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ABSTRACT 

This report describes a computer program for one-dimensional inversion of Schlum­

berger resistivity soundings. It is also meant as a user's guide to the program. A short 

description of the inversion method is followed by step by step instructions of how to 

run the program. The input and output files are described as well as plotting utilities 

for graphic display of the results. Finally all the source files of the program are listed 

in an appendix. Two 5-1/4" diskettes containing all files (source files and run files) are 

available upon request from the Geotbermal Training Progranune. 
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1. INTRODUCTION 

The following is a user's guide and a short description of the program SLINV 

(SchLumberger INVersion) for one-dimensional inversion of Schlumberger resistivity 

soundings. SUNV is a non-linear least-squares inversion program using a Levenberg­

Marquardt inversion algorithm together with a fast forward routine based on the 

linear filter method. The Levenberg-Marquardt inversion algorithm used in the pro­

gram is described by H. K 10hansen (1977) and the forward algorithm for calculating 

the response of a given one-dimensional model is described by H. K 10hansen (1975). 

The program consists of ten source files, the main program SUNV,FOR and nine sub­

routines. The modules are listed in Table 1 and the source code is given in appendix. 
The program is written in standard FOR1RAN 77. 

MODULE 

SUNV 

ROAT 
FLT 

SLFW 

CHSQ 

SLDR 

SVDC 

OROW 
NEWP 

WROT 

FUNCTION 

Main program; inversion algorithm 

Reads input data from file and terminal 

Stores J1 Hankel transform filter 

Forward algorithm; calculates apparent 

resistivity curve from a given model 

Calculates chi-square sum 

Calculates partial derivative matrix 
Performs a singular value decomposition 

on the partial derivative matrix 
Orders eigenvalues in increasing order 
Calculates increments to be added to model 

parameters to get a new model 

Writes out results into output files 

Table 1. The modules of the program SLINV 
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The executable file SUNV.EXE was made by compiling the source files by tbe Micro­

soft FOR1RAN Optimizing Compiler, version 4.01, and linking by the Microsoft 

Object Linker. The program can be run on IBM PC or PC-compatible computers 

both with or without an 8087 coprocessor but it runs about 24 times faster with an 

8087 coprocessor. The computing time for inversion of 20 data points (two decades) in 

terms of a 3·1ayered model is about 4.3 sec. per iteration step with an 8087 coproces­

sor but about 105 sec. without an 8087 coprocessor. The program can be made to run 

on main frame computers by compiling and linking the FORTRAN source files but 

the plotting utilities (described below) only run on IBM PC and PC-compatibles. 

The inversion program reads measured apparent resistivity data from an input file and 

prompts for an initial guess for a one-dimensional resistivity model. Then it iteratively 

adjusts the resistivity model to minimize the difference between the measured and the 

calculated apparent resistivity values. The results are written into two files, an output 

list file that can be typed on the screen and printed as a hard copy and an output plot 

file that can be plotted both on the screen and as a hard copy on a printer or a plotter. 

1n order to run the inversion program, the file SLINV.EXE must be either in the 

working directory or a directory specified in tbe PATII-list. To plot the results the files 

SPLOT.BAT (screen plot), PPLOT.BAT (paper plot), RES.GRD (grid file) and 

CENTERED.SYM (plot symbols) must be in the working directory, and the files 

VIEW.EXE (screen plot) and PLOT.EXE (paper plot) must either be in tbe working 

directory or a directory specified in the PATII-list. 

A slightly modified version of the forward routine of the inversion program has been 

made into a separate program called SLUM (the source files are SLUM.FOR for the 

main program and FLT.FOR and SLWROT.FOR for tbe subroutines; the executable 

file is SLUM.EXE). SLUM calculates the apparent resistivity curve for a one­

dimensional resistivity model which is read from tbe terminal and for AB/2 (half the 

current electrode spacing) values equally distributed on log-scale, with ten points per 

decade, over an interval specified by the user. The results are written into an output 

file (that has the right format for an input file for SLINV) and a plot file that can be 

plotted in tbe same way as the output plot files from the inversion program SLINV. 

The program SLUM is a by-product of the inversion program, meant for simple 

model calculations and will not be discussed further. 
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2. THE STRUCTURE OF THE PROGRAM 

The backbone of the program SUNV is a general non-linear least-squares inversion 

algorithm of the Levenberg-Marquardt type. The inversion algorithm is supplemented 

by routines for data input, RDAT, and output, WROT, a forward routine, SLFW, that 

calculates the apparent resistivity values from a given one-dimensional resistivity 

model and a routine, SillR, that calculates the partial derivatives of the apparent 

resistivity with respect to the model parameters. The general structure of the program 

is shown on Figure 2.1. The least-squares algorithm, the forward routine SLFW, and 

the partial derivative routine SillR will now be discussed briefly. 

2.1 The inversion algorithm 

The program SUNV, like most inversion programs, works in such a way that it reads 

the measured data points (apparent resistivity curve) and prompts for a starting 

model. The interpreter guesses, by visual inspection of the data curve, the number of 

layers and initial model parameters i.e. the resistivity values and thicknesses of the 

layers. Each model parameter can either taken to be a free or a fixed parameter. The 

program iteratively adjusts the values of the free model parameters to get the best fit 

between the measured curve and the curve calculated from the model. It is important 

to realize that the program does not change the number of layers during the iteration 

process. It is therefore in most cases necessary to try models with different numbers of 

layers to find the model that best fits the data. It should also be kept in mind that the 

model resulting from the iterative inversion can depend on the initial guess. A poor 

guess can lead the inversion process astray. 

In the inversion algorithm, all computations are done with data and model parameters 

on logarithmic form, that is to say (In(AB/2),ln(Pa)) is used instead of (AB/2,Pa), 
wbere AB/2 is balf the current electrode spacing. The model parameters are kept as 

P(i) =In(p(i)), where the p(i) stand for the resistivity values and layer thicknesses. This 

is done because the non-linearity in the dependence of the apparent resistivity on the 

model parameters is not as severe in tbe logarithmic as in the linear representation. 

The logarithmic representation furthermore prevents the occurrence of non-physical 

negative model parameters. 
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Figure 2.1 Structure of inversion program 

The quality of the fit between tbe measured and tbe calculated apparent resistivity 

values, calculated by the subroutine SLFW, is measured by the chi-square sum, CHI, 

which is calculated by tbe subroutine CHSQ. CH] is given in terms of tbe natural log­

arithms of the measured and calculated apparent resistivity values by the following 

formula: 
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[ ~ l~ CHI = N'D p(ln (p"" ) -In (p~ ))WPM J' 

where ND is the number of data points and WPM is a weight factor (to be discussed 

later). The lower the CHI is, the better is the fit. If CHI is less than 0.1 it can be 

interpreted as the average fractional difference between the measured and the calcu­
lated apparent resistivity values. 

The program always keeps the best model obtained. Each iteration cycle starts wilh 

the determination of a temporary model to be tried next. To detemune the temporary 

model, tbe partial derivatives of the apparent resistivity values, wilh respect to the free 

model parameters, are calculated by the subroutine SLDR. The partial derivative 

matrix, A, is decomposed, by the singular value decomposition routine SVDC, into a 
product of an orthogonal data eigenvector matrix, U, a diagonal eigenvalue matrix, L, 

and the transpose of an orthogonal parameter eigenvector matrix, V: 

A • U ·L·V' . 

Let the logarithms of the free model parameters and the calculated apparent resis­

tivity values be represented by the vectors p and q respectively. A small variation dp 

of the model parameters results in a variation dq of the calculated apparent resistivity 

values given as: 

dq - A ·L .yl ·dp. 

To get the increments to be added to the model parameter vector p in order to get the 

temporary model to be tried next, the vector dq in the equation above is taken to be 

the difference between the measured and calculated apparent resistivity values. The 

equation is "inverted" in the subroutine NEWP by multiplying dq by a "dannped" 

inverse of the partial derivative matrix. The damping is performed by adding a Mar­

quardt parameter to tbe eigenvalues. This damping is necessary because if the partial 

derivative matrix is nearly singular, one or more of the eigenvalues are very small, and 
an undamped inversion of the equation would result in unreasonably large increments 
dp. The Marquardt parameter Xl.A is taken to be equal to one of the eigenvalues 

which have been ordered in an increasing order in the subroutine ORDW. The 

ordered eigenvalues are numbered by the index !lA which runs from 1 to NF, the 

number of free parameters in the modeL 

The first temporary model tried in each iteration step is obtained by adding the incre­

ments resulting from the dannped inversion of the above equation, using the smallest 

eigenvalue (but not smaller than 0.01, the index !lA shows which eigenvalue is used) 

as a Marquardt paranneter. If the chi-square sum, CHIT, for the temporary model is 
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less than CHI then the temporary model is kept as the best model and a new iteration 

cycle is started. If CHIT is higher than CHI, another temporary model, obtained by 

inversion of the above equation with increased damping with a higher eigenvalue (ILA 

increased by one), is tried. This is continued until CHIT becomes lower than CHI or 

ILA gets higher than NF, in which case the iteration process is terminated. 

There are four stop checks in the program. The iteration process terminates if: 

a) The parameter !lA gets higher than NF. This is called no-convergence. If the pro­

gram terminates on this stop check it does not necessarily mean that an accept­

able fit to the measured data was not obtained. It simply states that the program 

could not further improve the fit. 

b) The average fractional difference, CHI, between the measured and the calculated 

apparent resistivity values becomes less than 10.3 i.e. an average difference less 

than 0.1%. This is called CHI-convergence. 

c) The fractional decrease in CHI in the last iteration is less than lO's This is called 

DCHI-convergence. 

d) The program has performed the number of iterations that the operator asked for 

and he does not wish to perform more iterations. This stop check is called max­

imum of iterations. 

A CHI-convergence is seldom obtained in inversion of real measured data and the 

iteration is usually terminated on no-convergence or DCHI-convergence (no further 

improvement) or on maximum of iterations. 

The forward routine SLFW calculates the apparent resistivity values at AB/2 values 

equally distributed on logarithmic scale with ten points per decade. The inversion 

algorithm demands therefore that the data have this distribution. If the measured data 

do not fulfill this condition, an interpolation, on log-log scale, is performed (in the data 

input routine RDA1) in order to get data points, equally spaced in logarithm of AB/2, 

with ten points per decade. 

A different weight can be given to the data points in the inversion. The data points can 

be weighed either with respect to the apparent resistivity value (WMOD = RE) or with 

respect to the current electrode spacing (WMOD=AB). In both cases the degree of 

the weighing can further be controlled by the weight parameter RW (-I~RW~I). 

Using RW = I, the data points are weighed with WPM proportional to ~l(Pa) or 
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In(AB/2) for WMOD equal to RE or AB, respectively. This causes data points with 

higher Pa, in the case WMOD =RE, or higher AB/2, in the case WMOD=AB, to 

have more weight in the inversion. For WR=-l the data points are weighed with 

WPM inversely proportional to In(Pa) or In(AB/2) depending on WMOD, giving the 

lower values more weight. For WR in between -1 and 1 the data is weighed with WPM 

proportional to (In(pa))WR or (In(AB/2))WR giving weights in between the above 

extreme cases. For WR = 0 all data points are treated on equal footing for both cases 

of weighing mode WMOD. The different modes of weighing can be used to put 

emphasis on different parts of the measured data curve. If we want to emphasize the 

part of the data curve with high AB/2 values, we choose WMOD=AB and WR close 

to 1. Similarly if we want to emphasize the low apparent resistivity values in the curve, 

we take WMOD = RE and WR close to -1. Normally it is recommended to give all 

data points similar weight and hence to take WR close to O. 

2.2 The forward algorithm 

The forward algorithm SlFW calculates the apparent resistivity values for a given 

one-dimensional resistivity model. It uses the gradient approximation for calculating 

the apparent resistivity. This means that it is assumed tbat the receiving dipole is 

infinitesimally short compared to the transmitter dipole. This implies that the actual 

electrode configuration in the sounding is not simulated and only one apparent resis­

tivity value can be assigned to each value of AB/2. 

The apparent resistivity, as a function of half the current electrode spacing, AB/2 = r, 

is given by the following formula: 

Pa (r) " r' J K (,I) J 1 (,1r lA d ,I . 
o 

The kernel function K ().) contains the model parameters. The Hankel transform 

integral is calculated by the use of a digital filter. The filter is transferred through a 

common block from the subroutine FLT which is called by the main program 

2.3 The partial derivative algorithm 

The partial derivatives of the logarithms of the apparent resistivity values with respect 

to the logarithms of the model parameters are calculated by the subroutine SLDR. 
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The elements of the partial derivative matrix are given by the formula: 

.• _ ~ 00 aK(~) 
A" - ( f ~ ( ) J, ()r,pd) . 

Pa rt) 0 (}In PI 

The Hankel transform is calculated by using the digital filter stored in FLT. 

3_ RUNNING THE PROGRAM 

In order to run the inversion program, the file SUNV.EXE must either be in the 

working directory or a directory specified in the PATI-I-list. The measured apparent 

resistivity curve is read from an input file. The input file must have one data point in 

each line. A data point consists of a pair of numbers separated by a comma (,), a 

space(s) or a tab. The first number is half the current electrode spacing, AB/2, and 

the second number is the corresponding measured apparent resistivity value, Pa. 

The following is an example of an input data file: 

1. 26 74.44 
1. 58 60.51 
2.00 44.00 
2.51 27.79 
3.16 14.93 
3.98 7.17 
5 . 01 3 . 92 
6.31 3.33 
7.94 3.85 

10.00 4.76 
12.59 5 .92 
15.85 7.35 
19.95 9.09 
25.12 11. 21 
31. 62 13 . 76 
39 . 81 16 .80 
50.12 20 .39 
63.10 24.56 
79.43 29.34 

100.00 34.72 
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When a data file containing the measured apparent resistivity curve has been created, 

having the format described above, the inversion program is run by going through the 

following steps. (All user's responses discussed below are to be followed by striking 

the return key): 

1. The inversion program is started by typing SUNV at the system prompt. 

2. The program prompts for input file name. This is answered by typing the name of 

the file containing the measured data curve to be inverted. 

3. The program now asks how the data should be weighed. If the data is to be 

weighed with respect to the apparent resistivity values then type RE but type 

AB if it is to be weighed with respect to AB/2. The default is RE. 

4. The program asks for the weight parameter RW discussed above. This is 

answered by typing a number in the interval -1 to 1. It is generally recom­

mended to use RW close to O. 

5. The program asks for tbe guessed initial model. It asks for the number of layers 

which is answered by typing the guessed number of layers. Next it asks for 

the model parameters for each layer (resistivity in Ohmm and thickness in 

m). Each parameter can either be a free parameter to be adjusted by the 

program or a fixed parameter not to be adjusted. For a free parameter the 

guessed value is typed. For parameters to be held fixed the corresponding 

parameter values are followed by a comma and an asterisk (e.g. 235, '). 

6. The program prompts for the nurnber of iterations to be performed. This is 

answered by typing the desired number of iterations. 

7. Finally the program prompts for names of an output list file and an output plot 

file. The results from the iterative inversion are written into these files and 

will be discussed later. When these file names have been specified the pro­

gram starts the iteration process. 
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During the iterations the program writes OD the terminal the iteration number ITR, 

the best model parameters obtained so far (resistivity values, rho and layer 

thicknesses, d) and the temporary model parameters (rhot and dt) to be tried next. It 

also writes the lowest Cm-value obtained and the temporary CHIT obtained from the 

temporary model. If CHIT is lower than cm then the temporary model is kept as the 

best model and the program proceeds to the next iteration with a new temporary 

model. If CHIT is higher than cm another temporary model is tried. This is repeated 

until CHIT becomes lower than cm or !lA, which is displayed on the screen, 

becomes higher than NF, the number of free parameters in the model in which case 

the program terminates on the criterion of no-convergence. 

If the iteration process has not stopped on the no-convergence, the CHI -convergence 
or the DCHI-convergence stop checks (see above) and the number of iterations 

specified (in step 6 above) has been performed, the program pauses and asks if the 

iteration process is to be continued. If this question is answered with N (no) , the itera­

tion process is terminated on maximum number of iterations. If it is answered with Y 
(yes), the program asks how many more iterations are to be performed. 
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4. OUTPUT FILES 

The results from the inversion are written into two output files, the output list file and 

the output plot file. The content of these files will be discussed shortly. 

4.1 The output list file 

The following is an example of an output list file: 

WEIGHING MODE "" RE WEIGTH PARAMETER RW .. .0 

INITIAL MODEL PARAMETERS: 

rho: 150.000 .500 120.000 
d, 2.000 3.000 

CHI: .12476E+01 

ITR:z 1 lLA= 2 CHI= .5430E+00 DCR!- .5648E+00 
rho: 39.69 1.56 18 . 02 

d, 1.85 2.79 

ITR- 2 lLA= 2 CHI- . 2343E+OO DCR!- .5684E+00 
rho: 61. 74 1. 69 35.30 

d, 1. 03 2.56 

ITR- 3 ILA= 1 CHI"" .7109E-01 OCRI- .6967E+00 
rho: 99.79 1.41 68.72 

d, 1.00 2.92 

ITR- 4 ILl",'" 1 CHI= .5725E- 0 2 DCHI- .9195E+00 
rho: 100.70 1.28 96.27 

d, .99 2.57 

ITR- 5 ItA- 1 CHI= .1865E- 02 OCRI- .6742E+00 
rho: 100.44 1.18 100.25 

d, .99 2.37 

ITR- 6 ILA= 1 CHI= . 1443E-02 DCR!- .2261E+00 
rho: 100 . 22 1.10 100.11 

d , 1. 00 2 .21 

ITR= 7 ILA= 1 CHI= • 1302E-02 oCRI- .9785E-Ol 
rho : 100.06 1.04 99 . 93 

d, 1.00 2.08 
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ITR .. 8 tU: 2 CHI::: .1296E-02 oCHI" • 4711E-02 
rho: 100.08 1. 04 99.95 

d , 1. 00 2 . 08 

ITRa 9 tLA= 2 CHI= .1293E-02 DCHt"" . 2228E-02 
rho: 100.07 1.04 99 . 94 

d, 1.00 2.07 

*** THE PROGRAM TERMINATED AFTER 10 ITRERATIONS *.* 

ISTO~2 * MAX ITERATIONS * 

FINAL CHI- SQ. SUM IS CHI- .1290E-02 

THE FINAL MODEL PARAMETERS ARE: 

rho: 100.06 1. 03 99.93 
d, 1. 00 2.06 

DATA EIGENVECTORS: 

1 - .148 .051 - .614 . 059 .367 
2 -.207 .068 - .499 .034 .136 
) -.287 . 089 - .340 .001 -.124 
4 - .386 .113 - .133 - .038 -.338 
5 - .489 .126 . 113 -.070 -.356 

• -.531 .086 .330 - . 052 .033 
7 -.377 -.074 .312 .089 .576 
8 -.140 -.2 42 .085 .242 .374 
9 - .057 - .292 - .019 .272 -.014 

1 0 -.045 - .296 - .035 .249 -. 133 
11 -.044 -.293 - .036 .214 - .146 
12 -.043 -.290 -.0:36 .172 -.140 
1) -.043 - .285 -. 036 .121 -.128 
14 -.042 - . 280 - .036 .060 - . 111 
1 5 -.041 - .274 -.0)6 - .012 - .088 
1. -.040 - .267 -. 0)6 -.09 6 - .060 
17 - .038 - .259 -. 036 -.196 - .026 
18 -.037 - .249 - .036 - .311 .015 
19 -. 035 - .237 -. 036 -.442 .063 
20 -. 033 -.225 - .036 -.59 1 .117 

1 2 ) 4 5 
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PARAMETER EIGENVECTORS: 

1 - .302 .095 - .948 .034 . 017 
2 -.160 -. 687 - .002 .080 .704 
3 - . 011 -.092 -. 041 -. 995 .021 
4 -.9 29 .194 .314 - .021 - .019 
S .142 .687 .035 -.051 .710 

1 2 3 4 S 

PARAMETER EIGENVALUES: 

6.474 4.431 1.170 .333 .021 

CORRELATION MATRIX: 

1 1.000 
2 .713 1.000 
3 .150 . 311 1.000 
4 -.8 67 -.945 - .241 1.000 
S .711 1.000 . 322 -.944 1.000 

1 2 3 4 S 

I AB/2 Rhoam Rhoac WPM 
1 1. 26 74.50 74.44 1. 00 
2 1.58 60.26 60.48 1.00 
3 2.00 44.14 43.97 1.00 
4 2.51 27 . 75 27. 75 1.00 
S 3.16 14.90 14.91 1.00 
6 3.98 7.16 7.16 1.00 
7 5 . 01 3.92 3.92 1.00 
8 6 . 31 3.33 3.33 1.00 

• 7.94 3.85 3.85 1. 00 
10 10.00 4.76 4.76 1. 00 
11 12.59 5.92 5.92 1.00 
12 15 . 85 7.35 7.35 1.00 
13 19.95 9.09 9.09 1.00 
14 25.12 11. 21 11.21 1.00 
lS 31. 62 13.76 13 . 76 1.00 
1. 39.81 16.80 16.80 1. 00 
17 50.12 20 . 39 20.39 1.00 
18 63.10 24 . 56 24.56 1. 00 
1. 79.43 29.34 29.34 1. 00 
20 100 .00 34 . 72 34.71 1. 00 
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The program begins by writing the weighing mode and the weight parameter as well 

as the initial model and the corresponding chi-square sum. During the iteration pro­

cess the program writes for each iteration the iteration number ITR, the Marquardt 

parameter counter IlA, the chi-square sum CHI for the model obtained in the 

present iteration, the fractional decrease DCHI of the chi-square sum between the 

present and the last iteration and the model obtained in the present iteration step. 

Model parameters that are held fixed are followed by an asterisk. When the iteration 

process is finished the program writes the number of iterations performed and the 

stop check on which the program stopped. Then it writes the final chi-square sum and 

the best model obtained. 

Next the program writes out information on how changes in the model parameters 

affect the calculated apparent resistivity values. This is described by three matrices U, 

Land V. U is an NDxNF matrix whose column vectors are the data eigenvectors listed 

(as columns) in the output list file (ND and NF are the number of data points and free 

model parameters). L is an NFxNF diagonal matrix whose diagonal elements are the 

parameter eigenvalues written in the list file. V is an NFxNF orthogonal matrix whose 

column vectors are the listed parameter eigenvectors (as columns). 

In order to bring out the significance of these matrices we think of the resistivity 

model as an NF dimensional vector p. If no parameter is fixed, the first NL com­

ponents of this vector are the natural logarithms of the resistivity values of the layers 

(NL is the number of layers in the model, NF =2·Nl.rl if no parameter is fixed). The 

remaining Nl.r 1 components are the naturallogarithrns of the layer thicknesses. Fixed 

parameters are not included in the vector p. For example, if we take a three layered 

model and fix the resistivity of the second layer then NF=4 and PI and pz are tbe 

natural logarithms of the resistivity values of the first and the third layer and P 3 and 

P4 are the natural logarithms of the thicknesses of the first and the second layer. In 

the same way we think of the natural logarithms of the calculated apparent resistivity 

values as an ND dimensional vector q. If we change the model vector p by the amount 

dp then the calculated apparent resistivity vector will be changed by dq according to 

the following equation: 

dq = U ·L·V'·dp 

where V' means the transpose of the matrix V. 
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From this equation the significance of the data and parameter eigenvectors and the 

eigenvaIues can be deduced. In the first place we see that the apparent resistivity 

increments dq are propnnional to the eigenvalues. The first parameter eigenvector 

shows which model parameters have the strongest association with the first eigenvalue 
which is normally the highest one. The degree of association is shown by the absolute 

value of the components of tbe eigenvectors, the higher the absolute value the greater 

the contribution of the corresponding model parameter. likewise the eigenvector 

corresponding to the smallest eigenvalue shows which model parameters have the 

least influence on the calculated apparent resistivity. The model parameters that are 
most strongly associated to tbe highest eigenvalue are the most reliable ones whereas 

the parameters associated to the smallest eigenvalue are the most uncertain parame­
ters in the final model. The relative contribution of the parameter eigenvectors to the 

different apparent resistivity values is described by the data eigenvectors. 

In the three layer example above we see tbat tbe thickness of tbe first layer is tbe best 

determined model parameter because the eigenvector corresponding to the highest 

eigenvalue has the absolute value of the fourth component close to one while the other 

components are relatively small. We also see that the resistivity value and the thick­

ness of tbe second layer are not well determined because they have their greatest con­

tribution to the fifth eigenvector (components two and five) which is associated to the 

smallest eigenvalue. Furthermore we see that the contributions of these parameters to 
the last eigenvector are similar in magnitude and have the same sign (0.704 and 0.710). 

This implies that it is only the ratio between the thickness and the resistivity of the 

second layer that is determined to some degree of reliability. 

This layer is an example of what is called an equivalence layer of the s-type. 

Equivalence layer of the s-type occurs when a relatively thin layer of low resistivity 

exists between layers of considerably higher resistivities. For such a layer, it is only the 

longitudinal conductance (the ratio of the thickness and the resistivity) that can be 

determined with some accuracy. Another type of equivalence layers, called t-type 

equivalence layers, is also common in one-dimensional resistivity models. They occur 

when a relatively thin layer with high resistivity is over- and underlain by considerably 

lower resistivities. For these layers it is only the transverse resistance (the product of 
the thickness and the resistivity) that is determined with some accuracy. If at-type 

equivalence layer is present, its model parameters (resistivity and thickness) have their 
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greatest contribution to the parameter eigenvector associated to the smallest eigen­

value and the contributions are similar in magnitude but with opposite signs. 

Equivalence layers can also be identified by observing the parameter correlation 

matrix which is written in the output list file. If an off-diagonal element measuring the 
correlation between a pair of model parameters is close to 1, then only the ratio 

between the corresponding parameters is fairly well determined (s-type equivalence). 

If, on the other hand, an off-diagonal element is close to -1, then only the product of 

the corresponding parameters is determined (t-type equivalence). In the example 

above we see that the correlation matrix element corresponding to parameters 

number two and five (resistivity and thiclmess of the second layer) is equal to 1. llis 

shows that the second layer is an equivalence layer of the s-type. 

Finally the program writes into the output list file the AB/2 values for the data points, 

the measured apparent resistivity values, the apparent resistivity values calculated 

from the final model and the weight parameters of the data points. 

4.2 The output plot file 

The inversion program writes the measured data points, the calculated apparent resis· 

tivity values, the final model and the value of the chi-square sum into the output plot 

file. The content of this file can be plotted both on the terminal and as a hard copy on 

a printer or a plotter. To plot the results, the files SPLOT.BAT (screen plot), 

PPLOT.BAT (paper plot), RES.GRD (grid file) and CENT.ERED.SYM (plot sym­

bols) must be in the working directory and the files VIEW.EXE (screen plot) and 

PLOT.EXE (paper plot) must be either in the worldng directory or a directory 

specified in the PAW-list. 

The measured apparent resistivity values ar plotted as small circles on a double loga­

rithmic plot and the calculated apparent resistivity curve is drawn as an unbroken line. 

The resistivity model is displayed numerically as resistivity values (Ohrnm) and layer 

thiclmesses (m) and also as a histogram where the x-axis shows the depth and the y­

axis the resistivity values. The value of the chi-square sum is also displayed on the 

plot. The plot is marked by a station identification which is identical to that part of 

the output plot file name which is in front of the point (.). If e.g. the output plot file is 

given the name HE1OS.PLT, then the plot will be marked as STATION: HE1OS. 
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To plot the results on the terminal, simply type SPLOT followed by the name of the 

output plot file and press return. This initiates a command procedure that appends the 

plot file to the grid file RES.GRD and plots the results on the screen by the program 

VIEW.EXE. The plot can be zoomed in by striking the + key and shifted both in hor­

izontal and vertical directions by striking the arrow keys. To return to the DOS 

prompt, strike the Esc-key, then q and return. 

To plot a hard copy on a printer or a plotter, simply type PPLOT followed by the 

name of the output plot file and return. This initiates a command procedure that 

appends the plot file to the grid file and plots the results by the program PLOT.EXE. 

The plot program asks if the plot is to be shifted, and if confirmed, how much in each 

direction. The first time a hard copy is produced or if the output device is changed, it 

may be necessary to reset the output device specification. This is done by changing the 

working directory to the directory containing the program PLOT.EXE and typing 

PLOT/I. The plot program displays the current output device specification and asks if 

it is to be changed. If this is answered positively, it displays a list of possible output 

devices and the appropriate choice can be made and saved by following a step by step 

procedure conducted by the plot program. 

An example of an output plot, plotted on a printer, is shown in Figure 4.1. 



~ 

E 
E 

-'= 

10 

10 

o 
'---"10 
o 
o 

-'= 
0::: 

10 

1 

, 

J 

2 

1 

STATION: 

10 

- 24 -

test 3 LAYERED MODEL 

Layer rho d 
1 835.2 12.8 
2 4.0 146.3 
3 24.1 

Chisq = .034 

~ 
/' 

\ l/ 

10 2 
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Figure 4.1 An output plot from SLlNV. 
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************************************************************************* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* • 
• 
• 
• 
• 
• 
• 
• 
• 
• • 
• 
* • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• • • 
• 
• 
• 
• 
• 
• 

SLINV 

This is a non-linear least-square inversion program for 
inversion of Schlumberger resistivity soundings. 

• 
• 
• • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
* • 
* • 
• 
• 
• 

The program uses an iterative Levenberg-Marquardt inversion 
algorithm described by H. K. Johansen (1977) together with 
a forward routine based on the linear filter method as 
described by H. K. Johansen (1975). 

• • • • • • • • 
copyright (C) UNU Reykjavik Iceland 1988. 

This program was written for the united Nations University 
Geothermal Training Programme in Reykjavik, Iceland. 

Author: Knutur Arnason, National Energy Authority of Iceland, 
Geotherma l Division . 

• • • • • • • • 
The following subroutines are called by the main program: 

RDAT 

FLT 
SLFW 
SLDR 
CHSQ 

SVDC 

OROW 

NEWP 

WROT 

opens and reads data (X,YM) from an input file and * 
computes weight coefficients SIG. It also reads a * 
starting model (P) from the terminal. * 
returns the digital filter, C, used in SLFW and SLDR. * 
calculates ordinant values (YC) from a given model (P). * 
calculates the partial derivative matrix Aij=dYi/dPj. * 
calculates the chi-square sum, * 
cHI~sqrt(sum«(YM-YC)/SIG)**2). * 
does singular value decomposition on the matrix A, * 
A=U*W*V**t, where U is the data eigenvector matrix and * 
replaces A on output, W is a diagonal matrix (stored * 
as a vector) containing the eigen-(singular)values and * 
V is the parameter eigenvector matrix. * 
orders the eigenvalues in W in an increasing order and * 
returns in WR. * 
calculates increments (PT) that are to be added to * 
the model parameter (P) in order to decrease the * 
chi-square sum (CHI). * 
writes out the final model parameters (P) and the * 
measured and calculated apparent resistivity values * 
(YM and YC) both into an output plot tile and an * 
output list file. It also writes the data and * 
parameter eigenvectors, the eigenvalues and the * 
correlation matrix into the output list file. * 

• 
The following vectors and matrices are used: • 

• 
X(NOM) 
YM(NOM) 
SIG(NOM) 

P(NPM) 
IPF(NPM) 

FIX(NPM) 

YC{NDM) 

PN(NPM) 

abscissa values In(AB/2) (from input file). * 
ordinant values In(Rhoam) (from input file). * 
weight parameters for the YM values. * 
The higher the weight parameter the smaller * 
the contribution to the chi-square sum. * 
model parameters. * 
array telling which parameters are tixed * 
(IPF>O) and which are not fixed (IPF- O). * 
array of characters; '*' for fixed parameters * 
and I , for non-fixed parameters. * 
calculated ordinant values In(Rhoac) * 
from the model parameters P. * 
increments to be added to the model parameters. * 
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• 
• 
• 
• 
• 
• 
• • 
• 
• 
• 
• 
• 
• 
• • 
• 
• 
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• 
• 
• 
• 
• • 
• 
• 
• 
• 
• • • • 
• 
• 
• 
• 
• 
• 
• 
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PT (NPM) 
YT(NDM) 
A(NDM,NPM) 

temporary model parameters. '/I 

temporary ordinant values (calculated trom PT). * 
partial deriva tive matrix on output from SLDR * 
but data eiqenvector matrix on output from SVDC .• 

W(NPH) 
WR(NPH) 
V(NPM,NPM) 
C(141) 

eigenvalues. * 
eigenvalues ordered in an increasing order. * 
parameter eiqenvector matrix. * 
digital filter coefficients used in SLFW * 
and SLDR. * 

The following parameters are used in the main program: 
• 
• 
• 

NOM 
NPM 
NO 
NP 
NF 
WHOO 
RW 
CMI 
CHIT 
DCMI 
CHIS 
DCHIS 
ITR 
ITRS 
XLA 
lLA 
ISTOP 

• 

maximum number of data points (X,YM). * 
maximum number of model parameters (P). * 
number of data points ex, YM). • 
number of model parameters (P). * 
number of non-fixed model parameters. * 
weighing mode (RE or AB) . * 
weight parameter. * 
chi-square sum. * 
temporary chi-square sum . * 
fractional decrease of chi-square sum. * 
stop-check parameter for CHI (stop if CHI<CHIS). * 
stop-check parameter for DCHI (stop if DCHI <DCHIS). * 
iteration counter. * 
stop-check parameter for ITR (stop if ITR<ITRS). * 
Marquardt parameter. * 
retry counter which is an index for XLA (XLA- WR(ILA». * 
stop index telling on which stop- check the program * 
stopped ( CHI<CHIS -> ISTOP-O, DCHI<DCHIS -> ISTOP=l, * 
ITR>ITRS => ISTOP=2, ILA>NP => ISTOP=3 l. * 

• 
• • • • • • • 

References: 

• 
• 
• 
• 

Johansen, H. K., 1975: An interactive computer/graphic-display- * 
terminal system for interpretation of resistivity * 
soundings, Geophysical Prospecting 23, pp . 449-458. * 

Johansen, H. K., 1977: A man/computer interpretation system * 
tor resistivity soundings over a horizontally stratified * 
earth, Geophysical Prospecting 25, pp. 667-691. * 

• 
***************.*********** •• * •• **.*.**** ••••••••• * ••••• ** ••••••••• * ••• *. 

c 
c 

PROGRAM SLINV 

PARAMETER (NDM-5l,NPM~50) 

COMMON C(14l) 

CHARACTER.12 OUTF,PLTF 
CHARACTER.l FIX(NPM),ANSIT 
CHARACTER.2 WHOD 

DIMENSION X(NDM) ,YH(NDH) ,YC(NDH),YT(NDM) ,SIG(NDM) 
DIMENSION P(NPM),PN(NPM),PT(NPM),W(NPM) ,WR(NPM),IPF(NPM) 
DIMENSION A(NOM,NPM),V(NPM,NPM) 

Read abscissas (X) and ordinants (YM) and compute weight 
parameters (SIG) and read initial model parameters. 

CALL RDAT (X,YM,SIG,IMA,ND,P,IPF,NP,NF,NDH,NPM,FIX,WHOD,RW) 

WRITE (.,I(A,S) ' ) , NUMBER OF ITERATIONS: I 

READ (.,'(12) ') ITRS 
WRITE (*,' U) ') 
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C Read output file name from terminal and 
C open output file as logical unit 1. 

WRITE C*, I(A,$) ') , OUTPUT LIST FILE: 
READ (.,'CA) ') OUTF 
OPEN (UNIT~l,FlLE=OUTF) 

C Read output p!otfile name from terminal 

WRITE (.,'CA,S) ') I OUTPUT PLOT FILE: 
READ (*. '(A) ') PLTF 
WRITE (*,'U)') 
WRITE (*,' CA) .) I ** WORKING **' 
NL=(NP+l)/2 

C Write weighing mode and initial model in output file. 

WRITE (1,' (/) ') 
WRITE (1, I (A,A,A,F3.l) ') , WEIGHING MODE - I,WMOD, 

& WEIGTH PARAMETER RW - " RW 
WRITE (1,' Cl) ') 
WRITE (1, 'CA) ') , INITIAL MODEL PARAMETERS:' 
WRITE (1, I (J) ') 
WRITE (1,'(A,8(FB.3,Al»') I rho:',(EXP(P(I)},FIX(I),I=l,NL) 
WRITE (1,'(A,8(FB.3,Al»')' d:',(EXP(P(I»,FIX(I),I=NL+l,NP) 

C The following two parameters are stop check parame ters 
C for the iteration process. 

CHIS=l.OE-OJ 
DCHIS=l.OE- OS 

C Get the digital filter C (transfered through common) . 

CALL FLT 

C Initialize t he iteration counter. 

ITR=O 

C compute ordinants (YC) from the initial model parameters (P). 

CALL SLFW (YC,P,IMA,ND,NP,NDM,NPH) 

C Calculate the chi-square sum. 

CALL CHSQ (YH,YC,SIG,NO,CHI,NDM) 

write (*,I(a,ell.S)') 
WRITE (1,'(A,Ell.S)') t 

WRITE (1, t (I) ') 

CHI-' ,chi 
CHI- ' , CHI 

C Here starts the iteration process. 

DCHI=l. 0 

1 ITR- ITR+l 

write (*,1(1)1) 
write (*,I(a,iJ)') 'ITR- ' ,itr 

c Calculate the partial derivative matrix A. 

write (*,1 (a) 1) I ** WORKING ** I 
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c 
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c 
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, 

10 

- 31 -

CALL SLDR(YC,P,IPF,ND,NP,IMA,A,NDM,NPM) 

Do a singular value decomposition on A, A:U*W*V**t. 
On input A is the partial derivative matrix, 
on output A is the data eigenvector matrix U. 

CALL SVDC (A,ND,NF,NDM,NPM,W,V) 

Order the eigenvalues W in an increasing order into WR 
to be used as Marquardt parameters. 

CALL OROW (W,WR,NF,NPM) 

Initialize the Marquardt index to start with the smallest 
Marquardt parameter . 

lLA=l 

Here starts a loop that increases the Marquardt 
parameter as long as the temporary chi - square sum, 
CHIT, is not less than the chi-square sum, CHI. 

XLA=DCHI**(l . /REAL(ILA+l))*WR(ILA) 
IF (XLA.LT.O.Ol) THEN 

lLA::lLA+l 
IF (ILA . GT.NF) THEN 

ISTOP=3 
GOTO 3 

ENDIF 
GOTO 2 

ENDIF 

write (*,' (a,i2,a,el1.4) ') lLA-', ila,' XLA=' ,xla 

Calculate increments, PN, to be added to 
the model parameters, P. 

CALL NEWP (YM,YC,SIG,A,W,V,XLA,PN,ND,NF,NDM,NPM) 

Check if the increments in log-parameters, PN, 
change the model parameters by more than 
factor 50 and then damp PN by increasing ILA. 

DO 10 J:::1,NF 
IF (ABS{PN{J».GT.3.9) THEN 

ILA=ILA+1 
IF (ILA.GT.NF) THEN 

ISTOP=3 
GOTO 3 

ENDIF 
GOTO 2 

ENDIF 
CONTINUE 

Add the increments, PN, to the parameter 
vector, P, to get new temporary parameter 
vector, PT. 

I1=1 
DO 11 I-1,NP 

IF (IPF(I).EQ . O) THEN 
PT(I)=P(I)+PN(Il) 
I1=I1+1 

ELSE 
PT(I)-P(I) 
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ENCIF 
11 CONTINUE 
41 CONTINUE 

C Write on the terminal the best model obtained so far 
C and the temporary model to be tried next. 

c 
c 

c 

c 
c 
c 
c 

c 
c 
c 

c 
c 

c 
c 

12 

13 

write (*,'(a,8(f8.2,a1» ') 
write (*,' (a,8(f8.2,al» ') 
write (*.' (a,8(f8.2,111» ') 
write (*,'(a,8(f8.2,al» ') 

rho: I, (exp(p(i» , fixe i) , i=l, n l ) 
d: I, (exp (p(i» • fixe i), i::nl+ l ,np) 

rhot:',(exp{pt(i», f l x (i),i- l,nl) 
dt: ., (exp(pt(i» , f i xe i) , i - nl+1, np ) 

Calculate temporary ordinant values, YT, 
from the temporary model PT. 

CALL SLFW (YT,PT,IMA,ND,NP,NDM,NPM) 

Calculate the temporary chi-square sum, CHIT. 

CALL CHSQ (YH,YT,SIG,ND,CHIT,NDM) 

write (*,' (a,el1.5) ') CHI=' ,chi 
write (*,'(a,e11.5)') , CHIT=',chit 

Check i t CHI T is less than CHI. 
If not then increase the Marquardt 
parameter XLA and try again as long 
as lLA is not greater than NF. 

IF (CHIT.GE.CHI) THEN 
IF (ILA.GE.NF) THEN 

ISTOP-3 
GOTO 3 

ENDIF 
lLA- II.A+l 
GOTO 2 

ENDIF 

For CHIT less than CHI keep the temporary 
values and calculate the fractional decrease, 
OCHI, of the chi-square sum. 

00 12 I - l,ND 
YC(I)-YT(I) 

CONTINUE 

00 13 .1=1, NP 
P(J)~PT(J) 

CONTINUE 
DCHI-(CHI-CHIT)/CHI 
CHla:CHIT 

Check if CHI is less than CHIS, 
then stop the iteration. 

IF (CHJ.LE.CHIS) THEN 
JSTOP=O 
GOTO 3 

ENDIF 

Check if the fractional decrease DCHI is 
less than DCHIS, then stop the iteration. 

IF (DCHI.LT.DCHIS) THEN 
ISTOp.:.l 
GOTO 3 



c 
c 
c 

4 

100 
& 

& 

& 

- 33-

ENDIF 

Check if the number of iterations, ITR, is less 
than ITRS, then write the best model so far in the 
output file and continue the iteration process. 

IF (ITR.LT.ITRS) THEN 
CONTINUE 
WRITE (1,100) 'ITR"",ITR,' lIA:::',ILA,' CHI""', 
CHI, I DCHI-' , OCHI 
FORMAT (A,I2,A,I2,A,EIO.4,A,EIO.4) 
WRITE (1,'{A,8(F8 . 2,Al»·) , rho:', 
(EXP(P(I»,FIX(I),I=l,NL) 

WRITE (1,'(A,8(F8.2,Al»')' d:', 
(EXP(P(I»,FIX(I),I=NL+l,NP) 

WRITE (1,'(/)') 
GOTO 1 

ENCIF 

c If ITR is equal to ITRS, then ask if more iterations 
C are to be performed or to stop. 

WRITE (*,'(1)') 
WRITE (*,'CA,I2 / A,$}') , FINISHED ',ITR,' ITERATIONS, 

& WANT MORE? (Y/N) : I 

READ (*, 'CA) ') ANSIT 
IF (ANSIT . EQ.'Y') THEN 

3 CONTINUE 

WRITE (*, I (A,$) ') • HOW MANY MORE? ., 
READ (*,*) ITRSl 
ITRS=ITRS+ITRSl 
GOTO 4 

EtsEIF (ANSIT.EQ. 'y') THEN 
WRITE (*, I (A,S) ') 1 HOW MANY MORE? : I 

READ (*,*) ITRSl 
ITRSzITRS+ITRSl 
GOTO 4 

ELSE 
ISTOP=2 

ENDIF 

C write out results in output list file and output plot file. 

CALL WROT (X,YM,YC,SIG,P,CHI,ISTOP,ITR,ND,NP,NF,NDM,NPM,FIX, 
& PLTF,A,W,V) 

WRITE (*, I U) ') 

STOP 
END 
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SUBROUTINE RDAT (X,YM,SIG,IMA,ND,P,IPF,NP,NF,NDM,NPM,FIX, 
& WMOD,RW) 

c*************·************************·********************************* 
C • 
C RDAT * 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

This routine reads input data from file. The natural 
logarithms of the AB/2 values (abscissas) are read and stored 
in Xl, the natural logarithms of the measured apparent 
resistivity values (ordinants) are read and stored in YMl. 
Interpolated data points evenly distributed on log-scale with 
10 points per decade are stored in X and YM. Calculated 
weight factors for each data pair (X,YM) are stored in SIC. 
NO is the number of data triplets (X,YM,SIG) and must be <42. 
The routine also reads initial model parameters, stored in P, 
from the terminal. NP is the number ot model parameters and 
must be <19. For layered earth models P(1), .•. ,P«NP+1)/2) 
are resistivity values tor the NL-(NP+l)/2 layers and 
P(NL), •.. ,P(NP) are the layer thicknesses. 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• • 

C**·*·*······················*···**·******·····**····· ••••••••••••••• **** 

DIMENSION X1(5l),YMl(5l),X(NDM),YM(NDM) 
DIMENSION SIG(NDM) ,P(NPM),IPF(NPM) 
CHARACTER.12 FNAME 
CHARACTER.l FIX(NPM) 
CHARACTER*2 WMOD 

C Read input filename from terminal and open input file. 

WRITE (*,'(f)') 
WRITE (*,' (A,$) ') I INPUT FILE:' 
READ (*,I(A ) ') FNAME 
OPEN (UNIT- l,FILE=FNAME,STATUS-'OLD') 

C Read instructions for how to weight the data. 

c 

c 
c 
c 
c 

11 

12 

WRITE (.,'(f) ') 
WRITE (*,'CA,$)I) 
WRITE (*,'(A,$)I) 
READ C.,'(A) I) WMOD 

WEIGHT WITH RESPECT TO RESISTIVITY OR' 
AB/2 ? (RE/AB): ' 

WRITE (.,'(A,$)') 'WEIGHT 
READ (.,*) RW 

Read data from input file 

DO 11 I:l,NDM+l 

PARAMETER (-l<- RW<=I): 

READ (1,*,END~12) Xl(I) ,YMl(I) 
YMl(I)-ALOG(YMl(I» 

CONTINUE 

NDI- I-l 
CLOSE (UNIT=I) 
DX:ALOG(lO.)/lO . 

Interpolate between the measured dat a points in 
order to g e t data equally distributed on log-scale 
with 10 points per decade and calculate weight factor 
for . each data point. 

IMIN=INT(LOG(Xl(1»/DX-0.25) 
lMAX=INT(LOG(Xl(NDl»/DX+O.25) 
ND=IMAX-IMIN 



11= 1 

DO 10 1=1,NO 
X(I)=EXP«IMIN+I ) *DX) 
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IF (XCI) .GT.Xl(Il+l» Il=MIN(Il+l,NDl-l) 
YM(I)=YMl(Il)+(YMl(Il+1) - YMl{Il»/LOG(Xl(Il+1)/Xl(Il» 

& *LOG(X(I)/Xl(Il» 
IF (WHOD.EQ. 'AB' ) THEN 

SUM- SUM+«IMIN+I)*OX)·*C2.*RW) 
ELSEIF (WHOD.EQ. 'ab') THEN 

WMOo-'AB' 
SUM=SUM+«IMIN+I)*DX)**(2.*RW) 

ELSE 
WMO[)=.'RE' 
SUM=SUM+YM(I)**(2.*RW) 

ENCIF 
10 CONTINUE 

SUM=SQRT(SUM/ND) 

DO 15 1=1,NO 
IF (WMOD . EQ. 'AB') THEN 

SIG(I)=«IMIN+I)*OX)**( - RW)*SUM 
ELSEIF (WMOD . EQ. 'ab') THEN 

SIG(I) - «IMIN+I)*OX)**( - RW)*SUM 
ELSE 

SIG(I) s YM(I)**(-RW)*SUM 
ENDIF 

15 CONTINUE 

C Read initial model parameters from the terminal. 

WRI TE (*,' (/) ') 
WRITE (*,' CA)') I INITIAL MODEL PARAMETERS:' 
WRITE (*,'CI)') 
WRITE (*,' (A,$) ') I NUMBER OF Ul.YERS:' 
READ (*,'(12)') NL 
NF- O 
WRITE (*,'(1)') 
WRITE (*,' (A,$) ') TYPE RESISTIVITY VALUES AND' 
WRITE (*,' (A) ') , LAYER THICKNESSES,* IF TO BE FIXED:' 

00 13 I=l,NL-1 
IPF (1)"'0 
WRITE (*,' (I) ') 
WRITE (*,'(A,Il,A,$)') rho(',!,'): 
READ (*,' (F10 . 0,A) ') P(l) , FIX(I) 
P(I)-ALOG(P(I) ) 
IF (FIX(I) .EQ.'*') THEN 

IPF(I) - I 
NF=NF+1 

ENDIF 
IPF(NL+Il - O 
WRITE (*,'(A,I1,A,$)') d(',I,'):' 
READ (*,'(FIO.O,A)') P(NL+I),FIX(NL+I) 
P(NL+I) c ALOG(P(NL+I» 
IF (FIX(NL+I) . EQ.'*') THEN 

IPF(NL+I)=NL+I 
NF=NF+l 

ENDIF 
13 CONTINUE 

IPF(NL) - O 
WRITE (*,'(/)') 
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WRITE (* , '(A,Il , A,$)') , rho(',NL,') : 
READ (* ,' (FIO.O,A) ' ) P(NL) , FIX(NL) 
P(NL):ALOG(P(NL» 
IF (FIX{NL).EQ. ' * ' ) THEN 

IPF(NL)-NL 
NF-=NF+l 

ENDIF 
WRITE (*, I U) ' ) 

C compute t he numbe r of parameters in the mode l , NP, and 
C the number of f ree parameters , NF. 

NP'"' 2*NL-l 
NF=NP- NF 
RETURN 
END 
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SUBROUTINE FLT 

c--******.*._-••••••••••••••• * •• _._ •••• *-*._*--*------Wkkkk_*_k*_**_. __ ._ 
C * 
C 
C 
C 
C 
C 
C 

FLT. 

This routine stores and returns the 141 point Jl digital 
filter used in SLFW and SLDR to calculate apparent resis­
tivity and partial derivative matrix. 

* 
* 
* 
* • 
• 

c-****--*--*--*-**-*-----**---*-*-----*_._*-----------kkkk ______ *_* ____ ._ 

C 

1 

C 
C 

& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 
& 

COMMON C(141) 
DIMENSION CC(141) 

Scale the filter coefficients. 

DO 1 L=1,141 
C(L)=CC(L)*1.OE-08 

CONTINUE 

Here ·CC=C*1. OE+08 are stored as data CC are the digital filter 
coefficients) . 

DATA CC /6174.,-12484.,12726.,-12975.,13231.,-13494.,13765. 
, - 14043.,14330 . ,-14625 ., 14930., - 15244 . ,15567., - 15901.,16246. 
,-16602.,16971., - 17352.,17746., -18154.,18577.,-19015.,19469. 
,-19941.,20429., - 20936 . ,21463.,-22009.,22577.,-23166.,23779. 
, - 24416.,25079., - 25768.,26487.,-27235.,28016.,-28830.,29680. 
,-30568. ,31496., - 32467 . ,33484., - 34549. ,35666 . , - 36838.,38069. 
, - 39363 . ,40724. , - 42156. ,43666. ,-45259 . ,46940. ,-48717.,50596. 
, -52587. ,54697., -56936 . ,59314. ,-61845.,64540., -67414.,70484. 
,-73767.,77284., - 81057 . ,85111.,-89475.,94183., - 99267.,104775. 
,-110741.,117248., - 124303.,132085., - 140461.,149959., - 159826. 
,171917., - 182946 . ,199955.,-209469.,239052.,-234543.,304916. 
,-234124.,453990 ., - 106745.,899282.,550573.,2442523.,3250077. 
,7926675.,13023345.,25610307.,41150741.,64231809.,72803988. 
,36118538., - 1004064 42 ., -242172543 .,20052460.,444506381. 
, - 489348908.,294899398., - 137791072. , 61285163., - 29362551. 
,15817356.,-9504597.,6226174.,-4353505.,3198475.,-2441493. 
,1920840.,-1548505.,1273595.,-1065148.,903512.,-775750.,673079. 
, - 589375. ,5202 64.,-462558.,413891.,-372478.,336951.,-306251. 
,279543., - 256168.,235594., - 217394.,201216.,-186773.,173826. 
,-162176.,151657.,-142126.,133463.,-125568.,60905./ 

RETURN 
END 



- 38-

SUBROUTINE SLFW (Y,P,IMA,ND,NP,NDM,NPM) 

************************************************************************* 
C * 
C SLFW * 
C * 
C This is a forward routine that calculates apparent resistivity * 
C curve for a given model rho(l), •• ,rho(NL),d(l), .. ,d(NL- l) * 
C stored in the vector P. NL is the number of layers and must be * 
C NL<ll. The apparent resistivity, stored in the vector Y, is * 
C computed as a function of AB/2, stored in the vector x, by * 
c using the gradient approximation and the digital (Jl) filter * 
C from H.K. Johansen (197S). The resistivity transform, stored * 
C in T, is convolved with the 141 point digital filter, • 
C stored in C. The AB/2 values are equally distributed on * 
C log-scale with 10 points per decade. • 
c * 
C***·**·······*····**········*···**·***····*···*·*···**.**.*.******** •••• 

COMMON C(141) 

DIMENSION Y(NDM),T(191),P(NPM) 

C Change the model parameters from logarithmic to linear form. 

DO 12 J-1,NP 
P(J)-EXP(P(J) ) 

12 CONTINUE 

DX-O.2302585 

C setting up the resistivity transform T(L). 

Nu-(NP+1)/2 
5- -1. 7239458 
RX-EXP(DX) 
SL-EXP(S+DX*(IMA+I01» 
RK-(P(NL-1)-P(NL»/(P(NL-l)+P(NL» 

DO 14 1.=80,1,-1 
SLA= (RXUL) /SL 
REXs 2.*P(2·NL- 1).SLA 
AEXP"'EXP(-REX) 
T(L)ap(NL-1)·(1.0-RK*AEXP)/(1.0+RK*AEXP) 

DO 13 J=NL-2,1,-1 
REX-2.*P(NL+J)·SLA 
AEXP=EXP(-REX) 
WO=(1.0 - AEXP)/(1.0+AEXP) 
T(L) -(P(J) *WD+T(L»/(l.O+WO·T(L)/P(J» 

13 CONTINUE 

IF (ABS(T(L) - P(NL».LE . 1.0E- 02) THEN 
UU-L 
GOTO 15 

ENDIF 

14 CONTINUE 

15 CONTINUE 

DO 17 L-81,140+ND 
SLA=(RX·*L)/SL 
REX=2 . • P(2*NL- l)*SLA 
AEXP=EXP (-REX) 
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T(L)ap(NL- l)*(l.O- RX*AEXP)/(l.O+RK*AEXP) 

DO 16 J - NL- 2,1, - 1 
REXK2. *P(NL+J) *SLA 
AEXFs=EXP( - REX) 
WD=(l.O-AEXP)/(l.O+AEXP) 
T(L)~(P(J)*WD+T(L» /(l . O+WD*T(L)/P(J» 

16 CONTINUE 

IF (ABS(T(L) - P(1».LE.l.0E- 02) THEN 
I>IA- L 
GOTO 18 

ENDIr 
17 CONTINUE 

18 CONTINUE 
51""0.0 

IF (LMI.GT.NO) THEN 

00 19 L-l,LMI-ND 
Sl=Sl+C CL) 

19 CONTINUE 

ENDIF 

52- 0.0 

IF «LMA+I- ND) .LE.141) THEN 

DO 20 L=LMA+I-ND,141 
S2=S2+C(L) 

20 CONTINUE 

ENDIF 

C convolve the resistivity transform T with the filter C. 

DO 22 1=1,NO 
Y(I)=O.O 

IF «LHI-NO+I) .GT.a) THEN 
Sl-Sl+C(LMI-NO+I) 

ENDlr 

Ll"LMI+l+l - ND 

IF (LI.LT.I) THEN 
L1=l 

ENDIr 

L2 - LMA"71+ I-ND 

IF (L2.GT . 141) THEN 
L2=141 

ENOIF 

00 21 L-Ll, L2 
Y(I) ~Y(I)+T{L-I+ND).C(L) 

21 CONTINUE 

Y(I)=Y(I)+P(NL) *Sl+P(1)*S2 

IF «LMA+I-ND). LE.14l) THEN 
S2:S2-C(LMA+I-ND) 

ENDIF 
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22 CONTINUE 

C Change t he calculated apparent resistivities to logarithmic form. 

DO 23 1"'1,NO 
Y(I)~ALOG (Y( I) ) 

23 CONTINUE 

C Change t he model parameters back to l ogarithmic form. 

00 24 J=l,NP 
P(J)-ALOG(P(J) ) 

24 CONTINUE 

RETURN 
END 
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SUBROUTINE SLDR (Y,P,IPF,ND,NP,IMA,A,NOM,NPM) 

c---*_._-_._. __ ._---------_._._-_ .. _ .. _. __ .. _---_._._._.wa __ w_w •• a. ____ ._ 
C • 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SLOR • 
• 

This is a routine that calculates the partial derivative matrix * 
Aij-dln(Yi)/dln(Pj) for layered resistivity structure. * 
The layered model rhoel) ••. ,rho(NL) ,d(l), •. ,d(NL-l) is * 
stored in the vector P. NL is the number of layers and must be • 
NL<11, NO is the number of abscissa values, NP=2*NL-l is the * 
number of model parameters and lMAmln(xmax)/lO is the maximum * 
coordinant number of abscissas. TB, WB and TRO are temporary 
arrays. * 

• c-------_._._._-_._._-----------_._._-_._-_._----_._.- ___ www.wwwaw ____ ••• 

c 
c 

11 

12 

COMMON C(141) 

PARAMETER (NTM~38) 

DIMENSION Y(NDM),P(NPM),IPF(NPM),TB(NTM),WB(NTM) 
DIMENSION TRD(191 , NTM),A(NDM,NPM) 

Change the incoming logarithmic quantities 
to non-logarithmic quantities. 

DO 11 1=I,ND 
Y(I)-EXP(Y(I» 

CONTINUE 

DO 12 .1""l,NP 
P(J)-EXP(P(3) ) 

CONTINUE 

NL-(NP+l)/2 
DX- O.2302585 
S- - 1. 7239458 
RX::=EXP(DX) 

C Set up a kernel matrix, T(L,J), which convolved with 
C the filter gives the partial derivative matrix. 

SL-EXP(S+DX*(IMA+I0l» 
RK-(P(NL-l)-P(NL»/(P(NL-l)+P(NL» 

DO 15 L=1,140+ND 
SLA= (RX**L) /SL 
REX:2.*P(NP)*SLA 
AEXP1"EXP(-REX) 
T-(1 .0-RK*AEXPl) /(1.0+RK*AEXP1) 
TT-LO 
IF (NL.EQ.2) GOTO 1 
TM=T*P(NL- 1) 
TB(NL-2)=TM/P(NL-2) 

DO 13 .1-NL-2,1, -1 
REX=2. *P(NL+J) *SLA 
AEXPZEXP (-REX) 
WB(J) - (1.0-AEXP)/(1.O+AEXP) 

13 CONTINUE 

IF (NL.GT.3) THEN 

DO 31 J-NL-3,1,-1 
TMa(WB(J+l) *P(J+l)+TM)/ (1.0+WB(J+l) *TM/P(.1+1» 
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TB(J)=TMjP(J) 
31 CONTINUE 

ENDIF 

DO 14 J=1,NL-2 
RN=l.+WB( J )*TB(J) 
TRD(L,J)=TT*(2 . *RN-l . +TB(J)**2)*WB(J)/(RN**2) 

TRD(L,NL+J)=TT*(1. - TB(J)*.2) *(1. - WB(J)**2)*P(J) *SLA/(RN**2 ) 
TT-TT*(1 . O-WB(J)**2)/(RN**2) 

14 CONTINUE 

1 RR=4.*P(NL-l)*AEXPl/«1.+RK*AEXPl)**2) 
TRD(L, NL)=TT*RR*P(NL- l)/ « P(NL-l)+P(NL»**2) 
TRD(L,NL-l)=TT*T-TRD(L,NL)*P(NL)/P(NL-l) 
TRD(L,NP)=TT*RR*RK*SLA 

15 CONTINUE 

C Now convolve with the filter and compute Aij. 

16 

17 

18 

2 
19 

J1=1 

00 20 J=l,NP 

IF (IPF(J).EQ.O) THEN 

DO 19 I-I,NO 

A(I,Jl)=O.O 

DO 16 L=70,1,-1 
IF (ABS(TRD(ND- I+L ,J».LT.l.E- 08) GOTO 17 
A(I,Jl)=A(I,Jl)+TRD(ND- I+L,J)*C(L) 

CONTINUE 

CONTINUE 

DO IS L=71,141 
IF (ABS(TRD(ND-I+L,J» .LT.1.E- OS) GOTO 2 
A(I,Jl)=A(I,Jl)+TRD(ND-I+L,J)*C(L) 

CONTINUE 

A(I,J1)-A(I,J1)*P(J)/Y(I) 
CONTINUE 

Jl=Jl+l 
ENOIF 

20 CONTINUE 

C change the apparent r esistivities and the model parameters 
C back to logarithmic form. 

00 21 I=1,ND 
Y(I)=ALOG(Y(I» 

21 CONTINUE 

DO 22 J-1,NP 
P(J)=ALOG(P(J) ) 

22 CONTINUE 

RETURN 
END 
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SUBROUTINE CHSQ(YM,YC,SIG , ND,CHI,NDM) 

c-··_·_····· __ ·_····· __ ···········_·········_·_·······-_._*.-._-*_ •.... _. 
C • 
C eHSQ * 
c 
c 
c 
c 

c 

This routine computes the square root ot the sum of 
«YM-YC1/SIG)**2 from 1 to NO and returns it as CHI. 

DIMENSION YM(NDM),YC(NDM),SIG(NDH) 

Calculate the chi-square sum . 

CHI ""O. O 

DO 11 I-1,NO 
CHI- CHI+«YM(I) - YC(I»/SIG(I»**2 

11 CONTINUE 

CHI=SQRT(CHlj REAL(ND» 

RETURN 
END 

• 
• 
• 
• 
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SUBROUTINE SVDC(A,M,N,NDM,NPM , W,V) 

c*·********************************************************************** 
c 
c SVDC 

* 
* 

C Singular Value Decomposition Algorithm . * 
C Given a matrix A, with logical dimensions M and N (MxN) and * 
C physical dimensions MP and NP , this routine computes its * 
c singular value decomposit ion, A=U*W*V**T . The matrix U replaces * 
C A on out put. The diagonal matrix W is output as a vector W. • 
C The matrix V (not the transpose V**T) is output as V. M must * 
C be greater or equal to N; if it is smaller, then A should be * 
C filled up to square wit h zero rows. * 
C This routine is a slightly altered version of the routine * 
C SVDCMP in the book: Numerical Recipes, The Art of Scientic * 
C Computing by w. H. Press et.al., Cambridge Univ. Press 1986. * 
C • 
c************************************************************************ 

c 

11 

12 

13 

14 
15 

16 

PARAMETER (NMAX=lOO) 
DIMENSION A(NDM,NPM),W(NPM) ,V(NPM,NPM) ,RV1(NMAX) 
IF (M.LT.N) PAUSE 'You must augment A with extra zero rows' 

Householder reduction to bidiagonal form. 

G::O . O 
SCALE- O. O 
ANORM::O.O 
DO 25 I=1,N 

L=I+l 
RV1(I)=SCALE*G 
G=O . O 
S-O.O 
SCALE=O.O 
IF (I.LE.M) THEN 

DO 11 K=I,M 
SCALE=SCALE+ABS(A(K,I» 

CONTINUE 
IF (SCALE.NE . O.O) THEN 

DO 12 K=I,M 
A(K,I)=A(K,I)/SCALE 
S- S+A{K,I)*A(K,I) 

CONTINUE 
F=A(I,I) 
G=-SIGN(SQRT(S),F) 
H=F*G- S 
A{I,I)=F- G 
IF (I.NE . N) THEN 

DO 15 J=L,N 
S- O. O 
DO 13 K .. I,M 

S- S+A(K,I)*A(K,J) 
CONTINUE 
F=S/H 
DO 14 K=I,M 

A(K,J)=A(K,J)+F*A(K,I) 
CONTINUE 

CONTINUE 
ENDIF 
00 16 K""I,M 

A(K,I)=SCALE*A(K,I) 
CONTINUE 

ENDIF 
ENDIF 
W(I)=SCALE*G 



G- O. O 
5 "'0.0 
SCALE:O . O 
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IF «I . LE.M) . AND.(I.NE.N» THEN 
00 17 K=L,N 

SCALE=SCALE+ABS(A(I,K» 
17 CONTINUE 

IF (SCALE.NE.D.O) THEN 
00 18 1(=-L,N 

A(I,K)=A(I,K)/SCALE 
ScS+A(I,K)*A(I,K) 

18 CONTINUE 
F=A(I,L) 
G=- SIGN(SQRT(S),F) 
H=F*G- $ 
A(I,L) " F-G 
00 19 K-L,N 

RVl(K)""A(I,K)/H 
1 9 CONTINUE 

IF (I.NE.M) THEN 
DO 23 J=L,M 

5=0 .0 
DO 21 K=L,N 

S- S+A(J,K)*A(I,K) 
2 1 CONTINUE 

00 22 K- L,N 
A(J,K)=A(J,K)+S*RVl(K) 

22 CONTINUE 
23 CONTINUE 

ENDIF 
DO 24 K=L,N 

A(I,K) - SCALE*A(I,K) 
24 CONTINUE 

ENDIF 
ENDIr 
ANORM- MAX(ANORM, (ABS(W(I»+ABS(RVl(I»» 

25 CONTINUE 

C Accumulation of right- hand transformations. 

DO 32 I - N,1, - 1 
IF (I.LT.N) THEN 

IF (G.NE.D.O) THEN 
DO 26 J==L,N 

C Double division to avoid poss ible underflow: 

V(J,I)=(A(I,J) / A(I , L» / G 
26 CONTINUE 

00 29 .1- L,N 
5""0.0 
DO 27 K=L,N 

S=S+A(I,K)*V(K,J) 
2 7 CONTINUE 

DO 28 K=L,N 
V(K,J)aV(K,J)+S*V(K,I) 

28 CONTINUE 
29 CONTINUE 

ENDIF 
DO 31 Jo:L, N 

V(I,J)=O.O 
V(J,I)=O.O 

31 CONTINUE 
ENDIF 
V(I,I)::l.O 
G;RV1 (I) 



- 46-

1.:1 
32 CONTINUE 

C Accumulation of left-hand transformations. 

00 39 I=N,1,-1 
L-I+l 
G~W(1) 

IF (I.LT.N) THEN 
DO 33 J:L,N 

A(I,J)'"'O.O 
33 CONTINUE 

ENDIF 
IF (G.NE.C.O) THEN 

G=l.O/G 
IF (I.NE.N) THEN 

DO 36 J=L,N 
5=0.0 
DO 34 X-L,M 

S=S+A(K,I)*A(K,J) 
34 CONTINUE 

F""{SjA(I,I»*G 
DO 35 K=I ,M 

A{K,J)=A(K,J)+F*A(K,I) 
35 CONTINUE 
36 CONTINUE 

ENDIF 
DO 37 J=I,M 

A(J,I)=A{J,I)*G 
37 CONTINUE 

ELSE 
DO 38 J=I,M 

A(J,I)=O.O 
38 CONTINUE 

ENDIF 
A(I,I)=A(I,I)+1.0 

39 CONTINUE 

C Diagonalization of the bidiagonal form. 

DO 49 K=N,l, - l 

C Loop over singular values. 

DO 48 ITS-I,3a 

C Loop over al l owed iterations. 

DO 41 L=K,l,-l 
NM=L-l 
IF ({ABS(RVl(L)}+ANORM).EQ.ANORM) GO TO 2 
IF ((ABS(W(NM»+ANORM).EQ.ANORH) GO TO 1 

41 CONTINUE 
1 c- o. a 

S"1.0 
00 43 I=L,K 

F=S*RVl{I) 
IF «ABS(F)+ANORM).NE.ANORM) THEN 

G-W(I) 
H:SQRT(F*F+G*G) 
W(1)-H 
H'"'l.OjH 
C: (G*H) 
S=-(F*H) 
DO 42 J==l,M 

Y=A(J,NM) 
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Z=A(J, I) 
A(J,NM)=(Y*C)+(Z*S) 
A(J,I) - - (Y*S)+(Z*C) 

42 CONTINUE 
ENDIF 

43 CONTINUE 
2 Z=W(K) 

IF (L.EQ.K) THEN 
C Convergence. 

IF (Z.LT.O.O) THEN 

C Singular value is made non- negative. 

W(K)=- Z 
00 44 J;l,N 

V(J,K)=- V(J,K) 
44 CONTINUE 

ENDIF 
GO TO 3 

ENDIF 
IF (ITS.EQ.30) PAUSE 'No convergence in 30 iterations' 
X-WeLl 

C Shift from bottom 2-by- 2 minor: 

NM=K-l 
Y:W(NM) 
G=RV1(NM) 
H-RVl eK) 
F~«Y-Z)*(Y+Z)+(G-H)*(G+H»/(2.0*H*Y) 
G=SQRT(F*F+l.O) 
F=«X-Z)*(X+Z)+H*«Y/(F+SIGN(G,F») - H»/X 

C Next QR transformation : 

C:=l .O 
5-1.0 
DO 47 J=L,NM 

I=J+l 
G=RVl (I) 
Y-W(l) 
H=S*G 
G=C*G 
Z=SQRT(F*F+H*H) 
RV1(J)""Z 
C-F/Z 
S-H/Z 
F= (X*C)+(G*S) 
G=-(X*S ) +(G*C) 
H=Y*S 
y=y*c 
DO 45 NM==l,M 

X-V(NM,J) 
Z=V(NM,I) 
V(NM,J)= (X*C)+(z*S) 
V(NM,I)=- (X*S)+(Z*C) 

45 CONTINUE 
Z=SQRT(F*F+H*H) 
W(J)=Z 

C Rotation can be arbitrary if z=o. 

IF (Z.NE.O.O) THEN 
Z=l.O/Z 
C=F*Z 
S=H*Z 
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ENDIF 
F- (c*G)+(s*y) 
X==-(S*G)+(C*Y) 
DO 46 NM=l,M 

Y=A(NM,J) 
Z=A(NM , I) 
A(NM,J)= (y*C)+(Z*S) 
A(NM,I)=-(Y*S)+(Z*C) 

46 CONTINUE 
47 CONTINUE 

RV1(L)=O . O 
RV1(K)=F 
W(K)=X 

48 CONTINUE 
3 CONTINUE 
49 CONTINUE 

RETURN 
END 
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SUBROUTINE OROW(W,WR,NF,NPM) 

* * 
* OROW * 
* * 
* This routine orders NF array elements, stored in W, and * 
* returns them in an increasing order in the array WR. * 
* * 
******.****************************************************************** 

c 

c 

11 

DIMENSION W(NPM),WR(NPM) 

Initialize WR. 

DO 11 1" 1, HF 
WR(I) - W(I) 

CONTINUE 

Reorder WR in an increasing order. 

DO 13 I - I,HF 
WMAX=WR( l) 
IT""l 

DO 12 J - l,NF+l-I 
IF (WR(J).GT.WMAX) THEN 

WMAX- WR(J) 
IT"", 

ENDIF 
12 CONTINUE 

WR(IT)-WR(NF+I- I) 
WR(NF+I-I)=WMAX 

13 CONTINUE 

RETURN 
END 
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SUBROUTINE NEWP(YM,YC,SIG,A,W,V,XLA,PN,NO,NF,NDM,NPM) 

**********.**********.*** ••• **************************.*.***************. 
• • 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• • 

NEWP 

This routine takes in measured (YM) and calculated (ye) 
ordinants, weight parameters (SIG), Marquardt parameter 
(XLA) and the partial derivative matrix dYMi/dPj, singUlar 
value decomposed into dYMi/dPj~(A*W*V**t)i,j. The matrix 
A contains the data eiqenvectors as columns and V the 
parameter eiqenvectors as columns. The matrix W is diagonal 
and contains the singular (eigen) values (and is stored as 
a vector). The routine returns a vector (PN) containing 
increments that are to be added to the previous model 
parameter vector to get new and (hopefully) improved model. 
The increment vector (PN) is calculated by an (Marquardt) 
algorithm given by H. K. Johansen (1977). 
(NO and NF are the number of data (ordinant) values and free 
model parameters, respectively) 

• 
• 
• 
• 
• 
• 
• • 
• 
• 
• 
• 
• 
• 
• 
• 
• 

************************************************************************* 

DIMENSION YM(NDM) ,YC(NDM) ,SIG(NDM),PN(NPM) 
DIMENSION A(NOM,NPM),W(NPM),V(NPM,NPM) 

DO 13 I=1,NF 
PN(I) - O.O 

DO 12 J-1,NF 
8=0.0 

DO 11 K=1,NO 
SsB+«YM(K) - YC(K»/SIG(K»*A(K,J) 

11 CONTINUE 

PN(I) - PN(I)+B*(W(J)/(W(J)**2+XLA**2»*V(I,J) 
12 CONTINUE 

13 CONTINUE 

RETURN 
END 
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SUBROUTINE WROT(X,YM,YC,SIG,P,CHI,ISTOP,ITR,NO,NP,NF , NDM,NPM, 
& FIX,PLTF,A,W,V) 

****************************************.******************************** 
• 
• 
• 
• 
• 
* • 
• 
• 
• 
• 
• 
• • 
• 
• • 
• 

WROT 
• 
• 
• 

This routine writes out results trom the inversion program * 
SLINV into an output list file that has been opened in the * 
main program as logical UNIT-l. It writes out the data * 
points (X,YM), the weight coefficients Cl/SIG), the * 
final model parameters (P) and the corresponding calculated * 
ordinant values (ye). It writes the final chi-square sum (CHI), * 
the number of iterations performed (ITR), the stop- check * 
parameter (ISTOP), the data eigenvector matrix CA), the * 
parameter eigenvector matrix (V), the parameter eigenvalues * 
(W) and the correlation matrix. * 
The routine also writes the measured and calculated apparent * 
resistivity values, the final model and the chi-square sum - * 
into a plot file that can be plotted either on the screen * 
or as a hard copy on a printer or a plotter. * 

• 
************************************************************************* 

c 
c 

c 

c 

c 
c 

11 

DIMENSION X(NDM),YM(NDM),YC(NDM),SIG(NDM},P(NPM) 
DIMENSION A(NDM,NPM},W(NPM) ,V(NPM,NPM} 

CHARACTER*12 PLTF 
CHARACTER*8 STATION 
CHARACTER*l FIX(NPM) 

Write in the output list tile on which stop check the 
iteration terminated. 

WRITE (1, '(A,I2,A) ') *** THE PROGRAM TERMINATED AFTER' 
& ,ITR,' ITRERATIONS ***' 

WRITE (1,' U)') 
IF (ISTOP.EQ.O) THEN 

WRITE (1,' (A, Il,A) ') , ISTOP-' ,ISTOP,' * CHI CONVERGENCE *' 
ENDIF 
IF (ISTOP.EQ.l) THEN 

WRITE (l,'(A,Il,A)') , ISTOP-',ISTOP,' * DCHI CONVERGENCE *' 
ENDIF 
IF (ISTOP.EQ.2) THEN 

WRITE (1,'(A,I1,A)') , ISTOP=',ISTOP,' * MAX ITERATIONS *' 
ENDIF 
IF (ISTOP.EQ.3) THEN 

WRITE (1, '(A,Il,A) ') , ISTOP.',ISTOP,' * NO CONVERGENCE *' 
ENDIF 

Change logarithmic model parameters to non-log parameters. 

DO 11 J - 1, NP 
P(J)-EXP(P(J) } 

CONTINUE 

open output plot tile 

OPEN (UNIT- 2,FILE-PLTF) 

Write the final chi-square sum and the final model into 
the list file 

NL=(NP+1)/2 
WRITE (1,' U) ') 
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WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 

(1,' (A,EIO.4) ') I FINAL CHI - SQ. SUM IS CHI: ' ,CHI 
(l,'U)') 
(1, 'CA) ') • THE FINAL MODEL PARAMETERS ARE:' 
(1,'(1)1) 
(1,'(A,8(F8.2,Al» ') 
(1,'(A,8(F8.2,Al» ') 
(1,'(/)') 

rho: ',{P (I),FIX(I),r=l,NL) 
d:',(P(I),FIX(I),I=NL+l,NP) 

C write the data eigenvectors into the list file. 

WRITE (1,'(A) ') I DATA EIGENVECTORS : ' 
WRITE (1, I U) ') 

DO 18 I=l,ND 
WRITE (1, ' (12, UF7 .3) .) I , (ACI,J) ,J=l,NF) 

18 CONTINUE 

WRITE (1,' (l117) ') (J,J=l,NF) 
WRITE (1,' U) ') 

C write the parameter eigenvectors in the list file. 

WRITE (1, '(A) ') I PARAMETER EiGENVECTORS:' 
WRITE (1, I U) ') 

DO 19 I=l,NF 
WRITE (1,'(I2,llF7.J)') I , (V(I,J),J" l,NF) 

19 CONTINUE 

WRITE (1,' (IU7) .) (.1 ,J=l,NF) 
WRITE (1,' U) ') 

C write the parameter eigenvalues in the list file. 

WRITE (l,'(A) ') , PARAMETER EIGENVALUES:' 
WRITE (1,' U) ') 
WRITE (l,'(lU7 . 3)') (W(I),I=l,NF) 

C write the, correlation matrix in the list file. 

WRITE (1,' U) ') 
WRITE (l,'(A) ') , CORRELATION MATRIX:' 
WRITE (1,' U) .) 

DO 20 J=l,NF 
DO 21 K=l,NF 

A(J,l<)=O. 
DO 22 I=l,NF 

A(J,K)=A(J,K)+V(J,I)*V(l<,I)/W(I)**2 
22 CONTINUE 
21 CONTINUE 

WRITE (1,' (12, llF7. 3) .) J, (A(J ,l<)/SQRT(A(J ,J) *A(l<, Kl) 
& ,Kc l,J) 

20 CONTINUE 

WRITE (1,' (llI7) .) (J ,.1=l,NF) 
WRITE (1,' U) ') 

C Write the AB/2 values, the measured and calculated apparent 
C resistivity values into the list file and the measured 
C apparent resistivity values into the plot file to be plotted 
C as small circles. 

WRITE (1,'(A,9X,A,7X,A,2(8X,A»') , I', 'AB/2', 'Rhoaro' , 
& 'Rhoac',' WPM' 



DO 12 r""'l,ND 
YM(I)=EXP(YM(I» 
YC(I)=EXP(YC(I» 

- 53 -

WRITE (1,'(I2,4F13.2)') I,X(I),YM(I),YC(I),l./SIG(I) 
XP=1.5*LOGIO(X(I»+1.S 
YP=l.S*LOGIO(YM(I»+l.O 
WRITE (2,' (A2,4F6.3,A4) ') ' PS',XP,YP,O.l,O.O,· "I'" 

12 CONTINUE 

CLOSE (UNIT-I) 

C Write the AB/2 and calculated apparent resistivity values into 
c the plot file to be connected by line segments. 

XF:l.5*LOGlO(X(1»+1.5 
YP=1.5*LOGIO(YC(1»+1.O 
WRITE (2, I (A2,2F6.3) ') 'MA' ,XP,YP 

DO 13 I=2,ND 
XP=1.5*LOGIO(X(I»+1.5 
YP=1.5*LOGIO(YC(I»+1.0 
WRITE (2,'(A2,2F6.3)') 'PA ' ,XP,YP 

13 CONTINUE 

C Write the model into the plot file to be plotted as a histogram. 

SP=O.O 
YPl=1.5*LOGlO(P(1»+1.O 
WRITE (2,'(A2,2F6.3)') 'MA',1.5,YPl 

DO 14 J=l,NL-l 
SP=SP+P(NL+J) 
XP=1.5*LOGIO(SP)+1.5 
WRITE (2,' (A2,2F6.3) ') IPA' ,XP,YPl 
YP=I.5*LOGI0(P(J+l»+1.0 
WRITE (2,' (A2,2F6.3) ') 'PA' ,XP,YP 
YPl=YP 

14 CONTINUE 

WRITE (2,'(A2,2F6.3)') 'PA',7.5,YPl 
WRITE (2,'(A4)') 'SP l' 
WRITE (2,'(A)') 'SS "DEFAULT.SYM'" 

C write the station identification, the model and the chi-square 
C sum into the plot file to be written on the plot. 

DO 15 1=1,12 
IF (PLTF(I:I).EQ.'.') GOTO 16 

15 CONTINUE 

16 IC=I-l 
STATION=PLTF(l:IC) 
XT=3.2 
YT=7.2 
HIGHT=O.22 
ANG=O.O 
WRITE (2,'(A2,4F6.3,A2,A8,Al)') 'PS',XT,YT,HIGHT,ANG, 

& • "',STATION, '''I 
XT=4.8 
YT=7.35 
HIGHT=O.15 
WRITE (2,' (A,4F6.3,A,I2,A) ') 'PS' ,XT,YT,HIGHT,ANG, 

& ,,,, ,NL,' LAYERED MODEL" I 

XT=4.8 
YT=7.0 
HIGHT"'O.125 
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WRITE (2,'(A,4F6.3,A)') 'PS' , XT,YT,HIGHT,ANG. 
& I ttLayer rho d" I 

XT=S.O 

DO 17 J - l,NL- l 
YT"6.95- J*O.2 
WRITE (2,' (A2,4F6.3,A2,Il,lX,2F7.1,Al) ') 'PS', 

& XT,YT,HIGHT,ANG , ' "',J,P(J) , P(NL+J)"n, 
17 CONTINUE 

YT- 6.95-NL*O.2 
WRITE (2,' (A2,4F6.3,A2,Il,lX,F7.1,Al) ') 'PS', 

& XT,YT,HIGHT,ANG, I "' ,NL,P(NL), '"' 
YT~6 . 95-(NL+l)*O.2 

XT- 5.3 
HIGHT-C.ll 
WRITE (2, I (A2 , 4F6.3,A,F5 . 3,Al) ') 'PS', 

& XT,YT,HIGHT,ANG,' "Chisq =',CHI,I"I 
WRITE (2,'(A2 , 2F6.3)') 'Se',I . O,I.O 
WRITE (2,'(A2,2F6.3)·) 'TR',O.O,a.o 
CLOSE (UNIT""2) 

RETURN 
END 
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************************************************************************* 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

• 
SWM • 

• 
This program calculates apparent resistivity curve for a * 
given layered model rho(l), •. ,rho(NL),d(l), .• ,d(NL-l) * 
stored in the vector P. NL is the number of layers and must be * 
N<11. The apparent resistivity, stored in the vector Y, is * 
computed as a function of AB/2, stored in the vector X, by * 
using the gradient approximation and digital (Jl) filter from * 
H.K. Johansen (1975). The resistivity transform, stored in T, * 
is ccnvolved with the 141 point digital filter, stored in C. * 
The AB/2 values are equally distributed on log-scale with * 
10 points per decade. * 
The results are written into an output file and an output * 
plot file that can be plotted either on the terminal or as * 
a hard copy on a printer or a plotter. * 

• 
C**************·********************************************************. 

c 

c 

c 

11 

c 

PROGRAM SWM 

COMMON C(141) 

DIMENSION Y(41),X(41) ,T(181),P(19) 
CHARACTER*12 OUTF,PLTF 

Read filenames 

WRITE (*,'(/)') 
WRITE (*,' (A,S) ') OUTPUT FILE: 
READ (*,' (A) ') OUTF 

WRITE (*,' (A, S) , ) OUTPUT PLOT FILE: 
READ (*,'(A) ') PLTF 

Call for the digital filter coefficients. 

CALL FLT 

Read the model parameters from the terminal. 

WRITE (*,'(/)1) 
WRITE (*, '(A,$) ') , NUMBER OF LAYERS:' 
READ (*,*) NL 

00 11 I - l,NL-l 
WRITE (*,' (/) ') 
WRITE (*, I (A,Il,A,S) ') 
READ (*,*) P(I) 
WRITE (*,'(A,Il,A,S) ') 
READ (*,*) P(NL+I) 

CONTINUE 

WRITE (*,' (I) ') 

rho(',I,'):' 

d(',I,'):' 

WRITE (*,'(A,I1,A,S)') 'rho(',NL,'):' 
READ (*,*) P(NL) 

Read minimum and maximum values of AB/2. 

WRITE (*,' (/)') 
WRITE (*,' (A,S) ') I TYPE (AB/2)min, (AB/2)max:' 
READ (*, *) XMIN,XMAX 
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C Find the min and max values or I (In(ABj2) - r*oX) 
C and the number of AS/2 values (NP+l) tor which 
C RHOA is to be calculated. 

DX-O.2302S85 
XMIN- ALOG{XHIN)/DX 
XMAX=ALOG(XMAX)/DX 
IMI=INT(XMIN) 
lHA=INT(XMAX) 
IF «XMAX-REAL(IMA» .GE.O.5) THEN 

lMA=IMA+l 
ENDIF 
ND- lMA-IMI+l 

C setting up the resistivity transform TeLl. 

5=-1. 7239458 
RX-EXP(DX) 
SL-EXP(S+DX*(IMA+IOl» 
RK-(P(NL- l) - P(NL))/(P(NL-l)+P(NL)) 

00 14 1;:80,1,-1 
SLA; (RX**L) /SL 
AEXP=EXP(-2. *P (2*NL-l) *SLA) 
T(L)=P{NL- l)*(l.O-RK*AEXP)/(l.O+RK*AEXP) 

DO 13 J - NL-2,1,-1 
AEXPmEXP( - 2. *P(NL+J) *SLA) 
WD-(l.Q-AEXP)/(l.O+AEXP) 
T (L)-(P(J)*WD+T (L»/(l.O+WD*T(L) /P(J» 

13 CONTINUE 

IF (ABS(T(L) - P{NL».LE.l.OE-02) THEN 
LMI=L 
GOTO 15 

ENDIF 

14 CONTINUE 

15 CONTINUE 

DO 17 L=81,140+NO 
SLA"'" (RXUL) jSL 
AEXP=EXP( - 2.*P(2*NL-l)*SLA) 
T(L)-P(NL- l)·(1.0-RK·AEXP)/(1.0+RK·AEXP) 

DO 16 J~NL-2,l,-1 
AEXP=EXP(-2.·P(NL+J)·SLA) 
WD=(1.0 - AEXP)/(1.0+AEXP) 
T (L) = (P(J) .WD+T (L) ) / (1. O+WO.T(L) /P(J) ) 

16 CONTINUE 

IF (ABS(T(L) - P(l» .LE.LOE-02) THEN 
IJ!A~L 

GOTO 18 
ENDIF 

17 CONTINUE 

18 CONTINUE 
Sl=O.O 

IF (LMI.GT.ND) THEN 

00 19 L=l,LMI- ND 
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Sl=S1+C(L) 
19 CONTINUE 

ENDIr 

52=0.0 

IF «LMA+I-ND).LE.141) THEN 

DO 20 L=LMA+I-ND,141 
S2=S2+C(L) 

20 CONTINUE 

ENDIF 

C Convolve the resistivity transform T with the filte r C. 

DO 22 1=1,NO 
Y(I)=O.O 

IF «LMI-ND+I).GT.O) THEN 
Sl=Sl+C(LMI- ND+I) 

ENDIF 

Ll=LMI+l+I - ND 

IF (Ll.LT.!) THEN 
L1=1 

ENDIF 

L2=LMA-l+I-ND 

IF (L2.GT.141) THEN 
L2=141 

ENDIF 

DO 21 L-Ll,L2 
Y(I)KY(I)+T(L- I+ND)*C(L) 

21 CONTINUE 

Y(I)=Y(I)+P(NL)*Sl+P(1 ) *S2 

IF «LMA+I- ND) . LE.141) THEN 
S2=S2-C(LMA+I- ND) 

ENDIF 

22 CONTINUE 

DO 23 1=1,NO 
X(I)=RX** (IMI-l+I) 

23 CONTINUE 

C write the results in output files. 

CALL SLWROT (X,Y,P,ND,NL, OUTF,PLTF) 

STOP 
END 
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SUBROUTINE SLWROT(X,Y,P,ND,NL,OUTF,PLTF) 

********** •• **************************************** •• **** ••• ************ 
• 
• 
• 
• 
• 
• 
• 
• 

SLWROT 

This routine writes out the results from the forward program 
SLUM into the output file OUTF and a plot tile PLTF that 
can be plotted on the screen or as a hard copy on a printer 
or a plotter. 

• 
• 
• 
• 
• • 
• 
• 

*********************************************************************.*** 

DIMENSION X(41),Y{41),P{19) 

CHARACTER*12 OUTF,PLTF 

C Open output file 

OPEN (UNIT:l,FILE=OUTF) 

C Write the AB/2 and the calculated apparent resistivity 
c values, RHOA, in the output file. 

DO 11 I=l,ND 
WRITE (1,' (3FlO.2)') XCI) ,Y ( l) 

11 CONTINUE 

CLOSE (UNITsl) 

C Open output plot file 

OPEN (UNI~2 ,FILE=PLTF) 

C write the AB/2 and apparent resistivity values in the plot file 
C to be plotted as small circles. 

DO 12 I""'1,NO 
XP~1.5*LOGI0(X(I»+1 .5 
Ypz 1.5*LOG10(Y(I»+1.0 
WRITE (2,'(A2,4F6.3,A4)') 'PS',XP,YP,O.I,O.O,' "!'" 

12 CONTINUE 

C Write the AB/2 and apparent r esistivity values in the plot file 
C to be connected by line segments. 

XP~I.S*LOGI0(X(I»+1.S 

YP=I.5*LOGI0(Y(I»+1.0 
WRITE (2,'(A2,2F6.3)') 'HA',XP,YP 

DO 13 I=2,NO 
XP-l.5*LOGI0( X(I»+1 .5 
YP=I.5*LOGI0(Y(I»+1.0 
WRITE (2,'(A2,2F6.3)') 'PA',XP,YP 

13 CONTINUE 

C write the model into the plot file to be plotted as a histogram. 

SP:O.O 
YP1-1.5*LOGIO(P(I»+I.O 
WRITE (2,'(A2,2F6 . 3)') 'MA',LS,YPl 

DO 14 J::l,NL-l 
SP-SP+P{NL+J) 
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XP=1.S*LOGIO(SP)+1 . 5 
WRITE (2, I (A2, 2F6. 3) ') 'PA',XP, YPl 
YP=1.5*LOGIO(P(J+l»+1.O 
WRITE (2,'(A2,2F6.3)') 'PA',XP,YP 
YPl=YP 

14 CONTINUE 

WRITE (2,'(A2,2F6.3)') 'PA',7 .5,YPl 
WRITE (2,'(A4)') 'SF I' 

C Write the model into the plot fil e to be displayed numerically. 

WRITE (2, I (A) ') 'SS "DEFAULT.SYM", 
XT=4.8 
YT=7 . 35 
HIGHT=O.15 
ANG=O.O 
WRITE (2,'(A,4F6.3,A,I2,A) ') 'PS',XT,YT,HIGHT,ANG, 

& '" , , NL,' LAYERED MODEL" I 

XT""4.8 
YT=7.0 
HIGHT=O.125 
WRITE (2, '(A,4F6.3,A) ') 'PS',XT,YT,HIGHT,ANG, 

& I "Layer rho d" I 

XT=S.O 

DO 15 J""l,NL-l 
YT=6.95- J*O.2 
WRITE (2,'(A2,4F6.3,A2,Il,lX,2F7.1,Al)') 'PS', 

& XT,YT,HIGHT,ANG,' "',J,P(J),P(NL+J),'''' 
15 CONTINUE 

YT=6.95-NL*O.2 
WRITE (2, I (A2,4F6.3,A2,Il,lX,F7.1,Al) ') 'PS', 

& XT,YT,HIGHT,ANG,' "',NL,P(NL)"n, 
WRITE (2,' (A2,2F6.3) ') 'SC'/l.O/l.O 
WRITE (2,' (A2,2F6.3) ') 'TR' ,0.0,0.0 
CLOSE (UNIT=2) 

RETURN 
END 
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