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INTRODUCTION

The Geothermal Training Programme of the United Nations University (UNU) has
operated in Iceland since 1979 with six month annual courses for professionals from
developing countries. The aim is to assist developing countries with significant
geothermal potential to build up groups of specialists that cover most aspects of
geothermal exploration and development. During 1979-2006, 359 scientists and
engineers from 40 countries have completed the six month courses. They have come
from Asia (44%), Africa (26%), Central America (14%), and Central and Eastern Europe
(16%). There is a steady flow of requests from all over the world for the six month
training and we can only meet a portion of the requests. Most of the trainees are awarded
UNU Fellowships financed by the UNU and the Government of Iceland.

Candidates for the six month specialized training must have at least a BSc degree and a
minimum of one year practical experience in geothermal work in their home countries
prior to the training. Many of our trainees have already completed their MSc or PhD
degrees when they come to Iceland, but several excellent students who have only BSc
degrees have made requests to come again to Iceland for a higher academic degree. In
1999, it was decided to start admitting UNU Fellows to continue their studies and study
for MSc degrees in geothermal science or engineering in co-operation with the University
of Iceland. An agreement to this effect was signed with the University of Iceland. The six
month studies at the UNU Geothermal Training Programme form a part of the graduate
programme.

It is a pleasure to introduce the ninth UNU Fellow to complete the MSc studies at the
University of Iceland under the co-operation agreement. Mr. Kizito M. Opondo, BSc in
Chemistry, of the Kenya FElectricity Generating Co. Ltd KenGen, completed the six
month specialized training at the UNU Geothermal Training Programme in October 2002.
His research report was entitled “Corrosion tests in cooling circuit water at Olkaria I plant
and scale predictions for Olkaria and Reykjanes fluids”. After two years of geothermal
research work in Kenya, he came back to Iceland for MSc studies at the Faculty of
Science of the University of Iceland in February 2005. In August 2006, he defended his
MSc thesis presented here, entitled “Corrosive species and scaling in wells at Olkaria,
Kenya, and Reykjanes, Svartsengi and Nesjavellir, Iceland”. His studies in Iceland were
financed by a fellowship from the Government of Iceland through the UNU Geothermal
Training Programme. We congratulate him on his achievements and wish him all the best
for the future. We thank the Faculty of Science of the University of Iceland for the co-
operation, and his supervisors for the dedication.

Finally, I would like to mention that Kizito’s MSc thesis with the photos in colour is
available for downloading on our website at page www.os.is/unugtp/yearbook/2006.

With warmest wishes from Iceland,

Ingvar B. Fridleifsson, director

United Nations University
Geothermal Training Programme
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ABSTRACT

The Olkaria geothermal system in Kenya is located within the Okaria volcanic complex in the central
sector of the Kenya Rift Valley. Reykjanes, Svarstengi and Nesjavellir geothermal fields are located
in southwest Iceland and fall on a continuous earthquake epicentric line extending through the
Reykjanes Penninsula that stretches northeast to Langjokull. These four geothermal fields are all
high-temperature. Measured temperatures in Olkaria are as high as 350°C, Reykjanes 320°C,
Svartsengi 240°C and Nesjavellir > 380°C. The reservoir waters in the four fields vary. The water type
at Olkaria is mainly dilute near neutral pH sodium -chloride and sodium-bicarbonate waters with
chloride ranging between 50 and 4000 ppm at atmospheric pressure. At Reykjanes and Svartsengi
these are saline sodium-chloride waters with chloride being 20,000 and 13,000 ppm, respectively,
while at Nesjavellir they are very dilute sodium chloride waters with chloride of ~ 150 ppm.

Gas concentrations in the fluids of all the four fields are low, except for fluids of the Olkaria West
sector in Olkaria. Speciation calculations indicate that in Olkaria CO, partial pressures range between
0.5 bar and 5 bar except for fluids in the Olkaria West sector with > 90 bars a. At Reykjanes,
Svartsengi and Nesjavellir the CO, partial pressures fall between 0.0867 to 1.66 bars a. The high CO,
partial pressures cause CO; rich waters to develop when CO, in steam encounters shallower ground
waters. This becomes corrosive in the process as the pH of the water is lowered. At Reykjanes and
Svartsengi, well fluids are low in pH but this is little influenced by the partial pressures of CO,. The
pH of condensates that form due to dissolution of CO, at separation pressures range between 4.55 and
5.51 for Olkaria wells while at Reykjanes, Svartsengi and Nesjavellir these are between 5.20 and 5.55.
Thermodynamic calculations of HCI concentrations using pH, chloride concentrations and aquifer
temperature indicate high concentrations of HCI in the aquifer water of Reykjanes and Svartsengi
(0.81 and 0.083 ppm) and low HCI concentrations in the Olkaria and Nesjavellir well fluids. In steam
high HCI concentrations are derived for Reykjanes well fluids due to high wellhead pressures. Low
pH and high chloride concentration coupled with high temperatures contribute to high HCI
concentrations in fluid in the Reykjanes and Svartsengi fluids. In dry steam conveyed in steam
gathering systems HCI becomes corrosive as steam condenses due to formation of H" and CI” ions.

Studies of scales formed during tests at Nesjavellir using the binocular microscope, FTIR, XRD, SEM,
ICP and UV indicate that scales formed at the wellheads of wells NJ-14 and NJ-22 consisted mainly
of sulphides at well NJ-14 and mixed sulphides and oxides at well NJ-22. In separated water after the
heat exchangers, entry to retention tank and at injection well the scales consisted mainly of amorphous
silica with some indication of clays. Crystalline phases were not prominent in the scales but traces of
chalcopyrite were identified in scales formed at the wellhead of well NJ-14 and at the entry to the
retention tank. Traces of clays formed in scales at the wellhead of well NJ-22. The highest amount of
scale deposited at the entry to the retention tank, with a deposition rate of ~0.261mm/yr. At the
injection well the rate was lower ~0.0168 mm/yr.

Olkaria well OW-34 has an enthalpy close to that of dry steam of 2672 klJ/kg and anomalous
chemistry. Chloride concentration in the separated water is ~ 4000ppm at atmospheric pressure. The
high solute content in well OW-34 fluids is influenced by evaporative effects due to the high discharge
enthalpy. Scales formed in the wellhead equipment and studied by the same method above indicated
they were prominently amorphous silica scales. Crystalline phases were absent from the scales.
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1. INTRODUCTION

For many countries geothermal energy is an important resource. Utilisation, both direct and for power
generation, is increasing faster than that of any other energy resource. Worldwide installed capacity of
geothermal power plants has increased by ~ 10 % or more per year over the last two decades (Bertini,
2005). The technology needed to harness geothermal energy has advanced much over the last 20-30
years and steps have been taken to reduce the environmental impact of geothermal energy utilization,
particularly by injection of spent fluid into wells and directional drilling. The main operational
problems encountered when utilising high-temperature geothermal reservoirs for power generation
involve the formation of various types of scales in production wells, surface equipment and injection
wells. Corrosion is sometimes also a problem, both for high and low-temperature fluid utilisation.

The most common scales formed are amorphous silica and calcite. However, many other types of
scales have been encountered including metal-sulphides, silicates of iron and aluminium and
anhydrite. In geothermal fluids various species can be corrosive and these include chlorides, carbon
dioxide, ammonia, hydrogen ion, dissolved oxygen, bisulphate, which dissociates into sulphate and H"
upon cooling. Chloride ion breaks passive films that are protective on metal surfaces and can
concentrate in crevices and cause pitting corrosion. Hydrogen chloride in steam can produce acid
condensate and lead to severe corrosion. Dissolved carbon dioxide gas in geothermal water causes
corrosion of low carbon steels, which is generally localized.

In this study special attention is given to assessing the conditions for the formation of amorphous silica
and calcite scales, and the concentrations of the corrosive species CO, and HCI in geothermal water
and steam. Special attention is given to scaling in wells and wellhead equipment that are in contact
with slightly wet steam. The study is based on data from Olkaria, Kenya and Reykjanes, Svartsengi
and Nesjavellir, Iceland. Further scaling tests were carried out at Nesjavellir, Iceland, both at
wellheads and downstream, where the separated water was oversaturated with respect to amorphous
silica.

1.1 Corrosion in geothermal environments

Corrosive attack in high-temperature geothermal installations is found mainly in well casings,
condensate injection pipelines made of carbon steel, wellhead equipment and turbine blades. In
generation of electricity by direct contact condensing turbines where a cooling water circuit is utilized,
low pH (4-5) of the condensate is caused by the dissolution of CO, and H,S gases present in the steam.
In condensate injection pipelines made of carbon steel, Villa et al. (2001) and Villa and Salonga
(2000) report rapid deterioration due to low pH of condensates. Oxygen ingress exacerbates the
problem. When conductive heat losses occur along steam pipelines, steam may condense and through
dissolution of CO, and H,S, lower the pH (Thain et al., 1981; Henley et al., 1984). In Olkaria,
Svartsengi and Nesjavellir direct contact condensing turbines are utilized and low pH condensates
which are corrosive develop. Corrosion related to the low pH condensates on disposal is not reported.

In superheated steam where HCI is present Allegrini and Benvenuti (1970), Meeker and Haizlip
(1990) and Truesdell (1991) describe severe corrosion in well casings, steam gathering systems and
turbine blades, mainly caused by H" and CI. Thérhallsson (2005) reported corrosion in steam
pipelines due to HCI transported in the steam in a dry steam well at Svartsengi. In Svartsengi,
Thorolfsson (2005) has reported various corrosion related problems observed during maintenance of
the plant.

Corrosion of casing in high-temperature geothermal systems can also be related to low pH associated
with acid-sulphate waters. In andesitic geothermal systems like those found in the Philippines, e.g. the
Tiwi and Bacman fields, Sugiaman et al. (2004) and Rosell and Ramos (1998) report casing corrosion
observed due to penetration by low pH acid sulphate water. Similar casing corrosion was reported in
Cerro Prieto, Mexico by Dominquiz (1980) and Miravalles, Costa Rica by Moya et al. (2005). In



other cases, casing corrosion has been caused by CO, rich waters in geothermal fields. These waters
form when ascending CO, rich steam dissolves in near surface shallow waters. In the Broadlands-
Ohaaki geothermal field, New Zealand, Hedenquist and Stewart (1985) reported severe external well
casing corrosion caused by CO, rich steam-heated water. Zarouk (2004) reviewed casing corrosion
occurrences in New Zealand geothermal fields. In all cases, these are related to CO, rich dilute
geothermal water. In Olkaria, Omenda (1998) and Karingithi (2002) report CO, rich fluids but the
extent to which they are corrosive is not known.

Modes of corrosion attack in geothermal installations have been disscussed by Conover et al. (1979),
Boulton and White (1983) and Corsi (1986). These are uniform (general) corrosion, pitting corrosion,
crevice corrosion, stress corrosion cracking (SCC), sulphide stress cracking (SSC), intergranular
corrosion, galvanic coupling, corrosion fatigue, microbiological by induced corrosion, erosion
corrosion and cavitation.

1.2 Scale formation

The main drawbacks in the utilization of geothermal resources arise from the precipitation of solid
scales from the geothermal fluid. In many cases the scales cause restriction in flow, e.g. in the
boreholes, two phase pipelines, the separators and waste water lines and steam pipelines. Their
formation often impedes the closing and opening of valves leading to leaks. Deposition on turbine
blades is common which results in the turbine chest pressures increasing. Three main areas of scale
deposition can be distinguished (Corsi, 1986). These are: deposition from a single phase fluid
(injection pipelines), deposition from flashing fluid (wells, separators, two phase-pipelines) and
deposition by steam carryover (separators, steam lines and turbines).

A great deal of work has been carried out on the nature of scales formed from geothermal fluids
(Thoérhallsson et al., 1975; Arnorsson, 1981; Gallup, 1989; Gallup, 1998; Simmons and Christenson
1993; Simmons and Christenson, 1994). Amorphous silica and calcium carbonate scales are the most
extensively studied but metal sulphides and silicates to a lesser extent, although they are presently
receiving more attention (Simmons and Christenson 1993; Simmons and Christenson, 1994;
Armannsson, 1989; Mecerdo et al., 1989; Benoit, 1989; Durak et al., 1993; Hardardéttir et al., 2001;
Weissberg et al., 1979; D’ Amore et al., 1998; Karebalas et al., 1989; Gallup, 1993; 1998).

1.2.1 Silica

Amorphous silica deposition is probably the most commonly encountered and troublesome scale
formed from high-temperature geothermal water. Such scale has been studied by many workers
(Weres and Tsao, 1981; Hurtado et al., 1989; Thorhallsson et al., 1975; Arndrsson, 1981; Gallup,
1989; Gallup, 1998; Mahon, 1966; Henley, 1983; Garcia et al., 1996, Yanagase et al., 1970; Itoi et al.,
1989; Kato et al., 2003; Corsi, 1986). A lot of effort has been devoted to the study of silica scale
formation. In the utilization of high-temperature geothermal resources the efficient extraction of
energy is limited by the silica scale that may form as a consequence of cooling.

It has been established that aqueous silica concentrations in high-temperature geothermal fluids are
controlled by close approach to equilibrium with quartz (e.g. Fournier and Rowe, 1966; Mahon, 1966;
Fournier, 1973; Fournier and Rowe, 1977; Fournier and Potter, 1982, Gislason et al.,, 1997,
Gunnarsson and Arnorsson, 2000). The quartz solubility constant has been the subject of thorough
experimental studies (Fournier, 1983; Fournier, 1985; Fournier and Potter, 1982; Fournier and Rowe,
1977). Quartz solubility increases with increasing temperature. Often quartz is not present as a primary
mineral in geothermal systems but forms by precipitation from the water. Silica scales are only known
to form if the extent of boiling and cooling of the aquifer water is sufficient to saturate it with
amorphous silica, the reason being the fast rate of deposition for this phase but slow rate for quartz,
particularly below 150°C. In contrast to calcite scale formation discussed below, amorphous silica



deposition does not occur at depth in production wells but characteristically in wellheads, surface
pipings and injection wells.

The control of silica concentrations in high-temperature geothermal waters by quartz solubility implies
that aqueous silica concentrations in producing aquifers increase with increasing temperature of the
water. As a consequence, the temperature at which amorphous silica saturation is attained for
particular well water depends on the temperature of the source aquifer. Thus amorphous silica scale
formation is not a problem unless the reservoir temperature exceeds 250°C.

The factors that affect the rate of amorphous silica precipitation and colloidal formation
polymerisation) include the degree of supersaturation, pH, temperature and salinity. Aeration may also
contribute. Reactions between silica molecules in amorphous silica oversaturated solutions may react
between themselves to form colloidal silica or deposit from solution to form amorphous silica. The
kinetics of amorphous silica precipitation and silica polymerisation have been studied by several
workers (Rothbaum et al., 1979; Rimstidt and Barnes, 1980; Weres and Tsao, 1981; Gunnarsson and
Arnorsson, 2005).

The solubility of pure amorphous silica has been the subject of many studies (Fournier and Marshall,
1983; Rimstidt and Barnes, 1980; Gunnarsson and Arndrsson, 2000; Marshall and Chen, 1982; Weres
and Tsao, 1981; Rothbaum et al., 1979). [Amorphous silica solubility is dependent on ions that affect
its surface charge]. Marshall and Warakomski (1980) and Chen and Marshall (1982) have studied the
effects of dissolved salts of varying concentrations on the solubility of amorphous silica. Generally,
they found that the effect of the cations of the salts had a decreasing effect on amorphous silica
solubility in the order Mg ** > Ca®* > Sr " > Li" > Na" > K. Yokoyama et al. (1989) showed
specifically that aluminium ion could have a strong influence on silica polymerisation rates. These
effects are likely to be caused by complex formation between silica and cations in the salts but the
salts will also affect the value of the activity coefficients taken by aqueous silica species. The
presence of cations in solution may also affect the composition of and the precipitated amorphous
silica and therefore its solubility. Thus aluminium and iron silicates deposition has been described in
other saline geothermal systems such as Milos, Nissyros, Asal., Reykjanes, Salton sea, e.g. Karabelas
et al. (1989), Virkir-Orkint (1990), Hardardottir et al. (2001, 2004, 2005), and Gallup (1989, 1993,
1998).

Several methods have been adapted to reduce or eliminate deposition of amorphous silica in
geothermal installations (Yanagase et al., 1970; Weres and Tsao, 1981; Kiyota et al., 2000; Arnoérsson,
2000; Gunnarsson and Arnorsson, 2005). A method commonly adapted to reduce amorphous silica
scaling in production wells and wellhead equipment is to maintain steam separation pressures (and
temperatures), above amorphous silica saturation. Many other methods have been practiced including
removal of silica from solution by its precipitation, silica polymerisation and by raising the pH of the
separated water even at elevated temperature sufficiently to cause some of the silica to ionize.
Acidification has also been applied. It reduces deposition rates. Polymeric silica has less tendency to
precipitate out of solution than monomeric silica. The relative rates of the two reactions, amorphous
silica deposition and silica polymerisation, and the rate at which polymeric silica settles from solution,
determine how successful polymerisation treatment is in reducing amorphous silica deposition from
spent geothermal waters.

Deposition of silica scales has been observed in Svartsengi, Reykjanes, Olkaria and Nesjavellir. In all
the cases it is reported in wellhead equipment, separated water and in the plant. In Svartsengi,
Thoérolfsson (2005) reported maintenance problems associated with silica scale formation in heat
exchangers, brine pipes and on 1% stage turbine nozzles. In Reykjanes amorphous silica is deposited
from separated water at lower temepratures and exists as a mixed scale (Hardardéttir et al., 2001,
2004, 2005). In Olkaria, Opondo and Ofwona (2003) reported intense deposition of silica in the
wellhead equipment of one well. At Nesjavellir studies on scale formation by Haukson (1996),
Gislason and Gunnlaugsson (1994-1995) and Kjartansson (1996) indicated problems in pilot heat
exchangers. Little indication of silica polymerization or scaling was observed on fluidized heat



exchangers in pilot plant. Silica polymerization results of studies by (Hauksson, 1996) at different
temperatures and in different fluid mixtures with condensed steam in pilot plant heat exchangers
indicated that, when the residence time of the fluid in the heat exchangers was short, polymerisation
took place to a small extent. Silica polymerization proceeded more slowly at low temperatures than
high temperatures and amorphous silica saturation was reached in brine at Nesjavellir at about 180° C.
Silica polymerization tests on a mixture of condensate and separated water showed that the mixture
remained undersaturated. Separated waters cooled from ~188°C to 83°C (Gunnarson and Arnorsson,
2005), showed that amorphous silica polymerization by ageing the separated water, decreased the
potential for amorphous silica deposition.

1.2.2 Calcite

Troublesome calcium carbonate scale formation is known to occur in many geothermal fields (e.g.
Simmons and Christenson, 1993; Simmons and Christenson, 1994; Armannsson,1989; Mecerdo et al.,
1989, Benoit, 1989; Durak et al., 1993; Solis et al., 2000). The scale is often calcite but aragonite has
also been reported.

According to Arndrsson (1978), (1989), Armannsson (1989), Benoit (1989), Simmons and
Christensen (1994) and Todaka et al. (1995) it is expected that scale formation of this kind is most
intense at the depth level of first boiling. Such deposition may significantly decrease the output of
production of wells or even clog them. In other rare occurrences calcite deposition has been observed
in two-phase lines where fluids from two different wells mix (Solis et al., 2000). Calcite deposition
could also occur due to heating of the re-injected fluid.

Waters in the aquifer of high-temperature geothermal systems are close to being calcite saturated (e.g.
Arnorsson, 1989; Karingithi et al., 2006) but equilibrium between calcite and solution is rapidly
attained (Busenberg and Plummer, 1986; Zhang and Dawe, 1998), certainly at the temperatures of
high-temperature geothermal systems. Upon extensive boiling of the aquifer water and subsequent
degassing with respect to CO,, calcite saturated waters will become oversaturated. Calcite solubility
increases with decreasing temperature counteracting the effect of degassing during adiabatic boiling.

Deposition of calcite has been observed in production wells at Svartsengi but not at Reykjanes Olkaria
and Nesjavellir. In Svartsengi the calcite scaling (Bjornsson and Steingrimsson, 1999) was severe
during the early years of production. Calcite deposition in Svartsengi followed drawdown in reservoir
pressures. In zones where the reservoir pressures decreased, boiling and hence deposition took place at
subsequently greater depths in production wells. It was solved by regular mechanical cleaning of the
wells and drilling of wider diameter wells that also gave higher yield than earlier wells. The scaling
problem vanished when reservoir pressure draw down was sufficient to induce extensive boiling in
producing aquifers. Worldwide, calcite scaling problems have been succesfully solved either by
mechanical cleaning or by the use of inhibitors (Pieri et al., 1989; Parlaktuna and Okandan, 1989;
Candaleria et al., 2000; Siega et al., 2005).

1.2.3 Other scales

Scales of sulphide minerals mostly pyrite, occur widely and are the rule rather than the exception in
high-temperature geothermal installations. However, the quantity of the precipitate is generally limited
due to low aqueous concentrations of the metals forming the sulphide phases. In brines of high-
temperature geothermal fluids, such as in Reykjanes and Svartsengi, Iceland, Milos and Nissyros
Greece, Asal Djibouti, and Salton Sea California, the concentrations of metals forming sulphide are
high leading to extensive sulphide mineral deposition. By contrast, they are low in dilute fluids, e.g. at
Broadlands, New Zealand (Weissberg et al., 1979). The metals are often transported as metal
complexes. The state of pyrite saturation is largely affected by degassing of the boiling water, the pH
change associated with boiling and the change of pyrite solubility with temperature. Increase in pH
due to boiling results in a decrease in the solubility of pyrite.



The rate of sulphide precipitation is fast and is not a limiting factor for the rate of scale formation.
Scales of metal sulphides are mechanically resistant. They are known to protect casing materials and
pipings from corrosion by various components present in geothermal water and steam such as CO,.
Extensive sulphide scales, associated with saline fluids have been reported by Hardardottir et al.
(2001) at Reykjanes, Iceland, at Assal Djibouti by D’Amore et al. (1998), at Milos Greece by
Karebalas et al. (1989), at Salton Sea California by Gallup et al (1990). At Reykjanes, Asal and Milos
the sulphide scales were mainly composed of sulphides of lead, zinc, copper and iron. Amorphous
phases mainly of silica and some oxides of iron were also formed mainly downstream of flash valves.
Poorly crystalline or amorphous aluminium and iron silicate scales have also been identified in
geothermal installations at Salton Sea (Gallup, 1993; 1998) as mixtures with metal sulphide scales. A
mixture of aluminium-magnesium silicates in the scales at Reykjanes are reported by Hardardottir et
al. (2001) although the major scale is sulphide.

Formation of sulphide minerals from geothermal fluids is known to increase deposition of silica,
probably because they act as nuclei for the growth of silica minerals. Thus deposition of silica from
saline fluids can be a major problem. It has been arrested satisfactorily by acidification. By decreasing
water pH, the silica precipitating reaction is slowed down and the amount of sulphide minerals
precipitated reduced.

Extensive deposition of sulphides has been observed at Reykjanes but not Olkaria, Svartsengi and
Nesjavellir. In Reykjanes, Hardardottir et al. (2001, 2004, 2005) studied the formation of sulphide
scales, mixed scales and amorphous silica scales from brine surface pipings at different pressures.
They concluded that there was a relationship between the types of scales formed and pressure after
orifice plates and sequential deposition with decrease in temperatures was observed. Sulphides
deposited were relatively high at high temperatures while amorphous silica and mixed scales deposited
at lower temperatures. The sulphide scales were enriched in heavy metal concentrations.

1.2.4 Objectives of the study
The study for the thesis focuses on the following objectives:

e Assess corrosive behaviour by calculations of CO, and HCI concentrations in the fluids in
Olkaria, Reykjanes, Svartsengi and Nesjavellir.

e Evaluate potential calcite scaling of pre-boiled geothermal waters with different salinities,
CO,, temperature and pH.

e Evaluate scales deposits during scaling tests at Nesjavellir and scales from Olkaria well OW-
34,



2. GEOLOGICAL FEATURES OF THE STUDY AREAS
2.1 The Greater Olkaria Geothermal System
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not successfully discharge.

Systematic exploration was again began in 1970 under the initiative of the United Nations
Development Programme (UNDP) and the Government of Kenya and drilling recommenced in 1973
after extensive surface work, by the drilling of Olkaria well OW-01. The well proved to have low
temperatures. A second well, well OW-02 was drilled and this proved to be more successful. More
drilling was undertaken and in 1976 a prefeasibility study to utilize geothermal steam for electricity
generation was done by SWECO and VIRKIR consulting companies. The first unit of 15 MWe was
constructed in 1981, the second in 1982 and the third in 1985. After the intial five years of steam
production in Olkaria, steam decline was experienced in the steamfield. Make up wells were drilled
based on reservoir simulation studies by (Bodvarsson and Preuss, 1987) to increase steam production.

The resource is hosted within the Olkaria volcanic complex which consists of a series of lava domes
and ashes, the youngest of which has been dated at ~ 200 years (Clarke et al., 1990). This complex is
estimated to be 50-80 km®. Maximum temperatures in deep wells at Olkaria range between ~ 200°C
and ~340°C. The area has been divided into seven sectors for purposes of development (Figure 2).

The sectors are named Olkaria East, Olkaria North East, Olkaria North West, Olkaria South West,
Olkaria South East, Olkaria Central and Olkaria Domes. Four power plants are currently in operation
in the Greater Olkaria Geothermal Area with a total generating capacity of ~ 129 MWe. Two plants
are operated by KenGen, i.e. the Olkaria I and Olkaria II plants that generate ~ 115 MWe. The
Olkaria I plant has a capacity of 45 MWe and receives its steam supply from the Olkaria East
Production Field. The Olkaria II plant, which is about 3 years old, receives steam from the Olkaria
North East Field. Two independent power producers generate about 14 megawatts of electricity from



the Western Sectors. The . N N N N . N N N N
Olkaria III plant, operated by 99060004~ = T =TT TT===
Orpower 4 Inc., a subsidiary !

]
]
]
2

of  Ormat International 990500 = £ R
generates 12 MWe and ~ 2 Olkaria North West s Olkaria North
MWe are generated by a 990400 £ ! East X
flower farm, Oserian Sie
s B )JJJJJJJ,LL]‘-J

Development Company from 2 99030001 X
wells leased from KenGen. 73 ==
These two plants are organic = '

. £ 99020009 .
Rankine Ormat cycle plants. 2 | Olkaria Fast 0
Plans are underway to expand Olkaria West : !
the capacity of Olkaria II 99010009 ' r [
plant in the Olkaria North becee== s
East Field from 70 MWe to 99000009 :‘"""'l : = T
105 MWe by the year 2007 Olkaria South : | =§s
(Mwangi, 2005) and the 98990004 g B L R
Orpower 4 Inc. plant from 12 Y Y v v Y ‘
Mwe to 48 Mwe by 2006 193000 194000 195000 196000 197000 198000 199000 200000 201000 202000

Eastings (m)

(Reshef and Citrin, 2003).

FIGURE 2: Location of the geothermal fields in the Greater

The geology around Olkaria Olkaria Geothermal Area
has been  studied by

numerous workers (Naylor, 1972; Brown, 1984, Odongo, 1986; Clarke et al., 1990) and is described
as being characterized by numerous eruptive volcanic centres of Quaternary age. The geothermal field
is located within a remnant of a caldera complex intersected by N-S rifting faults. These faults are
conduits for numerous eruptions that have formed pumice and ryholite domes within the Olkaria
Volcanic complex. The area has a thick cover of pyroclastic ash which is thought to have been
erupted from volcanic centres outside Olkaria namely Suswa and Longonot. The Olkaria Volcanic
complex is considered to be bounded by arcuate faults forming a ring or a caldera structure. Within
this structure a magmatic heat source might be represented by intrusions at depth. Faults and fractures
are prominent in the area with general N-S and E-W trends but there are also some inferred faults
striking NW-SE. Other structures in the Olkaria area include the OI’Njorowa gorge that trends NW-SE
and may represent a fault, the Ololbutot fault that trends N-S, the ENE-WSW trending Olkaria fault,
the WNW-ESE trending Gorge Farm fault, and Olkaria fractures.

The general subsurface stratigraphy at Olkaria has been described by Brown (1984), Odongo (1986)
and Mungania (1992). The rocks at the surface are composed of comendites and pantellerites and these
also occur in the upper parts of the subsurface. Omenda (1998) has described the lithostratigraphy of
the Olkaria geothermal area as it is revealed by data from the geothermal wells. These consist broadly
of six main groups, namely proterozoic “basement” formations, pre-Mau volcanics, Mau tuffs, Plateau
trachytes, Olkaria basalt and Upper Olkaria volcanics.

2.2 The Reykjanes and Svartsengi geothermal fields

The Reykjanes Peninsula is located in southwest Iceland and falls on the continuous earthquake
epicentre line extending through the peninsula and further inland, reaching several more high-
temperature geothermal fields (Saemundsson and Fridleifsson, 1980). Figure 3 shows a simplified
geological map with the location of the Reykjanes, Svartsengi and Nesjavellir fields and other high-
temperature fields in Iceland.

The Reykjanes geothermal field is one of the six geothermal fields on the Reykjanes Peninsula which
make up the western volcanic zone. Initial development of the geothermal resources at Reykjanes
dates back to around 1956, when the first exploratory well was drilled in the area. To evaluate the



geothermal reservoir for production
of water and steam, extensive field
investigations were carried out in
the period between 1968 and 1970.
This effort revealed a high-
temperature geothermal resource.
The reservoir temperatures are
between 250° and 320°C.  The
stratigraphic  succession of the
Reykjanes geothermal field,
revealed by drilling, consists of four
main units, namely an upper strata
(< 120 m) characterised by pillow
basalt and on top by subaerial basalt
flows of postglacial age. A more
dominant sedimentary tuff
formation above 1000 m and more
crystallized basalt formations at
greater depths have been identified
(Témasson, 1971). Thick
hyaloclastite tuff formations have
also been identified at depth.

The wells drilled produced high
pressure brine and steam. The
development of the Reykjanes
geothermal area was based on an
interest in producing common salt
from brine. A salt production plant
was set up in the early 1970’s with
a 0.5 MWe power plant.  More
recent surface resistivity studies
(Karlsdottir, 1997) delineate an area
with an extent of ~ 10 km? for the
Reykjanes  geothermal  system,
whereas surface manifestations only
cover about 1 km’  Accelerated
drilling  was  undertaken in
Reykjanes during the period 2002 to
2005 and a total of 24 wells have
been drilled for electricity
production. A 100 MWe power
plant was  commissioned at
Reykjanes in May 2006. The
locations of wells drilled into the
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FIGURE 3: A simplified geological map with the
locations of high-temperature geothermal fields in Iceland
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FIGURE 4: Location of wells in the
Reykjanes geothermal field

Reykjanes geothermal field are shown in Figure 4.

The Svartsengi geothermal field (Figure 5) is located about 15 km to the east of the Reykjanes
geothermal field. Stratigraphically it consists of basaltic formations down to ~300 m depth, followed
by about 300 m thick hyaloclastite series, and this is the cap rock of the reservoir. Underneath the

hyaloclastites there are flood basalts.

At 1000-1300 m depth intrusions become dominant (Franzson,

1983; 1995). A fissure swarm crosses the reservoir in the eastern part of the well field. Surface
manifestations are limited and mostly confined to fumaroles in a post-glacial lava field. Discharges to
the surface are in the form of steaming fumaroles. Reservoir temperatures are uniform between 235
and 240°C (Bjornsson, 1999). The field supports a geothermal combined heat and power plant with ~



46.4 MWe and 125 MWt A
shallow steam zone has evolved
with time at Svartsengi and this
zone contributes substantially to the
power production. The Svartsengi
geothermal field has an areal extent
[\ of ~ 1 km® Well locations in the
\' Svartsengi geothermal field are
shown in Figure 5.

2.3 Nesjavellir geothermal field

The Nesjavellir geothermal field is

v el ~ located in the Hengill high-
ey | Yfirlitskort af .
J \ /| borholum temperature geothermal area which
) | i Svartsengi . . . . .
16000 e /] ey is situated within the active volcanic
S e B \/ L zone in southwest Iceland. This belt

FIGURE 5: Well locations in the Svartsengi
geothermal field
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FIGURE 6: Resistivity map delineating the lateral
extent of the Hengill geothermal area

is characterised by several NE-SW

trending fissure swarms exhibiting

normal faults and open fissures.
The Hengill volcano is intersected by one
of these fissure swarms. It is about 50 km
long and has a structure of nested grabens.
Faults are very abundant within the fissure
swarm. Several eruptive fissures transect
the centre of Hengill and extend to the
northeast by Nesjavellir. Geothermal
surface manifestations cover an area of
about 40 km? (Figure 6).

These include fumaroles, mud pools,
steaming ground and acid surface
alteration as well as hot springs. From the
Hengill there is a lineament of surface
manifestations extending towards the SE
into the Hveragerdi centre forming a
continuation of the transcurrent faults
dissecting the main fissure swarm.

Surface surveys for  geothermal
exploration in the Hengill area started in
the 1940°s. Drilling started in the late
1950°s and early 1960’s. In 1990 the
geothermal resource at Nesjavellir was
harnessed for  district heating in
Reykjavik. This involved heating water

using heat exchangers. The geothermal water could not be used directly due it its chemical content. At
the time it was decided to harness the geothermal resource at Nesjavellir, 14 production wells had
been drilled and all but one were successful (Gunnarsson et al., 1992). Wells drilled at Nesjavellir
range in depth from 1,000 to 2,200 meters and the highest temperatures recorded are > 380 ° C

(Gunnarsson et al., 1992).

The stratigraphy at Nesjavellir as revealed by drilling, consists mainly of volcanic rocks.

These are

divided into extrusive and intrusive rock formations. The extrusive rocks consist mainly of



hyaloclastites and basalt lavas. Nouralie (2000) described the stratigraphy as consisting mainly of
hyaloclastites in the shallower parts of the system, < 730 m. In the deeper parts, > 730 m, basalt lavas
are predominant. The hyaloclastites are mainly volcanics which are divided into four groups; Tuffs,
Breccia lavas, Basaltic breccias and Pillow lavas. The intrusives are predominantly basalts and are
found in the deeper parts of the system.

The thermal plant was initially commissioned to generate about 100 MWt of heat, but has since been
progressively expanded in tandem with better utilization of the resource. In 1991 the capacity of the
thermal plant was expanded to 150 MWt and in 1998 a further 250 MWt and 60 MWe were added.
This started the Nesjavellir co-generation plant which has two main functions; to produce electricity
from geothermal steam and to heat cold ground water for district heating. Currently, the installed
capacity for electricity generation is 120 MWe from four steam cycle turbines of 30 MWe each and
290 MWt. The Nesjavellir geothermal field with well locations is shown in Figure 7.
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FIGURE 7: Well locations in the Nesjavellir
geothermal field
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3. SAMPLING AND ANALYSIS

3.1 Sample collection

At Reykjanes, Svartsengi and Nesjavellir,and other Icelandic fields both steam and water are collected
at the same pressure using a Webre separator.

At Olkaria various
methods have been
applied to  collect
samples of water and

Drillhole

. 1

steam from the wet-
steam well discharges.
Some of these methods
are described by Ellis
and Mahon (1977) and
Arnoérsson et al.
(2000).  One of the
methods involves the
use of a Webre
separator, which is
connected to a two-
phase pipeline that
conveys the total
discharge to an
atmospheric  silencer
(Figure 8).

By this method

sampling  involves  the
collection of steam samples
under pressure from the
Webre separator and water
from the weirbox. Steam
samples collected in this
way are mostly from the
wells that are being
discharge tested or
exploration wells and a
number of production wells
in the Olkaria  East
production field that share a
common separator station.
In the Olkaria North East
Field which produces steam
for the Olkaria II power
plant sampling of steam and
water will be carried out by

Webre
sepatator

Weirbox

FIGURE 8: Steam is collected from a Webre separator on a two-phase
pipeline upstream from the atmospheric silencer and water from the
weirbox, a part of the steam (X"™) discharged from the atmospheric

silencer is not sampled, i.e. the steam which forms by depressurisation

boiling from the pressure in Webre separator to atmosphere
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FIGURE 9: Steam is collected from the steam separator and water
from the weirbox, the steam (X**) discharged from the atmospheric
silencer is not sampled. This steam forms by depressurisation
boiling from pressure in the steam separator
to atmospheric pressure

the use of a Webre separator. For production wells in the Olkaria East Production Field, steam
samples were collected from the steam line downstream of the wellhead separator using a stainless

steel tubing (Figure 9).

Water samples were collected from the weirbox. A fraction of the discharge is not sampled when the
water and steam samples are collected at different pressures as explained in Figs. 8 and 9. As
explained in section 5.2 below, it is assumed when calculating aquifer water composition that the
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secondary steam not sampled is free of gas. When collecting water and steam samples from wet-steam
well discharges using a Webre separator good phase separation is essential. Pipes from wells with low
discharge enthalpy (less than 900 kJ/ kg) may experience slug flow and separation can be a problem.
When the steam fraction is high, i.e. the discharge enthalpy approaches that of dry steam (above 2500
kJ/kg), the water flow rate into the Webre separator may not be sufficient for collecting a steam free
water sample and when this is the case, the only alternative may be the collection of a water sample at
atmospheric pressure (from the weirbox) or from a wellhead steam separator.

The sampling methods in case 3 were applied in Olkaria since the inception of the Olkaria East
Production Field, but may change with total re-injection of separated water being a requirement in
current power development schemes. This will require in the future that both water and steam are
collected at the same pressure.

Steam samples were collected into two gas-sampling flasks, which had been evacuated in the
laboratory after introducing 10 ml of freshly prepared 50 % w/w KOH in the case of Olkaria and the
others 50 ml of 4M NaOH solution. The gas bulbs were weighed before and after sampling to record
the amount of steam condensate collected. Water samples were filtered through 0.2 um millipore
membrane (cellulose acetate) into low density polyethylene bottles using a propylene filter holder. The
entire filtration apparatus was thoroughly rinsed with deionised water before collecting a sample. A
100 ml sample was acidified with 1 ml of suprapure concentrated HNO; for ICP-AES analysis for Si,
B, Na, K, Ca, Mg, Al, Fe and S(SO,). Another 100 ml sample was collected for SO, analysis to which
1 ml of 1% zinc acetate solution was added to remove H,S. A third 100 ml sample was collected and
for the determination of CI and F by ion chromatography only, 250 ml glass bottles with special caps
that prevent entrapment of air were used to collect water samples for the determination of pH and total
carbonate carbon. These two water samples, which were not filtered, were cooled to < 40°C by passing
them through a stainless steel cooling coil to prevent degassing of the sample that would otherwise
occur upon storage due to thermal contraction of the water prior to analysis.

3.2 Analysis of water and steam samples

Steam samples were analysed for CO,, H,S, H,, CH4, N,, and O, . The non-condensable gases (H,,
CHy4, N; and O,) were analysed by gas chromatography, while CO, and H,S were determined by
titration of the NaOH-condensate solution with 0.1 M HCI and 0.001M Hg(CH;COO), standard
solutions respectively (Arnorsson et al., 2000). Both CO, and H,S disssolve quantitatively in the
alkaline solutions. In this way, the non-condensable gases become concentrated in the gas phase
making analysis for them more precise.

In water samples, H,S was analysed for in the same way as in steam samples and determined on site to
obtain its own concentration and again at the time of the total carbonate (TCC) titration for the
purpose of subtraction. Total carbonate carbon (TCC) and pH were determined in the laboratory as
soon as possible (1-2 hours) after sampling by titration with 0.1 M HCI. Interference from other bases
was corrected for by back titration with 0.1M NaOH following the bubbling of N, through the solution
to remove CO; and H,S (Armdrsson et al., 2000). By this method, the difference of the two titrations
gives the sum of TCC and total sulphide. The value for TCC was obtained by difference from
independent measurements of total sulphide. The major aqueous cations (Na, K, Ca, Mg, Al, Fe,) plus
Si, SO, (as S) and B were analysed for on a Thermo Jarrel Ash ICP-AES. Ion chromatography was
used to determine SOy, Cl, F.
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4. FLUID COMPOSITIONS

The composition of fluid discharged from wells in the four areas is quite variable (Tables la and 1b in
Appendix A). These are taken from different sources, namely Olkaria (Karingithi, 2002), Reykjanes
and Svartsengi (Orkustofnun data base, Armannsson, H., 2005, pers. comm.) and Nesjavellir (Giroud,
N., 2006, pers. comm.). Within the Olkaria geothermal field the composition of discharged liquid
water and steam is varied but less so at Nesjavellir. In Svartsengi and Reykjanes, fluid compositions
are quite homogenous.

The fluid composition from g \
the Greater Olkaria Olkaria East
Geothermal Area, Reykjanes, Olkaria North East
Svartsengi and Nesjavellir is Olkaria West
plotted on a CI-SO4-HCO; Olkaria Central
ternary diagram (Figure 10). :
The discharged waters in the Olkaria Domes
Olkaria West Field are Svartsengi
predominantly near neutral Reykjanes
sodium-bicarbonate  waters, ; ; 0 100
while those of from the \ Nesjavellir
Olkaria East and Olkaria
North East fields are dilute,
near neutral-pH  chloride
waters.  The waters from
Reykjanes and Svartsengi,
plot at the chloride apex.
Waters from Nesjavellir are 50
relatively enriched in
chloride, like the Olkaria East
waters.  Waters discharged
from wells in Olkaria Central 75
and Olkaria Domes are
mainly mixed sodium
bicarbonate - sodium chloride
waters. 100

I I I
Waters discharged from the 5040 25 50 75 10I(-)|CO3
weirbox of wells at Olkaria

have. chloride concentrations FIGURE 10: C1-SO4- HCO; ternary plot for fluids from
ranging from ~50 ppm to ~ different sectors of Olkaria, Reykjanes Svartsengi

400.0 ppm. The silica content and Nesjavellir geothermal fields
varies between ~ 350 ppm

and ~ 1000 ppm SiO,. The

total carbonate concentration is highly variable ranging from < 100 ppm to almost 2500 ppm as CO..
Gas content in steam, especially carbon dioxide (CO,) and hydrogen sulphide (H,S) is generally low
in the fluids of Olkaria except fluid discharged from Olkaria West which has a very high CO, gas
content in steam ~ 10,000 mmoles/kg (Table 1a, Appendix A). Nitrogen content in steam is relatively
high, but highest for well discharges in Olkaria Domes and Olkaria West which could suggest there is
a high contribution of flow from the surface to the fluids.

T % ® @ 0 +

>

At Reykjanes the water in the reservoir is sea water (Bjornsson et al., 1972). The composition of the
parent sea water has been modified by reactions with the basaltic rock. Slight loss of sodium has
occurred but slight enrichment in silica, potassium and calcium, and almost complete depletion in
sulphate and magnesium (Bjarnason, 1984). The chloride content of the geothermal water is close to
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that of sea water. Carbon dioxide is the most abundant gas, > 95 %, corresponding to ~2000 ppm in
the reservoir fluid. Compared to Olkaria, H,S and H, concentrations are relatively low.

The reservoir water in Svartsengi is two-thirds sea water and one-third meteoric water by origin as
indicated by its CI content. This parent water has also been modified by reactions with the basaltic
rock in a fashion similar to the water at Reykjanes. As at Reykjanes, CO, gas makes up the major gas
in the steam , ~ 95 vol.% . The concentrations of H,S and H, are low relative to Olkaria.

Water discharged from wells at Nesjavellir, which is meteoric by origin is very low in dissolved solids
(Table 1 b in Appendix A). Silica is the most abundant dissolved solid. The chloride content is 100-
200 ppm. The cause of the low Cl concentrations is the low CI content of the basalts with which the
water has interacted. Carbon dioxide is the major gas component in steam. Hydrogen sulphide and
hydrogen concentrations are relatively elevated compared to well fluids at Olkaria, Reykjanes and
Svartsengi.
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5. CALCULATION OF AQUIFER FLUID COMPOSITIONS
5.1 Discharge enthalpy of wells

Production wells at Olkaria and Nesjavellir typically have “excess” enthalpy (Table la and b of
Appendix A), i.e. the enthalpy of the fluid discharges is higher than that of steam saturated water at the
respective aquifer temperature. At Svartsengi production wells have liquid enthalpy, i.e. their enthalpy
equals that of liquid water at the temperature of producing aquifers except for shallow wells which
have been drilled into the steam cap that has formed on top of the liquid dominated reservoir as a
consequence of reservoir pressure decline following exploitation. At Reykjanes some wells have
liquid enthalpy and some excess enthalpy. Excess enthalpy of wells poses problems in calculating
component concentrations in the initial aquifer fluid from analytical data on samples of liquid water
and steam collected at the wellhead.

Excess well discharge enthalpy in the Olkaria East Production Field may be produced by withdrawal
of fluid from the steam zone and the underlying liquid dominated reservoir. In general it may,
however, be produced by processes occurring in the depressurization zone around discharging wells
where extensive boiling occurs. These processes are: (1) heat transfer from the aquifer rock to the fluid
that migrates through the depressurization zone and (2) separation to the relative permeabilities of the
liquid water and steam phases and their different flowing properties (e.g. Horne et al., 2000; Pruess,
2002; Li and Horne, 2004). Transfer of heat from the aquifer rock to the fluid flowing through the
depressurization zone into wells tends to occur because depressurization leads to cooling of the fluid
by boiling and hence generates a positive temperature gradient between the aquifer rock and this fluid.
Production of excess well discharge enthalpy by phase segregation tends to occur because the liquid
water is partially retained in the aquifer as a result of capillary forces, while the steam flows into wells.
“Excess enthalpy” may be due to the presence of significant steam fraction in the initial aquifer fluid.
Specifically at Olkaria, the “excess enthalpy” could, at least be due to contribution from the shallow
steam zone which overlies the liquid dominated zone. The discharge could also be from multiple
feeds, shallow vapour-dominated and deep liquid-dominated feeds.

If the excess discharge enthalpy is solely caused by conductive heat transfer from the aquifer to the
fluid flowing into the well (conductive heat transfer model), the composition of the total well
discharge will be the same as that of the aquifer fluid. Conservative components, such as Cl, which are
concentrated in the liquid water phase, will increase in the phase and approach infinity when the
discharge enthalpy approaches that of dry steam. On the other hand, if phase segregation were the
cause of the excess discharge enthalpy (phase segregation model), Cl concentrations in the liquid
water would be about constant but they would approach zero in the total discharge when the discharge
enthalpy approached that of dry steam.

When excess well discharge enthalpy is produced by the conductive heat transfer model, total well
discharge compositions can be used to calculate quartz and Na/K geothermometer temperatures. This
is, however, not valid if the cause of the excess enthalpy is phase segregation. Total discharge
composition will yield low quartz equilibrium temperatures, and the lower the higher the discharge
enthalpy. The Na/K geothermometer, which is based on an elemental ratio, is independent of which
model is responsible for the excess enthalpy.

Calculated temperatures of tqtz and tNaK from the equations given by Arnorsson (2000 a), for some
of the selected wells at Olkaria, Reykjanes, Svartsengi and Nesjavellir are presented in Table 3 of
Appendix A. At Olkaria, quartz equilibrium and Na/K geothermometer temperatures compare well
when using the segregation model to calculate the aquifer water compositions (Karingithi et al., 2006).
This also applies to Nesjavellir (Figure 11).

For the present study, therefore, the phase segregation model and the average of the quartz and the Na-

K geothermometer results were used to represent aquifer temperature of wells at Olkaria and
Nesjavellir. At Reykjanes, Na/K temperatures are somewhat lower than those of quartz. The cause is
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considered to be limited supply of K to the
water. The geothermal seawater has about
four times the K concentration of seawater
and the basaltic rock with which the
geothermal seawater has reacted is very
low in K. At Reykjanes, measured
downhole temperatures were selected
taking total well discharge compositions to
represent the aquifer water compositions.
The enthalpy of the wells represents pure
liquid and it is assumed they follow the
boiling point with depth curve. In the
sub-boiling reservoir at Svartsengi,
measured temperatures downhole were
selected. They compare well with both
quartz equilibrium and Na/K
geothermometer results.

A number of selected wells in Olkaria,
Reykjanes and Nesjavellir indicate tqtz
temperatures that are higher than tNaK. In
Reykjanes as explained above, the
difference could be due to limited supply
of potassium in the water. In the case of a
number of selected wells in Olkaria, and
Nesjavellir, this could be caused by the
model selected to calculate the aquifer
water composition which could be wrong.
The origin of the fluid composition could

be due to conductive heat transfer

from the aquifer rock to the fluid

flowing  into  wells  which
contributes to the discharge
enthalpy. Aquifer water

composition may not be the source
of the error. Other errors may arise
from the selection of discharge
enthalpy which is affected by
measurements of water flow.
Wells in the Olkaria Domes sector
have enthalpies close to those of
liquid enthalpy and tqtz is higher
than tNaK. A similar observation
is made for wells in the Olkaria
West sector (Table 3, Appendix A).
This difference may not be
explained by the selected discharge
enthalpy. A different temperature
model may be applicable for
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wells in Olkaria. As enthalpy



increases the difference in tNaK — tqtz increases because the enthalpy affects the value of calculated
Si0, concentration in the liquid water phase.

The temperature difference between tNaK and tqtz in wells OW 709 and OW-202 is high and these
stand out (Table 3 Appendix A). The high tNaK and tqtz differences for the fluids of wells OW-709
and OW-202 cannot be explained by enthalpy effects, but possibly by dilution of geothermal water.
Such dilution would not affect Na/K temperatures but yield low quartz equilibrium temperatures
relative to the temperature of the undiluted water. The high pH of the aquifer fluids of these two wells
could affect the tqtz due to enhanced dissociation of the unionised silica, but this does not seem to be
the case.

Another well with a high temperature difference between tNaK and tqtz is well OW-34. The well is
much higher in mineral content and its enthalpy is high ~2672 kJ/Kg. High enthalpy affects silica
concentrations. This could probably contribute to the large differences in tNaK and tqtz temperatures.

5.2 Calculation of gas concentrations in steam at atmospheric pressure

The WATCH chemical speciation program (Arnorsson et al., 1982), version 2.1A (Bjarnason, 1994),
was used to calculate aquifer water composition and aqueous species distribution from data on liquid
water and steam sample composition at wellhead conditions. This program assumes that both types of
samples are collected at the same pressure. As explained in section 3, the Olkaria well samples were
collected differently and therefore gas concentration in steam at atmospheric pressure was calculated
assuming that the secondary steam not sampled is free of gas. Two cases need to be condsidered
(Arnérsson and Stefansson, 2005). One is represented by steam samples collected from the wellhead
steam separator and the other when there was no wellhead separator and the steam samples were
collected with the aid of a Webre separator, which is connected to the two-phase pipeline discharging
into the atmospheric silencer.

Case 1: Steam samples collected from the wellhead steam separator separating the total discharge.

The total steam fraction discharged from the well at atmospheric pressure according to this case is X,
relative to the total well discharge is given by:

X4 = x5 4 x5 5.2.1

Here, X°, represents the steam fraction in the wellhead separator. The fraction of steam which forms
by depressurisation boiling of the separated water flowing from the wellhead steam separator to the
atmospheric silencer, X*“, relative to the total discharge is given by:

lLs _pla
X :(%)(I—X*‘) 5.2.2
h"* is the enthalpy of liquid water at the vapour pressure in the wellhead separator, 4" “ and L* denote
the enthalpy of steam saturated water and its latent heat of vaporisation at atmospheric pressure. X* is

the steam fraction in the wellhead separator. Hence, (1- X°) is the water fraction.

The gas composition of the total steam discharged (m',) is given by:

X'
mtg = Xal m g 523

where m’, represents the concentration of gas in the steam collected from the wellhead separator. For
steam samples taken from most of the wells in the Olkaria East Production Field, this approach has to
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be applied because the steam samples were collected at wellhead separator pressures and the water at
the weir box.

Case 2: Webre separator on a two-phase pipeline discharging into an atmospheric silencer.
The total steam fraction relative to the total discharge is given by the following equation:

X =X"+ X" 524
Here, X** represents the total steam fraction of the well discharge at atmospheric pressure, X" is the
steam fraction in the Webre separator and X" represents the steam fraction that forms by

depressurisation boiling from vapour pressure P" to atmospheric pressure.

A portion of the steam is not sampled when using the Webre separator and this fraction is given by

ht _hl,a ~ ht _hl,w _
L L

X" = X -X" 525

h"™ and L" represent the enthalpies of the steam saturated water at the vapour pressure in the Webre
separator and its latent heat of vaporization, respectively.

For correction of gas composition of steam sampled by use of a Webre separator and depressurisation
boiling from vapour pressure P" to atmospheric pressure, the following equation was used:

W
t_X %k
mg_Xal

m"g 5.2.6

where m", represents the concentrations of gas in a steam sample collected from the Webre separator.

This correction is applicable to steam samples collected from exploration wells, and for steam samples
collected before 2001 from wells in the Olkaria North East Field, Olkaria Domes and Olkaria West
Fields. The composition of Olkaria well fluids is shown in Tablela of Appendix A and calculated gas
concentrations in steam are shown in Table 2a for production wells in Olkaria East and Table 2b of
Appendix A for exploration wells in Olkaria North East, Olkaria West and Olkaria Domes.

5.3 Calculation of aquifer water compositions and speciation distribution

Component concentrations and aqueous species distribution in the water was calculated with the aid of
the WATCH chemical speciation program (Arnorsson et al., 1982; Bjarnason, 1994), version 2.1A, on
the assumption that excess discharge enthalpy was due to phase segregation only and that no
equilibrium steam is present in the aquifer. It was further assumed that any phase segregation that has
taken place occurs between 180°C and the initial aquifer temperature. For wells in the Olkaria East
sector which have a steam separator at the wellhead the calculation involves three steps: Firstly the
composition and speciation, including the pH, of the water in the wellhead separator was calculated
from the analytical data on the water samples from the weirbox on the assumption that the secondary
steam discharged from the atmospheric silencer was free of gas. Secondly, water composition and pH
so obtained were used, together with steam analysis data and measured discharge enthalpy, to
calculate liquid water and steam composition at 180°C (10 bars abs. vapour pressure). Thirdly, the
calculated liquid water and steam composition at 180°C was used to calculate the composition and
speciation distribution in the aquifer water taking the fluid enthalpy to be that of steam saturated water
at the aquifer temperature, but this temperature was taken to be the average of the tNa/K and tqtz
geothermometer temperatures, the latter being consistent with the phase segregation model.
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The procedure for calculating aquifer water compositions for wells in other sectors than Olkaria East
is somewhat different because the two phases of the discharges travel together to the atmospheric
silencer. Firstly, the steam composition at atmospheric pressure was calculated from the analytical
data in Table la of Appendix A taking the steam fraction, which forms by depressurisation boiling
between the gas sampling pressure and atmospheric pressure. Steam and water composition was
calculated at 180°C using the discharge enthalpy values, the water composition in Table la of
Appendix A and calculated gas concentrations in the steam phase at atmospheric pressure. The third
step is the same as that for Olkaria East wells.

The selection of the intermediate step at 180°C is based on the following considerations: the enthalpy
of saturated steam reaches maximum at around 235°C and in the range 180-270°C (10-55 bars-abs.
vapour pressure) it has a value close to this maximum but at lower and higher temperatures it drops
significantly. As a consequence of this, the steam to water ratio (enthalpy) of a fluid has little effect
upon depressurisation of the liquid water in the interval 10-55 bars-abs. Below 10 bars abs. steam
formation by depressurisation boiling is enhanced by decreasing steam enthalpy. The opposite is the
case above 55 bars-abs. Most of the Olkaria wells have temperatures less than 270°C. The calculation
procedure just described to retrieve the component concentrations in the initial aquifer water closely
matches the phase segregation model.
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6. POTENTIAL CORROSION BY CO, AND HCI
6.1 Carbon dioxide

The pH of geothermal water is
largely controlled by silicate
hydrolysis equilibria. In some cases
high concentrations of dissolved
carbon dioxide (CO,) in geothermal

Olkaria East
Olkaria West
Olkaria North East
Olkaria Domes

> HO+

. . Svartsengi
fluids could have an influence on Reykjanes
the pH. Carbonate carbon occurs 100 L Nesjavellir ) o

mostly as dissolved CO, and
bicarbonate. The partial pressures of
CO; in the deep fluid of the study
areas have been evaluated with the
assistance of the WATCH computer
code (Arndrsson et al., 1982;
Bjarnason, 1994) version 2.1A. At
Olkaria CO, partial pressures are
quite variable being very high in the
Olkaria West sector compared to the
other sectors of Olkaria or 10-100
bar (Table 4 of Appendix A). In
Olkaria North East they are 1-3 bar,
0.5 -5 bar in Olkaria East, and 2-4 ol
bar in Olkaria Domes. In the
reservoirs at  Reykjanes and
Svartsengi they are 0.5-0.9 bar and
0.6-1.7 bar respectively. At
Nesjavellir the CO, partial pressures 0.01 — T T T T T T "~ T
are even lower 0.07-0.09 bar for the 180 200 20 240 260 280 300
wells selected (Figure 13). Temperature °C

FIGURE 13: Aquifer temperature vs CO,
The carbon  dioxide (CO,) partial pressures in the aquifer fluids
concentrations in high-temperature
geothermal aquifer waters are highly variable. Essentially two factors control the aquifer water CO,
concentrations, (1) the rate of supply of CO, to the water from magmatic heat sources and (2)
equilibration with specific mineral buffers. In the study areas these buffers include epidote + prehnite
+ calcite + quartz and epidote + grossular + calcite + quartz (Karingithi et al., 2006; Fridriksson et al.,
2006). In Olkaria West, the CO, in the reservoir water is considered to be controlled by the rate of
supply of CO, from the magmatic heat source. Another possibility is that Olkaria West is on the
periphery of the Olkaria geothermal system and the fluid is peripheral, i.e. it is in outflow from the
system and has developed an excess CO, concentration. In other parts of Olkaria and in the other
study areas, CO, aquifer water concentrations are on the other hand controlled by close approach to
equilibrium with one of the mineral buffers mentioned above.

Log PCO3

[ | IIIIIII
>

Shallow groundwaters, rich in CO,, may form when CO,-rich steam rising from the deeper reservoir
condenses into such shallow water. Waters of this origin exist in Olkaria West, as evidenced by the
discharge of well OW-304D. The pH of such waters could be lowered by the high CO, concentrations
(Figure 14).

Waters of this type have also been reported from Broadlands in NewZealand (Hedenquist and Stewart,

1985). Shallow CO,-rich groundwaters may cause corrosion on the outside of casings, at least if
cementing of the casing is in adequate or if the water can dissolve the cement.
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Concentrations of CO, at equilibrium between water and steam can be calculated using
thermodynamic data on the equilibrium partial pressures of dissolved CO, and a given temperature,
using Henry’s law constant. The expression used is:

mCQO, = kh*Pi,
where mCQO, = concentration of CO, in moles/kg,
Kh = Henry’s Law coefficient,
P i= Partial pressure of CO, at equilibrium in bars.

Arnorsson et al (1996) describe the temperature dependence of Henry’s Law coefficient given by the
function:

COyg = COsaq = -59.612 + 3448.59/T - 0.68640x10°° T> + 18.847 xlog T

where T = Temperature in Kelvin.

Upon  extensive .boiling .of T ¥ Olkaria East
geothermal water in producing ®  Olkaria West
aquifers and wells, the CO, initially m Olkaria North East
dissolved in the aquifer water is 100 — ® ®  Olkaria Domes
largely transferred to the steam 3 o Reykjanes
which forms. Figures 15 and 16 ] o ¥ Svartseng
show how CO, concentrations in | () ¥ Nesjavellir
the boiling water and the steam

change during one step adiabatic 0= o

boiling of water from selected wells 3 -|-*

in the study areas. a [ |

The separated water at the surface
contains 0.5-5 ppm dissolved CO,
and the separated steam 0.2-24
ppm. These are theoretically i
calculated using Henry’s law

constants for CO, at equilibrium. 3 gx
One might expect that the separated ]
water would cause corrosion of
mild steel due to its relatively high
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CO;, content. Such corrosion is, 0.01 x x w \
however, generally not observed in 5 6 7 8
geothermal installations. The reason pH

is considered to be the formation of FIGURE 14: Aquifer pH vs CO, partial pressures
protective sulphides, carbonates and in the aquifer for selected wells in the study areas

silicate coating (Jones, 1996).

Upon condensation of separated steam, CO, rich condensate with a relatively low pH will form
(Figure 17). The pH of condensate formed from the selected wells due to CO, in the Olkaria West
sector is lower than that formed from the rest of the selected wells in the study areas. A complication
that could arise is the influence of H,S. The problem with CO, corrosion is always linked to pH and
the only problem to worry about is corrosion by steam condensate. Instability of sulphide minerals
rendering them less protective will contribute.

21



+——+——+ OW-901 Olkaria Domes
@—@—@ 0W-301 Olkaria West
O——@ 0OW-306 Olkaria West
cp——efp—=f OW-30 Olkaria East
{&O—©O—< OW-34 Olkaria East
He———K OW-20 Olkaria East
H—H—}¥ OW-714 Olkaria N.East
Fre—rfe—& OW-709 Olkaria N.East

100000

E—E—E SV-05 Svartsengi
B—B—=F] sv-11 Svartsengi
O—O—© RN-10 Reykjanes
A—&—A RN-11 Reykjanes
<G—<—<] NIJ-14 Nesjavellir
B—P—P NI-22 Nesjavellir

1000000

10000

1000

_
=)
S

log CO7 concentrations in water (ppm)

-
o

100000

10000

log CO3 in steam (ppm)

1000

+——+—+ OW-901 Olkaria Domes
@—@—@ 0W-301 Olkaria West
O—O—@ 0OW-306 Olkaria West
cp——el——e: OW-30 Olkaria East
O—E— OW-34 Olkaria East
H——3K OW-20 Olkaria East
H—H—¥k OW-714 Olkaria N.East
Fe—— OW-709 Olkaria N.East
BH——H sv-05 Svartsengi
B—E8—HE1 sv-11 Svartsengi
A—A—A RN-10 Reykjanes
<G4—<——<] NJ-14 Nesjavellir
P—P—D NJ-22 Nesjavellir
QO—O—© RN-10 Reykjanes

1
I I I I

320 280 240 200

Temperature °C

FIGURE 15: CO, concentrations in separated
water of selected wells with several steps of
single-step adiabatic steam loss

6.2 Hydrogen chloride

Hydrogen chloride (HCI) is a
component of volcanic gases and is
present in steam of vapour
dominated  geothermal systems
located in different geologic settings
(Giggenbach, 1975; Truesdell et al.,
1989). The acidity of CI-SOy
springs in some geothermal fields
has been attributed to the presence
of dissolved magmatic HCI
(Giggenbach, 1975; Ellis and
Mahon, 1977). Haizlip and
Truesdell ~ (1988)  report Cl
concentrations of 10-120 ppm in
superheated steam in the vapour-
dominated field at the Geysers in
California. In Larderello, Italy,
most wells produced steam with < 5
ppm Cl in the early 1960’s but later
levels rose to 10-80 ppm (D”Amore
et al.,, 1977). At Tatun, Taiwan, a
dry steam well discharge contained
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FIGURE 17: Condensate pH at separation temperatures
for selected wells in the study areas

~3500 ppm CI (Ellis and Mahon, 1977). In Krafla, Iceland (Truesdell et al., 1989, Truesdell, 1991)
intrusion of magmatic gases into the geothermal system during the Krafla fires caused high
concentrations of HCI in Krafla well KG-12. The high HCI concentrations in the superheated steam

caused corrosion in this well.
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High concentrations of HCI can be generated from boiling moderate-to-high salinity brines with near
neutral pH values (5-7) and with temperatures greater than about 300° C. D’Amore et al., (1990)
have demonstrated a close correlation of high temperature areas of Larderello and The Geysers
reservoirs with HCI in steam. Extreme boiling and drying of a reservoir originally containing a more
or less concentrated brine is not limited to vapour—dominated systems, but can occur in liquid
dominated reservoirs as well. Boiling in high temperature geothermal reservoirs such as Reykjanes
and Svartsengi Iceland; Cerro Prieto, Mexico; Salton Sea California, could produce vapour containing
HCIL.

Serious corrosion has been linked with HCI in geothermal steam. Corrosion occurs when the steam
condensates and the HCI dissolves in the condensate to form a strong acid, hydrochloric acid
(Allegrini and Benvenuti, 1970). Hydrogen chloride is highly soluble in liquid water. For this reason
HCI may be effectively removed from steam by passing it through liquid water and by minimising
steam condensation along steam lines by using better insulation. This is how HCI corrosion in well
KG-12 in Krafla, Iceland, was stopped (Thérhallsson et al., 1979). Injection at Larderello is known to
have decreased the HCI concentration in the steam, presumably by its dissolution in the injected water.
Two of the areas included in this study (Reykjanes and Svartsengi) have quite high Cl concentrations,
or about 20,000 and 13,000 ppm in the reservoirs respectively. At Olkaria and Nesjavellir Cl
concentrations are much lower. At Reykjanes, Nesjavellir and Olkaria, aquifer water temperatures in
some wells exceed 300°C but in Svartsengi they are very constant, around 240°C. Experience has
shown that corrosion is not significant at Olkaria, limited at Svartsengi but rather severe at Reykjanes.
This experience stimulated a study of HCI concentrations in liquid water and steam as a function of
the CI content of the initial aquifer water and the pH and temperature of variably boiled water and
associated steam.

Analysis of Cl in steam is not considered to give reliable results for HCl concentrations. Chloride
analysed in condensed steam would be total chloride consisting of chlorides formed from alkali and
alkali earth metals. By carrying out calculations of HCI concentrations this, gives a better estimate of
chloride concentrations derived from HCI on condensation. In most cases the Cl concentrations that
would be derived from HCI would not be detectable and only a very insignificant amount of carryover
of liquid water would dominate the Cl in steam samples. For example at Reykjanes, 0.0005%
carryover of the brine would yield 0.1 ppm Cl in the steam. For this reason, it is considered more
accurate to calculate HCI in steam from experimental data on the dissociation of HCIl and the
distribution coefficient for HCI between liquid water and vapour. The fraction of calculated HCI1
concentrations are small, but when the chloride is entirely from HCI and in dry steam, even at such
small concentrations this become corrosive. The chloride from the HCI becomes concentrated in dead
legs and stagnant areas, which develop low pH and hence become corrosive.

The WATCH chemical speciation program (Arnérsson et al., 1982), version 2.1A (Bjarnason, 1994)
was used to calculate initial aquifer water composition and the speciation distribution in this water.
From the calculated activities of the H" and CI’, the concentration of the HCl,, species in the water was
calculated using data on the association constant for HCl,q from Ruaya and Seward,(1987) assuming
the the activity coefficient for this species was unity. The concentration of HCI in steam (HCl,) was
subsequently obtained from the experimental data of Simonson and Palmer (1993) for the distribution
coefficient for HCI (Dyc) between liquid water and steam.

According to Ruaya and Seward, (1987) the temperature dependence of the association constant for
HCl,q is given by:

-logKue = - 2136.8898 - 1.022034x T + 45045+10™x T* +50396.40/T +901.770xlogT
where T = Temperature, in Kelvin

The distribution coefficient for HCI between vapour and liquid water (Dycy,) is defined as:
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HCI
Dy = [m V]

[mHCI ]

Temperature dependence is given by (Simonson and Palmer, 1993):

log Dyiey = -13.4944 — 934.466/T — 11.0029xlogp + 5.4847xlogT

where T = The temperature in Kelvin, as before; and
: 3
p = The density of solvent (g/cm’).
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FIGURE 18: Aquifer water HCI concentrations vs.
aquifer water chloride concentrations of
selected wells in the study areas
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The density of the dilute waters from
Olkaria and Nesjavellir was calculated
using thermodynamic properties of
water and steam given by the computer
code = TAFLA  (Bjarnason and
Bjornsson, 1995). Densities  for
Reykjanes and Svartsengi brines were
calculated using densities of saturated
sodium chloride solutions provided by
Potter and Brown (1977).

The calculated concentrations of HCl
in the aquifer waters of the study areas
are presented in Table 4 of Appendix A
and depicted in Figures 18, 19, 20
respectively as a function of aquifer
water chloride concentrations, pH and
temperature.

The concentrations of HCl,, increases
with increasing aquifer water Cl
concentrations, decreasing  aquifer
water pH and increasing aquifer
temperature. The water in producing
aquifers of the Olkaria wells contain
HCl in the range between ~ 1x10” ppm
and ~ 5x10* ppm. The aquifer water
HCI concentrations in Reykjanes and
Svartsengi are much higher, ranging
between ~0.32 and ~ 0.81 ppm and
~3x107 and ~8x10? ppm, respectively.
At Nesjavellir, the HCI in the aquifer
waters is in the range ~ 3x107 - 5x107
pm for the selected wells.

There is a wvariation in HCI
concentrations in the Olkaria well
fluids of about an order of magnitude
with the exception of fluid from one
well, well OW-34 which has a slightly
higher HCl concentration, than other
Olkaria well fluids (Figure 18). At
Olkaria, the variations in the HCI
concentration can be attributed to the



variation in chloride concentration, pH
and temperature. The chloride
concentration in the aquifer waters at
Olkaria varies between ~ 40 ppm and ~
2000 ppm in the aquifer and the aquifer
pH from ~ 6 to 8. Aquifer temperatures
vary between ~ 200° and 300°C. The
wide range in the concentrations of
chloride, pH and temperatures at
Olkaria contribute to the wide range of
HCl,q concentrations. At Nesjavellir,
HCI in the aquifer fluids is very low due
to the very low chloride in the aquifer
water, ~ 150 ppm and a pH of the
aquifer fluids of 8. Aquifer
temperatures at Nesjavellir range
between ~ 270° and 300°C for the wells
studied.
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The high HCI concentrations in the
aquifer water in Reykjanes and
Svartsengi are very high compared to
those of Olkaria and Nesjavellir. The
high HCI concentration in the aquifer
water at Reykjanes and Svartsengi is a result of
high chloride concentrations and low pH in the
aquifer waters of these two fields. The chloride
concentrations in the waters of these two fields
are ~ 20,000 ppm and ~ 13,000 respectively and
the pH of the aquifer water in the range of ~ 5.1
to ~5.6. Temperatures in Reykjanes range
between 250° and 320°C. At Svartsengi the
temperatures are almost homogenous, being in
the narrow range of 235° and 240°C.

Upon boiling the dissolved HCIl is partly
transferred to the steam that forms. The quantity
transferred is affected by several parameters.
The most important ones include changes in pH,
which occur during boiling, and the temperature
of the fluid mixture. Figure 21 shows how HCl
concentrations in steam decrease during one step
adiabatic boiling for all the wells considered in
the present study.

Early steam is somewhat enriched in HCI
relative to the source aquifer water. Upon
continued boiling the cause of the decrease is
largely due to an increase in pH upon boiling
and by changes in the value taken by the HCI
distribution  coefficient. = Because it is
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FIGURE 20: Aquifer water HCI concentrations vs.

aquifer temperature (°C) of selected wells
in the study areas
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steps of single-step adiabatic boiling of
selected wells in the study areas

240 280 320

temperature dependent the distribution coefficient, is affected by the decrease in temperature when the
fluids cool by adiabatic steam loss. Changes in the Cl content of the water, which are caused by steam
formation, have small effect. The HCI concentrations in steam are ~ 10°-10° times more for Reykjanes
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S E b oveoni Olari Domes well fluids than the well fluids in Olkaria and
' Nesjavellir. At Svartsengi they are ~ 10*-10*
times higher than in the Olkaria and Nesjavellir
e OV-709 Ollari Norh Eas waters.

H—H—HH sv-05 Svartsengi
B—8—E sv-1i Surtsengi
iaa E?IL?EJE” Changes in pH are affected by the concentrations
(908 e of carbon dioxide in the initial aquifer water and
[ in the Olkaria well waters, the CO,
concentrations are variable. The Olkaria well
waters have a relatively high initial pH in the
aquifer except for wells that are in the Olkaria
West sector. Upon boiling by steam loss with
decrease in temperature, the increase in pH is
much greater for wells with a high initial
concentration of CO, in the water in Olkaria.
Figure 22 shows decrease in the HCI
concentrations with increase in pH upon

PH adiabatic boiling.

FIGURE 22: HCI in vapour with changes in pH
upon several steps of single-step adiabatic
boiling of selected wells in the study areas.

The boiling is from the respective aquifer
temperature (See Table 4 in Appendix A)
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The large increase in pH in the Olkaria well
waters with decrease in temperature, contributes
to the low concentrations of HCIl in the steam
when the water boils. The Reykjanes, Svartsengi
and Nesjavellir aquifer waters vary less in CO,
gas concentration than the waters of the Olkaria. The pH of aquifer water in Reykjanes and Svartsengi
are similar while at Nesjavellir the aquifer pH is higher. The relative increase in pH with decrease in
temperature is gradual in Reykjanes, Svartsengi and Nesjavellir wells upon steam loss. The trends for
decrease in HCI concentrations, when HCI partitions into steam, are similar to those of Olkaria aquifer
fluids. As the waters cool by steam loss, HCI tends to be retained more in the liquid and less partitions
the steam.

The concentrations of HCl in steam collected at the wellheads of selected Olkaria, Reykjanes,
Svartsengi and Nesjavellir wells are shown in Table 5 of Appendix A. HCI concentrations in Olkaria
and Nesjavellir are very low 3x10™ - 3x10° ppm and 5x10 - 1x10” ppm, respectively. At Svartsengi
and Reykjanes these are 6x10™*-1.5x10~ ppm and 2x10™'-7x10™" ppm, respectively. The concentrations
of HCI in the separated steam conveyed to the power plant at Olkaria are very low, 10®-10° ppm. At
Svartsengi they are about 5x107 - 10™* ppm but as high as 0.1 ppm at Reykjanes. The high values at
Reykjanes are due to the high Cl content of the aquifer water and, in particular the high pressures in
the steam separators. All these concentrations are considerable lower than measured Cl concentrations
in the steam of many vapour-dominated geothermal systems e.g. in dry steam from well KG-12 at
Krafla, Iceland (Truesdell, 1991). Yet, corrosion at Reykjanes due to condensation of high pressure
steam may be a problem. Condensation need not occur during conductive heat loss. At temperatures
higher than that corresponding to maximum steam enthalpy, condensation will occur by pressure drop
to the maximum enthalpy value. If the discharge is almost dry steam corrosive liquid water could be
produced in this way. At Reykjanes corrosion in pipelines due to production of HCI may not occur
due to formation of stable sulphide scales and the HCI could be scrubbed. The quantity of this scale is
limited except from saline waters. Stable sulphide scale formation at Reykjanes has been reported by
Hardardottir et al. (2001, 2004). In steam pipelines made of carbon steel, thin coatings of stable
sulphide, carbonates, silicates or metastable sulphide phases are known to form a protective coating
that tends to prevent corrosion of casing and other material that would otherwise be a problem due to
CO; and HCI. Other scales that form protective coating are carbonates. At sufficiently low pH in
condensates containing HCI, phases of protective sulphides and carbonates can become unstable and
dissolve and corrosion can be induced.

26



A 240°C a steam cap overlies the liquid-dominated reservoir in Olkaria East and a similar steam cap,
also at ~240°C has formed in Svartsengi in response to pressure drawdown caused by the exploitation
of the reservoir. The HCI concentrations in the steam caps of these two fields are expected to be some
107 and 10" ppm CI in Olkaria East and Svartsengi, respectively. If all the Cl is from HCI and taking
the acid to be 100 % dissociated, a concentration of 0.1 ppm Cl yields a pH of 5.5. Chloride
concentrations measured in the condensate of one dry steam well at Svartsengi is about 0.6 ppm and
the condensate pH of 4.3. At Svartsengi, the pipes conveying steam from one of the wells that tap dry
steam from the steam cap had to be replaced due to corrosion (Thérhallsson, 2005, pers comm.). It
seems unlikely that HCI is the main cause of corrosion in view of the pH value produced by 0.1 ppm
HCI in the steam. CO, is a more likely candidate. Where severe corrosion which has been attributed
to HCl has occurred, such as at Krafla, Iceland (Truesdell, 1991) the Geysers, USA (Trusedell and
Haizlip, 1990) and Larderello, Italy (Allegrini et al., 1970) concentrations as high as 100 ppm in steam
have been reported giving a pH of 2.5 in the steam condensate. A possible way of scrubbing out the
HCI in the high pressure steam at Reykjanes and Svartsengi is to pass it through a basic solution such
as a NaOH-solution.
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7. SCALING IN WELLS AND SURFACE INSTALLATIONS

7.1 Theoretical aspects of calcite scale formation

2_

Calcite is abundant as a secondary +  Olkaria Fast
mineral in many hydrothermal systems. ®  Olkaria West

. o g o ] Olkaria North East
Many studies have indicated that >100 7 % Olkaria Domes
C waters are close to being calcite % Reykjanes .
saturated (e.g. Ellis and Mahon, 1977; | — & Svartsengi
Arnodrsson, 1978). In some exploited A Negalir
fields, water in producing aquifers may % |
be calcite undersaturated. The = A +
calculated state of calcite saturation in £ . * toor "
the initial aquifer water of wells at f:;' 0 * + oo
Olkaria, Reykjanes, Svartsengi and ¢ ? " *, PN
Nesjavellir is presented in Figure 23. g 4 e ° P ° A s
The data show some scatter. This is 4 *
more likely due to errors in calculating
the calcite activity product rather than a
reflection of  departure from h
equilibrium. In calculating the aquifer
water composition with the aid of the -2 L L R S I S B
WATCH speciation program 180 200 220 240 260 280 300
(Arnoérsson et al., 1982; Bjarnasson, Temperature °C
1994) Version 2.1A, it was assumed FIGURE 23: Aquifer temperature vs calcite saturation
that excess well discharge enthalpy was for selected wells at Olkaria, Reykjanes, Svartsengi
caused by phase segregation in and Nesjavellir

producing aquifers and that no

equilibrium steam was present. If such steam is present in the initial aquifer fluid, the calculated
aquifer water pH is too low and the aquifer water CO, concentration too high with the result that too
low values are obtained for the calcite saturation index (Sl.4), i.e. calcite undersaturation, if the initial
aquifer water is truly just calcite saturated. Also, some calcium may have been removed from the
aquifer water upon its boiling as a consequence of calcite precipitation leading to a low calcium
concentration in the water samples collected at the wellhead relative to the initial aquifer water. This
effect will also tend to give low values for Sl Removal of calcium from solution by calcite
precipitation is expected to affect the calculated Sl., of the dilute waters significantly at Olkaria and
Nesjavellir because of their low calcium content but not the calcium-rich saline waters at Reykjanes
and Svartsengi. Other errors that may contribute significantly to departure from calculated calcite
equilibrium include erroneous values obtained in the measurement of pH of water samples and by
contamination of these samples by condensed steam. Such contamination is particularly prone to occur
when sampling water from wells with high discharge enthalpy, such as well OW-34 at Olkaria.

Figure 24 shows how the calculated saturation index for calcite varies during adiabatic boiling of
aquifer water of selected wells from the study area. The shapes of the SI, curves are more accurately
defined than the absolute Sl.; value at each temperature. The effect of depressurization boiling upon
the calcite saturation state is essentially twofold. Firstly, the water is degassed with respect to CO,,
which leads to an increase in the pH of the boiling water (Figure 25) which in turn brings about an
increase in the carbonate ion concentration and hence in the [Ca™][CO5?] solubility product.

Secondly, depressurization boiling causes cooling of the water. The solubility constant for calcite
increases with decreasing temperature. Degassing by pressurization boiling causes an initially calcite
saturated solution to become supersaturated whereas the cooling by this boiling has the opposite
effect.
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solubility in water at these high
temperatures.

The shape of the curves in Figure 24
can essentially be explained by a
combination of three factors, (1) CO,
degassing during boiling, (2) the
solubility of CO, in water as a function
of temperature and (3) the retrograde
solubility of calcite with respect to
temperature. The concentration of CO, .
in the initial aquifer fluid also has an

influence.  Aquifer  waters  with 2
temperatures below about 280° C show
an increase in the value of Sl during
the early stages of boiling and greater s
the lower the aquifer temperature. Such ~ ~ o r ot
an increase is not observed for the 80 120 160 200 20 280 320

. . . Temperature °C

~300° C aquifer waters at Nesjavellir. ) ) )

Maximum Sl values are attained some FIGURE 24: Changes in calcite saturation produced
ca

20-40 °C below the initial aquifer by several steps of single-step adiabatic steam loss
for selected well fluids at Olkaria, Reykjanes,
Svartsengi and Nesjavellir

Calcite Saturation Index

temperature. At maximum the waters
have largely been degassed and at
temperatures below the maximum, Sl
values become successively lower due to increasing calcite solubility with decreasing temperature. For
the relatively hot aquifer waters at Nesjavellir, SI.,; values decrease progressively with decreasing
temperature due to the combined effects of increasing calcite solubility, limited CO, degassing during
the early stages of boiling due to the relatively high CO, solubility in water at the high temperatures
and relatively low CO, concentrations in the initial aquifer waters. Continued high SI., values for
wells OW-301 and OW-304 during boiling all the way down to atmospheric pressure is due to the
high CO, content of the initial aquifer fluid which requires extensive steam formation for extensive
degassing of the aquifer water.

The results discussed above and presented in Figures 23 to 25 assume adiabatic boiling and the
equilibrium distribution with respect to CO, is attained between the liquid water and steam phases.
Such equilibrium may not be attained due to rapid steam formation and insufficient time for the CO, to
be transferred from the boiling water to the forming steam which is required for attainment of CO,
distribution equilibrium between the fluid phases. Incomplete CO, transfer would change the shape of
the curves in Figure 24 in such a way that the maximum would be depressed and the overall change in
Sl would decrease more gradually with decreasing temperature.

Calcite scale formation is not expected to be a problem at Nesjavellir and Olkaria East, Olkaria, the
reason being the dilute nature of the waters and the high temperatures at Nesjavellir. However, in
Olkaria West calcite scale formation in wells may be a problem, depending on the depth level of first
boiling. If it is within the well it may be relatively severe but not so if extensive boiling starts in
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At Svartsengi calcite scaling was
troublesome in shallow wells during
the early years of production when the
first level of boiling occurred within
the  producing  wells.  Pressure
drawdown in the reservoir by
exploitation caused extensive boiling in
producing aquifers of these shallow
wells with the result that calcite scale
formation was no longer observed. It is
! S that Calcite is still considered to be
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not been observed as a problem. The
FIGURE 25: Calculated aquifer water pH for selected cause is considered to be high reservoir

PH on adiabatic steam loss
|

Olkaria, Reykjanes, Svartsengi and Nesjavellir wells temperatures and high yield of wells
and changes in pH during several steps of which tends to cause incomplete CO,
single-step adiabatic steam loss degassing during boiling.

7.2 Scaling tests at Nesjavellir

It is common practice in the geothermal industry to carry out scaling and corrosion tests to aid material
selection and quantify the rate of scale deposition which is not possible theoretically. This involves
insertion of plates into the stream of the geothermal fluids and the study of their corrosive nature and
any deposits that may form on the plates. The present scaling study at Nesjavellir involved the
insertion of stainless steel coupons into the two phase flow pipelines at two wellheads and into the
stream of separated water upstream and downstream of a retention tank. This water is significantly
supersaturated with respect to monomeric silica (i.e. it is present mostly as single SiO, molecules).
Monomeric silica grows on surfaces which act as active sites as mechanism of silica deposition.
Downstream of the retention tank, the water is diposed of into an injection well. In the tank most of
the silica in excess of amorphous silica solubility polymerizes. Polymeristion goes through a stage
process i.e. monomer —>dimers — trimers —> tetramers — polymers —> gel etc. Polymerisation
continues until silica saturation is reached. It is known that (Yanagase et al., 1970; Rothbaum et al.,
1979) fully polymerized silica precipitates much more slowly from solution than monomeric silica, at
least from dilute water as such that at Nesjavellir. The purpose of the retention tank is thus to reduce
amorphous silica deposition in the injection well and the receiving aquifers. The purpose of the scaling
tests up and downstream from the retention tank was thus to observe the extent to which silica
polymerisation reduced the rate of amorphous silica precipitation. The purpose of the tests at the
wellheads was principally to observe the rate and nature of sulphide scale formation and to identify
whether phases other than sulphides formed in significant amounts.

A simplified process flow diagram for the Nesjavellir co-generation power plant is shown in Figure

26. The diagram shows the process flow from the geothermal wells being separated into steam and
water at ~ 14 bar absolute pressure in a central separation station. The steam is piped to power plant
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amounts of geothermal steam, which contains H,S, as shown in Figure 26 and described in more detail

by Gunnarsson et al., (1992).

Demand for space heating varies over the year while generation of electricity is run as a base load.
The output of the wells is regulated accordingly to the energy demand and thus, the steam and the
geothermal water are utilised in the most efficient way possible for co-generation of electrical and

thermal power.
7.2.1 Test coupons

Scaling tests were conducted on fifteen coupons of
stainless steel 304 (Figure 27). At the end of the test
only nine coupons were used in all, as six coupons
were lost during the test. The specimens were labelled
by imprinting the designation codes into the metal
surface using hardened steel stencil stamps hit with a
hammer. These codes were numbered in a sequence as
shown in Figure 27.

The arrangement consists of a nozzle that is fitted with
a fully open gate or plug valve. The rod shaped
specimen holder is contained in a retraction chamber
which is flanged to the valve, and is fitted additionally
with a drain valve. The other end of the retraction
chamber contains a packing gland through which the
specimen holder passes. The test specimens are
mounted on the rods in the extended position and are

then drawn into the retraction chamber. The chamber is bolted to the gate or plug valve, which is then
opened up to allow the specimens to be moved into the operating environment. The sequence is
reversed to remove the specimens. The type of the retractable specimen holders used in this work is
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FIGURE 26: Simplified process diagram of
the Nesjavellir co-generation power plant

FIGURE 27: Prepared test coupons with
imprinted identification number codes



FIGURE 28: Retractable coupon holders, a) Used for high pressure points e.g. at the wellheads;
and b) For low pressure points e.g. on the separated water line at the re-injection well

shown in Figures 28 a and b. In Figure 28 a a test holder for high pressure applications is shown and
this was used for test coupons at the wellheads. In Figure 28 b is shown coupon test holders for low
pressure applications as one that was used on the waste water line at the re-injection well. These have
test coupons attached to them.

The coupons were cleaned, dried and their weights taken before they were introduced into the test
environment. The coupons were mounted on retractable “slip in” specimen holders. These have the
advantage of being inserted into plant test environment without the need to shut down. The coupons
were first abrased with a soft sand paper then cleaned in hot distilled water before being degreased in
isopropyl alcohol. The method for cleaning and preparing the coupons is detailed in Appendix B.

7.2.2 Test procedures and selection of test sites for the study

The retractable specimen holders with the cleaned dried and weighed stainless coupons screwed onto
them were inserted in different fluid environments. During the tests the pressure at the wellhead of
one of the wells (NJ-14) was 25 bar and that of the other (NJ-22) was 34 bar. The discharge enthalpies
of NJ-14 and NJ-22 are 1400 kJ/kg and 1800 kJ/kg, respectively. Coupons were inserted at the
wellheads of each of these two wells. A third site was chosen just downstream of the heat exchangers
inside the plant which recieve separated water at about 188°C. At this study point the separated waste
water extruding from the heat exchangers has cooled to 60-95°C depending on the demand for hot
water in Reykjavik. The fourth site was at the point of entry to the retention tank and the fifth where
waste water flows into the injection well. The last two sites were chosen to investigate the effect of
silica polymerisation in the retention tank on the rate of amorphous silica deposition. The different
types of selected test sites are shown in Figures 29, 30 and 31 respectively.

The test coupons were introduced the test sites on 06 July 2005 at the retention tank and re-injection
well site and on 14 July 2005 at the wellheads of NJ-14 and NJ-22 and after the waste water leaves
the heat exchangers. The coupons were inspected after ~ 13 weeks on 14 October 2005 to check on
any signs of scale deposition. On this date one coupon was extracted from each test site and replaced
with a new set of cleaned and weighed test coupons. These new test coupons, together with the ones
that had been left intact 13 weeks were kept in place for an additional ~ 16 weeks to monitor the
deposition rates from fluids at all the sites. In all, the test thus lasted for ~ 29 weeks. The test
specimens were removed from the test sites on 30th January 2006. Incidentally, when we went to take
out the test coupons from all the sites on this date, it was realised that the coupons in the sites at wells
NJ-14, NJ-22 and the site after the heat exchangers were missing from the holders. It was hard to
establish what caused their removal but it could have been due to unexplained changes in the flow
patterns of the well fluids and the separated water downstream of the heat exchangers that could have
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loosened the screws and nuts on the
holders and blown the coupons into the
flow line. The loss of these coupons was
rather unexpected. On 30 January, 2006
all the test coupons were removed from
the test sites. At the test sites at the entry
of the retention tank and the injection
well, coupons that had been replaced and
those that lasted for 29 weeks in the test
environment were both recovered. The
thickness of the scale deposited on the
test coupons was measured with a
micrometer screw gauge. After drying
the test coupons, these were stored in a
dessicator to remove moisture and their |
weights determined.

Coupon
holder

7.3 Analysis of scales

Scales that formed on the coupons were
studied by different analytical tools.
They included binocular microscope
examination, Fourier transform infrared
spectroscopy, (FTIR) scanning electron
microscopy (SEM- EDS), X-Ray powder
diffraction (XRD) and chemical analysis
by inductively coupled plasma emission
spectroscopy (ICP-AES). UV spectro-
photometry was used to determine silica
in the scales. Brief descriptions of each
technique are given in Appendix B.

FIGURE 31: Coupons at the re-injection well

The nature of the scale forming
environment and type of scale formed is conveniently divided into two groups: Scales forming from
two-phase fluid at wellheads and scales forming from separated water after the heat exchangers, at the
entry to the retention tank and just upstream of the re-injection well. Scales forming from separated
water are dominantly amorphous to X-rays and the most abundant phase is amorphous silica. The
scales forming at the wellhead are of different a nature, being mostly sulphides in the case of well NJ-
14 but oxides of iron in well NJ-22.
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FIGURE 32: Photograph of coupons after a 13 week test period

Weight gain after 29 Weight gain after 29
weeks. Coupon # 18 weeks. Coupon # 19

FIGURE 33: Photos showing deposition of scale on test coupons at, a) The retention tank;
and b) The injection well

Of coupons removed from the retention tank and heat exchangers after 13 weeks, there was some scale
on one coupon that peeled off slightly while it was being removed so that the measured weight gain is
low for this coupon. The coupons after 13 weeks in the test environment are shown in Figure 32. In
Figures 33 there are shown photographs of test coupons at the entry to the retention tank and at the
injection well, respectively.

7.3.1 Binocular microscope descriptions
Coupon # 16 (After heat exchangers): Fine grained dark grayish deposits observed on the coupon. The

deposit formed thin sheets that indicated signs of peeling off. Dark grey deposits on the edges. There
appeared to flow banding on the edges.
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Coupon # 20 (Re-injection well): A very dark grey deposit on the test plate. The deposit is very fine
grained and does not show any flow banding. It is adherent to the coupon plate. The coupon is fully
covered with fine white grained deposit.

Coupon # 10 (Well NJ-14): The coupon was completely covered with dark grey fine and coarse
deposits. The coarse deposits flake off slightly but the fine deposit is very adherent to the coupon. The
flakes are fine grained and dark grey in colour. Sulphide crystals are abundant.

Coupon # 25 (Well NJ-22): Dark grey to black deposits formed on the plate. On some parts of the
plate the deposits are rather thick. The thickness was not uniform. Occasionally the deposit flakes off
though in most instances it is adherent onto the plate. Sulphide crystals not nearly as abundant as in
scale from NJ-14. Very fine grained.

Coupon # 17 (At entry to re-injection well): A very fine thin sheet of deposit on the plate. The deposit
was light grey in colour, had partly peeled off from the plate when the coupon holder was being
removed from the insertion point at the delay tank. No signs of flaking. White to brown coloured
crystals.

Coupon # 18 (At entry to re-injection well): Dark grey and white crystals were distributed on the plate:
The white crystals have different shapes and sizes and are widespread on the coupon plate. Some
crystals are glass like, some are white but not shiny, occasional brown crystals probably silica or pyrite
in the scale. Some reddish crystals were present in this coupon scale probably haematite. Some white
crystals embedded in the background.

Coupon # 5 (At entry to re-injection well): The deposit was dark grey and non-uniform white-
brownish crystals were widely embedded in a finer background. Some crystals look glass like.

Coupon # 19 (At re-injection well): A very thin layer of fine dark grey to black evenly distributed
deposit on the coupon.

7.3.2 Fourier transform infrared measurement

IR spectra of scales formed at the wellheads of wells NJ-14, well NJ-22, separated water after the heat
exchangers, at entry to the retention tank and just upstream of the injection well are shown in Figure
34. The spectra of the samples from the wellheads show strong similarities. So do samples of scales
formed from separated water. There is, however, a considerable difference between the two groups of
samples. The IR spectra largely reflect Si-O bonding and do not provide information on the presence
or absence of sulphide phases.

Molecular water is present in all the scales as indicated by vibrational bands at 1630-1641 and 1410-
1443 cm™. In the region 2923-2842 cm™ the wavelength band could be associated with C-H groups
and this could be due to oil or grease and indicate contamination. The band in the region 3533-3541
cm™ is caused by OH-groups in the crystal lattice of bonded H,O. Wavelength and in scale samples
from separated water at 1100 cm™ with shoulders on both the low energy sides reflect a Si-O-Si
structure characteristic of amorphous silica. In the scale samples from the wellheads, these bands are
shifted to about 1030 cm™ due to the presence other silicon compounds, e.g. silicates. They resemble
those of the analcime-leucite group Na, K and Mg may have entered the structure. Medium strength
peaks at 442-465 cm™ are presented in all scale samples. They are caused by bending vibrations of an
O-Si-O structure. In the scale samples from the wellheads, the wavelength bands at 723-790 cm™ are
probably due to symmetrical stretching of tetrahedrally co-ordinated Si and Al.

7.3.3 X-ray diffraction measurements

X-ray diffraction patterns revealed by all the scale samples except from the re-injection well are
shown in Figure 35.
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FIGURE 34: IR spectra of scales deposited on coupons at, a) The wellheads of NJ-14 and NJ-22,
b) After the heat exchangers, c) At the entry to the retention tank, d) At the re-injection well

No clear diffraction peaks could be observed in the scale of the coupons from the wellheads of NJ-14
and NJ-22 except for a small peak at ~ 7 ° 20 for the sample from NJ-22 which indicates some clay
and a peak at ~ 29.5° 20 in the sample from NJ-14 which could be due to chalcopyrite.

The X-ray diffraction patterns for the scales forming from separated water after the heat exchangers
and before the retention tank are very similar. This is shown in Figure 33. The scale formed on the
coupon at the injection well was too small for X-Ray examination. The most prominent feature in the
scales is a broad peak at ~ 23° 20 which is characteristic of amorphous or opaline silica. Small peaks
at~7° 20 and ~ 12.5 ° 20 were identified in two samples before the retention tank. These reflect the
presence of clay minerals. Minor peaks at ~ 29.5° 20, ~31.5° 20 and ~ 45.5° 20 were also observed.
These reflect the presence of chalcopyrite, halite (NaCl) and sylvite (KCIl). In these samples the
presence of chalcopyrite considered could indicate some minor crystalline phases in the scale. Halite
(NaCl) and sylvite (KCI) will have formed by evaporation of geothermal water on the coupons when
dried and do not represent a part of the scale. They are easy to detect in the X-ray diffraction because
of their cubic structure.
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FIGURE 35: XRD spectra of scales formed at the wellheads of wells NJ-14 and NJ-22,
after the heat exchangers and at the entry to the retention tank

7.3.4 Chemical analysis by Scanning Electron Microscopy — Electron Dispersive Spectroscopy
(SEM-EDS)

SEM-EDS chemical analyses of all the scale samples are presented in Table 1 of Appendix C. They
provide a semi-quantitative chemical composition of the scales. These are shown together with the
spectra of spot analysis and the scanned electron micrographs in Appendix C. Chemical analysis can
be intepreted with respect to the test sites where the scale formed. A summary of the calculated
composition of the elements as oxides and sulphides are presented together with the chemical analysis
of the scales in Tables 2 and 3 in Appendix C.

Scales formed from the wellhead of NJ-14 are largely composed of a high percentage of sulphur (S)
and iron (Fe) and a low percentage of silicon (Si) and oxygen (O). Major elements such as sodium
(Na), potassium (K), calcium (Ca), magnesium (Mg), are detected at trace levels but these may not
constitute the scale but could be derived
from the water that was dried on the
surface of the coupons. Low
concentrations of elements e.g. aluminium
(Al), copper(Cu), vanadium (V), zinc
(Zn), silver (Ag), manganese (Mn), nickel
(Ni) are detected in this scale.

The large amounts of sulphur and iron in
the scale suggest the scale is largely iron
sulphide ~ 96 percent as sulphides
indicated in Table 2 in Appendix C. Other
sulphides of the elements such as Cu, V,
Zn, Ag, Mn, Ni are present in trace
amounts. The analysis reveals cubic wn;:‘r;:i;mw WD = am“ Signal A=SE2  Date:7 Feb 2006 Mag= 1010 KX mﬁm

crystals in this scale. A representative = =

Scanning Electron Micrograph of the ] ) ]
crystaline sulphide phases is shown in ~ FIGURE 36: Scanning Electron Micrograph showing

Figure 36. crystals of sulphides from scale on test coupons
inserted at the wellhead of Well NJ-14
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Scales formed at the wellhead of well NJ-22 consist of a high percentage of oxygen and iron with trace
amounts of the major elements i.e Na, K, Ca, and Mg, and traces of the elements V, Cr, Mn, Ni, Cu,
Zn and S. The major elements detected may have formed on the scale during drying of coupons.
Slightly large amounts of Al and Si were observed in this scale. The major component of the scales
constitutes mostly oxides of iron (42 %) mixed with silica (38 %) (Table 2 in Appendix C). This
suggests that the scale formed at this well is probably a mixed scale of oxides and sulphides.

Scales formed after the heat exchanger, at the entry to the retention tank and at injection well were
formed from separated water. This separated water is relatively cool, between 60 ° and 95 ° C
depending on the load for hot water in Reykjavik. Chemical analysis of the scales using the SEM
indicates that the major components of the scale are silicon (Si) and oxygen (O). Traces of other
elements such as sodium (Na), potassium (K), chloride (Cl), are found in the scale samples. They are
likely derived from the water that has dried on the surface of the coupons. Other elements detected in
the scale samples were Al., Fe, Cu and S. The presence of these elements is indicative of some
sulphides. Small concentrations of Mn, Fe, Ni and Cr in these samples are likely to originate the steel
in the coupons. The composition of the scales indicates that it is mainly silica. The presence of Al
indicates that the silica phase contains some impurity including this element.

7.3.5 Chemical analysis of scales by the Inductively Coupled Plasma — Atomic Emission Spectra
(ICP-AES)

Weighed scale samples from two test sites, after the heat exchangers and at the entry to the retention
tank were leached in 20 ml of 0.16N HNO; (Table 6 of Appendix A). These sites accumulated
sufficient scale to scrape it off. Solutions of these scales were analysed by ICP-AES (Table 6 of
Appendix A).

The major elements Na, K, Ca, Mg and Si are present in trace amounts in all the leached solutions of
the scales. Iron and Al are detectable. Significant Ni was present. It seems possible that Ni comes from
the coupon steel scraped with the scale from the coupon and leached into solution. The analyses
indicate a slightly higher silicon content of scales formed at the retention tank than those formed after
the heat exchangers.

7.3.6 Analysis of scales in the UV spectroscopy

Weighed samples of scales were taken and dissolved in 0.5 ml of cold hydrofluoric acid + 4.5 ml
distilled water. This was diluted to 100 ml for spectrophotometric analysis to determine the amount of
silica in the scales. There may have been limitations here, as the dissolution of the scales was
incomplete and is equally dependent on the weight of scale sample taken. Some of the silica could
have been leached into the 20 ml of 0.16 N HNOj; used to leach ions from the scale for the ICP-AES
analysis. This was calculated and added to the percent silica determined spectrophotometrically. The
percent silica seems to be related to the weight of scale sample taken. The silica concentration as a
percent varies between 26 -53 percent for the scales from the two test sites, after the heat exchangers
and at the retention tank entry. Percent silica analysed spectrophotometrically decreases progressively
with respect to the weight of the scale sample. Silica constitutes a higher percentage of the scales
formed at the test site after the heat exchangers and the retention tanks. The other elements analysed in
solution using ICP-AES and calculated as oxides are at low levels. The results of analysis by UV
spectrophotometry and subsequent calculation are shown in Table 7 of Appendix A.

7.3.7 Quantity of scale
Weight gain and thickness on the nine test coupons were determined after removal of the coupons
from the test sites. The results are shown in Table 8a in Appendix A. A different balance was used to

measure the weights before and after the test. This required calibration using a set of prepared test
coupons on both balances. The calibration results are shown in Table 8b in Appendix A.
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FIGURE 37: Weight gain of scale at various test sites for, a) 13 weeks test, and b) 29 weeks test

The greatest weight gain and scale thickness are observed at the test site just upstream of the retention
tank. Weight gain and scale thickness at the various test sites are shown in Figures 37 and 38,

respectively.

The smallest weight gain was measured at the wellheads of NJ-14 and NJ-22. The fluid at the
wellheads is two phase and very fast flowing. This may affect the amount of scale deposited on the
coupons. At the wellheads, the two phase fluid is at high temperature and is amorphous silica
undersaturated. Therefore amorphous silica is not expected to form at the respective wellheads. By
contrast the separated water studied for scale formation is at 60-90° C and amorphous silica
supersaturated. The weight gain of the coupons after the heat exchangers and the retention tank entry
is significantly higher than at the injection well. The difference is a measure of the success of the
polymerization in the retention tank to slow down amorphous silica deposition. The weight gain of
280 mg after 29 weeks was measured at the retention tank entry and a scale thickness of 0.146 mm.
This translates to a deposition rate of 0.26 mm/yr. At the injection well weight gain on the coupons
was 14.1 mg and the scale thickness 0.0094 mm. This translates to a deposition rate of ~0.017 mm/yr

or 20 times less.
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8. EVALUATION OF SCALES DEPOSITED AT OLKARIA WELL OW-34, KENYA

Olkaria well OW-34 was drilled as a make up well together with wells OW-33, OW-32, OW-31,
OW30 and OW-29 after steam decline was experienced in the Olkaria East Production Field during
the first five years of production. Well OW-34 was connected to the steam gathering system in
March, 2001 and was disconnected in September, 2002 after its output, as measured by the pressure
drop across the orifice plate, indicated a substantial drop. On dismantling the flow pipes and wellhead
equipment, a thick deposit of scale which was intense, almost 1 inch thick, was found inside the two
phase pipe line. The scale also formed in the wellhead separator and in the separated water flowline.
Since the commissioning of the Olkaria I plant and production from the Olkaria East Production Field,
until 2002 no other well had experienced this kind of intense scale deposition. Well OW-34 is
anomalous. The concentration of chloride in the water is high because of its discharge enthalpy. This
was unusual and what caused the scale to form was not known. The general location of wells in
Olkaria East Production Field with well OW-34 is shown in Figure 39.

8.1 Output characteristics of well OW-34

Three flow tests have been conducted on this well, in 1993, 1996 and 2003. The first flow test was
carried out upon completion of drilling, the second to monitor tracer tests and the effect of cold water
injection in well OW-R3 and the third to investigate the causes of decline in steam output. The well
was discharged under different throttle conditions using different “lip pressure” pipe sizes i.e. 8, 67,
5”,4” and 3”. During the first test enthalpy varied between 2640 kJ/kg and 2680 kJ/kg and the water
flow rate between 0.85 and 1.55 t/hr. In the second test, the discharge enthalpy was about 2650 kl/kg

and water flow rate between 2.2

\/_J TSN A and 3.3 t/hr, while in the third test
enthalpy ranged from 2670 kl/kg to
I
SOW)3E

é&*

2675 klJ/kg and water flow rate from
2, 1.5 t/hr to 2.1 t/hr. A summary of
these tests is shown in Table 9a, in
Appendix A (Opondo and Ofwona,
2003).
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FIGURE 39: Location of wells in Olkaria East enthalpies close to the enthalpy of

dry steam these small differences
have tremendous effects on the
solute content of the water discharged at atmospheric pressure. Over all the discharge tests, the
discharge enthalpy varied between 2640 kJ/kg and 2680 kJ/kg at the throttle conditions and the steam
fractions calculated at atmospheric pressure (X;) are high, or between 0.9973 and 0.9996.

production field
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8.2 Water composition of well OW-34

Well OW-34 is water composition is shown in Table 10 of Appendix A together with that of a selected
few make up wells, i.e. wells OW-33 and OW-32 and some wells where discharge enthalpy is very
high, or wells OW-10 and OW-18 which have been under exploitation for long. Well OW-18 has
water flowrates and discharge enthalpy trends that resemble those of Olkaria well OW-34. The
concentration of the solute constituents Cl, F, K and Na are much higher in the separated water of well
OW-34 than that of well OW-18. The silica concentration is relatively high in this well water, higher
than in most separated waters of the other wells. The CI' concentration in the separated water at
atmospheric pressure in well OW-34 is ~ 4000 ppm and Na ~ 2400 ppm. The silica concentration is
relatively high, ~ 900 ppm SiO,.

8.3 Chloride concentration as a function of vapour pressure at selected discharge enthalpies

Chloride concentration was modelled as a function of selected discharge enthalpies and vapour
pressures. Discharge enthalpies selected were 2450, 2500, 2550, 2600, 2650 and 2675 kJ/kg and the
vapour pressures ranged from 25 bars to 0.8 bar absolute. An initial chloride concentration of 100
ppm at a vapour pressure of 25 bars was selected.

Calculation of any solute constituent concentration e.g. chloride (Cl) in water at any pressure given the
initial concentration in the fluid is based on the following equation:

1-X.
Cl,=Cl, L 8.3.0
1-X,
where X; and X;, represent the steam fraction at any vapour pressure and 25 bar-abs, respectively.
Cl, and ClI,, represent the CI concentrations in water at vapour pressure P, and 25 bars, and:
h —h
100000 X, = : > 8.3.1
LS
O—O6—@ 20675k
A—h—A 2650kI/kg h —h
Je—h—¥¢ 2550 kl/kg X, =L iz 8.3.2
p—ep—df 2600kJ/kg n L.
——0— 2500 klkg n

—H—H 2450 kikg

10000

h, represent the selected discharge
enthalpy and #;, and 4, denote the enthalpy
of steam saturated water at vapour
pressures of 25 bar-abs, respectively. L;,
and L; represent the latent heat of
vaporisation at 25 bar-abs vapour pressure.

Log chloride (ppm)

1000

Calculated Cl concentrations as a function
of vapour pressure at the selected
enthalpies are shown in Figure 40.
At high enthalpies, especially enthalpies
close to those of dry steam i.e 2675 kl/kg
0 5 10 3 0 » and at low vapour pressures close to

Vapour pressure bars heri h hl d
FIGURE 40: Modelled chloride concentrations at atmosp eric - pressure the  chloride
concentration increase exponentially and

lect thalpi ith variations i .
selected enthalpies with variations in vapour pressure by more than 2 orders of magnitude. By

lowering the enthalpy of the well by 25 - 2650 kJ/kg the chloride concentrations at the low vapour
pressures drops drastically. It drops by almost 2 orders of magnitude at vapour pressures close to

100
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atmospheric pressure. The results demonstrate that at discharge enthalpy close to that of dry steam and
at low vapour pressures close to atmospheric pressure, most of the liquid is evaporated and the solutes
become highly concentrated in the residual water.

8.4 Scales deposited at well OW-34

Scales formed from Olkaria well

OW-34 fluids during production

were in the two phase line, inside A
the separator and in the separated I
water line. The wellhead pressure " Silence
in well OW-34 during the time the
well was in production was ~ 6 bar
g. The fluids are separated at 6 bar
g in the wellhead separator. The
separated water line is exposed to
the atmosphere at the atmospheric
silencer. Atmospheric pressure at
Olkaria is ~ 0.8 bars. The layout
of the flowline and wellhead
equipment where the scale samples _‘ ’»
were collected is shown in Figure

41.

Scale sample # 1 .
Weir Box

Steam Line

OW-34
Wellhead

<7

Atmospheric
Scale Sample # 5 Silencer

discharge flow test was conducted Weir Bo
and the discharge gear left on the R :[ —|
well pad after the tests until

December 2004. The master valve

of this well was leaking and in the

process formed a scale in the two Heltad X
phase flow line. This scale was ~
1 inch thick at the Tee connection. —‘ ‘7 Fptest Sahemmtit: e Dluchwie Gear

In February to March 2003 a B ﬁ)

i flow line at well OW-34 February
The layout of the discharge test 2003 to December 2004

gear and the location where the

scale sample was collected are ~ FIGURE 41: a) Layout of wellhead for well OW-34 fluids

shown in Figure 41 b. showing where the scale that formed during production from

March 2001 to September 2002 was collected;
During production of the well in b) Layout of wellhead during discharge tests in
2001-2002 the heaviest scale which scale samples were collected

formed in the two phase pipeline at

a sharp bend that lead to the steam separator station. The thickness of this scale was about 1 inch after
about 18 months of the well being connected to the steam gathering system. The scale constricted the
two-phase pipeline and drastically reduced the amount of fluid that flowed in the pipe and the total
steam output of the well. The scale in the two phase line at location 2 (see Figure 41 a) is shown in
Figure 42. Scale sample # 3 was collected from inside the separator vessel, as shown in Figure 43.

Other scale samples were collected from the wellhead Tee connection after the master valve (Figure
44). The texture of the scale deposited at the well head Tee connection was similar to those deposited
in the two phase pipeline, though the thickness of the scales varied. About %2 inch of scale was
deposited and was hard. The fourth scale sample was collected from the separated waste water line.
This scale was mainly white in colour, with a little brown tinge. The deposit formed globules and
ripples and was about % inch in thickness. The scale deposited from the waste water line is shown in
Figure 45.
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Inside separator

:'?‘-‘_?' = NI
FIGURE 42. Scale deposited on FIGURE 43: Scale sample from inside the separator
the two phase line (scale # 2) of well OW-34 (scale # 3)

FIGURE 44: Scale formed at the Tee
connection on well OW-34 FIGURE 45: Scale deposit in the waste
master valve (scale # 1) water line of well OW-34 (scale # 4)

A fifth scale was collected from the Tee
connection of the dismantled well discharge
test gear. The scale was layered and the top
layer was black and brittle while the layer
below was slightly brown to white. The
thickness of scale deposit was close to 1 inch,
formed between March 2003 and December
2004. The leakage could have contributed to
further cooling of the fluid under flow
conditions that are not typical when the well
is free flowing. The scale deposit is shown in
Figure 46.

8.5 Analysis of scales from well OW-34 Scale

deposit
Techniques for the analysis of scales from FIGURE 46: Deposit of scale formed when
Olkaria well OW-34 were similar to those well OW-34 master valve was leaking
applied in the analysis of scales deposited on (scale # 5 December 2004)

coupons at Nesjavellir described in section
7.3. Infrared analysis of the scale samples from the process flow from sample # 1 to # 5 are shown in
Figure 47.
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The IR spectra of scale samples #1 34 10991033
to # 5 all have IR features similar to 12

those of precipitated silica gel or
amorphous  silica. A  broad
asymmetric  stretching band is
observed in all the spectra between 2.6 \

2.8

3200 cm™ and 3600 cm™. In all the 54
scales the spectra bands at ~ 3469 to

3554 cm’ are associated with the 170970
hydroxyl group (OH) of the bound , ° 3469 3554

water in the crystal lattice. Weak 5 18 N 28522848 1641-1654 (7
symmetric  stretching  vibration © 16

bands are observed at ~ 2852 cm’
and 2848 cm™ and these represent
C-H groups that could be due to
contamination by grease or oil !

Molecular water (H,0) is present in 038 =" M\ /1
these scales represented by the 0.6 !V

1.4

spectra band at 1641 cm™. In all the
scales there is a strong peak in the
range ~1099 - ~1033 em” from [ T [ T [ T T T [ T [ " T T "]

0.4

bending O-Si-O vibrations due to 4500 4000 3500 3000 2500 2000 1500 1000 500 0
antisymmetric  Si-O-Si  stretches. Wavelength em-1

The second strongest peak between FIGURE 47: Infrared spectra of scale samples #1 - # 5

~ 469 and 465 cm™ is due to O-Si-O collected from Olkaria well OW-34

bending vibrations and a weaker

band near 793-795 cm™ is evaluated as due to symmetrical stretching of tetrahedrally co-ordinated Si
and Al. The 1099-1033 cm™ band has shoulders at ~1200 cm™ on the low energy side and ~ 950-970
cm” on the high energy side. The 950-970 cm™ peak is particularly characteristic of amorphous silica.

Scanned Electron Micrographs of the scale samples from well OW-34 fluids are presented in
Appendix C together with chemical analysis, shown in Table 2 and a summary of elements calculated
as oxides is presented in Table 3 of Appendix C.

All the scale samples # 1 to # 5 are predominantly composed of Silicon (Si) and Oxygen (O). The
percent silicon composition in the scale samples # 1 to # 3 suggest that silicon composition (Si) ranged
between ~58 and ~37% and that of oxygen (O) varied between 61 and 39%. These samples did not
show any trace amounts of other elements in them. They could represent almost pure amorphous silica
phases (Appendix C). Scale samples # 4 and # 5, though largely silica rich had a higher iron and
aluminium content. Trace concentrations of iron in scale # 4 could have its origin in the pipework or
probably the walls of the separator while that of scale # 5 could have its origin from the pipework in
the discharge flow line.

X-ray diffraction patterns for the scales formed from Olkaria well OW-34 are shown in Figure 48. All
the scales of samples # 1 to # 5 are largely amorphous to X rays. They all depict a broad peak at ~ 23°
20, characteristic of amorphous silica or opaline silicates. Scale sample # 5 has a small diffraction
peak centred at ~ 27° 20 alongwith the broad spectra band at ~ 23° 20 for amorphous silica phases.
The diffraction peak at ~ 27 ° 20 could be due to quartz in the scale sample.

Results of chemical analysis of the scales by ICP are shown in Table 6 of Appendix A together with
analysis of scales formed on coupons at Nesjavellir. Scales # 1 to # 4 have trace amounts of the major
aqueous cations except for calcium which is present in high concentrations in scale # 3 Zinc is
abundant in scale # 1. The source of high calcium (Ca) and zinc (Zn) concentrations in these scales is
hard to establish but could be due to contamination. The calcium may also reflect the presence of a
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calcium silicate or calcium carbonate. Concentrations of the major elements, sodium, potassium,
calcium are relatively high in scale sample # 5 has and also those of the transition elements relative to
the other scale samples. The high concentrations of the major elements could be due to incorporation
of brine into the scale. The iron (Fe) and aluminium (Al) contents in this scale sample are relatively
high. It is probable that the Fe was dissolved from the flowpipe. Iron content is also relatively high in
scales #1 and #2 and it is likely that the source of this relatively high iron is the two phase pipeline and
that it is dissolved from the pipeline. The high contents of Al in scale #5 could be indicative of some
clays in the scale or Al in the amorphous silica phase.

Silica content of scale samples # 1 to # 5 as also analysed spectrophotometrically. The percentage of
silica in all scales was above ~ 40 percent. In scale # 3 the percentage of silica is close to 90 percent.
The percentage of silica in the scales could vary during dissolution. It is probable that all or most of
the silica did not dissolve during dissolution. Silica constitutes a major component of these scales as
determined by the UV spectrophotometry. The total silica composition determined by UV
spectrophotometry plus that obtained from the analysis by ICP totalled ~ 45 percent for the scale with
the lowest silica concentration and ~ 100 percent for the scale with highest silica concentration. The
results of analysis by UV spectrophotometry and subsequent calculation are shown in Table 7 of
Appendix A.
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FIGURE 48: X-Ray diffraction analysis of scale samples # 1 - # 5 from Olkaria well OW-34
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9. CONCLUSIONS

Olkaria well fluids generally exhibit a discharge enthalpy that ranges from slightly less than 1000
kJ/kg to a saturated steam enthalpy of about 2700 kJ/kg. Most wells have “excess enthalpy”.
Enthalpy for selected wells from Svartsengi, Reykjanes, and Nesjavellir is variable. In Svartsengi the
enthalpy of the fluids is fairly homogenous and apart from wells that tap into the shallow steam cap,
average enthalpy for the fluids is ~ 1030 kJ/kg. Enthalpy of well fluids in Reykjanes is slightly higher,
between 1300 kJ/kg and 1400 kJ/kg for the selected wells. At Nesjavellir the discharge enthalpies of
the wells are high and most wells have enthalpy >1600 klJ/kg. For the selected wells, the enthalpy
varied between ~ 1400 kJ/kg and ~ 1800 kJ/kg. “Excess enthalpy” in all wells considered for the
present study is adequately explained by phase segregation in producing aquifers.

The average of tqtz and tNa/K for the wells studied in Olkaria and Nesjavellir were taken to represent
the aquifer temperatures. Quartz equilibrium temperatures were calculated using the phase segregation
model. Large differences are observed between tqtz and tNaK for some wells in Olkaria. These wells
have discharge enthalpy close to that of steam saturated water at aquifer temperature so aquifer water
composition is not the source of error. Measured downhole aquifer temperatures in thermally
stabilised wells were used for Reykjanes and Svartsengi.

The phase segregation model does not take into account changes in composition of the flowing fluid
between the wellhead and initial conditions by precipitation or dissolution of minerals. When
geothermal water degasses by boiling, many reactions tend to occur. Changes in temperature occur as
a consequence of depressurisation boiling and may cause changes in saturation with respect to many
minerals. Speciation calculations may thus indicate significant departures from equilibrium between
minerals and the water in the aquifer beyond the depressurisation zone, even when such equilibrium is
closely approached in the initial fluid. Large errors in SI values can arise when potential mineral and
precipitation reactions are ignored, especially for minerals which contain chemical components
present in low concentrations in the initial water. The effect is much smaller for components, which
are abundant in the fluid such as reactive gases (CO,, H,S and H,)

The concentration of CO, in the aquifer water of Olkaria, Reykjanes, Svartsengi and Nesjavellir is
generally in the range of 60-5000 ppm except in Olkaria West where it is as high as 43,026 ppm. In
Olkaria West the aquifer fluid CO, concentrations are considered to be much affected by its rate of
supply from the magmatic heat source where in other parts of Olkaria and the other study areas aquifer
water CO, is fixed by equilibration with a specific mineral buffer. The CO,-rich waters in Olkaria west
could cause corrosion on the outside of well casing. This should be investigated. Condensates that
form due to dissolution of CO, would be lower for Olkaria West than in the rest of the study areas.
The relatively low concentrations of CO, in the other sectors of Olkaria, as well as Reykjanes,
Svartsengi and Nesjavellir do pose a low risk in developing CO, rich water that would be corrosive.

HCI concentrations in the aquifer waters and steam are controlled by pH, temperature and chloride
concentrations. The Olkaria and Nesjavellir aquifer waters contain very low HCI concentrations
(1.65x10° and 2x107 ppm in Olkaria and 1x10” ppm in Nesjavellir). In Reykjanes and Svartsengi,
the HCI concentration is higher (0.32 and 0.81 ppm and 0.056 and 0.083 ppm, respectively) due to a
lower pH and higher chloride concentrations in the fluids. Much higher HCI concentrations are
present in the steam at the wellheads at Reykjanes (0.65 ppm) than at Svartsengi due to high steam
separation pressures. The HCI in the steam at Reykjanes would produce a pH of about 5.5 in a
condensate. It is accordingly concluded that HCI in steam (0.65 ppm) at the wellheads at Reykjanes is
an unlikely corrosion candidate and even much less likely in the other study areas.

The undisturbed aquifer waters in all the study areas are expected to be close to equilibrium with
calcite. Calculated saturation indices for calcite show, however, considerable scatter. The cause of this
scatter is partly considered to be analytical imprecision, particularly with respect to pH but also
removal of calcium from solution between initial aquifer conditions and wellhead by calcite
precipitation. Further the quality of the thermodynamic data used to calculate the calcite activity
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product may contribute as well as the presence of equilibrium steam in the aquifer. In calculating
aqueous species distribution in the aquifer water such equilibrium steam was assumed not to be
present. Calculated variation in the calcite saturation state upon adiabatic boiling is considerably more
accurate than calculation of the absolute saturation state. Upon boiling degassing of the water with
respect to CO, generally causes an initially calcite saturated water to become supersaturated. This is
particularly the case with waters high in CO, such as in Olkaria West and where aquifer temperatures
are around 200°C but CO, solubility in water at minimum around 200°C. In relatively high
temperature and low CO, waters, such as at Nesjavellir, early boiling may only cause limited
degassing and not calcite supersaturation. Prolonged depressurization boiling, which leads to a
decrease in fluid temperature, decreases the calcite saturation index due to the retrograde solubility of
calcite with respect to temperature. This often causes boiled geothermal waters to be calcite
undersaturated. Calcite scaling is not expected to be a problem at Olkaria and Nesjavellir and neither
at Svartsengi and Reykjanes if the first depth level of boiling is outside wells i.e. in the producing
aquifers.

Scaling tests at Nesjavellir showed that at high temperatures of the wellheads of wells NJ-14 and NJ-
22, the two phase fluids deposited scales that were dominantly sulphide phases in well NJ-14 fluids
and mixed sulphides and oxides in the case of well NJ-22. The scales were essentially amorphous to
X-rays. There were however, some indications of some mineral phases in the scales such as
chalcopyrite and clayey material. Separated waters after the heat exchangers, entry to the retention
tank and at the injection well deposited mainly amorphous silica but there are also some indications of
the presence of clays in the scales. The rate of deposition of ~0.261 mm/yr was highest at the entry to
the retention tank and much lower of ~ 0.0168 mm/yr at the injection well. Silica polymerisation
occurs in the retention tank and this reduces the rate of silica deposition at the injection well. At entry
to the retention tank, the high rate of deposition could be due to supersaturation by monomeric silica
which causes a higher rate of precipitation (Yanagase et al., 1970; Rothbaum, 1979). An intermediate
test site between the steam separators and the wellheads could be chosen to investigate the type of
scales that would form.

The solute content of the water discharged from the atmospheric silencer of Olkaria well OW-34 is
high The discharge enthalpy of the well fluids is close to that of dry steam leading to extensive
evaporation of the water fraction in the discharge by depressurization boiling to a low pressure. This
extensive evaporation is thought to be the cause of the high salt content of the water discharged at
atmospheric pressure as well as the extensive amorphous silica scale formation.

A solution to this scaling problem involves mixing of the discharge of well OW-34 with separated
brine or condensate from another well e.g. well R-3 where separated brines from the Olkaria II plant
are being re-injected to lower the discharge enthalpy of OW-34. This will reduce the amount of
evaporation of water in well OW-34. Theoretical calculations based on mass balance equations,
chloride concentration of spent brine being re-injected in well R-3 and that of well OW-34 for
purposes of diluting the water have been tried. In this way aqueous silica concentrations will not build
up to the same extent and amorphous silica deposition will be reduced or inhibited.
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APPENDIX B: Methods for cleaning coupons and studying scales

Cleaning method for the stainless steels coupons used in scaling/corrosion tests

1. The coupons were cleaned using an abrasive paper (silicon carbide) to remove surface oxide
film and to condition the surface. A smooth surface does not yield a representative result.

2. Marked coupons are washed carefully, first in hot distilled water and then in cold distilled
water.

3. This was rewashed in acetone/isopropyl alcohol.

4. The coupons were dried in an oven at 105°C.

5. These were cooled and stored in a dessicator until weighing.

6. Weigh the coupons, put them back in the dessicator and reweigh to constant weight.

Stereo Binocular Microscope analysis

Binocular microscope analyses of test coupons from Nesjavellir were done using the Wild Heerbrugg
binocular microscope. Coupons were placed on the mounting stage of the binocular microscope and
among the features noted were colours, size of scale, adherence properties of the scale.

Infrared spectroscopy

The spectra in the IR were obtained in absorbance mode from the KBR pellets with a Brucker IFS 66
FTIR spectrometer. Pellets prepared by weighing about 2 mg samples or less in some instances and
these were prepared in ~200 mg of Potassium Bromide (KBr). Resolution in the FTIR was 4 cm™, 100
scans were taken using Mertz phase correction and Blackman-Harris 3 term apodization function with
zerofilling of two.

X-Ray diffraction analysis.

X-ray diffractometer is used to identify individual minerals especially clays and zeolites. Scale
samples were prepared to < 4 microns by use of a mechanical shaker. A Brucker series D8 FOCUS
diffractometer was used, with CuKd& radiation (at 40 kvand 50 mA), automatic divergence slit, fine
receiving slit, and graphite monochromator. Count data were collected from 2° -14 ° at intervals of
0.02°, 2 O for a time of 1 second.

Scanning Electron Microscope (SEM)

A type LEO SUPRA 25 Scanning Electron Microscope where the scanning conditions were 20 kv
accelerating voltage and scan rates of 100 ym. Scale samples were coated with gold before being
placed in the SEM. The SEM is equipped with an energy dispersive spectrometer (EDS) that was used
to do several EDS spot analyses on the scale samples. The EDS analyses are semi-quantitative i.e they
do not quantify the concentrations of elements, but give an idea of what elements could be present in
the scale samples.

Inductively Coupled Plasma (ICP)

Weighed scale samples were leached in 20 mls of 0.16 HNO; and filtered. The solutions were run in a
multi-element analysis in the ICP SPECTRO AS 500.
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