses the joint null distribution of
�D′ values for multiple pairs to provide the tail probability
for the number with significantly different D′ values. The ra-
tionale behind this procedure is similar to that of Zaykin et al.
(2006), who proposed a single statistical test that simultane-
ously tests differences in standardised composite coefficients
(Hamilton & Cole, 2004; Zaykin, 2004). Wang et al. (2007)
propose a LD contrast test based on a regression type model
that takes into account background LD. However, while the
approaches of Zaykin et al. (2006) and Wang et al. (2007) are
only designed to handle SNPs, ours can handle both SNPs
and microsatellites.

The second procedure expands on the Bayesian approach
proposed by Ayres & Balding (2001), where posterior dis-
tributions for D′ are generated for each locus pair using an
MCMC algorithm. These distributions are then compared
for each pair of populations to yield posterior probabilities
corresponding to one population having a higher value of D′

than another population for each locus pair.
We demonstrate these two LD comparison procedures us-

ing two previously unpublished data sets. The first consists

of twelve X-chromosome microsatellite loci, typed in males
from four European populations. The second data set contains
genotypes, with unknown phase, from a set of Alzheimer pa-
tients and controls from Iceland, typed for 19 SNPs from a
97 kb region on chromosome 19 containing the Apolipopro-
tein E (APOE) gene. Numerous studies have demonstrated a
strong association between Alzheimer disease and variation in
this gene (Strittmatter et al., 1993; Martin et al., 2000), and
the Icelandic data are no exception. We explore the evidence
that the different configuration of haplotypes in patients and
controls results in significantly different patterns of LD.

Materials and Methods

The D′ Parameter of Gametic Disequilibrium

The D′ parameter, initially proposed by Lewontin (1964), was
defined by Hedrick (1987) for two multiallelic loci as follows.
Let Ak be the k-th allele of the first locus, k = 1, . . . ,K , and let
Bl be the l-th allele of the second locus, l = 1, . . . ,L. Denote
the frequency of gamete Ak Bl by pkl, the frequency of allele
Ak by pk.(pk. = ∑L

l=1 pkl ) and the frequency of allele Bl by
p .l (p .l = ∑K

k=1 pkl ). Let π = (pkl)k,l denote the vector contain-
ing the gamete frequencies. A standardised measure for gametic
disequilibrium between alleles Ak and Bl can be defined as D′

kl =
Dkl/Dmax, where Dkl = pkl − pk. p .l, and Dmax = min{pk. p .l,
(1 − pk.)(1 − p .l)} when Dkl < 0 or Dmax = min{pk.(1 −
p .l), (1 − pk.)p .l} when Dkl > 0. If pkl = 0 and/or (1 − pk. −
p .l + pkl) = 0 then D′

kl = −1 and if (pk. − pkl) = 0 and/or
(p .l − pkl) = 0 then D′

kl = 1. A weighted measure for the dise-
quilibrium between all the alleles at the two loci can be defined
as

D′ =
K∑

k=1

L∑
l=1

pk. p .l |D′
kl |. (1)

The D′ parameter thus defined has a minimum of 0 and max-
imum equal to or very close to 1, the latter depending on al-
lele frequencies and the number of alleles, see Zapata (2000).
Robinson et al. (1991) showed that higher-order systems impose
additional constraints on bounds of Dkl and thus on D′.

A Test for Differences in D′ Based on
the Bootstrap

The test procedure introduced here is based on the bootstrap
approach which involves randomly sampling individuals with
replacement within populations (Efron & Tibshirani, 1993). The
aim is to test the null hypothesis of no difference in D′ between
the two populations (�D′ = 0), against the alternative hypothesis
that �D′ > 0.

The D′ parameter is estimated by plugging the maximum
likelihood estimator (MLE) for π into the definition of D′ as
given in (1) when the phase of alleles is known (e.g., Zapata et al.,
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2001). When phase is unknown the expectation-maximization
(EM) algorithm is used to first estimate haplotype frequencies
for each locus pair (Excoffier & Slatkin, 1995). The test is not
designed to handle missing data but could be extended to do
so. Although other phase algorithms could be used, such as the
PHASE algorithm (Stephens et al., 2001), the EM algorithm has
the advantage of being both simple and quick in the case of two
loci.

We define �D̂′
obs as the difference between the observed D′

values of two populations for a given locus pair computed using
the MLE, such that,

�D̂′
obs = D̂′

2,obs − D̂′
1,obs,

with the subscripts 1 and 2 denoting the two populations. For
each locus pair, we compute point estimates of �D′ = D′

2 − D′
1,

for each of the B bootstrapped data sets within each population.
Note that in this bootstrap algorithm it is the individuals (along
with their genotypes at all the loci being examined) that are
resampled. Further, for each bootstrapped data set �D̂′ is com-
puted for all pairs of loci to capture the correlation between the
�D̂′ estimators for all pairs. The point estimates of D′

1, D′
2 and

�D′ for the b-th bootstrapped data set are denoted by D̂′
1b , D̂′

2b

and �D̂′
b , respectively, where �D̂′

b = D̂′
2b − D̂′

1b , b = 1, . . . , B.
One problem that arises in this approach is that the distribution of
�D̂′

b values is not centred around zero in the accordance with the
sampling distribution of �D̂′ under the null hypothesis, where
�D′ = 0, albeit their variances are similar. A standard solution
in the bootstrap literature (Efron & Tibshirani, 1993) is to make
the �D̂′

b values mean zero by subtracting their mean which is

denoted by �D̂′, and compare these values to the bias corrected
�D̂′

obs given by

�D̂′
obs,unb = �D̂′

obs − b̂ias�D

where

b̂ias�D = �D̂′ − �D̂′
obs.

A P-value is approximated by finding the proportion of val-

ues such that �D̂′
b − �D̂′ > �D̂′

obs,unb which is the same as

finding the proportion of values such that �D̂′
b − �D̂′

obs >

�D̂′
obs. However, since �D̂′

b is in the interval [−1, 1], this
subtraction causes trouble when �D̂′

obs > 0.5, in which case
�D̂′

b − �D̂′
obs > �D̂′

obs is never true. We overcome this prob-
lem by using twice the Fisher transformation (Fisher, 1915)

h (�D′) = log(1 + �D′) − log(1 − �D′),

and subtracting h (�D̂′
obs) from the h (�D̂′

b ) values. In this
scheme the proportion of values such that h (�D̂′

b ) − h (�D̂′
obs) >

h (�D̂′
obs) provides the P-value. This P-value can be presented in

a computional formula as

P̂−value = 1
B

B∑
b=1

I
{
h (�D̂′

b ) > 2h (�D̂′
obs)

}

where I is an indicator function such that I (A) = 1 if A is true
and I (A) = 0 otherwise, and in the case of �D′ = ±1 then set
h (�D′) = ±106.

The proposed bootstrap test evaluates the statistical significance
of LD differences between two groups for a single locus pair.
Thus, when multiple locus pair are tested, it is necessary to
correct for the number of locus pairs. As most standard correction
methods, such as Bonferroni, tend to be overly conservative, we
propose a single test for all locus pairs that is performed as follows:

1. Let M(α) be the number of locus pairs with a bootstrap P-
value less than α and denote its observed value by Mobs(α),
where α is a common threshold of significance for all the
tests.

2. For each locus pair find the 100(1 − α)% percentile of the
�D̂′

b values and then count the number of locus pairs in each
bootstrap data set that exceed their 100(1 − α)% percentile.
The distribution of these counts approximates the null dis-
tribution of M(α), denoted by M0(α).

3. An overall P-value corresponding to the test for the alter-
native hypothesis that the two populations have significantly
different D′ values for at least one locus pair is given by
P (M0(α) ≥ Mobs(α)).

The above test takes into account the correlation between the
estimators of D′ at all the pairs of loci.

A Bayesian Test for Differences in D′

The Bayesian approach for D′ developed by Ayres & Balding
(2001) yields a posterior distribution of D′, given a model for
the data and a prior distribution for the haplotype frequencies.
As demonstrated by Ayres & Balding (2001), the posterior dis-
tribution of D′ provides the basis for statistical evaluations of LD
differences between populations. We have adopted this approach
with some modification to the MCMC algorithm, which in our
version uses a Gibbs sampler without a Metropolis–Hastings step,
obviating the need to tune proposal densities and making the gen-
eration of posterior samples of haplotype frequencies automatic.
Moreover, we propose a different prior that yields results that are
less sensitive to the number of alleles per locus than that pro-
posed by Ayres & Balding (2001). Here we describe the Bayesian
estimation procedure when phase of alleles is known and haplo-
types with missing alleles are ignored. Additional procedures to
deal with unknown phase and missing data are presented in the
Appendix.

Let Ckl,v be the count of haplotypes for gamete Ak Bl in pop-
ulation v, v = 1, 2. Let Cv = (Ckl,v)k,l be a (K × L) vector of
these counts for population v (as before, K and L are the numbers
of distinct alleles at the first locus and second locus, respectively,
and the corresponding gamete frequencies are πv = (pkl,v)k,l).
The total count of haplotypes in Cv is denoted by m v . Assume a
priori that

πv ∼ DirK L(β), v = 1, 2
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where DirJ (β ′) denotes a Dirichlet distribution on a ( J − 1)
dimensional simplex with parameter vector β ′ (e.g., Johnson
& Kotz, 1972). The model could be extended to have a prior
distribution on β and then have the joint posterior distribution
of β and πv evaluated, but here it will be assumed that the vector
β is determined beforehand. The selection of β is discussed in
the section Evaluation of prior distributions for gamete frequencies. A
statistical model that describes the data Cv is as follows

Cv|πv ∼ MultK L(m v, πv)

where MultJ (n, s ) denotes a J dimensional multinomial distribu-
tion with n trials and a probability vector s. So, the data, Cv , given
the haplotype frequencies, πv , follow a multinomial distribution
while the prior distribution of πv is a Dirichlet distribution. The
resulting posterior distribution of πv given Cv is the following
Dirichlet distribution

πv|Cv ∼ DirK L(Cv + β),

thus, the posterior mean of πv is given by

E(πv|Cv) = Cv + β

m v + ∑K L
j=1 β j

.

The posterior distribution of D′
v is then found by drawing

samples from the posterior distribution of πv and computing D′
v

with (1) for each of the sampled πv
′s, v = 1, 2. The posterior

probability that Population 2 has a greater D′ value than Popu-
lation 1 is given by P (D′

2 > D′
1|C1, C2) and can be computed

using samples from the posterior distributions of D′
1 and D′

2.
This estimated value of P (D′

2 > D′
1|C1, C2) is then used to

evaluate the hypothesis D′
2 > D′

1, which might for example be
accepted if P (D′

2 > D′
1|C1, C2) > 0.95.

Different Assumptions Underlying the two LD
Comparison Procedures

Although both the bootstrap procedure and the Bayesian proce-
dure described above are designed to tackle the same problem,
the interpretation of the bootstrap P-values and the Bayesian
posterior probability values is conceptually different. The boot-
strap P-values state how likely the observed D′ differences are to
occur relative to their sampling distribution, when it is assumed
that there is no difference in D′ between the populations. In this
test no assumptions are made about the sampling distribution of
D′. In contrast, the Bayesian approach describes the uncertainty
of the statement that one population has a greater D′ value than
another population based on a multinomial model, the Dirichlet
prior and the observed haplotype frequencies within each popu-
lation. This uncertainty is quantified with a probability measure
that does not reflect sampling frequencies, but can be described as
a subjective prior probability measure that is updated after seeing
the data.

Two Sets of Genotype Data

Two data sets are used to illustrate the proposed LD comparison
procedures. The first data set consists of twelve dinucleotide
repeat microsatellite loci, see Table S1 in supporting information,
spanning 1.5 Mb of X-chromosome region Xq25, and typed in
males from four European populations: 114 Greenlanders, 141
Icelanders, 113 Northern Irish and 136 Spanish. In these data
the phase of alleles is known because males are haploid for these
loci.

The second data set consists of 19 SNPs spanning just over
97kb from the 19q13.2 region on chromosome 19, which in-
cludes the Apolipoprotein E (APOE) gene, see Table S2 in sup-
porting information. The SNPs were typed in 163 Icelandic
Alzheimer patients and 150 controls, none of whom were related
within four meioses. All but two of the SNPs were typed with
individual assays, providing diploid genotypes with unknown
phase. Two of the SNPs (rs429358 and rs7412) are only 138
bases apart and were typed with an assay that provided informa-
tion about their phase. In combination these two SNPs define
the three widely known APOE allele or haplotype states (ε2,
ε3 and ε4) that underlie the metabolically distinct isoforms of
Apolipoprotein E (Fullerton et al., 2000). Due to the different
genotyping method and because these two SNPs yielded only
three of the four possible haplotypes (i.e., ε2, ε3 and ε4), they
were combined into a single composite locus with 3 alleles (here-
after referred to as APOE) for the purposes of this analysis. The
final data set therefore consisted of 18 loci, yielding a total of 153
locus pairs.

Information about the assays used for the previously described
microsatellites and the SNPs can be obtained on request from
the corresponding author.

Results

Evaluation of Prior Distributions
for Gamete Frequencies

The prior distribution of the haplotype frequencies, π , in
the Bayesian estimation method needs to be carefully chosen,
as it can have considerable effect on the posterior distribu-
tion of D′ and therefore conclusions about LD differences
between populations. In most cases, researchers will have no
prior empirical information about haplotype frequencies (for
a discussion of informative priors, see Lockwood et al., 2001).
One of the suggested priors for π by Ayres & Balding (2001)
is a Dirichlet prior such that the average of the elements
of the prior’s parameter vector, β, is equal to 1 (equivalent
to having one haplotype on average in each cell a priori).
If all the elements of β are equal to 1 then the Dirichlet
prior is a uniform distribution on the (K L − 1) dimensional
simplex. Here, this uniform prior will be referred to as the
Ayres & Balding prior. Another candidate is the Jeffreys (1961)
prior, which in the case of the multinomial distribution is a
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Dirichlet distribution with a uniform parameter vector where
all elements are equal to 0.5 (equivalent to having 0.5 haplo-
types in each cell a priori). Jeffreys prior is a non-informative
prior for haplotype frequencies, but does not necessarily re-
sult in a non-informative prior for the D′ parameter, which is
a transformation of the haplotype frequencies (see Bernardo
& Ramón 1998 on non-informative priors for transformed
parameters).

The two aforementioned priors have the disadvantage of
not taking into account the varying size of (KL), the max-
imum possible number of haplotypes, for pairs of loci with
more than two alleles. This is particularly important for mi-
crosatellites, which typically have numerous rare alleles, with
the result that many of the possible haplotypes for pairs of
microsatellites are not observed. In such cases, the priors de-
scribed above will tend to overestimate the frequencies of
rare or non-existent haplotypes. To address this problem, we
propose a vague, but proper prior that reflects the maximum
possible number of haplotypes for each locus pair, based on
a Dirichlet distribution with a parameter vector β such that
β = (KL)−1ϒ , where ϒ is a vector of ones. In this scheme,
the impact of the prior on the frequency of each haplotype
is proportional to the number of possible haplotypes at the
locus pair. This will be referred to as the (K L)−1 prior.

We also consider the improper prior β = 0 × ϒ , i.e., each
element of β is equal to zero, referred to as the zero prior.
One feature of this prior is that in the case of SNPs where
one of the haplotypes is not observed then D′ = 1 with a
posterior probability equal to one. In general, if one or more
haplotypes are not observed then the frequency, pkl, of each
of these unobserved haplotypes will be zero with a posterior
probability equal to one. However, it is still possible to sample
from the posterior distribution of the pkl’s of the observed
haplotypes and compute D′.

In the scheme described in the subsection A Bayesian test for
differences in D′ the marginal prior and posterior distributions
for the proportion of the j-th gamete frequency, π j, become
beta distributions with parameters (η1, η2) = (β j ,

∑
k �= j βk)

and (η3, η4) = (β j + Cj ,
∑

k �= j (βk + Ck)), respectively, based
on properties of the Dirichlet distribution. In case of β = 0 ×
ϒ then (η1, η2) = (0, 0) (an improper prior), if β = (K L)−1 ×
ϒ then (η1, η2) = ((K L)−1, (K L − 1)/(K L)), Jeffreys prior
with β = 0.5 × ϒ gives (η1, η2) = (0.5, 0.5(K L − 1)) and the
Ayres & Balding prior, β = ϒ , results in (η1, η2) = (1, K L −
1). Both the Jeffreys prior and the Ayres & Balding prior will
have a strong influence on the posterior distribution of π j if
m is small and KL is relatively large, e.g., the posterior means
are (1 + Cj)(m + K L)−1 and (0.5 + Cj)(m + 0.5K L)−1,
respectively, while the (K L)−1 prior yields the posterior mean
{(K L)−1 + Cj} (m + 1)−1.

We evaluated the effect of the four different Dirichlet pri-
ors for the haplotype frequencies on the posterior mean of D′

through simulation. The priors have parameter vectors β =
0 × ϒ (our suggestion), β = (K L)−1ϒ (our suggestion),
β = 0.5ϒ (Jeffreys) and β = ϒ (Ayres & Balding). Samples
of sizes 20, 35, 50, 75, 100, 150, 200, 350, 500, 750, 1000,
1500, 2000, 3500, 5000, and 10000 were randomly drawn
(2000 times for each sample size) from predefined tables of
haplotype frequencies. The D′ parameter was estimated using
the four priors and the Bayesian posterior mean as a point
estimator. For comparison, the MLE of D′ was also calcu-
lated. A comparison of the sampling distributions of the four
Bayesian estimators, reveals the impact each prior has on the
estimation of D′. A comparison with the sampling distribu-
tion of the MLE provides reference to an estimator that does
not depend on a prior and is expected to have good large
sample properties.

The four haplotype frequency tables were as follows. First is
a 2 × 2 table with haplotype frequencies p11 = 0.005, p12 =
0.33, p21 = 0.33, p22 = 0.335, and a D′ value of 0.955,
designed to represent the scenario of strong LD between a
pair of SNPs. The other three tables were based on a single
8 × 8 table corresponding to a pair of microsatellite loci based
on real data from two adjacent X-chromosome microsatellites
typed in 4096 Icelandic males, see Table S3 in supporting
information. This table is arbitrarily chosen, but is useful to
demonstrate the effect of the four priors on D′ calculations
for large tables where some of the possible haplotypes are not
sampled. We first examine this 8 × 8 table (D′ = 0.302), then
a 4 × 4 table (D′ = 0.542) obtained by further combining
pairs of consecutive alleles for both loci according to the
allele order of the 8 × 8 table, and finally a 2 × 2 table (D′ =
0.567) obtained by further combining pairs of consecutive
alleles from the 4 × 4 table.

Figure 1 shows the variance of the five D′ estimators for
the four tables and the different sample sizes, and demonstrates
that as the size (K L) of the table increases, so does the impact
of the Jeffreys and Ayres & Balding priors on the variance of
the posterior mean estimator. In contrast, under our (K L)−1

prior, the posterior mean estimator has variance closer to that
of the MLE and is less affected by (K L). In other words,
the (K L)−1 prior is less informative about D′ and thus more
suitable for general inference about D′ than the other two
priors. The zero prior has variance even closer to that of the
MLE and is hardly affected by (K L). Thus, the improper
prior has good properties for estimating D′.

In case of these four tables, the MLE and the four posterior
mean estimators for D′ are biased. The bias depends on the
value of the D′ parameter and the sample size, see Figure 1.
The (K L)−1 prior tends to bias the posterior mean estimator
a little downwards when D′ > 0.6 while the zero prior gives
results that are almost unbiased when D′ > 0.6. Both the
(K L)−1 prior and the zero prior result in a positive bias as D′

decreases below 0.6, particularly for small sample sizes. The
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Figure 1 Comparsion of the variance and the expected value of the MLE (dotted
dashed line) and the posterior mean estimators when Dirichlet priors with parameter
vectors β = 0 × ϒ (dotted line with pluses), β = (K L)−1ϒ (solid line), β = 0.5ϒ

(dotted line) and β = ϒ (dashed line) are used, for the 2 × 2 table with D′ = 0.955
(A variance, E expected value), the 2 × 2 table based on the 8 × 8 table, D′ = 0.567
(B variance, F expected value), the 4 × 4 table based on the 8 × 8 table, D′ = 0.542
(C variance, G expected value), and the 8 × 8 table, D′ = 0.302 (D variance, H
expected value). A log-log scale is used to obtain a straight line relationship between the
variance of the D′ estimators and the sample size.
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MLE estimator behaves similarly to these two estimators. In
contrast, the Jeffreys prior and Ayres & Balding prior tend to
bias downwards when D′ > 0.4, particularly for small sample
sizes, and bias slightly upwards when D′ < 0.4. In all cases
the bias is relatively small for sample sizes greater than 1500.
Although these results may not be general for all tables of
haplotype counts, they do indicate a considerable bias in D′

estimation for sample sizes smaller than 1500.
The bias in the estimation of D′ is caused by a complex

interaction of several different factors. When the Dirichlet
prior is of the form β = κϒ (which is the case here with κ =
0, (K L)−1, 0.5, 1) it follows that the larger the value of κ and
the greater the number of alleles at the two loci, the more
concentrated the prior density of D′ becomes around a value
which is less than 0.5 and depends on the number of alleles
at the two loci and κ , see Ayres & Balding (2001). On the
other hand there is an inherited positive bias in the MLE for
D′ which increases as D′ becomes smaller and decreases as the
sample size becomes larger. Note that the posterior density
for D′ is proportional to the product of the likelihood and the
prior density. So, the likelihood part of the posterior density
for D′ has a maximum that is usually above the true value and
the prior part has a maximum that is between zero and 0.5.
How much the posterior density is shaped by these two parts
depends on the sample size, such that the larger the sample
size, the greater the influence of the likelihood part.

The Effect of Unequal Sample Size on the
Bootstrap Test and the Bayesian Test

In order to evaluate the impact of the bias in D′ estimation
on our proposed bootstrap and Bayesian LD comparison tests,
we explored the nature of this bias for situations where the
null hypothesis D′

1 = D′
2 was true for a range of different

sample sizes and values of D′. The probability of incorrectly
accepting the hypothesis that D′

2 > D′
1 for the bootstrap test

and the Bayesian test was evaluated with a simulation study
(see Tables S4 and S5 respectively in supporting information).
Within each of the seven cases that were simulated, the un-
derlying haplotype frequencies and thus the D′ values, were
the same. The sample sizes in the two populations were 50,
100, 400, 1000, 1500 and 2000, and equal and unequal sample
sizes were used. Four of the haplotype frequency tables used in
this analysis are the same as in the simulation study described
in the subsection Evaluation of prior distributions for gamete fre-
quencies. In addition, three new tables were generated, using
the marginal allele frequencies from the previously described
8 × 8, 4 × 4 and 2 × 2 tables, but assuming independence
between loci and hence D′ = 0.

Our findings indicate that the D′ estimation bias does not
produce an excess of false-positive results in our LD compar-

ison tests when sample sizes from the groups being compared
are equal or when samples sizes are unequal but both are
greater than 1500. In the special case D′

1 = D′
2 = 0, this is

not true in general regardless of sample sizes and whether the
sample sizes are equal or not. Problems emerge in all cases
where sample sizes are unequal and smaller than 1500. Thus,
in the case of the Bayesian test, as D′ approaches zero, there is
a tendency to return an excess of false-positive results, indi-
cating greater D′ for the population with the smaller sample
size. The effect of this bias increases as the number of alle-
les per locus increases, but is negligible in the case of loci
with only two alleles (such as SNPs). As D′ approaches one
under the Bayesian test, the bias tends to be negative, with
the Bayesian test having a tendency to return an excess of
false-positive results indicating greater D′ for the population
with the larger sample size. In the case of the bootstrap test,
when sample sizes are unequal and smaller than 1500, there is
a tendency for false-positive results, indicating greater D′ for
the population with the smaller sample size, but this tendency
seems to be to a less extent than the Bayesian test. We note
that the bootstrap test is conservative in case of SNPs with D′

close to one.
Overall, both the Bayesian and bootstrap tests are very sen-

sitive to unequal sample sizes when D′ approaches zero in
both populations and as the number of alleles per locus in-
creases. This is due to the difficulty of estimating D′ when
its true value is close to zero, in which case the bias of the
estimator for D′ is positive and directly related to the variance
of the D′ estimator.

The Power of the Bootstrap Test

The power to correctly determine difference in D′ between
two populations was evaluated for 2 × 2 tables under three
different scenarios for equal sample sizes of 25, 50, 100, 400
and 1000. The first involves Population 1 with frequencies
p11 = p12 = p21 = p22 = 0.25 resulting in D′

1 = 0 while
the frequencies for Population 2 are p11 = p22 = 0.25 − q ,
p12 = p21 = 0.25 + q , resulting in D′

2 = 4q , q ∈ (0, 0.25].
The power of the test was computed for values of q in (0,
0.25] (Fig. 2, panel A). In the second scenario Population 1
has frequencies p11 = p22 = 0.125, p12 = p21 = 0.375, and
D′

1 = 0.5, and Population 2 has frequencies p11 = p22 =
0.125 − q , p12 = p21 = 0.375 + q , and D′

2 = 0.5 + 4q ,
q ∈ (0, 0.125]. The power was computed for values of q in
(0, 0.125], (Fig. 2, panel B). The last scenario is such that
Population 2 has fixed frequencies p11 = p22 = 0.125, p12 =
p21 = 0.375, which yields D′

2 = 0.5 while Population 1 has
frequencies p11 = p22 = 0.125 + q , p12 = p21 = 0.375 − q ,
and D′

2 = 0.5 − 4q , q ∈ (0, 0.125]. The power was computed
for the same sample sizes as for the previous scenarios (Fig. 2,
panel C).
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Figure 2 Bootstrap power curve comparison for three cases
of 2 × 2 tables. �D′ takes values between zero (H0 true)
and a positive value such that either one of or both of D′

1

and D′
2 are at the end of the parameter space. The sample

sizes from the two populations are equal with n = 25
(dotted line with pluses), n = 50 (dashdot), n = 100
(dotted), n = 400 (dashed) and n = 1000 (solid).

As expected the power increases with sample size. From
Figure 2 it can be seen that large sample sizes are needed to
detect a D′ difference less than 0.15. To consistently detect
�D′ = 0.15 (power > 0.95) a sample size of 1000 is needed.
A sample size of 100 results in power around 0.5 when detect-
ing 0.25 difference in D′. Comparison of the second and the
third scenarios reveals that it is slightly harder to detect differ-
ences between smaller values of D′ than between larger values
of D′.

LD Differences for 12 Xq25 Microsatellites
in four European Populations

We applied the bootstrap and Bayesian LD comparison meth-
ods to the set of X chromosome microsatellites typed in
Greenlanders, Icelanders, Northern Irish and Spanish, to il-
lustrate the use of these methods for evaluating differences in
LD among reproductively isolated populations. Table 1 shows
the overall differences in LD between each pair of populations
in terms of bootstrap single-test P-values using a threshold of
α = 0.05. Our results clearly indicate that the Greenland
sample exhibits significantly larger D′ values across the Xq25
region than any of the other three populations while the dif-
ferences between the Icelanders, Northern Irish and Spanish
are not statistically significant although there is a suggestion
of greater LD in Icelanders when compared to Northern
Irish.

Table 1 Application of the bootstrap method to the data on the
European populations. Columns one and two specifiy which popu-
lation is referred to as Population 1 and Population 2 when testing
whether Population 2 and has greater D′ values than Population 1.
The third column contains the count of locus pairs out of a total of
66 that exceed the threshold α = 0.05 in the bootstrap tests for each
pair of populations while the fourth column gives the corresponding
overall P-value.

Pop. 1 Pop. 2 Counts P-value

Iceland Greenland 27 <10−4

N. Ireland Greenland 31 <10−4

Spain Greenland 32 <10−4

Greenland Iceland 6 0.1921
N. Ireland Iceland 9 0.0697
Spain Iceland 5 0.2616
Greenland N. Ireland 1 0.8316
Iceland N. Ireland 5 0.2697
Spain N. Ireland 3 0.5120
Greenland Spain 2 0.6382
Iceland Spain 2 0.6673
N. Ireland Spain 2 0.6719
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SNPs Flanking the APOE Gene in Alzheimer
Patients and Controls

Figure 3 shows the posterior mean of D′, i.e., the Bayesian
estimate of D′, for each of the 153 locus pairs in the APOE
data set for Alzheimer patients (upper left matrix) and controls
(lower right matrix), based on 10000 samples from the poste-
rior distribution of D′ for each locus pair using the Dirichlet
prior with β = (K L)−1ϒ . Here, both the Bayesian proce-
dure and the bootstrap are applied to the APOE data set
with the phase of alleles estimated beforehand using the EM
algorithm (Excoffier & Slatkin 1995) and assumed known

thereafter, and individuals with missing genotypes were omit-
ted. Most of the locus pairs fall within a 26kb fragment
containing the APOE gene. A visual inspection of Figure
3 reveals this fragment to contain three LD blocks in the
controls, which are connected to each other by somewhat
weaker LD. The Alzheimer patients exhibit a similar pat-
tern of LD, but appear to have stronger LD between the
first and third blocks, such that the whole 26kb fragment
seems more like a single LD block than in the case of the
controls. The final four SNPs, spanning about 30kb, re-
veal a fourth small LD block present in both controls and
patients.
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Figure 4 shows the results obtained from applying the two
LD comparison procedures to the APOE data set. The upper
left half of Figure 4 shows, for each locus pair, the Bayesian
posterior probability that the patients have greater values of
D′ than the controls, denoted by P Bayes(D′

pat > D′
ctrl), de-

rived from a comparison of the posterior distributions of
D′ for these two groups. A total of 19 out of the 153 lo-
cus pairs exhibited P Bayes(D′

pat > D′
ctrl) ≥ 0.95, thereof two

where this probability was ≥0.999. In contrast, only one locus
pair yielded P Bayes(D′

pat > D′
ctrl) ≤ 0.05, where the posterior

probability was 0.014. Among the locus pairs with the highest
posterior probability are a cluster of eight that describe the

relationship between the first and third LD blocks in the 26kb
region. Interestingly, the two locus pairs that show the most
significant excess of D′ in patients both include the composite
APOE locus that is thought to contribute to disease risk.

The lower right half of Figure 4 shows, for each locus
pair, one minus the P-value obtained from testing whether
patients have greater D′ values than controls with the boot-
strap procedure, hereafter denoted as P boot(D′

pat > D′
ctrl).

These P-values were obtained using 10000 bootstrap samples
of individuals within the groups. A total of 14 locus pairs
exhibited P boot(D′

pat > D′
ctrl) ≥ 0.95 (thereof one where

this probability was ≥0.999), whereas 17 locus pairs yielded
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P boot(D′
pat > D′

ctrl) ≤ 0.05 (thereof none with probability
≤0.001). Around half of the locus pairs identified as having
significantly greater D′ values in Alzheimer patients using the
Bayesian procedure are also identified as such by the bootstrap
procedure. Furthermore, the one locus pair identified by the
Bayesian procedure as having a greater D′ value in controls is
also identified as such by the bootstrap.

As the application of both the Bayesian and bootstrap LD
comparison procedures involve 153 individual tests of differ-
ences in D′, we would expect by chance on average 7.65 locus
pairs to exhibit P boot(D′

pat > D′
ctrl) ≥ 0.95. To account for the

problem of multiple testing we applied the single test for the
number of locus pairs where D′ is significantly greater (based
on the bootstrap) in Alzheimer patients than controls in this
data set. In the observed data there were Mobs,pat>ctrl(0.05) =
14 locus pairs with P boot(D′

pat > D′
ctrl) ≥ 0.95. The proba-

bility of obtaining M0,pat>ctrl(0.05) ≥ 14 is 0.1265. So, based
on the threshold α = 0.05 and an overall significance level
0.05 it cannot be concluded that LD for one or more locus
pairs in the APOE region is significantly greater in Alzheimer
patients than in the random controls. The probability of ob-
taining M0,pat>ctrl(0.001) ≥ 1 is 0.0831, which is greater than
an overall significance level of 0.05 and thus not strong enough
evidence to conclude that LD for one locus pair in the APOE
region is significantly greater in Alzheimer patients than in the
random controls when taking into account that multiple tests
are conducted. The converse test for the number of locus
pairs where D′ is significantly greater (based on the bootstrap)
in controls than Alzheimer patients yields a P-value of 0.0598
(i.e., the probability that M0,ctrl>pat(0.05) ≥ 17). Further, no
pair exceeds the threshold α = 0.001 when testing whether
controls yield higher D′ values than patients. These results do
not indicate that LD for one or more locus pairs in the APOE
region is significantly greater in controls than in Alzheimer
patients when a correction for multiple tests is applied.

Association tests for each of the eighteen loci comparing
Alzheimer patients and controls revealed that there are signi-
cant differences in allele frequencies after Bonferroni correc-
tion for multiple tests. Six loci out of eighteen were significant
at the 0.05/18 = 0.0028 level, and five loci out of eighteen
were significant at the 0.01/18 = 0.00055 level, see Table S2
in supporting information. Thus, in the case of the APOE
data there are significant differences in allele frequencies be-
tween Alzheimer patients and controls, while the difference
in D′ is not significant.

Discussion

We have described two methods for comparing the strength of
LD between reproductively isolated populations or subgroups
of a single population. The former method involves boot-

strapping individuals within groups to test the null hypothesis
that the strength of LD is identical. The bootstrap procedure
additionally allows for a single test of LD differences between
groups for a large set of locus pairs – based on the number
of locus pairs exhibiting significant LD differences compared
with the null distribution derived from multiple bootstrap
data sets. The latter method uses a Bayesian procedure to test
for each locus pair whether D′ is statistically different among
groups. Based on a simulation study, we found that hypothesis
testing based on the two methods is reasonably accurate if the
sample sizes of the two populations are similar. However, if
the sample sizes are different, the two methods can perform
poorly especially when the number of alleles per locus is large
and the sample sizes are less than 1000. The Bayesian method
appears to be more sensitive than the bootstrap method to
unequal sample sizes. Our suggestion is to use equal (or close
to equal) sample sizes or to use sample sizes greater than
1500 when conducting hypothesis tests for D′ differences. If
the sample sizes are less than 1500 and there is a substantial
difference between the two sample sizes, we suggest that the
larger sample is reduced with random selection down to a size
equal to the size of the smaller sample. Our results indicate
that the bootstrap approach is more robust (prior specification
not needed) and reliable than the Bayesian approach for the
evaluation of LD differences between population samples.

Various features of the methodology presented here could
be developed further. Thus, for example, although calculation
time for both methods is relatively short for moderately large
data sets, computational time could be further shortened by
implementing tests based on large sample theory, along the
lines suggested by Zapata et al. (2001). However, a problem
with large sample approaches is that when the number of
gametes is small, as is the case for pairs of SNPs, and mod-
erate sample sizes are used, the normal approximation to the
sampling distribution of D′ can be poor. The Bayesian ap-
proach overcomes this problem, but the underlying MCMC
algorithm requires a large number of iterations for accurate
assessments of the posterior distribution of D′. By approxi-
mating the posterior densities of D′, the computional time
could potentially be decreased without loss of accuracy.

We have applied the proposed LD comparison methods
in two case studies. The first was based on a small set of
microsatellites from Xq25 typed in males from four European
populations. Here we observed significantly larger D′ values
for the Greenlanders when compared to the other three pop-
ulations. Also, there is tentative evidence for Icelanders having
greater LD than Northern Irish and Spanish but more data are
needed to confirm that. Broadly speaking, our results support
the interpretation that differences in the demographic his-
tory of these populations are likely to be responsible for real
differences in the patterns of LD observed. Our approach al-
lowed definitive statements to be made about the nature of the
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observed differences for each pair of populations since it di-
rectly compares each pair between populations with respect
to LD.

The second case study was based on a set of 19 SNPs from
a 97kb region on chromosome 19 that contains the APOE
gene and was typed in Alzheimer patients and controls. The
association of variation in this region to Alzheimer disease is
well established. The common assumption is that the associa-
tion is to the APOE SNPs (rs429358 and rs7412) themselves,
however, it cannot be ruled out that other variants in strong
LD with the APOE SNPs may be the causal factor (Martin
et al., 2000). This means that the disease phenotype has been
observed to be associated with variants located in and around
the APOE gene. However, as far as we know, differences be-
tween patients and controls in the pattern and strength of LD
between loci have not been explicitly explored in relation to
Alzheimer disease. In cases where patients and controls differ
significantly in the frequency of alleles at one or more loci
and the loci are located within LD blocks, then patients and
controls will also differ in the frequency of haplotypes con-
structed from loci in that region. Bearing in mind that the
pattern of LD in a group of individuals is simply a statisti-
cal abstraction of its haplotype configuration, it then follows
that significant differences in the frequency of haplotypes can
entail significant differences in the strength and pattern of
LD. Conversely, genomic regions exhibiting no association
to a disease phenotype are unlikely to reveal significant LD
differences between patients and controls. According to this
reasoning, LD differences between patients and controls may
be a by-product of a signal of association of the disease phe-
notype to the genomic region being examined. However,
when corrected for multiple tests, there is no evidence for a
statistical difference in LD between patients and controls.

Our knowledge of genome-wide patterns of LD in differ-
ent human populations is currently being revolutionized by
the high resolution SNP data sets that are being constructed
as part of the HapMap project (International HapMap con-
sortium, 2003) and by Perlegen (Hinds et al., 2005). One
important goal in the analysis of these data is to understand
the nature and magnitude of LD differences between the pop-
ulations examined in these projects. The methods we propose
could be used for this purpose.
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Appendix

The Bayesian estimation of gamete frequencies for two cases
will be described here. In the first case the phase of genotype
data is known and haplotypes are missing at some loci for some
individuals. Note that in the case introduced in Materials and
methods, phase was known and missing data were not used. In
the second case the phase of genotype data is unknown for
some loci and for some individuals, and genotypes are possibly
missing at some loci for some individuals.

It is assumed that the data are missing at random, that is,
the data are missing independently of the true state of the
genotypes, so,

P (data missing at none/one/both of the loci|true state)

= P (data missing at none/one/both the loci).

It is also assumed that when the alleles are not missing then the
true alleles are observed. Let γ denote the vector of parameters
for the model that describes how the data are missing.

Bayesian Estimation of Gamete Frequencies
Based on Genotype Data with Known Gametic
Phase when Missing Data are Used

As in Materials and methods, let Ckl and pkl be the count and
frequency, respectively, of haplotypes for some population
where the observed gamete is Ak Bl. Here, let C = (Ckl)k,l
and π = (pkl)k,l be K × L matrices with these counts and
frequencies, respectively. Let Rk be the count of haplotypes
where the allele of the second locus is missing while the
observed allele of the first locus is Ak. Let R = (Rk)k be
a vector of length K containing these counts. Let Vl be the
count of haplotypes where the allele of the first locus is missing
while the observed allele of the second locus is Bl. Let V =
(Vl)l be a vector of length L containing these counts. Let Z
be the count of haplotypes where the alleles of both loci are
missing. The variables C, R, V and Z are the observed data.

Let Xkl be the true state, that is, the true count of hap-
lotypes with gamete Ak Bl. Let X = (Xkl)k,l be a K × L
matrix containing these counts. Note that the matrix X is
not observed directly. Let XR and XV be the counts in X
that correspond to the counts in R and V , respectively. The
relationship between X and C, XR and XV is

X = C + XR + XV . (2)

The total count of haplotypes in X is denoted by m. Note
that the count in Z is not in X since it will not add any
information to the gamete frequencies.
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A hierarchical model that describes the data C, R, V and
Z, the state variable X and π can be presented as follows

C, R, V, Z|X, γ ∼ DataModel(X, γ )

vec(X)|π ∼ MultK L(m , vec(π ))

vec(π ) ∼ DirK L(β)

(3)

where vec (V) denotes the vectorisation of a matrix V . The
first part in (3) describes how C and the missing data are
generated based on X and γ . As in Materials and methods, the
vector β reflects the prior information on π .

The posterior distribution of π and X given the data is
obtained from the distributions in (3), and is given by

p (π, X|C, R, V, Z) ∝ p (C, R, V, Z|X, γ )p (X|π )p (π ).
(4)

The following Gibbs sampler is used to generate samples from
(4). The generation of X is broken into the generation of XR

and XV , and then (2) is used to obtain X . The term “rest”
denotes all the variables in the model, except for the one that
is given in front.

p (π |rest) = DirK L(vec(X) + β)

p (XR|rest) ∝ p (XR|π, R)

p (XV |rest) ∝ p (XV |π, V).

To generate samples from p (XR|π , R) the following step is
needed,

XR
k,1:L ∼ MultL

(
Rk,

wk∑L
l=1 pkl

)
, k = 1, . . . ,K,

where XR
k,1:L is the vector containing the elements of XR

with indices k′ = k, l ′ = 1, . . . ,L, and wk = (pk1, . . . ,pkL)T,
k = 1, . . . ,K . To generate samples from p (XV |π , V) the
following step is needed,

XV
1:K,l ∼ MultK

(
Vl ,

ql∑K
k=1 pkl

)
, l = 1, . . . ,L,

where XV
1:K,l is the vector containing the elements of XV with

indices k′ = 1, . . . ,K , l ′ = l , and q l = (p1l, . . . ,pKl)T, l =
1, . . . ,L.

Bayesian Estimation of Gamete Frequencies
Based on Genotype Data with Unknown
Gametic Phase when Missing Data are Either
Used or Not

Let Nklgs be the count of individuals where the phase of geno-
types at a given pair of loci is known, and the two gametes are
Ak Bl and Ag Bs. Let N = (Nklgs)k,l,g,s be a K × L × K × L
array containing these counts. Let Hklgs be the count of indi-
viduals where the phase of the genotypes is unknown, and the
observed alleles are Ak and Ag at the first locus (k < g ) and
Bl and Bs at the second locus (l < s ). The count Hklgs cor-
responds to individuals that are heterozygous at both loci and
the phase could not be determined from genealogical data.
Let H = (Hklgs)k,l,g,s be a K × L × K × L array containing
these counts.

Let Qkg be the count of individuals where both alleles of
the second locus are missing while the observed alleles of the
first locus are Ak and Ag(k ≤ g ). Let Q = (Qkg)k,g be a K ×
K matrix containing these counts. Let Uls be the count of
individuals where both alleles of the first locus are missing
while the observed alleles of the second locus are Bl and
Bs(l ≤ s ). Let U = (Uls)l,s be a L × L matrix containing
these counts. Let W be the count of individuals where both
alleles of both loci are missing. The variables N , H, Q, U and
W are the observed data. When missing data are not used,
then in what follows, the elements of the matrices Q and
U are set to zero, and W is set to zero as well.Let Yklgs be
the true state, that is, the count of individuals with correctly
phased genotypes where the gametes are Ak Bl and Ag Bs. Let
Y = (Yklgs)k,l,g,s be a K × L × K × L array containing these
counts. The array Y is not observed directly, however, the
array N is the part of Y that is observed directly. Let Mkl be
the true count of gamete Ak Bl. Let M = (Mkl)k,l be a K ×
L matrix containing these counts. The relationship between
M and Y is

Mkl (Y) =
K∑

i=1

L∑
j=1

(Ykl i j + Yi j kl ),

k = 1, . . . ,K, l = 1, . . . ,L.

Let Y H , Y Q and YU be the counts of phased genotypes in Y
that correspond to the counts in H, Q, and U , respectively.
Thus, Y is given in terms of N, Y H , Y Q and YU by

Y = N + Y H + Y Q + YU . (5)

The total count of individuals in Y is denoted by n. Note
that the count in W is not in Y since it will not add any
information to the gamete frequencies.

A hierarchical model that describes the data and the state
variable Y can be presented as follows
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N, H, Q,U, W|Y, γ ∼ DataModel(Y, γ )
vec(Y)|π ∼ MultK2 L2 (n, vec(π ⊗ π ))
vec(π ) ∼ DirK L(β)

(6)

where ⊗ is the Kronecker product. The first part in (6) de-
scribes how N , H and the missing data, are generated based
on Y and γ . As before, the vector β reflects the prior infor-
mation on π . Note that given the state variable Y , the data
does not depend on π , it just depends on the missing data
model with parameter vector γ .

The posterior distribution of π and Y given the data is
obtained from the distributions in (6), and is given by

p (π, Y|N, H, Q,U, W)

∝ p (N, H, Q,U, W|Y, γ )p (Y|π )p (π ).
(7)

To generate samples from (7), the following Gibbs sampler is
used. The generation of Y is broken into the generation of
Y H , Y Q and YU , and Y is obtained from (5), so

p (π |rest) = DirK L(vec(M(Y)) + β)

p (Y H |rest) ∝ p (Y H |π, H)

p (Y Q|rest) ∝ p (Y Q|π, Q)

p (YU |rest) ∝ p (YU |π,U ).

To generate samples from p (Y H |π , H) the following step is
needed,

Y H
klg s ∼ Bin

(
Hklg s ,

pkl pg s

pkl pg s + pg l pks

)
,

Y H
g lks = Hklg s − Y H

klg s , 1 ≤ k < g ≤ K, 1 ≤ l < s ≤ L.

To generate samples from p (Y Q|π , Q) the following step is
needed,

Y Q
k,1:L,g ,1:L ∼ MultL2

(
Qkg ,

vec
(
wkw

T
g

)∑L
l=1

∑L
s=1 pkl pg s

)
,

1 ≤ k ≤ g ≤ K,

where YQ
k,1:L,g,1:L is the vector containing the elements of Y Q

with indices k′ = k, l ′ = 1, . . . ,L, g ′ = g , and s ′ = 1, . . . ,L,
and wt = (p t1, . . . ,ptL)T, t = 1, . . . ,K . To generate samples
from p (YU |π , U ) the following step is needed,

YU
1:K,l ,1:K,s ∼ MultK2

(
Uls ,

vec
(
ql q T

s

)∑K
k=1

∑K
g =1 pkl pg s

)
,

1 ≤ l ≤ s ≤ L,

where YU
1:K,l,1:K,s is the vector containing the elements of YU

with indices k′ = 1, . . . ,K , l ′ = l , g ′ = 1, . . . ,K , and s ′ = s ,
and qt = (p1t, . . . ,pKt)T, t = 1, . . . ,L.
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Additional supporting information may be found in the online
version of this article:

Table S1 The names of the microsatellites of the European
X chromosome Xq25 data set, their physical positions based
on NCBI build 34, and their repeat motif size.
Table S2 The names of the SNPs of the APOE data set, with
physical positions based on NCBI build 34 and P-values for
association test for each marker comparing Alzheimer patients
and controls.
Table S3 The haplotype frequencies for two adjacent X-
chromosome microsatellites, each with 8 alleles.
Table S4 The probability (based on repeated sampling) of
incorrectly accepting the alternative hypothesis that D′

2 > D′
1

when the decision to reject is based on the bootstrap method
that uses transformation. The decision to reject is made if
the bootstrap P-value is less than 0.05. This probability is
computed for seven cases where D′ and the allele frequencies
are the same in both populations and the sample sizes are
equal to 50, 100, 400, 1000, 1500 and 2000. The test has the
correct significance level when the probability values in the
table are close to 0.05.
Table S5 The probability (based on repeated sampling) of
incorrectly accepting the alternative hypothesis that D′

2 >

D′
1. The decision to reject is made if the posterior probability,

P (D′
2 > D′

1), of the Bayesian testing procedure is greater than
0.95. This probability is computed for seven cases where D′

and the allele frequencies are the same in both populations
and the sample sizes are equal to 50, 100, 400, 1000, 1500 and
2000. The Bayesian test procedure has the desired frequentist
properties when the probability values in the table are close
to 0.05.
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