

CHEMISTRY OF GEOTHERMAL FLUIDS DURING PRODUCTION AND DISPOSAL: CALCITE SCALING IN YANGBAJING, SVARTSENGI AND HVERAGERDI

Yu Heping

Geothermal Training Programme Reykjavík, Iceland Report 17, 1987 Report 17, 1987

CHEMISTRY OF GEOTHERMAL FLUID DURING PRODUCTION AND DISPOSAL: CALCITE SCALING IN YANGBAJING, SVARTSENGI AND HVERAGERDI

Yu Heping UNU Geothermal Training Programme National Energy Authority Grensásvegur 9 108 Reykjavík ICELAND

Permanent Address: Bureau of Industry and Electric Power of Xizang (Tibet) Autonomous Region Lhasa, Tibet PEOPLE'S REPUBLIC OF CHINA

ABSTRACT

Problems associated with the chemical behaviour of geothermal fluids in production and disposal processes have constituted technical and economical barriers to the development and utilization of geothermal energy resources in many countries. One of these problems is mineral scaling when the fluids become supersaturated due to changes in physical and chemical conditions. The thermodynamics of calcite scaling in waterdominated geothermal wells are reviewed. Two conceptual mechanisms for calcite deposition are discussed. The handling methods for calcite scaling in production wells are summarized. The WATCH computer program which models the chemical behaviour of geothermal fluids is used for interpreting data from the Yangbajing, Svartsengi and Hveragerði geothermal areas and for predicting their calcite scaling potential. The results show that calcite deposition is most severe for the geothermal fluid which has the highest ionic strength and the lowest reservoir temperature. Sampling equipment and procedures for geothermal wells and chemical analysis methods are outlined as used for wells in Svartsengi and Hveragerði. Finally, the problems related to chemistry and tracer testing in geothermal injection are reviewed.

iii

TABLE OF CONTENTS

ABSTRA	ACT		•	• •	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	9. . .(•	•	•	iii
TABLE	OF	CONTEN	ITS	•	•	•	•	•	•			•	•	•	•			•	•	•	•	•	v
LIST C	OF T	ABLES	•	•••	ž		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vii
LIST C	OF F	IGURES	5		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	viii
1. IN7	rrod	UCTION	1	•••	•	•	٠	٠	•	•	•	•	•	•			•	•		•	•	•	1
2. PRO	OCES	SES AN	1D	PRO	PE	RTI	EES	5				•	•										3
2	2.1.	Geoth	ler	mal	P	owe	er	Pr	00	ces	sse	es											3
2	2.2.	Physi	i.ca	l P	ro	pei	rti	ies	3														3
		2.2.1	L.	Pre	SS	ure	e i	in	We	211	Lbo	ore	2										4
		2.2.2	2.	Ste	am	FI	rad	cti	or	ı													8
2	2.3.	Two I	Pha	se	Fl	WO	Re	eqi	me	es													8
2	2.4.	Chemi	ist	ry			•	•			•	•	•	•	•	•	•	•		•	•	•	10
3. SAN	MPLI	NG ANI	o c	HEM	IC	AL	A	IAV	LY S	SIS	5	•	•	•	•	•				•	•	•	13
3	3.1.	Sampl	lin	ig o	f	Wat	cei	r-I	on	nir	nat	ted	a v	Ve]	11:	5	•		•	•	•	•	13
3	3.2.	Chem	Lca	1 A	na	lys	sis	5]	lec	chr	nic	que	es	•	•	•	•	•	•	•	•	•	15
	PDWO	DVNAM		7 7 1		UT1	100	DT /	70	01		22.1				201		C NT	~				10
4. THI	ERMO	DYNAM.	LCS	AN	. ע	KTI	NE.	r I C	-0	01		AI		111	5 6	SCA	1.	LING	3	•	•	•	19
4	4.1.	Syste	em	SEU		ea	•	٠	•	•	•	٠	٠	•	٠	•	٠	٠	۰	٠	•	•	19
4	4.2.	Therr	nod	lyna	mı	cs	:	٠	•	•	•	•	•	•	•	•	٠	۰		•	•	•	20
		4.2.3	۱.	Equ	11	ibi	ciu	m	Co	ons	510	lei	cat	110	on	•	•	•	•	•	•	•	20
		4.2.2	2.	Eff	ec	to	of	IC	on-	-St	cre	eng	gth	n	•	•		•	•	٠	٠	•	25
		4.2.3	3.	Eff	ec	to	of	st	tea	am	L	oss	5	٠	•	٠	•	•	٠	•	•	•	26
		4.2.4	1.	Cal	cu	lat	tio	on	o	Ê	ρH	oi	ÊC	Geo	otl	lei	cma	a 1	F.	Lu:	id	•	26
		4.2.5	5.	Eff	ec	t d	of	De	ega	ass	siı	ng	•	٠	٠	•	٠	•	٠	•	٠	•	28
		4.2.0	5.	Eff	ec	t d	of	Te	emp	pei	rat	tui	ce	aı	nd	P	202	2	٠	•	•	•	29
4	4.3.	Kinet	cic	s.	•	•	٠	•	•	•	•	•	•	•		•	•	•	•	•	•	•	30
		4.3.3	l.	Gen	er	al	•	•	•	•	•	•	٠		•	•	•	٠	•	•	•	•	30
		4.3.2	2.	Dep	os	it:	ioı	n N	100	le]	ls	•		•	•	•			•		•	•	32

5. THE CHEMICAL EQUILIBRIUM PROGRAM WATCH 5.3. Yangbajing, Svartsengi and Hveragerði Fields . 6. HANDLING OF CALCITE SCALING IN WELLBORE 7.1. Fluid/Formation Compatibility 7.2. Precipitation Avoidance and Acceleration . . . 7.3. Chemical Monitoring and Tracer Testing . . . APPENDIX 1 Computer Output for Separated Samples From Wells ZK-309, ZK-311, ZK-324, NLFI-1 and SG-8 APPENDIX 2.1 Computer Output for Downhole Sample of APPENDIX 2.2 Computer Output for Calibration of the Downhole Sample from Well ZK-323 APPENDIX 2.3 Computer Output for the Calibrated

LIST OF TABLES

LIST OF FIGURES

Figure 1.1 Output Decay due to Scaling in Well, Svartsengi...... 103 Figure 1.2 Formation of Calcite Deposition in Well 4 in 104 Figure 2.1 Schematic Flow Diagram of Double Flashing System in Yangbajing Power Plant 105 Figure 2.2 Flow Diagram of Svartsengi Power Plant 106 Figure 2.3 Flow Patterns of Vertical Two Phase Flow . . 107 Figure 2.4 Flow Pattern Map for Vertical Two Phase Flow 108 Figure 2.5 Flow Regimes in Horizontal Two Phase Flow . 109 Figure 2.6 Flow Pattern Map of Baker as Modified by 110 Figure 2.7 Relationship of the Product of Calcium and Carbonate Ion Concentrations with Temperature and Sodium Concentration in Equilibrium Reservoir 111 Figure 2.8 Concentration Ranges for Elements in 112 Figure 3.1 Small Separator for Sampling of Geothermal 113 Figure 3.2 Collection of Water Phase 114 Figure 3.3 Collection of Condensate and Gases 115 Figure 3.4 Collection of Vapor Phase into NaOH Solution 116 Figure 3.5 Flow Chart for Comprehensive Sampling and Analysis of Geothermal Fluid 117 Figure 3.6 Positions of Sampling Points on Surface 118 Figure 4.1 Aragonite-Calcite Phase Transition Diagram . 119 Figure 4.2 Stability Relations in Ca²⁺-Mg²⁺-CO₂-H₂O 120 Figure 4.3 Effect of Salt Concentration on Henry's Law 121 Figure 4.4 Fraction of Carbonate, Bicarbonate, Carbonic Acid and CO₂ Present as a Function of pH at 100#C . 122 Figure 4.5 Loss of Carbon Dioxide as Flash Progresses . 123

viii

Figure 4.6 Solubility of Calcite in Water up to 300#C at Various Partial Pressures of Carbon Dioxide . . 124 Figure 4.7 Plot of Free Energy of Precipitation vs Crystal Size Illustrating Nucleation and Growth . . 125 Figure 4.8 Schematic Representation of Concentration in Solution as a Function of Radial Distance 126 Figure 5.1 Difference Between Function and Output Values vs Gas Solubility Mutilplication Factor . . 127 Figure 5.2 Calcite Activity Product for Samples from 128 Figure 5.3 Calcite Activity Product for Samples from 129 Figure 5.4 Calcite Activity Product for Samples from 130 Figure 5.5 Comparison of Calcite Activity Product for Samples from Yangbajing, Svartsengi and Hveragerði 131 Figure 5.6 Ratio of Calcite Activity and Solubility Products for Samples from Yangbajing, Svartsengi and Hveragerði Geothermal Fields 132 Figure 5.7 Difference of Calcite Solubility and Activity Products for Samples from Yangbajing, Svartsengi and Hveragerði Geothermal Fields . . . 133 Figure 6.1 Mechanical Cleaning Equipment in Yangbajing 134 Figure 6.2 Reaming of Scale in Svartsengi 135 Figure 6.3 Sketch of a Plant for PCO2 Control 136 Figure 7.1 Types of Wellbore Impairment Caused by 137 Figure 7.2 Silica Solubility as a Function of pH . . . 138 Figure 7.3 Effect of Lime Treatment on Silica 139 Figure 7.4 Metal Sulfides Solubility in Water as a 140 Figure 7.5 Solubility of Sulfides in Solution as a 141 Figure 7.6 Iodide Breakthrough Curve in Well 6,

1. INTRODUCTION

The chemical behaviour of geothermal fluids is an important factor associated with its utilization. One of the most serious problems in exploiting water-dominated geothermal reservoir is the precipitation of various mineral scales due to changes in process chemistry and physics. Scaling in production and injection wells can significantly reduce flowrates (Figure 1.1) and even block the wells. Flow-tests in Miravalles, Costa Rica, illustrated the time behaviour of wells suffering from wellbore deposition. At early time the decrease in output flow rate and well-head pressure is slow but at late time it becomes rapid (Granados and Gudmundsson, 1985). Deposition of minerals on energy production plant equipments and pipelines can cause costly downtime for removal and affect the heat transfer effectiveness. Scaling in major fissures in wells may result in a irreparable decay in flow.

There are three main types of scales from geothermal fluid that have been recognized. Calcium carbonate (mainly calcite) is encountered when flashing happens within geothermal wells. Siliceous compounds are confined mainly to spent brine discharged to atmosphere. Sulfates and sulfides are observed in the form of many phases usually well crystallized in production processes.

Geothermal reservoir fluids in Yangbajing (Xizang, China), Svartsengi and Hveragerði (Iceland) are invariably just saturated with respect to calcite under reservoir conditions. During the exploiting of those fluids, calcite scale forms in production wellbores. Thus, frequent or periodic cleaning of the wellbore is needed to maintain the output. Knowledge of calcite scaling is very important for managing this problem effectively.

In the literature, the thermodynamic aspects of calcite scaling have been studied extensively and some possible ways

1

to control this scaling have been suggested and tested in geothermal fields in which the problem appears. But information on kinetics is very limited, and so is the economics of handling.

Location and tendency of calcite deposition in a geothermal well can be measured by caliper logging (Figure 1.2) or estimated by computer modelling. This will make it easy for management and operation.

The credibility and usefulness of chemical data for chemical models depends on the sampling and analytical methods and the care taken in the collection and analysis of samples.

After eleven years of development and utilization of geothermal resources in Yangbajing, drawdown in the reservoir and the pollution associated with large scale exploitation are becoming serious problems. Injection of the spent brine can maintain the output of geothermal reservoir and prevent environmental effect. Fluid chemical behaviour and tracer testing can play important roles in successful geothermal injection.

Those all above are the some targets of my project work at UNU Geothermal Training Programme. The training included introduction courses, engineering and geochemical lectures, field excursion and sampling, literature search and data interpretation. This report is the final part of the training.

2

2. PROCESSES AND PROPERTIES

2.1. Geothermal Power Processes

The practical cycles used for geothermal energy extraction plants are various due to the nature of the resources, utilization purposes, technical and economical considerations etc.

Figure 2.1 shows a conceptual diagram of double flash geothermal power generation cycle in Yangbajing. Figure 2.2 is the flow diagram of combined thermal and electric power production cycle in Svartsengi (Björnsson and Albertsson, 1985).

In a geothermal multi-purpose power cycle, the temperature may vary from as high as 350°C in the reservoir to values approaching 15°C in disposal lines, and the pressure may ranges from 300 to 0.08 bar, while the chemical composition of the geo-fluids varies from almost pure water or steam to hot brine with 360,000 ppm of total dissolved solids. Thus, chemical behaviour of geothermal fluids are very sitespecific with its thermodynamic conditions and fluid chemistry (Corsi, 1987).

2.2. Physical Properties

Since geothermal brine are abundant of sodium chloride with smaller amounts of calcium, silica and potassium (Table 2.1), its physical parameters can be predicted from a knowledge of pure water and sodium chloride solutions, modified approximately according to the concentrations of other ions by using the term "equivalent NaCl content" with sufficient accuracy (Wahl, 1977). The "equivalent NaCl content" is the amount of NaCl in solution which gives the same effect on the properties as the amount of all salts combined (Michaelides, 1981). This assumption is supported by "quantity effect of salts" in aquatic solution. Non-condensable gases dissolved in the fluid is an important factor affecting phase change. Release of gases such as CO_2 , H_2S , H_2 and NH_3 results in boiling of geothermal brine at a higher pressure, or by lowering the flashing depth in a two phase flowing well.

Calcite scaling is promoted by boiling of geothermal fluid. Among the physical properties, pressure and enthalpy are the two most important factors affecting the boiling.

2.2.1. Pressure in Wellbore

When the vapour pressure of a geothermal fluid is equal to the external pressure acting on the fluid, flashing takes place. Flashing of geothermal brine inside a well leads to two-phase flow, i.e. water and vapor mixture. The salts present in the brine are nonvolatile and hence the produced vapour is free of salts. It contains steam and non-condensable gases such as CO_2 , H_2S , NH_3 , N_2 and H_2 . The vapour pressure can be considered the sum of the saturation pressure of the fluid at a given temperature and gas partial pressures. Since CO_2 is usually the major constituent of the non-condensable gases, it is often assumed for simplicity that the vapor phase is a mixture of steam and CO_2 . Based on this assumption, we have

$$P_{v} = P_{s} + \Sigma P_{gi} \simeq P_{s} + P_{CO2}$$
(2.1)

The saturation pressure of an aqueous salt solution at temperature, T(°K), can be expressed by Raoult's Law.

$$P_{s} = P_{w} * (1 - X_{sa}) = P_{w} - \Delta P \qquad (2.2)$$

The pure water saturation pressure, P_W , is given by the following simplified correction (Michaelides, 1981):

$$P_{W} = \exp(0.21913*10^{-6}*t^{3}-0.17816*10^{-3}*t^{2} + 0.653665*10^{-1}*t-4.96087)$$
(2.3)

Treating steam as an ideal gas and calibrating this model by experiment, the decrease in steam pressure, ΔP , due to a salt of mole fraction, X_{sa} , can then be derived:

$$\Delta P = 1.8RT/(V_V - V_1) * m_{sa}/55.56 * 10^{-2}$$
(2.4)

The constant 1.8 is derived empirically and is related to the fact that the salt is ionized in the solution (Michaelides, 1981).

The partial pressure of CO₂ has been studied by Sutton (1976):

$$P_{CO2} = W_{CO2} * x / \alpha(T)$$
 (2.5)

where

$$\alpha(\mathbf{T}) = [5.4 - 3.5 * (\mathbf{T}/100) + 1.2 * (\mathbf{T}/100)^2] * 10^{-4}$$
(2.6)

and w_{CO2} is the weight percent in the vapor phase. P_{CO2} can also be expressed in terms of Henry's Law, which is discussed in Part 4.

The pressure at any point in a wellbore has been described by Parlaktuna (1985):

$$P = P_{wf} - dP_t$$
(2.7)

The total pressure drop is made up of frictional, acceleration and potential pressure drops.

$$dP_t = dP_f + dP_a + dP_p \tag{2.8}$$

$$dP_{f} = (\rho f v^{2}/2d) * dZ * 10^{-5}$$
(2.9)

$$dP_a = \rho v * dv * 10^{-5}$$
 (2.10)

$$dP_{\rm p} = \rho g * dZ * 10^{-5} \tag{2.11}$$

The friction factor f is given by modified Colebrook equation as

$$f = \{ [-2\log(\epsilon/3.7d) + (7/Re)^{0.9}]^2 \}^{-1}$$
(2.12)

where, the Reynolds Number is given as

$$Re = \rho v d/\mu \qquad (2.13)$$

The density of liquid water is determined by Whal (1977) to follow the correction:

$$\rho_1 = \rho_W + [(1+1.6E-6*t^2)*5844m_{sa}/(1000+58.44m_{sa})]*10^3 \quad (2.14)$$

where the pure water density form Keenan and Keyes (1951) was used:

$$\rho_{W} = [(1+dt'^{1/3}+et)/(v_{c}+at'^{1/3}+bt'+ct'^{4})]*10^{3} \quad (2.15)$$

where t' = 374.11-t for t in °C $v_c = 3.1975$ cm³/g a = -0.3151548 $b = -1.203374*10^{-3}$ $c = 7.48908*10^{-13}$ d = 0.1342489 $e = -3.946263*10^{-3}$

The density correlation for the vapour phase suggested by Michaelides (1981) is as follows:

$$\rho_{\rm V} = 100 P / (-0.1296 \times 10^{-2} \times t^2 + 0.6325 t + 121.05)$$
 (2.16)

The density of a two phase mixture obeys the ideal mixing rule.

$$\rho = \alpha \rho_{\rm V} + (1 - \alpha) \rho_{\rm l} \tag{2.17}$$

The bottom hole flowing pressure for high flow-rate geothermal wells can be written as:

$$P_{wf} = P_a - CW^2 \tag{2.18}$$

when turbulence is the dominant factor in friction loss (Parlaktuna, 1985). In Equation (2.18), reservoir pressure can be measured in a well during shutdown, and C can be obtained by using a wellbore simulator to match the deliverability measurements of a well since the wellhead pressure is given by

$$P_{wh} = P_{wf} - \Delta P_t = P_a - CW^2 - \Delta P_t \qquad (2.19)$$

When $P_V = P$, flashing occurs. In water phase region, $dP_C = 0$, so

$$P_{v} = P_{s} + P_{CO2} = P =$$

$$P_{wf} - (\rho f v^{2} / 2d \star \Delta Z - g \rho \Delta Z) \star 10^{-5}$$

Then the flashing or boiling depth from wellhead is given

$$D_{f} = D_{a} - [(P_{wf} - P_{s} - P_{CO2}) / (\rho f v^{2} / 2d + \rho g)] * 10^{5}$$
(2.20)

In practice, calcite deposit may occur in the first 20-25 meters above the first boiling point (D_f) (Granados, 1985). The deposition shape may tapper off from this point and become almost zero (Figure 1.2). In Equation (2.20) only the wellhead pressure is a parameter related to operation directly. Therefor deposition can be controlled to occur at a chosen level.

2.2.2. Steam Fraction

In the process of adiabatic flashing in a geothermal wellbore, the following heat balance relationships applies:

$$H_0 = H_1 + H_v$$

i.e.

$$h_0 = h_1 * (1-x) + h_v * x$$
 (2.21a)

where h_0 is the enthalpy of initial liquid prior to flashing, h_1 and h_v are the enthalpy of coexisting water and steam after boiling. Based on the salt solution enthalpy equation given by Wahl (1977), and taking $T_0 = 0$, the following results:

$$h_{1} = h_{W} * [1-58.44 m_{sa}/(1000+58.44 m_{sa})] +T*11.688 m_{sa}/(1000+58.44 m_{sa})$$
(2.22)

The correction for the enthalpy of vapor phase recommended by Michaelides (1981) is

$$h_{\rm v} = -0.81275 \times 10^{-2} \times t^2 + 3.65228t + 2388.4 \qquad (2.23)$$

The steam fraction can be given by

$$x = (h_0 - h_1) / (h_V - h_1)$$

$$x = (h_0 - h_1) / L$$
(4.21)

where L is the evaporative heat.

2.3. Two Phase Flow Regimes

Flowing properties of two phase geothermal fluids can affect geothermal sampling and mineral precipitation. For vertical flow five regimes can be defined as showed in Figure 2.3 (Hetsroni, 1982). The general-flow-pattern map (Figure 2.4) of Hewitt and Roberts (1969) can be recommended for determining the vertical flow regimes. On this map, the plotting coordinates are the superficial momentum fluxes of the respective phase, i.e. $\rho_1 v_1^2$ and $\rho_v v_v^2$.

Flow regimes in horizontal flow tend to be somewhat more complex than those in vertical flow. This result from that the gravitational force act normal to the direction of the flow and makes the liquid phase tend to accumulate at the bottom of the channel. The flow patterns are illustrated in Figure 2.5 (Hetsroni, 1982). The best know generalized flowpattern map for horizontal flow is the Baker Diagram modified by Scott (1963). The coordinates of the Baker Diagram (Figure 2.6) are

$$B_{\rm X} = 2.105*(1-{\rm x})/{\rm x}*\rho_{\rm y}^{1/2}/\rho_1^{0.166}*\mu^{1/3}/\sigma \qquad (3.24)$$

$$B_{\rm Y} = 2.752 W x / (d^2 * / (\rho_1 \rho_{\rm Y}))$$
(3.25)

where the correlation equation of viscosity can be developed as (Michaelides, 1981):

$$\log[\mu(t,m)/\mu_{W}(t)] = A(m) + B(m) + \log[\mu_{W}(t)/\mu_{W}(20)]$$
(2.26)

with pure water viscosity, $\mu_w(t)$, is given by the expression:

$$log[\mu_{W}(t)/\mu_{W}(20)] = [(20-t)/(96+t)]*$$

[1.2378-1.303*10⁻³*(20-t)+3.06*10⁻⁶*
(20-t)²+2.55*10⁻⁸*(20-t)³] (2.27)

with $\mu_{W}(20) = 1002 \ \mu$ Pa s.

A and B are functions of molality.

$$A(m) = 0.3324*10^{-1}*m+0.3624*10^{-2}*m^2-0.1879*10^{-3}*m^3(2.28)$$

$$B(m) = -0.3961*10^{-1}*m+0.102*10^{-2}*m^2-0.702*10^{-3}*m^3(2.29)$$

The surface tension correction is given by (Wahl, 1977) as:

$$\sigma = \sigma_{W}^{*} [1+22.7916 m_{sa}^{2} / (1000+58.44 m_{sa})] +1.4856^{10^{3}} m_{sa}^{2} / (1000+58.44 m_{sa})^{2} \times 10^{-3}$$
(2.30)

with

$$\sigma_{\rm w} = 0.0755 * (t_{\rm c} - t)^{0.776} * 10^{-3}$$
(2.31)

2.4. Chemistry

A hydrothermal or geothermal system is where water currents circulate in the crust of the earth. It may be heated by convection of water from magma. High temperatures at shallow depth are commonly the result of convective flow. Convection may occur because of the heating and consequent thermal expansion of water at depth. Hot water of low density tends to rise and be replaced by cooler water of higher density (Gudmundsson, 1986). As the water circulates through the rock structure by this convection, it dissolves, leaches and precipitates minerals to form a equilibrium hot brine solution with the reservoir rocks at certain temperature and pressure.

The composition of a geothermal reservoir brine is controlled by mineral equilibria. Some of them are listed in Table 2.2. The pH of the brine is determined by acid-base equilibria and reactions involving alumino-silicates. In general, the pH of carbonate-type geothermal waters tends to be between 6.0 and 6.5 or close thereto because of the buffering action of the carbonate reactions (Whal, 1977), which is discussed in Part 4.

It is not known which minerals control carbon dioxide concentrations in high temperature waters (>200°C). Conceivably, the assemblage involved is zoisite (epidote)prehnite-quartz-calcite (Arnorsson et al., 1982). Calcite is a prominent secondary mineral in reservoir rocks. In geothermal reservoir, the product of carbonate and calcium ion concentrations is a fixed quantity as a function of temperature due to equilibrium with calcite. It is strongly dependant on pH, which in turn is dependent on the equilibria reactions between the alumino-silicates and sodium in the absence of dominating sulfate chemistry. Thus the product of the calcium and carbonate concentrations will be related to the sodium concentration and temperature as shown in Figure 2.7 (Wahl, 1977).

The concentration of potassium in geothermal brine is determined by ion exchange equilibria between sodium and potassium with the alumino-silicates. The molecular ratio of sodium to potassium is fixed at a given temperature (Ellis and Mahon, 1977).

The distribution of major cations and hydrogen ion is governed by temperature dependent ionic exchange equilibria (Table 2.3), so the ratio /(Ca)/H is approximately fixed at a given temperature, variable concentrations of the other major cations, Na, K and Mg, which may cause some scatter in the /(Ca)/H ratio. The absolute concentrations of Ca, H and other major cations are in turn mostly governed by the supply of the incompatible element chlorine (Arnorsson, 1978; Arnorsson et al., 1983).

At high temperature (180°C to 225°C), silica concentration correspond the solubility of quartz. At lower temperatures other silica species such as chalcedony, cristobalite, or amorphous silica may control dissolved silica (Fournier, 1977).

The presence of sulfur deposits and rock through which the hot water is permeating will give rise to the formation of hydrogen sulfide and sulfuric acid:

11

$$4 S + 4 H_2 O = H_2 SO_4 + 3 H_2 S$$
 (2.32)

In geologically active volcanic regions, sulfur dioxide if present also gives rise to the formation of sulfuric acid through reaction with warm water as follows:

$$4 SO_2 + 4 H_2O = 3 H_2SO_4 + H_2S$$
 (2.33)

The acid developed from this reaction will override the buffering reactions with the alumino-silicates in controlling the pH (Wahl, 1977).

Ammonia is found in geothermal waters that have come in contact with organic matters.

The concentrations of the various constituents in geothermal brine are shown in Figure 2.8 and in Table 2.1 are shown the chemical compositions for typical wells and hot springs in various geothermal fields.

The measured chemical properties of geothermal fluids at surface temperature and pressure are different from those of deep geothermal brine because of steam loss, gas separation, mineral precipitation and the temperature dependence of homogeneous equilibria. Methods for calculating the geothermal reservoir water composition from analysis made under surface condition are discussed in the following parts.

3. SAMPLING AND CHEMICAL ANALYSIS

3.1. Sampling of Water-Dominated Wells

The collection of representative samples from a geothermal well discharging steam and water is a complex procedure. High temperature water (150°C to 350°C) from deep levels can partially flash into steam-water mixture as pressures decrease toward the wellhead, and discharge into the atmosphere at velocities approaching the speed of sound with an explosion of the volume. Thus, special methods and care should be taken for sampling geothermal wells (Ellis and Mahon, 1977). It is necessary to sample each phase separately, at a known pressure, which should be the same as the pressure of the pipe or vessel being sampled. The subsequent combination of the analysis of the separate phases is discussed in Part 5.

The methods used for sampling a geothermal well depend on the surface pipework. Representative sampling of steam, gas and water from wells is made using one or more of the following techniques:

1. Down-hole direct collection.

2. Separator collection, that is, samples of steam, water and gas are collected under pressure from sampling points at the wellhead and on the surface pipes separately.

3. Discharging collection. Steam, water and gas samples are collected from the vertical silencer at atmospheric pressure and boiling point.

The sampling procedure and cautions for separator collection are described in detail by Olafsson (1987). Figure 3.1 shows a small separator for sampling and Figures 3.2, 3.3 and 3.4 are a series of sampling sketches. Figure 3.5 is a flow chart

13

for sampling and analysis. During the sampling, flow through the separator is controlled by the three main valves, i.e. fluid inlet valve, water phase outlet valve and vapor outlet valve.

In order to obtain representative samples, great care has to be taken to select the sampling points and to adjust the three control valves.

Tests have shown that the optimum location of a sampling point is about 1.5 meter from the T-joint on surface discharging piping (Figure 3.6). At this point the flow is free from interference from the T-joint, and the water and steam phases are still in thermodynamic equilibrium (Olafsson, 1987).

Flow patterns in horizontal piping can affect the representativeness of the samples. For slug or plug flow, since the alternating pulses of water and steam exist, the inlet valve of the separator should be adjusted a little closed instead of fully open to create a relative bigger volume of the separator. For stratified and wavy flow, water and steam samples can be taken from the top and bottom sampling points on the horizontal pipe, separately, without using a separator (Arnorsson, 1987a).

Boiling of sampling fluid in the separator should always be avoided. This can be done by adjusting the valves carefully, while looking at the pressure gauge at the top of the separator. The pressure should not fall down more than 0.1 kPa/cm^2 during the collection (Olafsson, 1987).

During the whole sampling, from the preparation until ending, it is necessary to have a check list or a uniform record form for apparatus and samples. And they should be fully used!

14

3.2. Chemical Analysis Techniques

The analytical techniques (Figure 3.5) for determining the major constituents in geothermal waters can be outlined in the following. For detail on some subjects, please refer to Ellis and Mahon (1977).

1. Atomic Absorption Spectrophotometry

Alkali metals, boron, calcium, magnesium, iron, aluminum, SiO_2 in acid and near neutral pH thermal waters can be determined by this method (Table 3.1).

2. Emission Flame Photometry

It can accurately determine sodium (5893Å, 2000ppm), potassium (7665Å, 250ppm), lithium (6708Å, 25ppm), rubidium (7800Å, 5ppm) and cesium (8521Å, 5ppm).

3. Gas Analyzer and Gas Chromatograph

Residual gases e.g. H_2 , N_2 , CH_4 and NH3 can be analyzed by standard PVT gas analysis equipments.

4. Ion Chromatograph is used for measuring Cl⁻ and SO_4^{2-} .

5. Spectrographic Analysis and Spectrophotometry

Many heavy metals and rare earth metals can be extracted by chloroform with mixed solution of diethyl dithiocarbamate, oxine and dithizone at pH 3, 5, 7 and 9. That catchall concentrate is later analyzed spectrographically.

A rapid assessment of the trace metals present in waters can be made by spectrographic analysis of residue obtained by evaporation.

Cu, Pb, Zn, Ag, W, Ni and Cd can be concentrated by one of

two techniques, (1) absorption onto Chelex-100 cation exchange resin and elution with 2N nitric acid; (2) extraction with a benzene solution of mixed diethyl and pyrrolidine dithiocarbamic acid. The concentrate obtained by both methods are evaporate to dryness, and later dissolved for analysis by atomic absorption spectrophotometry.

Sulfate in water is reacted with barium cremate to form insoluble barium sulfate to liberate cremate ions, which are measured photometrically.

Ionic silica formed by digestion with alkali is reacted with an acid solution (pH 1.2-1.5) of ammonium molybdate in the presence of oxalic acid, producing the yellow silicomolybdic acid. The concentration (50-200ppm) can be measured by comparing the absorbance against a standard calibration curve.

6. Ion Selective Electrode

A fluoride specific ion electrode gives a direct reading of fluoride contained in samples buffeted with a citrate-citric acid buffer.

Ammonium concentration can also be read directly on a specific ion meter using calibration curve.

7. Titration

a. Acid-Base Titration. The total carbon dioxide in solution can be determined by titrating this solution from a pH of 8.25 to pH 3.8 with standard acid (0.1N HCl).

b. Redox Titration. In acid solution, total hydrogen sulfide is quantitatively oxidized to sulfur by iodine. Excess iodine is back titrated with sodium thiosulfate, using sodium starchglycollate as indicator. I in a buffered is oxidized to I_2 with Br_2 water. Excess Br_2 is removed by addition of KI. Total I_2 liberated is titrated by Na_2S2O_3 to obtain I in original sample. I and Br in a second aliquot of the sample are oxidized to I_2 and Br_2 with hypochlorite, the excess hypochlorite then being decomposed. I_2 liberated from both I and Br which produced by addition of KI is titrated with $Na_2S_2O_3$. Br is obtained from the difference between the two titration.

c. Direct Titration. F⁻ in solution at pH 3.5 is titrated with thorium nitrate in the presence of the indicator chromazurol-S.

Cl⁻ is titrated against standard AgNO₃ solution using potassium cremate as indicator (Mohr Method).

Total H_2S is determined by titration with $Hg(CH_3COO)_2$.

d. Potentiometric Method. Cl⁻ in a supporting sulfuric acid electrolyte is titrated with standard AgNO₃, The end point being detected by a silver electrode and a reference mercurous sulfate electrode in association with a standard expanding-scale pH meter.

e. EDTA Titration. Standard EDTA is used to titrate Ca^{2+} at pH 13 with cal-red indicator, and Ca^{2+} plus Mg^{2+} are titrated at pH 10 with solochrome black as indicator. Mg^{2+} is obtained by difference.

8. Distillation. Ammonia is distilled from an alkaline buffeted solution, and an aliquot of the distillate is examined by colorimetry using the Nessler reaction.

9. Dissolved O_2 is measured with a Chemet test kit based on reaction with rhodazine D.

10. A measured volume of geothermal fluid is evaporated and the dry residue is weighted to indicate the total amount of mineral matter in water.

11. Conductivity and salinity are measured by conductivity meter.

12. pH is measured by pH meter with a glass electrode.

13. Gonfiantini (1975) reviewed the specialized techniques required for the analysis of stable isotopes in the samples.

4. THERMODYNAMICS AND KINETICS OF CALCITE SCALING

4.1. System Studied

In order to approach the nature of calcite scaling effectively, the following is assumed for simulating the behaviour of geothermal fluids in the calcite deposition section of a wellbore (from flashing depth to either the end of deposition or until wellhead).

1. Chemical equilibria between the following constituents are considered:

 Ca^{2+} , $CaCO_3$ $CO_2(g)$, $CO_2(aq)$, H_2CO_3 , HCO_3^- , CO_3^{2-} H_2O , H^+ or OH^-

2. Thermodynamic equilibrium of each reaction is approached in the system. From this assumption, some remarks can be derived. (a) The degassing factor of fluid during flashing is unity (=1) because volatile constituents are sufficiently transferred into steam to establish equilibrium. (b) Calcite is the only stable scale of calcium carbonate in high temperature and high pressure geothermal wells. Aragonite and $CaCO_3.6H_2O$ are transferred to calcite (Figure 4.1). Precipitation of $CaSO_4$, MgCO₃ and Mg_XCa_(1-X)CO₃ are omitted.

3. The reservoir and wellbore performances are assumed constant in the period of study. The well is a water-dominated well. The production process is adiabatic and one step flashing take place in the wellbore.

4. The effect of erosion due to flowing on calcite scaling is not considered.

Based on the above assumptions, the maximum calcite precipitation potential or rate can be reached in the wellbore.

4.2. Thermodynamics

4.2.1. Equilibrium Consideration

The geothermal fluid chemistry following flashing can be summarized in the following principle chemical reactions:

Carbon Dioxide in Solution

At interfaces of a vapor-liquid system, carbon dioxide gas is associated with dissolved carbon dioxide.

$$CO_2(g) = CO_2(aq)$$
 (4.1)

Taking consideration of a degassing factor, b, according to Henry's Law the fugacity of carbon dioxide is

$$f_{co2} = b * \gamma * K^{\circ}_{H} * X \qquad (4.2a)$$

where b is a value in the range of 0 to 1, In thermodynamic equilibrium b = 1.

If Henry's Law coefficient for saline solutions is

$$K_{\rm H} = \gamma * K^{\circ}_{\rm H} \tag{4.3}$$

Putting Equation (4.3) into Equation (4.2a) and using b = 1

$$f_{\rm CO2} = K_{\rm H} * X \tag{4.2}$$

Increasing the salinity of a solution increases the Henry's Law coefficient (Fig. 4.3). Since salt out coefficient, k, for carbon dioxide in sodium chloride solution, are generally of the Steshenow type (Fournier, 1985):

$$k = (1/m_{sa}) * \log(K_{H}/K_{H}^{\circ})$$
 (4.4)

Rearranging Equation (4.4),

$$K_{\rm H} = 10 \, ({\rm kmsa}) \, {\rm *K^{\circ}_{\rm H}}$$
 (4.4a)

Comparing Equation (4.4a) with Equation (4.3),

$$\gamma = 10 (\text{kmsa}) \tag{4.5}$$

Because the fugacity coefficient for carbon dioxide in dilute aqueous solution at temperature below about 330°C are near unity (Ellis and Golding, 1963), f_{CO2} in Equation (4.2) can be replaced by the partial pressure of carbon dioxide with little error.

$$P_{\rm CO2} \simeq K_{\rm H} * X \tag{4.2b}$$

In the liquid phase, the total carbon dioxide can be distributed between $CO_{2(aq)}$, $H_{2}CO_{3}$, HCO_{3} and CO_{3}^{2-} with the following equilibrium reactions:

$$CO_2(aq) + H_2O = H_2CO_3$$
 (4.6a)

$$H_2CO_3^* = HCO_3^* + H^+$$
 (4.7)

$$HCO_{3}^{-} = CO_{3}^{2-} + H^{+}$$
(4.8)

The equilibrium constants are, respectively,

$$K'_{o} = [H_2CO_3]/[CO_2(aq)]$$
 (4.9a)

$$K_1 = [HCO_3] * [H^+] / [H_2CO_3^*]$$
 (4.10)

$$K_2 = [CO_3^{2^-}]*[H^+]/[HCO_3^-]$$
 (4.11)

Ionization equilibria in dissolved carbonate system are established very rapidly. Somewhat slower is the attainment of the equilibrium of Reaction (4.6a) with the reaction rate constants (Stumm and Morgan, 1970):

$$k+ = 4.37 * 10^{-2} s^{-1}$$

 $k_{-} = 19.2 s^{-1}$

at 298°K and 0.5 ionic strength.

By tradition a distinction is not made between $CO_2(aq)$ and H_2CO_3 . They are reported as $H_2CO_3^*$.

$$[H_2CO_3] = [CO_2(aq)] + [H_2CO_3]$$
(4.12)

Combining Reaction (4.6a) with Reaction (4.1), the net reaction is general written:

$$CO2(g) + H_2O = H_2CO^*_3$$
 (4.6)

$$K_{0} = [H_{2}CO^{*}_{3}]/f_{CO2}$$
(4.9)

Calcite in Aqueous Solution

The simplest reaction representing the precipitation of calcite in solution can be written,

$$Ca^{2+} + CO_3^{2+} = CaCO_3$$
 (4.13)

for which the solubility product is

$$K_{c} = [Ca_{2+}]*[CO_{3}^{2-}]/[CaCO_{3}]$$
 (4.14a)

In the above formula, the activity of solid calcite is unity if there is no significant substitution of other cations such as Mg^{2+} , Fe^{3+} or Mn^{2+} for calcium in the solid. Then

$$K_{c} = [Ca^{2+}]*[CO_{3}^{2-}]$$
 (4.14)

Table 4.1 summaries the equations expressing each coefficient i.e. $K_{\rm H}{}^{\rm O}$, k, K_O, K₁, K₂ and K_C as a function of temperature (Fournier, 1985).

From Equations (4.9), (4.10), (4.11) and (4.14), we can derive

$$[H_2CO_3^*] = K_0 * f_{co2}$$
(4.15)

$$[HCO_{3}] = K_{0} * K_{1} * f_{c02} / [H^{+}]$$
(4.16)

$$[CO_3^{2^-}] = K_0 * K_1 * K_2 * f_{cO2} / [H^+]^2$$
(4.17)

$$[Ca2+] = K_{C}*[H+]2/(K_{O}*K_{1}*K_{2}*f_{CO2})$$
(4.18)

In the CO_2-H_2O system, the total carbon species in solution can be expressed in the mass balance equation

$$[CO_{2total}] = [H_2CO_3^*] + [HCO_3^*] + [CO_3^{2-}]$$
(4.19)

This is usually what is given in chemical analysis. Figure 4.5 indicates the fraction of carbonate, bicarbonate, carbonic acid and $CO_{2(aq)}$ present as a function of pH in a solution at 100°C. Since very little CO_3^{2-} presents in most acidic geothermal fluid, precipitation of calcite is commonly expressed in terms of the following reactions with corresponding equilibrium formula (Henry and Brown, 1985):

$$Ca^{2+} + HCO_3^{-} = CaCO_3 + H^+$$
 (4.20)

$$K_c/K_2 = [Ca^{2+}]*[HCO_3^{-}]/[H^+]$$
 (4.21)

$$2HCO_3^- + Ca^{2+} = CaCO_3 + H_2O + CO_2(v)$$
 (4.22)

$$K_{c}K_{1}K_{0}/K_{2} = [Ca^{2+}][HCO_{3}]^{2}/f_{CO2}$$
 (4.23)

or

$$-\log K = -226.43 + 6552.81/T + 89.084 * \log T - 0.0746 * T$$
 (4.23a)

Equation (4.23a) is valid in a temperature range of 100°C-300°C. By using the above equations with equation

$$[H^+]*[OH^-] = K_w = 10^{-14}$$
(4.24)

the mass balance and the charge balance equations we can do the chemical equilibrium calculations in $CaO-H_2O-CO_2$ system. For this system the charge balance is

$$2[Ca^{2+}] + [H^{+}] = [HCO_{3}] + 2[CO_{3}^{2-}] + [OH^{-}]$$
(4.25)

Activity Product of Calcite

For a fluid the activity product of calcite is defined as

$$Q = [Ca^{2+}] * [CO_3^{2-}]$$
(4.26)

This equation is useful mainly for testing weather a given solution is under-saturated, saturated or supersaturated in respect to calcite by comparing with Equation (4.14) with definition of supersaturation ratio

$$\Omega = Q/K_{C} \tag{4.27}$$

The geothermal fluid chemistry obtained from chemical analysis is usually given by molality. They can be conveniently changed into activity by using following equation.

$$[i] = \gamma_i * m_i \qquad (4.28)$$

Taking Equation (4.28) into Equation (4.26), the activity product of calcite can be expressed

$$Q = \gamma_{Ca2+} \gamma_{CO32-} m_{Ca2+} m_{CO32-}$$
(4.29)

Most high-temperature geothermal fluids are closed to calcite saturation (as mentioned in Part 2.4). During flashing, the

fluids rapidly become supersaturated with mineral scales due to following mechanisms leading to increase of the corresponding activity product Q.

a. Loss of steam from the liquid phase increases chemical concentration of remaining solutes and ionic strength.

b. Evaporation in adiabatic process leads to temperature drop of the fluid.

c. Loss of stable gases such as CO_2 and H_2S increases the pH of fluid and reduces the gas contents in the remaining fluid.

4.2.2. Effect of Ion-Strength

The ionic strength of a aqueous solution is defined by the equation

$$I = 1/2 * \Sigma m_i Z_i^2$$
 (4.30)

In Table 4.2, the ionic strengths of representative sets of world-wide geothermal systems are shown.

Activity coefficient for solution with ion strength less than 2 molal can be calculated using an extended form of the Debey - Hückel equation.

$$-\log\gamma_{i} = AZ_{i}^{2}I^{1/2}/(1+a_{i}BI^{1/2})+bI \qquad (4.31)$$

The equations for A and B factors are in Table 4.1. For Na⁺, HS⁻, H₃SiO₄⁻, H₂BO₃⁻, SO₄²⁻, HSO₄⁻ and OH⁻, a is 4.0, in common, NH₄⁺, 2.5; K⁺, 3.0; HCO₃⁻ and CO₃²⁻, 4.5; Li⁺ and Ca²⁺, 6.0; Mg²⁺, 8.0 and H⁺, 9.0 (Fournier, 1985).

For high temperature calculations the following approximate values are quite satisfactory (Henley and Brown, 1985).
$\gamma_{H+} = 0.8,$ $\gamma_{Ca2+} = 0.3,$ $\gamma_{k+} = \gamma_{C1-} =$ $\gamma_{HCO3-} = \gamma_{H3SIO4-} =$ $\gamma_{HS-} = \gamma_{BO2-} =$ $\gamma_{Na+} = 0.7.$

4.2.3. Effect of Steam Loss

Flashing affects the composition of the brine in two ways. One is the simple concentration of the brine as a result of remove of water. The other is change of fluid chemistry resulting from remove of certain constituents such as CO_2 , H_2S and NH_3 leading to the increase of pH and reduction of dissolved gases in the brine and reestablishment of the equilibria.

After boiling, the chemistry of the remained liquid phase is expressed by using the steam fraction.

For non-volatile constitutes

$$m_i = m_i^{0}/(1-x)$$
 (4.33)

For volatile constituents

$$m_i = (m_i - m_v * x) / (1 - x)$$
 (4.34)

4.2.4. Calculation of pH of Geothermal Fluid

Since the pH of geothermal brine are determined by acid-base equilibria and reactions involving alumino-silicates (as mentioned in Part 2.4), by taking account of all H⁺ species and effects of dissolved gases, Reed and Spycher (1984) calculated in situs pH and distribution of aqueous species in a homogeneous equilibrium system at high temperature, based on chemical analyses and pH/25°C measurement of quenched high temperature water.

The distribution of species, molalities of species whose compositions are described as containing H⁺ are summed to obtain total molalities of "ionizable hydrogen",

 $N^{+}_{H+} = m_{H+} + \Sigma \nu_{H+j} * m_{j}$ (4.35) N^{+}_{H+} is independent of temperature.

For a geothermal water, Equation (4.35) contains a term for each of the 57 species listed in Table 4.2. The numerical values for the coefficients, $\nu_{\rm H+j}$, of Equation (4.35) are also list in that table.

If the solution under consideration produced a vapor phase, i.e. boiled, it is necessary first to calculate $N^+_{H^+}$ in the remaining solute without concerning the gases released, rename the value of $N^+_{H^+}$ calculated as $N^{aq}_{H^+}$ referring to the remaining aqueous phase alone. Then using the known quantity and composition of gases calculate the moles of components in vapor phase of corresponding steam and add to the moles of aqueous phase components by using steam fraction. For example, for a gas which includes H₂O, CO₂, HCl, H₂S and H₂, we have

 $N_{H+}^{+} = N_{H+}^{aq} * (1-x) + (2n_{co2} + n_{HC1} + n_{H2S} - 1/4 + n_{H2}) * x$ (4.36)

A simplistic calculation provides a useful approximation of pH (Henley and Brown, 1985). Considering the Equation (4.7) and $\log K_1$ in Table 4.1. Calculating m_{HCO3-} , m_{H2CO3*} based on water sample analysis at laboratory temperature. Then recalculating those two species in the fluid at reservoir temperature before boiling through Equation (4.34). Since

$$\log K_1 = \log M_{HCO3} + \log \gamma_{HCO3} + \log [H+] - \log M_{H2CO3} + (4.37)$$

we can substitute values to obtain pH.

4.2.5. Effect of Degassing

When flashing is first initiated, the ratio of CO_2 to steam in the vapor phase tends to be relatively large because most of the carbon dioxide initially dissolved in the liquid passes quickly into the gas phase (Figure 4.7), while only a small amount of water changes to steam. With continued boiling, the mole fraction of CO_2 in the vapor phase steadily decreases because little additional CO_2 is available to partition into the vapor phase, while the fraction of water that is converted to steam increases at a relatively constant rate. As the temperature of the ascending vapor water mixture decreases, the volume of the vapor phase increases due to the decrease in hydrostatic load. The net effect is a drastic decrease in the partial pressure of CO_2 as a boiling fluid ascends toward the earth's surface (Fournier, 1985).

Degassing of CO_2 from the fluid result in changing of total CO_2 content, and increasing pH leading to distribution change of carbon species in fluid. For one step flashing, without calcite precipitation (although fluid is supersaturated) and that thermodynamic equilibrium is reached, the total moles of carbon bearing species is expressed

$$n_{total} = n_{H2CO3} * + n_{HCO3} - + n_{CO32} - + n_{CO2g}$$
(4.38)

Using the distribution coefficient (Table 4.1),

$$K_{\rm D} = m_{\rm CO2\,(aq)}/m_{\rm CO2\,(q)}$$

=[nCO_{2 (aq)}/(1-x)]/[n_{CO2 (q)}/x]
= nCO_{2 (aq)}/n_{CO2 (q)}*x/(1-x) (4.39)

and rearranging the above formula

$$n_{CO2}(g) = (n_{H2CO3}*/K_D)*[x/(1-x)]$$
(4.40)
28

with $n_{CO2}(aq) = n_{H2CO3*}$. Inserting (4.38) into (4.40), for a unit mass fluid changing moles to molality and dividing by m_{HCO3-}

$$m_{total/m_{HCO3-}} = m_{H2CO3*/m_{HCO3-}} + 1$$

$$[K_{D}*(1-x)] + m_{CO32-} - m_{HCO3-} + 1$$
(4.41)

Combining Equations (4.10) and (4.11) changing the molalities into activities where required through Equation (4.28) and rearranging

$$[HCO_3^-] = m_{total} / ([H^+]/K_1 * (1+x*(K_D*(1-x))) + 1/\gamma_{HCO3} + K_2 / ([H^+]*\gamma_{CO32}))$$
(4.42)

In a similar manner, $[CO_3^{2^-}]$ and $[H_2CO_3^*]$ can be obtained.

4.2.6. Effect of Temperature and P_{CO2}

Differentiating Equation (4.23a), we have

$$d\log K/dT = -3276.405/T^2 - 38.689/T + 0.0746$$
 (4.43)

Up to $T = 573.15^{\circ}K$, $d\log K_1/dT = -2.88*10^{-3} < 0$. Therefore, calcite is more soluble at low temperature than at high temperature (see Figures 5.1 to 5.5 and Appendix). So calcite cannot be deposited from solution by simply cooling down of the fluid temperature at constant concentrations of CO_2 and other constituents in the fluid.

By using Equations (4.21) and (4.23), we can draw the solubility product curve for calcite as a function of P_{CO2} at given temperature (Figure 4.7).

4.3. Kinetics

4.3.1. General

Deposition of solids may occur in the bulk of a solution or on a solid surface. It occurs first by nucleation and is then followed by growth. A distinction between those two processes can be made in terms of Figure 4.8 (Berner, 1981). The rate of deposition may have a contribution from three terms: the formation of nuclei in the bulk of the solution (homogeneous), the formation of nuclei on the surface (heterogeneous), and the formation of deposited on nuclei alreadyformed either in the solution or on the solid surface (Whal, 1977).

Nucleation

As a body precipitating from solution begins to increase in size, it encounters a free energy barrier to further growth. Considering a spherical nucleus of radius r, the interfacial energy rate between the phase and solution is $R'cm^{-2}$, and as the degree of the supersaturation is increased, the decrease of free energy ($\Delta G'cm^{-3}$) of nucleation is resulted in by decreasing in the size of the critical nucleus, then the net free energy E_n associated with the nucleus is

$$E_{\rm p} = 4\pi r^2 R' - (3/4)\pi r^3 \Delta G' \qquad (4.44)$$

setting $dE_n/dr = 0$,

$$E_{no} = 16\pi R'^3 / 3\Delta G'^2 \qquad (4.44a)$$

Inserting Equation (4.44a) into the Arrhenius equation

$$k = A(T) * exp(-E_a/RT)$$
 (4.45)

the rate of nucleation should be

$$k = A(T) * \exp[(-16\pi R'^3) / (3\Delta G'^2 RT)]$$
 (4.46)

(Drever, 1980).

Growth

Once the critical nucleus has formed, further increase in its size can take place spontaneously with a net decrease in free energy. This process is referred to as crystal growth.

Crystal growth involves the transport of dissolved species to the surface of a crystal and various chemical reactions occurring at surface. The latter includes adsorption, ion exchange, dehydration of ions, formation of two-dimensional nuclei on the surface, diffusion along the surface, ion-pair formation etc. The rate of growth is limited by the slowest step with a whole chain of process. It can be characterized as being controlled either by transport of species to the surface (transport-controlled), by reaction at the surface (surface-reaction-controlled), or by a combination of both processes. A comparison of the three mechanisms is shown in Figure 4.9 (Berner, 1981).

In case of diffusion limited kinetics, the rate of reaction on the grain surface is so rapidly that migration of species in solution to take their place cannot keep pace. As a result concentrations in solution adjacent to the crystal surface fall until they almost reach the equilibrium or saturation level. So there is a concentration gradients existing in diffusion layer. Further growth is limited by the rate at which additional ions can be transported to the crystal surface and the lowest process is that of molecular or ion diffusion.

In the case where the deposition rate is limited by chemical kinetics, ion attachment to the surface is so slow that replenishment of ions in solution near the surface is easily accomplished by molecular diffusion and other transport

process. Concentrations in the near surface zone are little different than those in the bulk solution, and the growth rate is proportional to the drive force for the chemical reaction and is not affected by the hydrodynamic state of the solution.

4.3.2. Deposition Models

Mechanisms

Nuclei already exist in geothermal fluid or on wellbore surface. The concern of this study therefor, is with the growth kinetics but not the nucleation kinetics of calcite deposition.

Calcite scaling is site-specific. The mechanisms and rates can be influenced by relevant surface property such as surface area, supersaturation ratio (SR), species which can take part in the reaction path to form "intermediaries" temperature, pressure and flowing properties.

Geothermal fluid chemistry is very complicated and different from one well to another, and it is a high temperature, high pressure, high mass flow and flowing system, the data related to kinetics are few in the literature. According to the distinction between ionic reaction taking place in the bulk of solution and that on the mineral surface, the following mechanistic sequences can be assumed for studying the path and rate by which calcite deposit in geothermal production wells.

Mechanism A

Step 1. Ca^{2+} reacts with HCO_3^- or CO_3^{2-} in solution forming a "transfer species" such as $CaCO^*_3$;

Step 2. CaCO^{*}₃ diffuses from boundary interface to mineral grain surface;

Step 3. Adsorption, ion exchange, dehydration and precipitation on mineral surface to form scale.

The rate of ionic reaction is instant because there is little or no energy barrier that must be overcome to form products once the ions are in proximity to one another, especially at high temperature. In this case the whole process rate seems to be controlled by the "big" and "heavy" transient constituent diffusion to the surface to form a crystal. Some of the calcite that has not yet diffused to wellbore surface before being carried out by the fluid from the well, can be derived by using this mechanism.

The rate of deposition caused by mass diffusion will be proportional to the concentration difference. Lasaga(1984) has discussed the concentration gradient in the boundary layer during stable mineral dissolution processes. Assuming deposition has a process just opposites to that of dissolution, the diffusion equation (see Figure 4.9) can be written

$$C(r,t) = C_{\omega} + (C_{eq} - C_{\omega}) \operatorname{erf}[(r/2)(Dt)^{1/2}] \qquad (4.47)$$

The flux of species is obtained from

$$J = -D* (dC/dr)_{r=0}$$

= $(C_{\infty}-C_{eq})*D/(\pi Dt)^{1/2}$ (4.48)

The consequent increase in the concentration of the same species in the boundary layer is then given by

$$dC/dt = J*A/V$$
(4.49)

Assuming $C_{t=0} = 0$, and integrating Equation (4.48)

$$C = [(C_{\infty} - C_{eq}) * D^{1/2} * A] / (2V\pi^{1/2}) * t^{1/2}$$
(4.50)

The thickness of boundary layer is relatively insensitive to crystal size, crystal density, flowing properties and diffusion coefficient (Nielsen, 1984). It is usually in range of 1 to 5 nm (Lasaga, 1984). Transport to the surface can be accelerated by bulk flow of solution past the growing crystal or by stirring due to reducing of the thickness of the diffusion layer or concentration gradient. Thus, transportcontrolled growth is a strong function of the hydrodynamic state of the solution.

The diffusion coefficient of the species in solution is given as

$$D = \lambda^2 * k'T / [(2\pi w k'T)^{1/2} V_f^{1/3}] * exp(-E_{vap}/3k'T)$$
(4.51)

in Lasaga (1981).

Mechanism B

Step 1. Ca²⁺, HCO₃⁻ and CO₃²⁻ diffuse to mineral surface;

Step 2. Ions collide and react on surface to form calcite scale;

The two rate-limited possibilities for this mechanism can be explained as follows.

In case of the rate of deposition is controlled by Step 1, the assertion that diffusion of HCO_3^- or CO_3^{2-} through the boundary layer is the rate-controlling factor can be made. It is supported by

A. Experimental evidence indicates that the reaction producing scale can be very rapid, occurring in fractions of a second, following the creation of oversaturation condition (Granados, 1983);

B. Calcium ion diffusion is much faster than that of

bicarbonate and carbonate ions owing to (a) the size of un-hydrated calcium ion is much smaller (b) in the early stage of precipitation, concentration ratio of Ca^{2+}/CO_3^{2-} is much higher (see Appendix), though after deposition carbonate ion is more abundant than calcium ion. So no discernable effect of calcium ion concentration on the rate of reaction at earlier stage.

Bicarbonate can effectively increases the rate of diffusion of carbonate through the boundary layer, which can be explained in two terms (Przybylinski, 1987):

A. Bicarbonate combines with calcium on the surface of the crystal to form calcite with Reaction (4.20). As diffusion of hydrogen ion in water is very fast, it can easily diffuse out. This would run in parallel with the referred Reaction (4.14). Although Reaction (4.20) would likely have a rate constant that is lower than Reaction (4.14), but the concentration of bicarbonate is overwhelmingly greater than that of carbonate (see Appendix) in geothermal fluid. The rate of diffusion is proportional to the concentration gradient across the boundary layer. The difference will be proportional to the actual concentrations of each carbonate species. So bicarbonate ion concentration will primarily determine the diffusion rate. Thus, its overall rate may be greater.

B. Bicarbonate ion merely aids the transport of carbonate through the boundary layer. Since hydrogen and hydroxide ions diffuse very rapidly, the surface pH is essentially identical to the bulk pH. Near the surface, carbonate ion is depleted relative to the bulk, whereas calcium is less depleted. The carbonate ion can be replenished by Reaction (4.8) as well as by diffusion. In this case the bicarbonate ion tends to buffer the concentration of carbonate ion. In the case where the deposition rate is controlled by Step 2, based on a assumption of that the precipitation has the same, but reversed process and reactions as the mechanism of dissolution, for heterogenous kinetics, the precipitation rate of a mineral is given in general by (Lasaga, 1984),

$$dC/dt = A/V * \nu_{i} * Q^{m} / K^{m}_{eq} * K * [H^{+}]^{n}$$
(4.52)

The Gibbs free energy change of a particular reaction can be

$$\Delta G = \Delta G^{\circ} + RTlnQ =$$

RTln(Q/K_{eq}) = RTlnΩ (4.53)

therefore

$$dC/dt = A/V*\nu_i *K*[H^+]^n *exp(m*\Delta G/RT)$$
(4.54)

The topography of the mineral surface normally includes "step" and "kink", which are imaginative terms for description. Specie at kink, step and plane surface has higher surface energy in order, because kink has three "sides", in common, step two, and planner only one. During growth, new units of the crystal form at the points where they have the maximum surface area in common with the existing crystal. Thus growth normally takes place at kinks, and the rate of growth may be limited by the rate of nucleation of new kinks and steps (Berner, 1981).

Dislocation of crystalline structure creates a step which can propagate continuously during growth, so the slow process of nucleating a new step is not required. The rate of growth of a mineral is thus sensitive to the number and type of dislocations present.

Kinks, because they are points of high surface energy, are favoured locations for adsorption of species from solution. The adsorbed species may "block" or immobilize the kink, and so have a large effect on rate of growth. Phosphates can

interrupt the growth of calcite scale by means of being adsorbed at the kinks and steps.

Degassing of CO_2 from geothermal fluid results in the increase of the fluid pH, which leads to an increase in the concentration of carbonate in the CO_2 -H₂O system. That means an increase of the calcite deposition rate. But after the affect of pH on the supersaturation ratio and bicarbonate ion concentration are accounted for, there is no discernable effect of pH on the rate (Przybylinski, 1987). Because hydrogen and hydroxide ions are not species which can join forming a transient species in the kinetics of calcite scaling.

Calcite deposition in the wellbore results in the calcium ion concentration change in the solution, i.e. the concentration distribution. Based on the concentration distribution, we can predict the amount of calcite deposited in the well. This purpose can be approached according to the mechanisms, equilibrium relationships and reactions discussed above.

5. THE CHEMICAL EQUILIBRIUM PROGRAM WATCH

5.1. Introduction

The chemical properties of a geothermal brine are strongly affected by the way the brine is manipulated in the energy extraction plant. Therefore, the chemical properties of the fluid need to be taken into account in the designing and operation of the production and disposal processes. Unfortunately, the properties are quite complicated functions of temperature, pressure and concentration variables of the working fluid. Computer models of geothermal fluid behaviour are needed to predict these properties. The WATCH program is one such computer model for this purpose. It can be used for analyzing the scaling potential in various process options and aiding the selection of the optimal extraction process (Arnorsson et al. 1982). This program was developed by Dr. Stefan Arnorsson and co-workers at the National Energy Authority during the period of 1973 to 1978 (Svavarsson, 1981).

5.2. Program Description

There are two parts of the WATCH program: WATCH1 and WATCH3. The WATCH1 program calculates the chemical behaviour of a fluid on the basis of a chemical analysis of the total flow of a two-phase production well (water, gas and condensate collected at wellhead) (Appendix 1). The WATCH3 program is used for calculations exclusively dealing with the aqueous phase. It is a question of two methods. On the one hand it is assumed that there has been no loss of steam in samples, i.e. the water subjected to analysis is the same as the groundwater (SSTEMP =999). In this case, the program is called WATCH2 in printout (Appendix 2.1 and 2.3). This is valid for cold water, water from down-hole and spring water which has not been boiled. On the other hand, it is realized that the water analyzed has boiled before being sampled, the program is printout as WATCH3 (Appendix 2.2). Then "SSTEMP"

is set equal to the temperature at which the water started boiling (Svavarsson, 1981; Arnorsson et al., 1982).

By combination of the WATCH1 and WATCH3 programs, we can also predict the geothermal fluid chemistry in surface equipment systems. For example, the WATCH1 can be used for calculating the composition of liquid phase in separator and the result can then be put into WATCH3 program to study the effect of further processing.

The WATCH programs calculate only the thermodynamic properties of the fluids but not the kinetics of the reactions. Table 5.1 is a summary of the program function. Table 5.2 is the input data needed for the program (Arnorsson, et al., 1982).

5.3. Yangbajing, Svartsengi and Hverageröi Fields

The Yangbajing field is located at an elevation of 4300 m, about 91 km NW of Lhasa. The structure setting of the area is characterized by a narrow, elongated recent asymmetric graben tending NE-SW. The upper portion of the graben is filled by Quaternary lacustrine and fluviolacustrine sediments of variable thickness from about 300 m in the NW to about 100 m in the SE, whose coarse levels represent the shallow reservoir now being exploited. The temperature distribution measured inside the reservoir is guite uniform, ranging between 150°C and 160°C, with a sharp decrease of temperature at the borders. Higher values (172°C) are recorded in the hot water recharging zone. The fluid chemistry is of the type Na⁺-Cl⁻-HCO⁻₃ with a total dissolved solids of about 2100 mg/l (ENEL-AQUATER, 1985). The calcite scale in the production wells is cleaned by means of daily mechanical removing.

The Svartsengi geothermal field is located in south-west Iceland. It is classified as high-temperature and waterdominated. The reservoir temperature is in the range 235°-

240°C, and the fluids produced are in composition two-thirds seawater and one-third rainwater. The chemical composition of the brine produced from the wells is spatially and temporally uniform, suggesting good fluid mixing with the reservoir (Gudmundsson and Thorhallsson, 1986).

The Hveragerði geothermal field is located about 50 km east of Reykjavik. There are 8 wells of 300-1000 m depth in the area. The maximum temperature measured in those wells is in the range of 180°C-230°C. All the strata are late Quaternary (Zhou, 1980). The hot water is used for direct utilizations. The calcite deposits in the production wells in Svartsengi and Hveragerði areas are reamed by drilling yearly.

5.4. Chemical Data Treatment

In this project work, the chemical analysis results for surface samples from Wells ZK-309, ZK-311 and ZK-324 in Yangbajing, NLFI-1, G-2 and G-4 in Hveragerði, and SG-6, SG-7, SG-8, SG-9 and SG-11 in Svartsengi are interpreted by using the WATCH1 program. The chemical data for down-hole sample of Well ZK-323 in Yangbajing is interpreted by using the WATCH3 program. The temperatures at the bottom of each wells are not known. Based on the statements mentioned in Part 2.4 and general reservoir temperature, the chalcedony geothermometer is selected for the samples from Yangbajing and Hveragerði fields and the quartz geothermometer is used for the samples from the Svartsengi field.

In general, the interpreting procedure used in this project work can be described in the following.

 Creating WATCH program input data file according to Svavarsson (1981). Setting a series of boiling temperatures in the range from the geochemical reservoir temperature to 90°C and giving the degassing factor as 1. 2. Running the program for calculation.

3. Checking if the input data accepted by the program or has agreeable result with chemical knowledge to make sure of the credibility.

4. Using the computer output (Appendix) to make the curves of calcite activity product of the samples (Figures 5.2 to 5.5).

5. Comparing the activity product with the solubility product by means of difference and ratio (Figures 5.7 and 5.6).

6. Interpreting the above figures.

For the down-hole sample analysis data from Well ZK-323 in Yangbajing, the computer output (Appendix 2.1) shows that calcite is very supersaturated under the reservoir condition. This result is not possible because it does not agree with the real situation, i.e. thermodynamic equilibrium. As there is no background knowledge on the sampling and analysis of the Yangbajing samples, Arnorsson (1987b) suggested a method on the basis of geothermometers (as mentioned in Part 2.4) to calibrate the data roughly. The procedure can be described as follows.

1. Using the chemical analysis result as the input data for WATCH3 program and assuming the sample of deep water has been boiled at a reasonable guessing temperature such as 135°C with a series of degassing factors or gas solubility multiplying factor (GSMF).

2. Selecting chalcedony temperature as reservoir temperature for the computer calculation of above input files. The calculated result is adapted as Appendix 2.2.

3. Using the temperature dependent functions or

geothermometers of $\log(Na^+/H^+)$, $\log(K^+/H^+)$, $\log(/Ca^{2+}/H^+)$, $\log(/Mg^{2+}/H^+)$ and $\log H_2CO_3$ listed in Table 2.3 to calculate out the "function values" at each chalcedony reservoir temperature in the computer outputs.

4. Using the computer output results to calculate the "output values" of the above five ones.

5. Comparing the each "function value" with its corresponding "output value" at each GSMF.

6.Using the differences obtained by the above step to make Figure 5.1.

7. Finding out the GSMF value when the difference is zero in Figure 5.1, which is about 0.1.

8. Using the deep water composition on the computer output sheet when the GSMF is 0.1 to creating a new WATCH3 input data file.

9. Running the WATCH3 program with SSTEMP = 999 to calculating the calibrated data at given boiling temperatures with the degassing factor (GSMF) is 1. The output is as Appendix 2.3.

Since the CO_2 gas geothermometer is not considered to be applicable below 200°C because of the effect of the salinity of the parent water on the concentration of CO_2 in the steam (Arnorsson, 1983), it is understandable that the curve in Figure 5.1 for $logH_2CO_3$ has a big scatter. But for the others they are suitable quite well.

5.5. Result

Figure 5.2 is the activity products of the samples from Yangbajing with one step adiabatic boiling temperature. The calcite deposition potential for separator samples is in the order of ZK-311, ZK-324 and ZK-309. The surface separated sample represents the fluid which has been boiled in the well-bore before sampling, therefor some of the calcite has been deposited out of the fluid during the boiling inside the well. This is why Appendix 1 shows that the activity product of deep waters for calcite is smaller than the solubility products under the reservoir temperature. The sample from ZK-323 is a down-hole collected fluid sample. Calcite has not deposited before sampling. So the scaling potential of this sample is much higher than the others. Figure 5.3 shows the activity product of surface separated samples from wells in Svartsengi. Figure 5.4 is for samples from Hveragerði.

Figure 5.5 is a comparatione of the calcite scaling potential for samples from Wells ZK-311, NLFI-1 and SG-8, which has the highest deposition thermodynamic potentials among the interpreted samples in Yangbajing, Hveragerði and Svartsengi, respectly. It shows that the lower reservoir temperature, the higher calcite scaling potential. This statement can be a factor guiding the setting and drilling geothermal production wells (see Part 6.6).

Figure 5.6 is the ratio of activity product and solubility product. Figure 5.7 is the difference between them. They are showing the degree of supersaturation for calcite reaches maximum by one step adiabatic boiling the geofluid at a temperature below the reservoir temperature in the range of 15°T to 60°C. This result is useful for geothermal project design and operation. From Appendix 1 we can also have another conclusion, which is that the higher ionic strength of the fluid, the higher calcite deposition potential.

6. HANDLING OF CALCITE SCALING IN WELLBORE

Effective scale handling in geothermal operation is often critical to the success of a project. The methods must be designed and tailored to the site-specific conditions. These conditions dictate the type of managing method that will be feasible, since engineer does not take consideration of technical feasibility only, but also concern economic feasibility, and easy operation and maintenance. Calcium carbonate scaling may be handled by following possibilities based on its thermodynamics and kinetics.

6.1. Mechanical Removal

Mechanical removal of calcite scaling in geothermal wells is a most practical method used world wide. In Yangbajing, Xizang, China, a equipment and method shown in Figure 6.1 has been used for several years with satisfactory results. Since calcite scaling in the production wells are very heavy (about 0.2 cm/week during the earlier stage of development), the wells must be cleaned daily by lowering the device down to wellbore to scrape the deposits in order to keep them fully producing. During the operation the well is discharging out of the gathering system through a bi-pass valve to carry the debris out of the well. The weight of the equipment is mainly depended on the flowing pressure of the fluid. In case of Yangbajing, it is normally 80-100 kg. The main problem recorded in this operation is the loss of the equipment and blocks of scales into the well bottom to decrease the output of the well.

In Svartsengi and Hveragerði, Iceland, glands (Figure 6.2) are used for cleaning the wells. The gland allows drill pipes to be entered into the well under full pressure, and the calcite is removed by drilling with a convectional drill bit, while the well is flowing and discharging the drill-cutting. The time required to clean the well is only 2-3 days with a truck-mounted rig. Use of this clean method allows unhindered

operation of the plants and the cost is low (Björnsson and Albertsson, 1985).

6.2. Pressure Manipulation

Calcite scaling is developed by flashing, which is resulted from that the process pressure acting on the fluid drops to be lower than the flashing pressure of the geothermal fluid (as discussed in Part 2.2.1). Pressure manipulation can be achieved quite easily by pumping instead of relaying on its nature flow. Utilizing down-hole pumps such as shaft-deepwell-pump, turbo-pump and submerged-pump will drastically decrease or eliminate the in-hole pressure drop to maintain the producing fluid as water phase. Thus, the formation of "pressure sensitive" scaling, CaCO₃, can be eliminated in geothermal wellbore, or at least shifted from the wellbore into the more accessible surface equipment where the handling becomes much easier.

Unfortunately, the use of down-hole pumps is restricted some what by the fluid temperature and well casing structure. At present, no down-hole pump is guarantee to work at wellbore temperature in excess of approximately 190°C (Corsi, 1987).

6.3. Partial Pressure Control

This control is a potential calcite prevention method. By reinjecting some of the produced carbon dioxide back into the producing well according to the scheme of Figure 6.3 can maintain a high CO₂ particle pressure, which in turn maintain the dissolved carbon dioxide content in geothermal fluid artificially to keep the carbonic species equilibria. Experiments on this method were carried out in the USA (Kuwada, 1982), but it appears valid only for fluid with low CO₂ content (as mentioned in Part 2.2).

6.4. pH Manipulation

On-line manipulation of the geothermal fluid pH is another potentially way to avoid scaling. However, the cost of a such process is often overlooked. Adding hydrogen chloride solution to a geothermal fluid in order to decrease the pH below a certain value at which no calcite scaling can form may be technically but not economic feasibility, since excessively large amounts of acid are required to obtain even fairly a small decrease of pH due to many geothermal fluids have an extremely large flow-rate and buffer capacity.

Off-line acidification of geothermal wells within calcite scale has been used in some geothermal fields. But care should be taken, since well casing and other equipments can be corroded by acidic solution when luck of a sufficiently stable inhibitor, which is capable of maintaining its properties at high temperature for a period of time long enough to allow the complete removal of calcite.

6.5. Inhibitors

The utilization of scale inhibitors seems like a promising method of combatting scaling problems. A lot of studies have been carried out on this subject. Inorganic phosphates are able to prevent precipitation of almost insoluble compound if added to the over-saturated CaCO3 solution in small quantities. The proposed mechanism suggests that the phosphate maintain in solution large quantities of CaCO3 while it begins to crystallize. Practically phosphates do not prevent the initial nucleation, but maintain microscopic the size of crystalline nuclei preventing them to grow (as discussed in Part 4.3). The main drawback of that treatment is the possible precipitation of calcium phosphate with the consequence of further encrustation. Therefore, organic phosphorouses has been developed. In organic compounds, phosphorus links to the carbonic atom and hence calcium phosphate can be avoided.

6.6. Others

If a sudden increase in diameter of the well (i.e. a liner hanger) is present, calcite scaling may be promoted due to the similar mechanism of pressure drop. Therefore, transitions in the casing diameter should either be avoid or located at a safe distance above or below the predicted flashing zone. It is likely that the scaling rate can be reduced but not eliminated by having a uniform diameter from the bottom to the wellhead. The use of the techniques of cementing through portholes provides a smooth pipe of a single diameter from the reservoir to the wellhead to approach this purpose and also carry the production with less pressure loss (Granados, 1983). Operating the well at a relatively high wellhead pressure, thereby ensuring flashing above the casing-liner joint can also be minimizing deposition of scale.

Increased well casing diameter has reduced frequency of calcite cleaning in Svartsengi field in Iceland, if combining mechanical cleaning and well design improvement with good organization may provide the less costly method that can be applied in the field (Gudmumdsson, 1983).

It is common that wells form scale in the wellbore when they are located peripherically with respect to hotter regions of a reservoir. Since hotter source has a less calcite scaling environment (as discussed in Part 4.2.6 and Part 5), therefore the possibility of sitting wells on and/or deepening wells to hotter region is worth consideration (Granados, 1983).

7. FLUID INJECTION

7.1. Fluid/Formation Compatibility

The successful development of a geothermal reservoir will require injection of heat-depleted brine to improve reservoir longevity and to minimize environmental damage. To maintain injectabilily, the spent brine must be compatible with the receiving formation, i.e. geological strata. Process chemistry of geothermal fluids is one of the very important factor to influence this brine/formation compatibility. It is discussed and reviewed in detail by Kindle et al. (1984).

In general terms, formation/fluid incompatibility can arise from particulate plugging due to precipitation, clay swelling and dispersing, and influencing of rock-solution equilibria in hydrothermal system of the injected fluid. To diagnose injection problems in this area, information on geological and hydrological characteristics of the receiving formation and data on the injection composition, temperature, and suspended solids content of the fluid are required.

Particulate plugging is the most common type of impairment experienced in geothermal injection wells. It can arise from four processes that have been described by Barkman and Davidson (1972) and shown in Figure 7.1.

* Formation of a filter cake on the wellbore face;

* Particle invasion into the rock formation, which reduces available pore space or forms an internal filter cake;

* Well filling;

* Well casing perforation plugging.

Particulate plugging in geothermal systems is often a

combination of the mechanisms outlined above. Experiences show that particles less than 0.45 μ m in diameter generally pass through the formation without causing impairment, particles greater than 10 μ m in diameter generally accumulate in the wellbore or are retained on the surface and form a filter cake, and particles with diameter between those can invade the formation and cause impairment depending on the formation and fluid properties (Kindle et al., 1984).

In order to avoid particulate plugging, a spent geothermal fluid should be treated by means of either or combined following processes before injection.

* Precipitation avoidance or control;

* Liquid/solid separation: chemical coagulation/ flocculation, sedimentation, filtration, gas flotation;

* Purification treatments: reverse osmosis and ion exchange.

Permeability can also be impaired when gas bubbles enter and are entrained in the fluid stream. These bubbles can lodge in pore spaces and plug the formation, but this type of plugging can frequently be remedied by back flushing.

7.2. Precipitation Avoidance and Acceleration

Many brine, particularly those from high-temperature reservoir, undergo severe chemical disequilibrium during the energy extraction process because of temperature and/or pressure changes. As the brine regains equilibrium, precipitates form that can plug the injection process (Table 7.1).

Based on the knowledge of thermodynamics and kinetics of silica, calcite, sulfide and sulfate scales precipitation, process parameters (temperature and pressure) and additives (acid, inhibitor, carbon dioxide, lime and water) can be used to control scaling before and during the injection process.

When it is uneconomic to prevent precipitation, it may be possible to design a process so that scale formation occurs at all location and in a form that can be manipulated at minimal cost. Among these techniques is the use of crystallizer, crystallizer-separator, reactor clarifier and fluidized bed, and aging the brine in a tank or pond. They control the location of geothermal scaling to surface vessels and keep the injection well usable. They will be most usable for silica, silicate and sulfide scales that have moderate to slow kinetics. Calcite scale, with its rapid kinetics, will probably form in a pipe before reaching a vessel.

During a disposal process, the most universal problem is caused by silica polymerization. Factors that depress the speed of silica precipitation include: decreased temperature, decreased supersaturation ratio, the absence of fluoride ion catalyst, and lowering the pH. Maintaining silica supersaturation ratio below 2 or maintaining high temperature give some opportunity for controlling precipitation at the pH ranges normally. Lowering the pH by one unit slows the kinetics by a factor of 10, and on the other hand, by raising the pH with lime (CaO) addition flocculate the silica (Figures 7.2 and 7.3). As the fluid becomes very acid (pH about 3), the kinetics slows and the presence of fluoride catalyst can maintain the precipitation rate even in the face of further pH drops. Since silica equilibrium solubility increase with temperature, which partially offsets temperature-based kinetic factors, the net effect is that the maximum rate of silica precipitation should occur when the brine is 25°C to 50°C below the temperature for saturation at a given amorphous silica concentration (Table 7.2).

Calcite precipitation is typically a production problem, although it may result from the injection of surface or incompatible waters are involved (as discussed in Part 4).

Sulfide scale frequently occur in conjunction with other scales, although as techniques are used to control these other scales (Figures 7.4 and 7.5), sulfide precipitates become more noticeable as geothermal scales on their own basis. The sulfide chemistry is more complicated and less understood than the silica and calcite chemistry, and it deserves more investigation.

Sulfate scales are a similar problem where incompatible waters are involved.

7.3. Chemical Monitoring and Tracer Testing

Data from sampling and analyzing spent fluid in injection treatment process can be used to identify or understand chemical problems arising from injecting altered or foreign water into a geothermal reservoir by geochemical modeling. The geochemical models can calculated the tendency of the brine to scale in process condition and help in the optimization of critical design of disposal process.

Injection would support reservoir pressure and eliminated surface disposal of spent brine and condensate of geothermal power plant, but it could lead to cold water fingering from injection well to production wells. If large flow-rate of cold water injected into reservoir reaches to production zone rapidly without heated up by heat source to reservoir temperature, it would result from the cooling down of aquifer or even kill the reservoir. Thus, understanding the cold water traveling paths and speed are most important during the whole injection process. Tracer monitoring of well interference is a useful tools for this purpose.

Tracer selection and testing data interpretation are very important two aspects in tracer testing. Factors governing tracer selection are as follows.

* High thermal stability in geothermal reservoir;

* No interference with other chemicals in water-rock interactions in geothermal formation;

* Suitable adsorption-de-adsorption characteristics;

* Low background concentration in original geothermal fluid;

* High sensitivity in analysis;

* Excellent and easy instrument and method for detectability;

* Cheap to use, i.e. low price and high activity at low concentration etc.

A test in Svartsengi, Iceland showed that Iodide seems to be a good choice for use in tracer surveys of high temperature geothermal field, at least much better than rhodamine WT dye (Gudmundsson and Hauksson, 1985). Fluorescent dye has also been used in a few geothermal tracer tests at low-to-moderate temperatures (Gudmundsson et al. 1983).

A tracer breakthrough curve (Figure 7.6) shows the concentration of tracer with time. It provides a record of what happens underground when a fluid flows between two or more geothermal wells. Tracer testing provides three main pieces of information (Gudmundsson and Hauksson, 1985).

The <u>first</u> is the arrival time of the peak concentration. It indicates the mean speed of movement of flow in reservoir. Rapid tracer movement implies a high degree of fracturing or high permeability in the reservoir, and may suggest that the thermally swept volume of reservoir rock will be small.

The <u>second</u> parameter is the total tracer recovery. A production well that receives more of the injected water than others is more likely to suffer temperature decline as a

result. The relative recoveries in several production wells can be useful for comparison between wells.

The <u>third</u> one is to analyze the shape of breakthrough curve. it requires the uses of a tracer flow model between the injection and production wells. This procedure is still under development, but shows possibilities for the estimation of fracture characteristics. An estimate of fracture aperture may be useful for calculating the rate of local thermal depletion along the flow path.

8. CONCLUSIONS

Geothermal fluids are usually just saturated with respect to calcium carbonate under the water-dominated reservoir conditions. During the exploitation of the fluids, large calcite scale is often developed upon boiling in the production wells due to the concentrating and degassing of the liquid phase, which leads to the reestablishment of the chemical equilibrium in $CaO-CO_2-H_2O$ system, and extreme mass flow rate. The lower in reservoir temperature and the higher of ionic strength the fluid, the more severe of the calcite deposition problem.

The degree of calcite supersaturation for a unflashed reservoir fluid reaches a maximum when cooled by 10°C to 60°C through a adiabatic boiling. But simply cooling of the fluid owing to heat losses, i.e. thermal conductivity and/or diffusivity from the fluid to the environment can not cause calcite deposition from the fluid in a general temperature range. Since calcite is formed by ionic reactions in the system, deposition of calcite takes place much faster than the geothermal process operation time. Deposition of calcite in geothermal production well may be mainly controlled by the diffusion mechanism.

Mechanical removal of calcite scale in low enthalpy and high scaling potential production wells as those in Yangbajing and reaming of that in high enthalpy wells as in Svartsengi seem like the practical ways for handling at present. Although the former method is easy for operation, it needs more labor. But that is not a economical problem in Tibet. Using inhibitors is a promising way but it is still under development.

Chemistry can contribute important effects on the successes of geothermal depleted fluid injection. Chemical monitoring and tracer survey can play significant roles in the injection process decision and operation. The chemical behaviour of geothermal fluids can be estimated by chemical equilibrium process modelling at a certain extent. The usefulness of the input chemical data depends on the sampling and analytical methods and the care taken in the collection and analysis of the sample.

ACKNOWLEDGEMENT

The author would like to thank his advisor, Dr. Jon-Steinar Gudmundsson, the director of the UNU Geothermal Training Programme for running the whole training and supervising this project with invaluable comments on the report. I am also indebted to Professor Stefán Arnórsson and Dr. Sigurður R. Gíslason, of the University of Iceland, for geochemical lectures and using the WATCH program, and Mr. Hjörtur Práinsson for help with computer drawing. Many individuals who has involved in this training and project work are acknowledged.

The chemical analysis data interpreted by WATCH program are from ENEL-AQUATER (1985) with the permission from Mr. Zhang Zhenguo, the national project director of UN Project No. CPR 81/011, for Yangbajing field. The Svartsengi and Hveragerði chemical data are from the files of the National Energy Authority.

This training is supported by the People's Government of Xizang Autonomous Region, PRC and the National Energy Authority of Iceland. It is executed by the UNU Geothermal Training Programme in Iceland. NOMENCLATURE

A: Area in Part 4, m² b: Degassing Factor C: Concentration in Part 4, Mole/kg C: Turbulence Factor in Part 2, bar/(kg/s)² D: Depth, m d: Diameter, m D: Diffusion Factor in Part 4, cm²/s f: Friction factor G: Gibbs free Energy g: Acceleration of Gravity, m/s² H: Energy, kJ h: Enthalpy, kJ/kg I: Ionic Strength J: Flux of Mass Transfer K: Coefficient k: Coefficient L: Latent heat, kJ/kg m: Molality, mole/kg n: Mole Number P: Pressure, bar Q: Activity Product R: Universal gas constant, 8.314 kJ/(kg°K) r: radial distance T: Temperature, °K t: Temperature in Part 2, °C t: Time in Part 4, s V: Specific Volume in Part 2, m³/kg V_f: Molar Volume, cm³/mole V: Volume, m³ v: Velocity, m/s W: Flow rate, kg/s w: Weight percent w: molar weight in Equation (4.51) X: Mole fraction x: Mass fraction Z: Length, m

- Z_i: Charges of Species i
- [i]: activity of species i
- μ : Dynamic viscosity, Ns/m²
- σ: Surface Tension, N/m
- a: Void Fraction
- ρ : density, kg/m³
- ε: Absolute roughness factor, m

 $\gamma\colon$ correction factor for ${\tt K_H}^{\sf O}$ in sanility solution

 γ_i : activity coefficient of species i

 ν_i : stoichiometric constant

 λ : jump distance, cm

erf: error function

REFERENCES

Arnorsson, S., (1978): "Precipitation of Calcite from Flashed Geothermal Waters in Iceland," Contrib. Mineral Petrol. vol. 66, pp. 21-28.

Arnorsson, S., Sigurdsson, S. and Svavarsson, H., (1982): "The Chemistry of Geothermal Waters in Iceland, I: Calculation of Aqueous Speciation from 0°C to 370°C," Geochim. Cosmochim. Acta, vol. 46, pp. 1513-1532.

- Arnorsson, S., Gunnlaugsson, E. and Svavarsson, H., (1983a): "The Chemistry of Geothermal Waters in Iceland, II: Mineral Equilibria and Independent Variables Controlling Water Compositions," Geochim. Cosmochim. Acta, vol. 47, pp. 547-566.
- Arnorsson, S., Gunnlaugsson, E. and Svavarsson, H., (1983b):
 "The Chemistry of Geothermal Waters in Iceland, III:
 Chemical Geothermometry in Geothermal Investigations,"
 Geochim. Cosmochim. Acta, vol. 47, pp. 567-577.

Arnorsson, S., (1987a): Personal Communication.

Arnorsson, S., (1987b): Personal Communication.

- Barkman, J. H. and Davidson, D. H., (1972): "Measuring Water Quality and Predicting Well Impairment," Trans. AIME
- Berner, R. A., (1981): "Kinetics of Weathering and Digenesis," Reviews in Mineralogy, vol. 8, pp.111-134.
- Björnsson, G. and Albertsson, A., (1985): "The Power Plant at Svartsengi, Development and Experience." GRC Annual Meeting, Kona, Hawaii, pp. 427-442.

- Corsi, R., (1987): "Engineering Aspects of CaCO₃ and SiO₂ Scaling," NATO Advanced Study Institute, Geothermal Reservoir Engineering, Antalya, Turkey, July 1-10.
- Drever, J. I., (1980): "The Geochemistry of Nature Water." pp. 118-119.
- Ellis, A. J. and Golding, R. M., (1963): "The Solubility of Carbon Dioxide above 100°C in Water and in Sodium Chloride Solutions," American Journal of Science, vol. 261, pp. 47-61.
- Ellis, A. J. and Mahon, W. A. J., (1977): "Chemistry and Geothermal Systems," Academic Press, New York.
- ENEL-AQUATER(ENI), (1985): "Reservoir and Production Engineering Study Of the Yangbajing Geothermal Field in Tibet," Draft Final Report, UN Project No. CPR 81/011.
- Fournier, R. O., (1977): "Chemical Geothermometers and Mixing Models for Geothermal Systems," Geothermics, vol. 5, pp. 41-50.
- Fournier, R. O., (1985): "Carbonate Transport and Deposition in the Epithermal Environment," Reviews in Economic Geology, vol. 2, pp. 63-72.
- Granados, E., (1983): "Calcium Carbonate Deposition in Geothermal Wellbores, Miravalles Geothermal Field, Costa Rica," Stanford Geothermal Programme, Stanford University, SGP-TR-67.
- Granados, E. and Gudmundsson, J. S., (1985): "Production Testing in Miravalles Geothermal Field, Costa, Rica," Geothermics, vol. 14. pp. 517-524.

- Gonfiantini, R. (ed.) (1975): "Proc. Int. At. Energy Agency Advisory Group Meeting Appl." Nucl. Tech. Geothermal Stud., Pisa, Italy.
- Gudmundsson, J. S., Johnson, S. E., Horne, R. N., Jackson, P. B. and Culver, G. G., (1983): "Double Tracer Testing in Klamath Falls, Oregon," Proc. Ninth Workshop Geoth. Reservoir Engineering, Report SGP-TR-74, Stanford Geothermal Program.
- Gudmundsson, J. S. and Hauksson, T., (1985): "Tracer Survey in Svartsengi Field 1984," Geothermal Resources Council, TRANSACTIONS, vol. 9, Part II. pp.307-315.
- Gudmundsson, J. S., (1983): "Geothermal Electric Power in Iceland: Development in Perspective," Energy, vol. 8, pp.491-513.
- Gudmundsson, J. S., (1986): "Composite Model of Geothermal Reservoirs," Geothermal Resources Council Bulletin, pp. 3-10.
- Gudmundsson, J. S. and Thorhallsson, S., (1986): "The Svartsengi Reservoir in Iceland," Geothermics, vol. 15, pp. 3-15.
- Henley, R. W. and Brown, K. L., (1985): "A Practical Guide to the Thermodynamics of Geothermal Fluids and Hydrothermal Ore Deposits," Reviews in Economic Geology, vol. 2, pp.25-45.
- Hetsroni, G., (1982): "Handbook of Multiphase Systems," pp. 2-15 to 2-26. Hemisphere Publishing Corporation.
- Hewitt, G. F. and Robert, D. N., (1969): "Studies of Two Phase Flow Patterns by Simultaneous X-ray and Flash Photography," Rept. AERE-M2159, UKAEA, Harwell.
Keenan, J. H. and Keyes, F. G., (1951): "Thermodynamic Properties of Steam," Wiley, New York.

- Kindle, C. H., Mercer, B. W., Elmore, R. P., Blair, S. C. and Myers, D. A., (1984): "Geothermal Injection Treatment: Process Chemistry, Field Experiences, and Design Options," Battelle, PNL-4767.
- Kuwada, J. T., (1982): "Field Demonstration of the EFP System for Carbonate Scale Control," Geothermal Resources Council Bulletin, Sept.-Oct. pp. 3-9.
- Lasaga, A, C., (1981): " Transition State Theory," Reviews in Mineralogy, vol. 8, pp.135-170.
- Lasaga, A. C., (1984): "Chemical Kinetics of Water-Rock Interactions," J. of Geophysical Research, vol. 89, pp.4009-4025.
- Michaelides, E. E., (1981): "Thermodynamic Properties of Geothermal Fluids," Geothermal Resources Council, TRANS-ACTIONS, vol. 5, pp. 361-364.
- Nielsen, A. E., (1984): "Electrolyte Crystal Growth Mechanisms," J. Crystal Growth, vol. 67, pp. 289-310.
- Olafsson, M., (1987): "Handbook of Collecting Water and Gas Samples," OS-87021/JHD-03, in Icelandic.
- Parlaktuna, M., (1985): "Two Phase Wellbore Simulator and Analysis of Reinjection Data from Svartsengi, Iceland," UNU Geothermal Training Programme, Report 1985-7.
- Przybylinski, J. L., (1987): "The Role of Bicarbonate Ion in Calcite Formation," SPE Production Engineering, vol. 2, pp. 63-67.

- Reed, M. and Spycher, N., (1984): "Calculation of pH and Mineral Equilibria in Hydrothermal Waters with Application to Geothermometry and Studies of Boiling and Dilution," Geochim. Cosmochim. Acta, vol. 48, pp. 1479-1492.
- Scott, D. S., (1963): "Properties of Co-Current Gas-Liquid Flow," Advances in Chemical Engineering, vol. 4, pp. 119-277.
- Stumm, W. and Morgan J. J., (1970): "Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Nature Waters," Wiley, New York.
- Sutton, F. M., (1976): "Pressure Temperature Curves for a Two Phase Mixture of Water and Carbon Dioxide," N. Z. J. Sci. vol. 19, pp. 297-301.
- Svavarsson, H., (1981): "The WATCH1 and WATCH3 Programs, A Guide for Users." National Energy Authority, Report OS81007.
- Whal, E. F., (1977): "Geothermal Energy Utilization," Wiley, New York.
- Zhou, X. X., (1980): "Interpretation of Subsurface Temperature Measurements in the Mosfellssveit and Ölfusdalur Geothermal Areas. SW-Iceland," UNU Geothermal Training Programme, Report 1980-7.

APPENDIX 1 Computer Output for Separated Samples From Wells ZK-309, ZK-311, ZK-324, NLFI-1 and SG-8

***************************************	a
	6 (M) (

TIBBT

APART LANCE BUILD AND A APART	BEP.YBJ.001	YANGBAJING ZK-324
---	-------------	-------------------

PROGRAM WATCH1.

WATER SAMPLE	(PPM)	STRAM	SAMPLE

.2352 55.3249

.5740

AL B

FE

PH/DEG.C	8.25/20.0	GAS (VOL.%)	as nn	BEFERENCE TEMP.	DECREES C	.0 (CHA)
NA	395.00	H28	.68	SAMPLING PRESSURE	BARS ABS.	1.1
7	48.50	H2	:02	DISCHARGE ENTHALPY	MJOUL/RO	.794 (CALCULATES)
CA	2.00	02	.00	DISCHAROR	EG/880.	
MG	,110	CH4	.01			
002	196.56	N2	.27	MEASURED TEMPERATURE	DEGREES C	.0
504	48.00	He	0.006	RESISTIVITY/TEMP.	OHMM/DEG.C	.0/ .0
H28	12,40			SH/TEMP.	HV/DEC.C	.000/ .4
CL	521.00					
Ŧ	10.50	LITERS DAS PE	R RG			
DISS.SOLIDS	.00	CONDENSATE/DE	G.C 5.28/20.0	MEASURED DOWNHOLE	TEMP. FLUI	D INFLOW
AS	.2500			DEGREES C/METE	IES DEPTH	(METERS)
3	58.8000					
FB	.6100	CONDENSATE (P	PM)	.0	.0	.Ú
NH3	.3200	PH/DBG.C	5.98/20.0	.0	.0	.0
Li	3.4	CO2	17.28	.0	.0	÷.
Ba	0.15	H18	14.90	.0	.0	.0
81	1.7	NA	16,90	.0	.0	.0
				.0	.0	.8
				. 0	.0	.0
				.0	10	v 0
		CONDENSATE WI	TH NAOH (PPM)	, Û	.0	, Ū
		C02	.00	.0	.0	.0
		H28	.00	.0	.0	. 53
IONIC STRENG	TH = .02064	IONIC BALANC	DE : CATIONS (M	(OL.RQ.) .01848338		
			ANIONS (M	(OL.BQ.) ,02161527		
			DIFFERENCE	(%) -15.62		
DEEP WATER (PPM)		DEBP	STEAM (PPM)	DAS PRESSURES	(BARS ABS.)
8102	239.03	002 750	.33 002	.00	602	78B+01
NA	371.69	H28 15	.55 H2S	.00	H25 .1	448-01
). J	43.75	82	.01 H2	.00	H2 ./	S6E-02
CA	1.88	02	.00 02	.00	-02 ,0	002-00
MG	.104	CH4	.03 CH4	.00	084 .1	10E-02
S04	45.17	¥2	.98 N2	.09	N2	49E-01
CL	490.21	NHS	.30 NH3	.00	\$H3 .	1052-04
En.	9.98		6		H20 ,	102E+01
DISS.S.	.00				TOTAL .	686B+01

H20 (%) .00 BOILING PORTION .00 SAMPLE = SEP.752.101

......

ACTIVITY CON	BFFICIENT	S IN DEEP WATES						
8+	.850	KS04-	.831	FE+	÷	.489	FECL+	823
OH-	.819	F-	.819	FE+	++	.235	k1.+++	236
H3SI04-	.823	CL-	.816	FEC	H+	.829	ALOH++	£ R 1
H2SI04	.481	NA+	.823	FE	OE13-	.829	AL(OH)2+	831
H2B03-	.812	E+	.815	FR	OH)4	.475	AL(OF)A-	826
HC03-	.823	CA++	.489	FRO	H++	175	110011-	020.
C03	.468	KG++	514	22/	01121	921	11/20/10	.040
HS-	.819	CARCO3+	835	100	0014	.031	AL(304)4-	.820
8	475	MCHCO3+	923	163	04)	.031	ALETT	.481
HS04-	826	CLOUL	.043	PBC	041	.829	ALEZT	.831
S04	461	ROULT	.033	FBU	511	.415	ALF4-	.825
NAROA	021	NULA	.038	FEC	524	.829	ALF5	.468
NA304-	,031	ND4+	.812	FRC	L4-	.823	AF22	.182
CHENICAL COL	MPONENTS	TN NEED WATED (DDW AND TOC W	10101				
H1 (1CF)	00	C 272	PER AND DOG R	0051	5 545	55/0516		
n+ (A01.)	.00	-0.212	5611	.07	-0.040	FR(CH)3	.09	-6.099
ULATO!	-16	-0.141	NACL	4.53	-4.110	FE(OH)4-	.07	-6.249
845104	380.65	-2.402	ECL	.18	-5.624	FECL+	.08	-6.058
H3S104-	1.47	-4.812	NASO4-	3.66	-4.513	FECL2	.00	-14.011
H2SI04	.00	-9.278	ES04-	1.46	-4.967	FECL++	.00	-18.209
NAH3SIO4	.27	-5.640	CASO4	.35	-5.585	FECL2+	.00	-19.642
H3BO3	315.58	-2.292	MGSO4	.14	-5.946	FECL3	.00	-22.038
H2B03-	.84	-4.857	CAC03	.02	-6.616	FRCL4-	.00	-24.893
H2CO3	781.72	-1.900	MGC03	.00	-8.385	FRSO4	.03	-6 639
HC03-	270.11	-2.354	CAHCO3+	1.95	-4.716	FROAL		-17 751
C03	.03	-6.264	MGECO3+	02	-6 581	AT LLL	.00	17 946
#28	10.84	-3 497	C1094	.00	0 100	AUTTT	.00	11.000
48-	1 57	1 020	NCON 1	.00	9 091	ALURTT	.00	-11.969
0	1.31	-3.000	BUURT	.00	-1.311	AL(OH)Z+	.00	-7.350
12004	.00	-12.843	NHAOH	.21	-5.108	AL(OH)3	. 54	-5.083
86304	.00	-13.601	NH4+	.18	-5.005	AL(CH)4-	.04	-6.394
H804-	.11	-5.953	FE++	.28	-5.301	ALSO4+	.00	-17.328
S04	40.69	-3.373	FB+++	.00 -	20.244	AL(SO4)2-	.00	-18.646
HF	.14	-5.154	FEOH+	.20	-5.563	ALF++	.00	-12.690
F-	9.84	-3.286	FE(OH)2	.01	-7.102	ALF2+	.00	-9.639
CL-	487.35	-1.862	FE(OH)3-	.00	-9.602	ALF3	.00	-8.440
NA+	369.15	-1.794	FB(OH)4	.00 -	15.433	ALF4-	.00	-9.024
K+	43.24	-2.956	FB(OH)++	.00 -	13.678	ALF5	.00	-10.738 *
CA++	1.00	-4.604	FE(OH)2+	.00	-8.641	ALFS	.00	-13.635
IONIC STRENG	GTH = .	01895 IONI	C BALANCE :	CATIONS	(NOL.BQ.)	.01726122		
				ANIONS	(MOL. RQ.)	.01971595		
				DIFFEREN	CE (%)	-13.28		
CHENICAL GEO	OTHERMOME	TERS DEGREES C		1000/T D	BGREES KEL	VIN = 2.28		
QUARTZ	185.8							
CHALCEDONY	165.1							
NAK	218.8							
MAG								
OXIDATION PO	OTENTIAL.	(VOLTS) :	RH H28 30		WA 421	PU U2-	111 20	NU2- /15
VALUATION IN	OIDUITUD	(10013) .	bn n6003	I ha u	na441	BR R4=	.999 58	NH3=413
LOG SOLUBIL	TTY DRODI	THE OF WINDLIS	TH DEED WATE	D				
500 3050515.	111 FB000	OULC OLLC	IN DEEF WAISI	E BROD	0110			
ADUL ADTA	1BUB	IL DALL.		TROR.	CALC.		TEO	a. CALC.
AUUUARIA	-10.33	3 -15.334	ALBITE LOW	-14.769	-14.229	ANALCIME	-11.9	63 -11.826
ANHIURITE	-0.51	3 -8.625	CALCITE	-10.725	-11.509	CHALCEDON	-2.4	02 -2.402
AG-CHLORITE	-80.35	9 -88.485	FLUORITE	-10.597	-11.660	GOETHITE	-2.0	02 -1.102
LAUMONTITE	-25.06	8 -24.810	MICROCLINE	-16.323	-15.394	MAGNETITE	-24.5	49 -18.271
CA-MONTHOR.	-75.34	5 -67.031	E-MONTMOR.	-35.935	-34.103	MG-MONTMO	R76.7	27 -67.950
NA-MONTHOR.	-38.11	2 -32.937	MUSCOVITE	-18.509	-15.224	PREHNITE	-35.7	93 -37.778
PYRRHOTITE	-66.84	1 -47.038	PYRITE	-100.948	-54.531	QUARTZ	-2.5	77 -2.402
WAIRAKITE	-23.82	4 -24.810	WOLLASTONITE	9.119	5.225	ZOISITE	-35.5	20 -37.693
EPIDOTE	-38.82	4 -38.880	MARCASITE	-80.947	-54.531			

UNU Geothermal Training Programme DEEF WATER BOILED AT 150.0 DECREES C.									
1111111111									
LOG DISTR	IBUTION CO	DERFICIENTS	CO2 =-3.20	828 =-2.7	GAS	SOLUBILITY	MULTIPLYING	PACTOR 1.0	
DEEP WATE	R (PPM)			DEEP	STEAM (PP	MJ	OAS PRESS	IBDS (DARS /	185.
8102	246.70	002	181.20	C02	1847	7,29	601	.5058.053	
NA	383.62	H2S	8.07	H28	24	8.64	122	1218-01	
E	45.16	H2	.88	82		.25	H2	.1078-04	
SA	1.94	02	.00	01		.00	02	0002+00	
MG	.107	CH4	.00	CIE4		.93	CE4	.4933-05	
504	46.62	101	.00	¥2	3	1.44	N2	19612-01	
5	000.35	NH3	.22	展出3		2.81	NH J	.1421-04	
0 11720 2	10.30						820	.476E+01	
1120.21	2479						TOTAL	.4803+01	
B	57,1012			020	001	ų.	94		
PI	.5925			BOIL	ING PORTIO	N .			
ACTIVITY	COBFFICIEN	TS IN DEEP WA	782						
8+	.854	ESO4-	.836	83++		.500	SEC1+	.828	
08-	.824	<u> 7</u> -	.824	VE+++		.247	AL+++	.247	
838104-	.828	CL-	,821	FEOH.	t.	.834	ALOB++	.432	
H29I04	.492	NA+	.828	FE(O)	3)3+	.834	AL(0H)2+	.835	
82803-	817	R+	.821	FE(0)	1) 4	.485	AL(08)4-	1887	
11-0-0-2- (7)-0-2-	1040	GA++	.500	FEOR	έŧ. +ιμ.	.486	ALBO4+	.831	
000	19(2)	NU++	.940	FE(0)	112+	.835	AL(804)2*	. 321	
9	100	UARUU	3+ .035 0. 000	22101	1]4= ()	-630	ALEAA	. 492	
11904-	241	01081	910 910	2200-	17	-524 205	AL74*	10.10	
804	172	MOUNT MOUNT	, 000 019	1005	7. 7.	0.027	6102	1201	
HA904-	.835	NH4+	.817	PECL	-	.828	ALS6	192	
CHEMICAL	COMPONENTS	I IN DEEP WATE	R (PPM AND LOG	MOLEY					
H+ (ACT.)	,00	-7.768	MG++	.07 -3	5.535	FE(OH)3	. 96	-8.261	
0H-	2.80	-3.783	NACL	4.26	4.137	FR(OF)4	- 1.14	-5.005	
H4SI04	346.98	-2.443	XCL	. 25	5,694	FECL+	. 90	-8,145	
H38104-	40.95	-3,365	NASO4 -	3.32 -	1.554	FBCL2	.00	-16.288	
H2SI04	.05	-6.311	ES04-	1.30 -	5.018	FECL++	.00	-22.250	
NAH3SID4	7.64	-4.189	CASO4	.31 -	5.838	FRGL2+	. 10	-23.678	
H3B03 H3B03	000.44	-2.323	86804	-12 -1	5.009	FECL3	,00	-26,112	
12000-	16 19	-0.314	MGROS	100 -1	0.200	28004-	100	-23,930	
H003-	252.75	-2.419	C1HC67+	1 95	9,301 6 974	75204 7890/1	, 99 58	10,091	
003	1.08	-4.743	MGRC03+	.02 -1	5.696	11.4++	.05	-03.394	
828	.48	-4.850	CACH+	.01 -1	6.796	ALOH++	.00	-14.364	
HS-	7.36	-3.853	MGOH+	.01 -1	1.711	AL(OE)2	+ .00	-9.188	
S	.00	-11.267	NH4OH	. 42 -	4.917	AL(OH)3	.20	-5.581	
H2804	.00	-16.921	居田 4 +	.02 -1	6.077	AL(OH)4	81	-5.195	
H804-	.00	-7.649	<u>男王++</u>	.00 -1	7,269	46804+		-11.517	
504	42,70	-3.352	5B+++	.00 -23	1,989	AL(804)	100	-12.878	
HF	.00	-5,785	FEOH+	.04 -1	5.259	ALP++	.00	-15,348	
2-	10.29	-3.258	FE(OH)2	.02 -1	5.578	ALF2+	. 98	-14.041	
WAL.	202.29	-1.048	FELUM 3-	100 H	1.223	ALES	+ 28	-12,925	
R4-	11 70	-1.004	prionie	400 -11 88 -11	2.350 2.252	1.1.77		15 0.073	
CA++	1.69	-4,568	ERIORI2+	.00 -10	9.409 1.050	AURC	0.0	12.122	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- + 2 4 4	en Innije i	100 - 11	CTT S	ALL 9	1.0.2		
IONIC STR	ENGTH :	,01973 1	ONIC BALANCE :	CATIONS (1	401.BQ.) .	01773989			
				ANIONS (N	(OL.BQ.) .	02013595			
				DIFFERENCI	(L) = 2	-15.57			

SAMPLE = REP.YE3.001

OXIDATION POTENTIAL (VOLTS) : EH H2S: -.511 EH CH4= -.510 EH H2: -.556 EE MH3: -.560

LOG SOLUBILITY PRODUCTS OF MINERALS IN DEEP WATER

1 1000001	S AL DISCOUNT	I I D GODT MALD	A				
TEOR.	CALC.		TEOR.	CALC.		7808.	CALC.
-15.684	-15.481	AUBITE LOW	-15,067	-14.318	ANALOIME	-12,168	-11.876
-8.168	-8.546	CALCITE	-10.399	-9.910	CHALCEDONY	-1.491	-2,341
-80.047	-77.594	FLUORITE	-10.561	-11.568	GOETHITE	-2.859	-1.248
-25.402	-24.890	MICROCLINE	-18.731	-15.481	MAGNETITE	-15.789	-17,951
-76.836	-83.966	R-MONTMOR.	-35,807	-42.577	MG-MONTMOR.	-18,117	-86.916
-36.953	-41.413	NUSCOVITE	-18,991	-18.000	PREHNITE	-15.828	-15,530
-74.805	-57.894	FYRITE	-111.410	-78.682	QUARTZ	-2.553	-1.410
-23.901	-24.890	WOLLASTONITE	9.489	8.227	2019173	-415.407	-25,232
-38.179	-36.298	MARCASITE	-90.765	-78.682			
	TEOR. -15.684 -5.186 -80.047 -25.402 -76.836 -36.953 -74.805 -23.901 -38.179	TEOR. CALC. -15.664 -15.481 -6.366 -8.546 -80.047 -77.594 -25.402 -24.890 -76.836 -83.966 -36.953 -41.413 -74.605 -57.694 -23.901 -24.890 -38.779 -36.298	TEOR. CALC. -15.684 -15.481 ALBITE LOW -8.366 -8.546 CALCITE -80.047 -77.594 FLUORITE -25.402 -24.890 MICROCLINE -76.836 -83.966 E-MONTMOR. -36.953 -41.413 MUSCOVITE -74.605 -57.694 FYEITE -23.901 -24.890 WOLLASTONITE -38.779 -36.298 MARCASITE	TEOR. CALC. TEOR. -15.684 -15.481 ALBITE LOW -15.087 -8.366 -8.546 CALCITE -10.399 -80.047 -77.594 FLUORITE -10.561 -25.402 -24.890 MICROCLINE -16.731 -76.836 -83.966 X-MOVTMOR -36.807 -36.953 -41.413 MUSCOVITE -18.391 -74.605 -57.694 FYEITE -111.470 -23.901 -24.890 WOLLASTONITE 9.469 -38.179 -16.298 MARCASITE -90.765	TEOR. CALC. TEOR. CALC. -15.664 -15.481 ALBITE LOW -15.067 -14.318 -6.366 -8.546 CALCITE -10.399 -9.930 -80.047 -77.594 7LUORITE -10.561 -11.568 -25.402 -24.890 MICROOLINE -16.731 -15.481 -76.836 -83.966 R-MONTMOR. -35.807 -42.577 -36.953 -41.413 MUSCOVITE -18.991 -18.000 -74.605 -57.684 FYRITE -111.470 -78.682 -23.901 -24.890 WOLLASTONITE 9.465 8.227 -38.179 -36.298 MARCASITE -90.765 -78.682	TEOR. CALC. TEOR. CALC. -15.664 -15.481 ALBITE LOW -15.067 -14.318 ANALCIME -6.366 -8.546 CALCITE -10.399 -9.930 OHALCEDONT -80.047 -77.594 7LUORITE -10.561 -11.568 GOETRITE -25.402 -24.890 MICROCLINE -16.731 -15.481 MACNETITE -76.836 -83.966 X-MONTMOR -35.807 -42.577 MG-MONTMOR. -36.953 -41.413 MUSCOVITE -18.991 -18.000 PREHNITE -74.605 -57.694 FYRITE -111.470 -78.682 QUABTZ -23.901 -24.890 WOLLASTONITE 9.469 8.227 ZOISITE -38.779 -36.298 MARCASITE -90.765 -78.682	THOR CALC. THOR CALC. THOR CALC. THOR -15.684 -15.481 ALBITE LOW -15.067 -14.318 ANALCIME -12.168 -6.366 -8.546 CALCITE -10.399 -9.910 CHALCEDONY -1.492 -80.047 -77.594 FLUORITE -10.561 -11.568 COSTRITE -2.669 -25.402 -24.890 MICROCLINE -16.731 -15.481 MACNETITE -15.789 -76.835 -83.966 E-MONTMOR -36.807 -42.577 MG-MONTMOR -18.177 -36.953 -41.413 MUSCOVITE -18.991 -18.000 PRENNITE -15.828 -74.605 -57.694 FYEITE -111.470 -78.682 QUARTZ -2.653 -23.901 -24.890 WOLLASTONITE 9.469 8.227 ZOISITE -15.407 -38.779 -36.298 MARCASITE -90.765 -78.682

UNU Geoth SAMPLE =	ernal Trai REP.YBJ.00	ning Programme 1		CEEP WATER	BOILED AT 13	0.0 DECEEES C				

LOG DISTR	IBUTION CO	SFFICIENTS	002 =-3.41	H2S =-2.93	GAS SOLUB	ILITY MULTIPS	YING	FACTOR 1.		
DEEP WATE	R (PPH)			DEEP S	TEAH (PPH)	GAS P	RE891	IRES (127.85	195.	
5102	257.02	002	158.35	002	8617.49	665		.9538-01		
MA	199.66	828	5.65	H28	133.85	823		,181E-00		
8. (75)	47.05	H2	.00	82	.11	H2		.2708-05		
VA. M/L	6.116	0.2	.00	02	.00	62		.030E+00		
201	49 57	0.04	+ 20	信益年	.42	CH4		.1201-05		
01.	517 10	WH S	10	34	-3.22	N.2 ume		.2432-04		
F	10.73	19-11-0	114	1011-0	14 × 6 10	BEJ		.0395-UD NTADAAT		
DIBS.S.	.80					POTAL.		2718401		
ΑL	.2529							101101-01		
E	59.4880			H20 (%	1	7100				
FB	.6172			BOILIN	G PORTION	.07				
ACTIVITY	COEFFICIEN	TS IN DEBP WATE	2							
114	.850	KS04-	.842	FE++	.514	FBCL+		.314		
Uletor.	160. 100.1	jc= 01	,821	(1)(+++	.262	AL+++		1252		
R28104-	,004 506	NA.	.027 037	221011 221011	1940. 0100	8127213 117707	†) 5 0 -	- 2025		
H2B03-	.824	24. 174	.0.04	ER(OH)	1	41 (A1	147 74	1292		
H003-	.835	CA++	.514	PRON++	201	A1301	-	215		
003	.494	MC++	.539	FE(OH)	2+ .842	AL(SO	412-	1837		
118-	.831	CAHCO3+	.845	FE(OH)	4842	ALF++		.506		
12	.501	MGHCO3+	.834	FESO4+	.840	AL72+		.342		
HS04-	.837	CAOH+	,845	PECL++		ALF 4 -		.837		
S04	.487	MGOH+	.848	FBCL2+	-840	AEF5-	~	,494		
NAS04-	.842	NE4+	,824	FECL4-	.834	ALB6-	* *	.205		
CHEMICAL	COMPONENTS	IN DEEP WATER	(PPM AND LOG	MOLE						
H+ (ACT.)	.00	-8.135	MG++	.08 -5.	500 F	E(OH)3	.03	-8,487		
OH-	3,95	-3.634	NACL	3.75 -4.	193 F	B(OH)4-	1.04	-5.016		
NANIUA Nortos	319.37	-2.4/9	KCL	.12 -5.	784 F	BCL+	. 20	-7.936		
100104- 198704	10101	-3.000	NA304-	1.91 -4.	011 N	1052	100	-18,028		
NARSSIGA	14.98	-0.800	10940	1.11 -0. 07 _E	901 F	201171 20121	100	24,101		
H3803	282.98	-2.339	MGSO4	.10 -6.	0.85 7	R01.3	0.0	-26.680		
H2803-	56.35	-3.033	CACOS	.89 -5.	050 F	ECL4-	. 55	-29.878		
H2C03	4.73	-4.118	MGC03	.02 -6.	687 F	ESO4	.00	-8.300		
HC03-	210.90	-2.461	CAHCO3+	.90 -5.	049 9	ES04+	.40	-22.248		
C03	2.84	-4,325	MGHC03+	.01 -8.	7.8.0 A	[.+++	100	-21,813		
828	.16	-5.337	CAOH+	.01 -6.	701 A	LOH++	.00	-15,445		
h3-	5.30	-3.720	MGOH+	.01 -6.	850 A	L(OH)2+	100	-9.800		
010001	00	+11,10U	NH4QH 1993	.30 -5.	053 A	L(OE)3	1.97	-5,048		
1201-	.00	-10.033	2711 2711	.01 -D.	104 A	1010814-	- 83	-3.012		
504	45.16	-3.329	7 D 7 T	00 -94	000 A	10097 7/20/10	0.00	-44-901 101 810		
SF	.00	-7.333	FR09+	.11 -5.	891 A	1744 1744	52	10 51F		
17 -	10.73	-3.248	FB(OH)2	.98 -6.	188 4	182+	.08	-14.587		
OL-	524.77	-1,830	FE(OE)3-	.00 -7.	631 A	SEU	188	-11.775		
習合ナ	394.70	-1.765	FE(OH)4	.00 -11,	841 A	1.74+	,10	-10.450		
<u>E</u> +	46.66	-2.923	FB(OH)++	.00 -16.	189 A	$[[1]]^{n} = -$.00	-18,184		
UA++	1.22	-4.516	FE(OH)2+	.00 +10.	323 A	LF5	.60	-18,988		
IONIC STR	RNOTH =	.02080 100	IC BALANCE :	CATIONS (MO ANIONS (MO DIFFERENCE	L.EQ.) .01844 L.EQ.) .02105 (%) -17	097 440 .85				

SAMPLE = REP.YEJ.001

OXIDATION POTENTIAL (VOLTS) : EH H28= -.505 EH CH4= -.499 EH H2= -.501 EH NH1= -.554

LOG SOLUBILITY PRODUCTS OF MINERALS IN DEEP WATER

1838 M 11 17 44 9 56 4 18 4 18	CT. ACCENTION WITH A	21. A.F. 11.9 (47) (41) (32)	a site analysis there are					
	TEOE.	CALC.		TEOR.	DALC.		7202.	CALC:
ADULARIA	-16,196	-15.546	ALBITE LOW	-15.550	-14.385	ANALCIME	-12,512	-11,807
ANHYDRITE	-8.051	-8.445	CALCITE	-9.992	-9.438	CHALCEDONY	-2.821	-2,478
MG-CHLORITE	-79,901	-78.206	FLUCRITE	-10.502	-11,460	GOBTHITE	-2.508	-1.436
LAUMONTITE	-25.983	-24.930	MICROCLINE	-17.376	-15.548	MAGNETITE	-27,385	-17,475
CA-MONTMOE.	-79.557	-85.232	E-MONTMOR.	-38.347	-43.719	MG-MONTMOE.	-80.832	-81,193
NA-MONTMOR,	-38.446	-42.558	MUSCOVITE	-19.675	-18.328	PREHNITE	-36.045	-34,885
PYRRHOTITE	-84.760	-63.308	PYRITE	-125.505	-87.754	QUARTZ	-2.807	-2.479
WAIRAKETE	-24.116	-24.930	WOLLASTONITE	9.971	8.987	ZOISITE	+35.435	-36.075
BPIDOTE	-41.227	-36.121	MARCASITE	-103.789	+87.754			

UNU Geothe SAMPLE = B	rnai Train BP.YBJ.001	ing Program	10	DEEP WATER BOILED AT 110.0 DEGRESS C.							
		21022220000		2220320	122111011				010231011	000000000000000	2
LOG DISTRI	BUTION COE	FFICIENTS	CO2 =-3.63	H2S =-3	.16	AS SOLUBI	LITY MULTIPU	AING 1	ACTOR 1.	00	
DEEP WATER	(PPM)			08	EP STEAM	(PPM)	GAS P	888803	EES (BABS	ARE. }	
SI02	267.49	002	148.78	CO	2	5803.60	002		.3402-02		
STA .	415.94	828	5.45	22	8	105.43	H25		.7608-04		
X	48.96	HS	.00	H2		,07	开盟		·3423-06		
CA	2.11	02	.00	01		.90	02		10008+00		
RO	.118	CHA	.00	CH	ą.	,27	ORA		-4403-08		
804	50.54	N2	.00	¥2		9.21	NZ.		.848E-05		
CL	548.57	NH3	.12	NH	3	1,84	NH3		.2788-05		
1	11.16						820		.1431+01		
D198.8.	.00						TOTAL		,1443+91		
Ab	12532			11.05	0.1283		16 51				
D DD	0110103			84	U [%] TITNO DAI	007.032	10-08				
1.2	.0444			19 U	TPING LOJ	21108	+ 4 1				
ACTIVITY (DEFFICIENT	S IN DEEP W	ATER								
H.+	,865	KS04	848	28	++	.529	FECL+		.840		
08-	.837	F +	.837	FE	$\frac{1}{2}$,277	AL+++		1277		
HOSIO4-	.840	05-	.834	75	+80	.845	ALOH+	Ť.	,521		
H28I04	.521	展出于	.840	10	(CH)3-	.846	AL(OH	12+	,845		
H2B03-	.830	医十	.834	23	(OH)4	.515	AL(OH	14-	.841		
HC03+	.840	CA+	.529	FI	10H++	.515	ALS04	÷	.842		
CO3	.508	₩G÷	.553	71	E(OH)2+	.848	AL(SO	4)2-	-843		
HS-	.827	CAH	.851	FI	5(0日)4~	.848	ALF++		.521		
8	.515	HGH	1034 .840	71	8804+	.845	ALB24		.848		
H804-	,843	CAO	1+ ,851	11	SCL++	.515	ADF4-		,843		
S04	.501	MOON	1+ .854	FI	1012+	,846	ALF5-		.505		
NAS04-	.848	NH4-	.830	173	SCL4-	.840	ALF5-		4 (m. s.) #		
CHEMICAL	COMPONENTS	IN DEEP WA	TER (PPM AND LOG M	OLB)							
H+ (ACT.)	.00	-8.389	然信++	.08	-5.462	F	5(0H)3	.0Z	-8.758		
-BO	2.87	-3.843	MAGL	3.02	-4.287	F.	B(OH)4-	.63	-5.295		
048104	301.29	-2.504	KCL	.10	-5.872	E.	BCL+	+0.0	-7.580		
H3SI04-	107.85	-2,946	NASO4-	2.55	-4,669	1	BCLZ	110	-13.089		
H28104	.45	-5.308	KS04-	- 20	-0.100	E.	80644	190	-12,223		
NAHSBIDA	21.27	-3.744	UASO4	- 20	-0.114		501247 2013	1.0.0	-49-34		
83503	202.42	-2.312	MU304	1.4.6	-0.111 4 000	2 12	5013 5013	100	100,003		
115203+	1 04	-4.543 1 INC	NUQU3	1110	202 202	5	2004-	19.5	1 101		
10000	1.20	-9.000	Ciucos.	20	101000 111000	7	2004		.35 101		
1000	2 20	1. 697	WOILDOAT		2 849	i.	1444	.80	-91.580		
1224	0.7	_E_E27	CLON-	01	-6.766	1	50H++	.00	-15.808		
18-	E 99	-3.802	MCOIL-	.01	- 6.728	Å	L(0H)2+	. 50	-16.201		
S	.50	-11,178	NH4OH	.23	-5.191	Å	L(OE)3	.03	-5.424		
H2804	.90	-19.085	824-	.01	-6.295	A	L(OH)4-	.89	-5.028		
8804-	.00	-8.789	78++	.03	-6.317	ł.	1804+	.00	-22.016		
804	47.58	-3,305	73月+++	.00	-23.911	A	L(804)2-	.00	-23.478		
82	.00	-7,763	FEOH+	.32	-5.383	1	LB++	.00	-31.885		
<u>[</u> ? =	11.16	-3.231	FE(OH)2	.12	-5.868	ł	LF2+	.10	-15,022		
61-	546.59	-1.812	FE(OH)3-	.00	-7.599	1	LFS	.00	-14.098		
NA+	410.12	-1.749	FE(OH)4	.00	-11.763	5	194 -	.90	-14,820		
法 +	16.64	-2.905	FE(OH)++	.00	-16.340	1	t.75	.00	-16.558		
CA++	1.35	-4.471	FE(OH)2+	.00	-10.504	1	1.176	.00	-19.279		
*/14.50	4. W. 5. 5 (4) HL - 2	0.0+0.5		A 1	a FMAR R	N 1 01047	151				
LUNIC ST	ARNUTH =	.06133	IUNIC BAGANUS :	INTONS	I (Mot D	0 1 00031 0 1 00031	200				
				ARIURA ATEVES	(BARLE)	411 194899 [8] _91	1 69				
				1111111	CALCE .	141	1.020				

SAMPLE = REP. YEJ.001

OXIDATION POTENTIAL (VOLTS) : EH H25: -.486 EH CH4: -.477 EH H2: -.554 EH NH0: -.504

LOG SOLUBILITY PRODUCTS OF MINERALS IN DREP WATER

THOR.	CALCI		780R.	CALC.		TEOE.	CALC .
-16.847	-15.581	ALBITE LOW	-16,143	-14,421	ANALCIME	-12:345	-11-917
-5.750	-8.353	CALCITE	-9.814	-9.079	CHALOEDONY	-2.764	-2.504
-80.081	-76.042	FLUORITE	-10.528	-11.365	COSTHITE	-4.297	-1.648
-26.736	-24.933	MICROCLINE	-18.155	-15.581	MAGNETITE	-28.938	-17.327
-83,280	-80.377	K-MONTHOR.	-40.404	-43.799	MG-MONTMOR,	-84,474	-87.349
-40.447	-42.839	MUSCOVITE	-20.593	-18.310	PREHNITE	-28,478	-14.518
-94.806	-68.188	PYRITE	-139.758	-94.639	QUARTZ	-3.005	-2.504
-24,474	+24.933	WOLLASTONITE	10.525	9.526	ZOISITE	-15.682	-35.983
-42,797	-36.264	MARCASITE	-116,925	-94.639			
	THOR. -16.847 -5.750 -80.081 -26.736 -83.280 -40.447 -94.806 -24.474 -42.797	THOR. CALC. -16.847 -15.581 -5.750 -8.353 -80.081 -76.042 -26.736 -24.933 -83.280 -86.377 -40.447 -42.639 -94.806 -68.188 -24.474 -24.933 -42.797 -36.264	THOR. CALC. -16.847 -15.581 ALBITE LOW -5.750 -8.353 CALCITE -80.081 -76.042 FLUORITE -26.736 -24.933 NICROCLINE -83.280 -86.377 E-MONTMOR. -40.447 -42.639 MUSCOVITE -94.806 -68.188 PYRITE -24.474 -24.933 WOLLASTONITE -42.797 -36.264 MARCASITE	THOR. CALC. THOR. -16.847 -15.581 ALBITE LOW -16.143 -5.750 -8.353 CALCITE -9.614 -80.081 -76.042 FLUORITE -10.528 -26.736 -24.933 MICROCLINE -18.155 -83.280 -86.377 E-MONTMOR. -40.404 -40.447 -42.639 MUSCOVITE -20.593 -94.806 -68.188 PYRITE -139.758 -24.474 -24.933 WOLLASTONITE 10.525 -42.797 -36.264 MARCASITE -116.925	THOR. CALC. THOR. CALC. -16.847 -15.581 ALBITE LOW -16.143 -14.421 -5.750 -8.353 CALCITE -9.614 -9.079 -80.081 -76.042 FLUORITE -10.528 -11.365 -26.736 -24.933 MICROCLINE -18.155 -15.581 -83.280 -86.377 E-MONTMOR. -40.404 -43.799 -40.447 -42.639 MUBCOVITE -20.593 -18.310 -94.806 -68.188 PYRITE -139.758 -94.639 -24.474 -24.933 WOLLASTONITE 10.525 9.526 -42.797 -36.264 MARCASITE -116.925 -94.639	TROR. CALC. TEOR. CALC. -16.847 -15.581 ALBITE LOW -16.143 -14.421 ANALCIME -5.750 -8.353 CALCITE -9.614 -9.079 CHALCEDONY -80.081 -76.042 FLUORITE -10.528 -11.365 GOETHITE -26.736 -24.933 MICROCLINE -18.155 -15.581 MAGNETITE -83.280 -86.377 E-MONTMOR. -40.404 -43.799 MG-MONTMOR. -40.447 -42.639 MUBCOVITE -20.593 -18.310 PREHNITE -94.806 -68.188 PYEITE -139.758 -94.639 QUAETZ -24.474 -24.933 WOLLASTONITE 10.525 9.526 ZOISITE -42.797 -36.264 MAECASITE -116.925 -94.639	THOR. CALC. CALC. <th< td=""></th<>

	<u>8</u>						
UNU Geothermal T SAMPLE = REP.VEJ	raining Programme		DEEP WATER BO	11180 AT 90.0 DE	GREES Ö.		1. 10 To To To 10 10 10
LOG DISTRIBUTION	COBFFICIENTS	002 =+3.85	H23 =-1.39	GAS SOLUEILLIY	MULTIPLYING	PACTOR 1.01	
DEEP WATER (PPM)			DESP STEA	M (PPM)	GAS FRESS	RES (1485 489.)	
SIO2 277. NA 432. E 50. CA 2. MG .1 SO4 52. CL 570. F 11. DISS.S. . AL .27	95 CO2 21 H28 88 H2 19 O2 20 CH4 52 N2 04 NB3 60 00 35	144.00 4.32 .00 .00 .00 .00	CO2 H2S H2 O2 CH4 N2 NH3	4473.90 84.50 .00 .21 7.00 1.58	002 H28 H2 02 CH4 H2 NH3 H20 TOTAL	.1281-02 .0132-04 .5008+00 .1608-06 .3152-05 .1175-05 .7018+60 .7022+00	
B 64.33 PE .66	38 75		H2O (%) BOILING P	14. ORTION	00 14		
ACTIVITY COEFFIC	IENTS IN DEEP WAT	3 R					
0H8 H3SI048 H2SI045 H2B038 HC038 C035 HS8	43 F- 46 CL- 34 NA+ 36 E+ 46 CA++ 22 MC++ 43 CAHCO3-	. 8 4 3 . 8 4 3 . 8 4 6 . 8 5 6 . 5 6 6 . 8 5 7	FE++ FE+++ FE(OH)3- FE(OH)4 FE(OH)4- FE(OH)4-	.292 .851 .851 .529 .529 .853 .853	FBCL+ ALCH++ ALCH++ AL(OH)2+ AL(OH)4- ALSO4+ AL(SO4)2- ALF++	. 846 . 292 . 534 . 853 . 849 . 849 . 534	
8048 8045 NASO48	23 MGHC03 49 DAOH+ 15 MGOH+ 53 NH4+	857 .859 .836	PECL++ PECL++ PECL2+ PECL4-	.529 .851 .846	ALF2+ ALF4- ALF5 ALF6+	- 5 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	
H+ (ACT.) . OH- 3. H4SIO4 290. H3SIO4- 130. H2SIO4 . NAH3SIO4 28. H3BO3 236. H2BO3- 129. H2CO3 . HCO3- 187. CO3 9. H2S .	Nic 14 255 Nation 23 -3.721 25 -2.520 23 -2.520 23 -2.864 80 -5.072 96 -3.642 34 -2.418 50 -2.672 89 -4.3844 94 -2.511 66 -3.793 03 -5.996	MG++ MGCL RCL NASO4- ESO4- CASO4 MGSO4 CACO3 CAHCO3+ MGHCO3+ CACH+ CACH+	.09 -5.423 2.16 -4.433 .08 -5.961 2.23 -4.728 .80 -5.226 .20 -5.842 .06 -8.279 1.23 -4.911 .04 -6.364 .39 -5.413 .01 -6.898 .01 -6.901	PE(OB)3 FE(OB)4 PECL+ FECL2 FECL++ RECL2 FECL2+ RECL3 FECL4- FESC4 FESC4 FESC4 FESC4+ AL+++ ALOH++	01 .00 .00 .00 .00 .00 .00 .00 .00 .00	-7.261 -5.791 -7.382 -20.467 -23.249 -24.645 -27.2686 -7.4666 -22.6860 -7.4666 -21.2890 -15.6290	
HS- 4. S H2SO4 . H3O4- 49. HP . P- 11. CL- 558. NA+ 425. R+ 50. CA++ 1.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MGOH+ NH40H NH4+ FE++ FE0H+ FE(OH)2 FE(OH)3- FE(OH)4 FE(OH)++ FE(OH)2+	.01 -6.866 .17 -5.311 .01 -6.268 .07 -5.921 .00 -23.861 .55 -5.121 .13 -5.846 .00 -7.916 .00 -12.100 .00 -16.459 .00 -10.881	AL(OH)2 AL(OH)3 AL(OH)4 ALSO4+	+ .00 .01 .00 200 .00 .00 .00 .00	-10,501 -6,707 -5,002 -21,860 -23,860 -17,487 -16,047 -14,104 -14,351 -16,690 -19,345	

IONIC STRENGTH = .02315 IONIC BALANCE : CATIONS (MOL.EQ.) .01930849 ANIONS (MOL.EQ.) .02493695 DIFFERENCE (%) -22.44 SAMPLE = REP. YEJ.001

EPIDOTE

-44.416 -36.744

OXIDATION POTENTIAL (VOLTS) : EN HES= -.462 EN CH4= -.452 EN HE= -.543 EN HES= -.511 LOG SOLUBILITY PRODUCTS OF MINERALS IN DEEP WATER TEOB. CALC. TEOE. CALC. TB08. -17.632 -15.589 -13.478 -11.911 ADULARIA ALBITE LOW -16.859 -14.431 ANALCIME -5.467 -8.271 CHALCEDORY CALCITE -9.272 -8.775 -1.922 -2.500 ANHYDRITE MG-CHLOBITE -80.616 -76.432 FLUORITE -10.556 -11.276 COBTHITE -5.041 -2.084 -19.081 -15.589 -43.045 -43.369 LAUMONTITE -27.678 -24.910 MICROCLINE MAGNETITE -30.484 -17.907 -88.132 -85.509 +89.231 -88.485 CA-MONTMOR. E-MONTMOR. MG-MONTMOR. NA-MONTMOR. -41.022 -42.210 MUSCOVITE -21.778 -18.129 PREHNICE -17.142 -14.883 -154.380 -102.437 -3.195 -42.510 PYREHOTITS -104,804 -74.498 PYRITE QUARTI ZOISITE WAIRANITE -24.987 -24.910 WOLLASTONITE 11.140 10.037

MARCASITE -130.306 -102.437

TIBET

	• • • • • • • • • • • • • • • • • • •
REP.YEJ.002	YANGBAJING ZE-SIL

PROGRAM WATCH1.

WATER SAMPL	S (PPM)	STEAM SAMPLE				
PH/DEG.C BIO2	8.43/20.0 255.00	GAS (VOL.%) CO2	99.64	REFERENCE TEMP.	DEGREES C	.0 (CEA)
(2.6 (7	120.00	1163	122	SABFULNU FESSOVEE	BA52 852.	Sea Bat contractions
ä.	40.00	82	.02	BINGRANGE ENTHADET	MJOUL/KG	100 (CADUSTRIES)
O.A.	2.20	02	.00	DISCHARCE	KU/SNC.	1.2
MG	+110	CH4	.01			
002	311.04	¥2	.32	MEASURED TEMPBEATUR	E DECREES C	
804	41.50	He	0.0055	RESISTIVITY/TEMP.	OBMM/DBG.C	.0/ .0
H2S	26.00			SH/TEMP.	MV/DEG.C	.000/
CL.	522.00					
8	11.20	LITERS GAS PE	E XQ			
DISS.SOLIDS	.00	CONDENSATE/DE	G.C 6.01/20.0	MBASURED DOWNHO!	E TEMP.	FLUID INFLOW
法 犯	.2100			DRORRES C/ME	TERS D	RETH IMETERS!
7	59 4500			a a section of the		arread from the second
00	0000	CONDENSITE /D	DW1	0		÷
1000	0000	DU/DUG 0	2 2210A h		0	
0.11.4	+ V V V V	78/000×0	0.04/4010	• *	10	1
111	3.4	006	2.0.0			1
88	4	n 6 3	40.00	.9		15
52	1.1	NA	1.20		- 11	***
					+ 0	17
				- V	. 0	.0
				.0	, 0	÷8
		CONDENSATE WI	TH NACE (PPM)	.0	. G	. Ū
		002	.00	.9	, <u></u>	
		H25	.00	.0	.0	10
IONIC STREN	GTH = .02234	IONIC BALAN	UE : CATIONS (ANIONS (DIFFERENC	MOL.EQ.) .01863689 MOL.EQ.) .02486035 MC (%) -28.62		
DEEP WATER	(PPM)		DEE	P STEAM (PPM)	GAS PRES	SURES (BARS ABS.)
8102	239.67	002 952	.27 002	.00	002	.2028+01
NA	375,92	· 研究者 - 2.7	.13 H2S	.00	H28	.2238-03
R	A2.76	112	.01 #2	0.0	82	2958-02
17.8	2.07	02	60 02	.00	02	.000E+00
MC	161	CHA	0.5 CU/	7.0	CWA	7169-02
201	20 00	197 I	11년		55	1610.01
0121	10100	29 1 100	- VE DG 0.0 UU1	0.6	101	市方自要量值的
1012 17	10.20	111.0	.vv 800	+ W.V	00.000 116 A	1015.01
(8) (8)	10.02				mater.	6167-B1
1123.8.	.00				TUDAL	F51X7451
AL	.1973		ما مادين	S AME		
3	04,9208		H20	[3]	100	
3.5	,0000		801.	DING PORTION		

SAMPLE = REP.YEJ.002

ACTIVITY C	OBFFICIENT	S IN DEEP WAT	22					
H+	.847	KS04-	.827	RR-	+	179	PROLA	010
OH-	.814	F-	814	PP.		207	LT L L L	.010
H3STO4-	818	CI -	011	201			AU+++	. 221
H2STO#	470	201-	.011	FEOHt		.824 ALO	ALUH++	.470
825104		NAT	.818	FE	0813-	.824	AL(OH)2+	.827
82803-	.807	<u>K</u> +	.811	FE(OH}4	.465	AL(0H)4-	.821
HC03-	.818	CA++	.479	FEO	H++	.465	ALSO4+	.821
C03	.457	MG++	.505	FE(OH)2+	.827	AL(SO4)2-	.821
HS-	.814	CAHCO3	+ .830	FE(OH)4-	.827	ALF++	.470
8	.465	MGHC03	.818	FRS	04+	.824	ALF2+	827
HS04-	.821	CAOH+	.830	FRC	1.++	465	AT.RA-	921
S04	.450	NGOR+	833	RRC	1.9+	024	ALDE	120.
NASO4-	.827	NH4+	. 807	FBC	L4-	.818	ALF6	.173
CREWICAL C	NUDOUDUTS		DAN IND TOO N	1.01				
EL (ACT)	An An	C IIO	(FFR AND LOG RU	168)				
at [aot.]	.00	-0.413	EGTT	.07	-5.543	KR(OH)3	.00	.000
UH-	.17	-4.991	NACL	4.53	-4.110	FE(OH)4-	.00	.000
H4S104	380.97	-2.402	KCL	.17	-5.639	FECL+	.00	.000
H3SI04-	2.07	-4.662	NASO4-	3.13	-4.580	FECL2	.00	.000
H2SI04	.00	-8.975	KS04-	1.21	-5.049	FECL++	.00	.000
NAH3SI04	.38	-5.490	CASO4	.26	-5.717	FECL2+	.00	.000
H3BO3	312.96	-2.296	MGSO4	.11	-6.024	FRCLA	0.0	000
H2B03-	1.18	-4 711	CACOS	0.5	6 392	PPCLA	.00	.000
82001	996 41	1 940	KOCDS	.05	0.363	PBCD4-	.00	.000
0003	436 93	9 145	HUGOS	.00	-8.037	FES04	.00	.000
ECO3-	430.13	-2.199	CAHCO3+	2.74	-4.567	FESO4+	.00	.000
603	.08	-5.901	MGHCO3+	.04	-6.378	AL+++	.00	-17.758
828	16.82	-3.307	CAOE+	.00	-8.019	ALOH++	.00	-12.340
HS-	10.00	-3.519	MGOE+	.00	-7.826	AL(0H)2+	.00	-7.579
S	.00	-12.348	NH4OH	.00	.000	AL(OH)3	.53	-5.166
E2S04	.00	-13.967	NE4+	.00	.000	AL(OE)4-	.04	-6.329
HSO4-	.07	-6.169	FE++	.00	.000	ALSO4+	.00	-17,925
804	35.28	-3.435	FR+++	.00	.000	41.(80412	00	-19 316
HP	.11	-5.278	PRON+	00	000	ATPLL	.00	12 190
R.	10 43	-3 261	ED(OELS	.00	000	ALCTT AL DO L	.00	-13.100
01	407 71	1 001	FB(OR)2	.00	.000	AUFGT	.00	-10.120
00-	101.11	1.001	FE(OH)3-	.00	.000	ALFS	.00	-8.900
NAT	313.40	-1.789	FE(OH)4	.00	.000	ALF4-	.00	-9.409
K+	42.32	-2.966	FR(OH)++	.00	.000	ALF5	.00	-11.143
CA++	.89	-4.656	FB(OH)2+	.00	.000	ALF6	.00	-14.005
. IONIC STRE	INGTH = .	02037 10	NIC BALANCE :	CATIONS	(MOL.EQ.)	.01740432		
				ANIONS	(MOL.EQ.)	.02255492		
		24		DIFFEREN	ICB (%)	-25.78		
CHEMICAL C	BOTHERMOME	TERS DEGREES	C	1000/T D	EGREES REL	VIN = 2.28		
OIIAD#2	185 0				e î l			
CHALCEDONE	165 2							
NAK	215.2							
OXIDATION	POTENTIAL	(VOLTS) :	BH H2S=41	BH C	384=432	BH H2= -	.448 BH	NH3= 99.999
LOG SOLUBI	LITY PRODU	CTS OF WINERA	LS IN DEED WATE	2				
NA4 040401	TEOR	. CALC.	NO IN PUBL WALD	TEOR.	CALC.		TEC	R. CALC.
ADULARIA	-15.33	2 -15.484	ALBITE LOW	-14.768	-14.304	ANALCIME	-11.9	62 -11.902
ANHYDRITE	-6.61	4 -8.757	CALCITE	-10.726	-11.217	CHALCEDO	NT -2.4	02 -2.402
NG-CHLOPIT	R -80.36	-87.488	FLUORITE	-10 505	-11 675	COPPLICE	-2 0	00 00 000
LAUMONTTE	-25.06	7 -25 026	NTCROCITUR	-16 101	-15 404	WAGNERIS	D 01 1	AA 00 000
CI_VOUTUATITE	-23.00	9 _60 050	T NOUTROS	-10.341	-10.909	ARGADITT	B =24.0	144 32.223
UN-RUNIRUS	-10.34	-03.336	A-ROATAON.	-30.933	-30.345	NG-RUNTE	Ja15.1	23 -10.823
DECOMPTEND	-30.11	-35.355	NUSCOVITS	-18.698	-10.757	PEBRA.TE	-35.7	23 -31.756
FIERHOILLE	-55.80	5 32.333	PIBITE	-100.993	33.335	\$.A212	-2.5	16 -1.402
ALBARITE	-23.82	4 -15.016	WOLLASTONITE	3.117	5.460	201919E	-35.5	20 -37.901
BPIDOTE	-38.81	8 99.999	MARCASITE	-80.905	29.292			

REP.YBJ.003		YAROBAJING ZE-3	09 TI	1887		
PROGRAM WATCH	ñ.,					
WATER SAMPLE	(PPM)	STEAM SAMPLE				
PH/DEG.C BIO2	8.34/20.0 254.00	GAS (VOL.%) CO2	99.03	REFERENCE TEMP.	DECREES C	JU (CHA)
NA K CA MG	395.00 55.50 1.90 .110	H2S H2 O2 CH4	.53 .02 .00	SAMPLING PRESSURE DISCHARGE BNTHALPY DISCHARGE	BARS ABS MJOUL/RG RG/SEC	3.4 .TOG (CALCULATIE) .0
CO2 SO4 H2S CL	192.96 42.50 13.00 431.00	N2 He	.41 0.005	MEASURED TEMPERATU RESISTIVITY/TEMP. EH/TEMP.	BE DEGREES (OHMM/DEG.C HV/DEG.(.0 .0/ .0 .000/ .0
F	11.20	LITERS GAS PER	XO			
AL N	.2800	GONDENSATE/DEG.	C 5,12/20,0	MEASURED DOWNHO DEGREES C/ME	LE TEMP. TERS I	PLOID INFLO* DEPTH (METEES)
FE NH3 Li Ba Br	.3400 .3500 10.5 0.07 1.4	CONDENSATE (PPM PH/DEG.C CO2 H2S NA	6.15/20.0 10.44 13.50 8.50	.0 .0 .0 .0 .0	.0 .0 .0 .0 .0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
		CONDENSATE WITH	I NAOH (PPM)	.0	.0	, G
		CO1 H28	.00 .00	, 0 , 0	.0 .0	,0 ,0
IONIC STRENG	TH = .02027	IONIC BALANCE	: CATIONS (ANIONS (DIFFERENC	MOL.EQ.) .01863828 MOL.EQ.) .02076303 E [%] -10.46		
DEEP WATER (PPM)		DEEF	STEAM (PPM)	GAS PRES	SURES (SAES ADD.)
SIO2 WA CA MC SO4 CL F DISS.S. AL	240.00 373.20 52.43 1.80 .104 40.15 463.86 10.58 .00 .2458	CO2 794.93 H2S 15.53 H2 .00 O2 .00 OE4 .00 N2 1.6 NH3 .3	5 CO2 5 H28 0 H2 0 O2 3 CH4 1 N2 3 NH3	.00 .00 .00 .00 .00 .00	CO2 H28 H2 O2 H2 O2 H2 NH3 H2O TOTAL	.1908+01 .1478-01 .2658-01 .0008+00 .2508-02 .9008-01 .1348+04 .7088+01 .9098+01
E E	55.0531 .3212		H20 B011	(%) LING PORTION	.00	

SAMPLE : 939.752.001

ACTIVITY CO	BFFICIENTS	IN DEEP WATES						
H+	.851	E304-	.832	F3+	÷	.491	FRCL+	. 924
0H-	.820	F-	.820	FE+		.238	45.+++	238
H3SIC4-	.824	CL-	.817	FEO	1+	.830	410944	483
H2SI04	.483	NA+	.824	FE(0813-	.830	AL(0812+	832
H2B03-	.813	E+	.817	FRU)H)4	477	41.(08)4-	827
HCO3-	.824	CA++	491	FROM	1++	422	119041	007
C03	.470	NG++	516	RRII	1812+	972	ALGOATS	.041
HS-	.820	CARCO3+	.010	22/0		.032	AL (304)2-	.021
8	477	WCHC03+	221	1000	/n/4-	.036	ALCTT	. 483
H804-	827	CIURT	.047	PBOI	/57	.830	ALFET	.832
804	162	KCOTL	.030	FBUI		.411	ALF4-	.827
NASOY-	. 103	NULL	.030	FECI	124	.830	ALFO	.470
NASO1-	.034	NIST	.013	FEUI	- 14	.824	ALF0	.184
CHRNTCAL CO	NPONRNTS T	N DEED WATED	PPN AND LOC N	01.21				
H+ (ACT)	00	-6 949	NOLL	0000	5 529	PP/OR13	0.5	C 171
08-	19	5 150	NACT		-0.002	FE(OH)3	.00	-6.371
UASTOA	100 20	-3.100	NACL	4.33	-4.130	FE(OH)4-	.04	-0.049
193104	304.30	-6.400	ACL	.20	-0.000	RECT+	.04	-6.314
H35104-	1.37	-4.840	NASO4-	3.28	-4.550	FECL2	.00	-14.271
H28104	.00	-9.337	KSO4-	1.56	-4.937	FECL++	.00	-18.432
NAH3SI04	.25	-5.664	CASO4	.30	-5.852	FECL2+	.00	-19.887
H3BO3	314.09	-2.294	MGSO4	.13	-5.980	FECL3	.00	-22.305
H2B03-	.78	-4.889	CACO3	.02	-6.550	FECL4-	.00	-25.182
H2C03	844.00	-1.866	HGCO3	.00	-8.396	FESO4	.02	-6.925
HC03-	270.74	-2.353	CAHCO3+	1.88	4.730	FESO4+	.00	-18.001
C03	.03	-6.296	MGHC03+	.02	-6.564	AL+++	.00	-17,162
H2S	11.07	-3.488	CAOH+	.00	-8.152	ALOE++	.00	-11.904
HS-	4.34	-3.882	MGOH+	.00	-7.980	ALCOH12+	.00	-7.305
S	.00 -	12.893	NH4OH	.29	-5.080	AL(OR)3	52	-5 053
H2SO4	.00 -	13.587	NH&+	20	1 951	AL (OUL)		-6 409
HSO4-	10	-5 971	2211	16	5 510	ALGOAL	.01	17 900
804	25 97	-3 427	PPIII	.10	0. 459	ALD047	.00	-11.203
HP .	16	5 005	PRATT	.00 -	5 000	AL(SUA)2	00	-10.007
P.	10 12	1 900	PECOL S	.11	-0.040	ALTT	.00	-12.579
01	10.43	-3.200	FE(OH)2	.00 .	-1.383	ALFZ+	.00	-9.493
00-	401.14	-1.660	FB(OH)3-	.00	-9.908	ALF3	.00	-8.255
NAT	370.81	-1.792	FE(OH)4	.00 -	15.767	ALF4-	.00	-8.822
K+	51.88	-2.877	FR(OH)++	.00 -	13.907	ALF5	.00	-10.511
CA++	.95	-4.625	FE(OH)2+	.00 .	-8.890	ALF6	.00	-13.386
IONIC STREN	GTH = .0	1863 IONI	IC BALANCE :	CATIONS ANIONS DIFFERENC	(MOL.EQ.) (MOL.EQ.) CE (%)	.01754706 .01890946 _7.47		
CHENICAL GE	OTHBENOKET	ERS DEGREES C		1000/T D	GREES REL	VIN = 2.28		
OIIAPT?	196 1							
CHALCEDONY	165 4							
NIN	200.9							
855	630.3							
OXIDATION P	OTENTIAL (VOLTS) :	BH H23=38	9 BH CI	14=418	BH H2= -	.431 BH	NH3=410
LOG SOLUBIL	ITY PRODUC	TS OF MINERALS	B IN DEEP WATE	B				
ADUL ADTA	TEUE.	LALU.	UNTER LOP	TEUE.	CALC.		TEO	R. CALC.
ADUDARIA	-10.326	-15.290	ALBITE LOW	-14.763	-14.Z01	ANALCINE	-11.9	59 -11.801
ANHYDRITE	-5.518	-8.695	CALCITE	-10.732	-11.557	CHALCEDO	NY -2.4	00 -2.400
MG-CHLORITE	-80.368	-88.575	FLUORITE	-10.598	-11.627	GOETHITE	-1.9	88 -1.374
LAUMONTITE	-25.052	-24.782	MICROCLINE	-16.315	-15.290	MAGNETIT	B -24.5	22 -19.104
CA-MONTMOR.	-75.319	-66.423	K-MONTHOR.	-35.919	-33.709	MG-MONTH	OR76.7	01 -67.308
NA-MONTHOR.	-36.097	-32.621	MUSCOVITE	-18.602	-15.028	PREHNITE	-35.7	94 -37.824
PYRRHOTITE	-66.671	-49.137	PYRITE	-100.719	-56.573	QUARTZ	-2.5	75 -2.400
WAIRARITE	-23.823	-24.782	WOLLASTONITE	9.111	5.151	ZOISITE	-35.5	23 -37.593
EPIDOTE	-38.803	-39.198	MARCASITE	-80.734	-55.572			

UNU Geother	mal Training Prog	ranne						
23001201088	706120050	Svartsengi	SG-8 CRIN	DAVIK				
PROGRAM WAT	CH1.							
WATER SAMPL	E (PPM)	STEAM SAMP	LE					
PH/DEG.C	6.44/23.9	GAS (VOL.%)	REFERENC	DE TEMP.	DEGREES (.0 (QTZ)	
NI I	2002 00	1190	1 00	CAMDE THE	DEPOCIED	DADO ADO	10 0	
NA	0990.00	120	1.43	DAGFDING	FRECOURD	DALO ADO.	10.0 10.0	tra mitteri
K	1033.00	HZ	.07	DISCHARU	IK ENTHALPY	WICOT\KC	i 1.007 (CALC	ULAISD)
CA	1053.00	02	.00	DISCHARC	IE	EG/SEC.	0	
MG	.811	CH4	.05					
002	42.20	N2	1.98	MEASURED) TEMPERATUR	B DEGREES (.0	
804	31.64	Ar	0.541	RESISTIV	/ITY/TEMP.	OHMM/DEG.(3 .0/ .0	
429	69	1000		RH / TRMP		MV/DRG.(0. \000/ .0	
CI	12507 00			Dut i dui i				
P	10001.00	ITEDDO OIO	070 070					
T DTGS SOLIDO	P1+	CANDENG LAT	7 FDR AU 7 FDR AU	2 0 MD101	IDED DOWNIOT	מאקה ק	DINTE THRIAN	
DISS.SOLIDS	6 44304.00	CONDENSATI	S/DEG.C 1.30/1	S.O READ	JEED DOWNHOL	15 15RF+	FBUID INFOUN	
AL	.0000			01	RUBERS CARA	EE2	DEPTH (METERS)	
В	.0000				2			
FE	.0400	CONDENSATI	B (PPM)		.0	.0	.0	
NH3	.0000	PH/DEG.C	4.34/2	4.4	.0	.0	.0	
Mn	0.3	CO2	1590.00		.0	.0	.0	
		H2S	40.80		.0	.0	.0	
		NA	9.27		.0	.0	.0	
		1010	0.550		. 0	.0	.0	
					. 0	0	.0	
					0	0	0	
		CONDENSIE	p urmu utou (Di	DM 1	.0	.0		
		CONDENSAL.	B WIIH NAUN (FI	- m (. 0	.0	.0	
		002	4220.00		.0	.0		
		825	10.00		. 0	.0	. U	
IONIC STRE	NGTH = .40987	IONIC BA	LANCE : CATI ANIO DIFF	DNS (MOL.EQ.) NS (MOL.EQ.) ERENCE (%)	.38342290 .38332380 .03			8
DEEP WATER	(PPM)			DEEP STEAM (P	PM)	GAS PRES	SURES (BARS ABS	.}
ST02	467.10	C02	429.64	C02	.00	CO2	.108B+01	
NA	6344.49	H2S	7.12	H2S	.00	H28	.741E-02	
7	007 03	110	01	122	0.0	Н 2	2438-02	
n. (7.1	055 05	6.9	0.0	02	00	02	959R_36	
UA MG	300.00	0114	.00	004	.00	004	956P_09	
nu ao f	.130	014	+ 00	UN1 110	.00	10	004P 01	
804	28.71	N L	3.40	N Z	.00	N 4	.004D-01	
CL	12335.00	NH3	.00	NH3	.00	NH3	.0008+00	
F	.13					H20	.348B+02	
DISS.S.	22093.65					TOTAL	.3608+02	
AL	.0000							
В	.0000			H2O (%)		.00		
FE	.0363			BOILING PORTI	ION	.00		

SAMPLE = 23001201088706120050

ACTIVITY C	OBFFICIEN	TS IN DEEP WATE	R						
H+	.635	ESO4-	.544	FE	++	.109	FECL	ł	.495
OH-	.474	F-	.474	FE	+++	.021	AL+++	+	.021
H3SI04-	.495	CL-	.452	FE	0H+	.531	ALOH	++	.096
H28I04	.096	NA+	.495	FB	(OH)3-	.531	AL(O	1)2+	.544
H2B03-	.428	K+	.452	FE	(OH)4	.087	AL(O	H)4-	.514
HCO3-	.495	CA++	.109	FB	OH++	.087	ALSO	4+	.514
C03	.075	NG++	.155	FR	(OH)2+	.544	ALIS	0412-	.514
HR-	474	CARCO3+	562	RR	(OH)4-	544	AL.R+	+	.095
g	0.97	WCHCO3+	495	PR	504+	531	ALR2		544
ugo1.	514	CYURT UGUOD1	569	PP	0111	0.87	ALRA		514
004-	.014	WCORT	577	T D	0191	531	ALPS		076
304	.005	NUC		7 D D D	OL L	405	ALPE		.010
NASU4-	. 244	NU4T	.440	P D	064-	. 430	VPL0.		.005
CHRNTCAL (OMPONRNES	TN NEED WATER	PPH AND LOG M	DLR)					
UL (ACT)	00100000000	_5 175	WC++	72	-4 528	RR(OH	13	.05	-6.362
AT (A01.)	.00	5 373	NICT 1	116 22	1 600	PR(OU	14-	.00	-6 720
UN-		-3.3/3	RAGE 1	100.66	-1.003	PRCL	19-	.02	7 602
848104	140.41	-2.110	KG5	108.10	-4.838	FSGLT		.00	-1.033
H3S104-	.33	-5.455	NASO4-	5.55	-4.331	FRCLZ		.00	-10.890
H28104	.00	-10,747	KS04-	3.80	-4.551	ERCP+	+	.00	-16.975
NAH3SI04	.45	-5.422	CASO4	14.43	-3.975	FECL2	+	.00	-17.723
H3BO3	.00	.000	MGSO4	.05	-6.386	FBCL3		.00	-18.915
H2B03-	.00	.000	CACO3	.04	-6.401	FECL4	-	.00	-20.059
H2C03	570.50	-2.036	HGC03	.00	-10.403	FBS04		.00	-11.200
HC03-	7.30	-3.922	CAHCO3+	44.84	-3.353	FESO4	ŧ	.00	-19.512
C03	.00	-8.847	NGHC03+	.00	-7.255	AL+++		.00	.000
H2S	6.95	-3.690	CAOH+	.15	-5.562	ALOH+	+	.00	.000
88-	.16	-5.320	MGOE+	.00	-6.934	AL(OH	12+	.00	.000
8	.00	-14,195	NH4OH	.00	.000	ALIOH	13	.00	.000
82804		-11 493	WH4+	.00	.000	ALCOR	14-	.00	.000
0004-		-5 083	PP11	00	-8 234	ALSOA	1	00	000
1004-	10 51	-0.000	PPILI		91 559	AT / SC	112_		000
304	10.01	-3.301	PROFIL	.00	0 040	ALTRU	110-	.00	.000
BF D	.04	-2.694	FBURT	.00	-0.040	ALETT	i.	.00	.000
F-	.09	-0.311	FE(OH)2	.00	-10.230	ALFCI	<u>8</u>	.00	.000
CL-	11412.36	492	FR(OH)3-	.00	-11.899	ALFS		.00	.000
NA+	5778.32	500	FE(OH)4	.00	-17.943	ALF4-		.00	.000
K+	939.21	-1.619	FB(OH)++	.00	-14.501	ALF5-	-	.00	.000
CA++	933.20	-1.633	FB(OH)2+	.00	-9.024	ALF6-		.00	.000
IONIC STR	ENGTH =	.34578 IO	NIC BALANCE :	CATIONS ANIONS DIFFERI	HOL.EQ. (MOL.EQ. SNCE (%) .32243390) .32228410) .05			
CHEMICAL	GEOTHERMON	IBTERS DEGREBS	0	1000/T	DEGREES K	BLVIN = 1.9	14		
0114082	040 0								
WURKIL OPDON	696.6 T 000 0								
CHALCEDON	1 999.9								
NAK	245.8								
OXIDATION	POTENTIA	L (VOLTS) :	BH H2S=40	D1 BH	CH4=4	63 BH H2:	-,416	BH	NH3= 99.999
LOG SOLUE	ILITY PRO	DUCTS OF MINEBA	LS IN DEEP WATE	BB					
100 A 100 A 100	TR	OR. CALC.		TEO	R. CALC			TEO	R. CALC.
ADULARIA	-14	432 99.999	ALBITE LOW	-13.9	78 99.99	9 ANAL	CIMB	-11.5	24 99.999
ANNYDRITE	-7	963 -7.739	CALCITE	-12.5	71 -12.56	0 CHAL	CEDONY	-2.0	26 -2.110
NG-CHLOPT	TR _ 8/	296 99 999	RLUOPITE	-10.9	16 -11.86	3 GORT	HITR	1.9	46 -1.296
LAUNONAL	-24	513 00 000	NICROCLINP	-15 1	25 00 00	Q NACH	RTTTR	-17 6	76 -23 192
CL_MONTHING	D -24.	624 00 000	K-NUNANUD	-34 0	33 00 00	Q MO-M	NTHOP	-74 1	21 99 999
WA WOUTHO	ND	106 00 000	WIIGOOUT #P	-17 0	52 00.00		UTTP	. 19 0	76 00 000
DEDDUORT	ND 05	101 10 000	DODOOVIIL	-11.8	07 - 50 49	C OULD	m11D	-31.6	10 .0 110
FIRENULL	-20.	401 -43.833	PIGLIS	-40.3	16 6 01	6 2010	16	-6.1	20 00 000
WAIKAKITE	-24.	411 33.333	WOLLASTONIT	0.000	00 0.04	0 2015	115	-31.8	20 33.333
RAIDOLR	-37.	723 33.333	MAECASITE	-29.8	00 -59.47	0			

REP.HRGD.001 HVBRAGERDI NLFI-1

PROGRAM WATCH1.

WATER SAMPLE (PPM) STEAM SAMPLE

PH/DEG.C	8.38/24.5	GAS (VOL.%)		RE	FERENCE	B TEMP.	DEGRE	BS C	.0	(CHA)
SI02	235.90	C02	83.80							
NA	160.00	H2S	2.97	SA	MPLING	PRESSURE	BARS	ABS.	5.4	
K	11.05	H2	3.14	DI	SCHARGE	B ENTHALPY	MJOU	L/KG	.694	(CALCULATED)
CA	1.62	02	.16	DI	SCHARGE	3	KG/	SEC.	.0	
MG	.002	CH4	.37							
C02	87.80	N2	9.40	ME	ASURED	TEMPERATURI	B DEGRE	BS C	.0	
304	43.50	Ar	0.17	RE	SISTIVI	ETY/TEMP.	OHMM/D	BG.C	.0/	.0
H2S	15.50			EF	/TBMP.		MV/D	BG.C	.000/	.0
CL	130.17									
F	1.52	LITERS GAS	PBR KG							
DISS.SOLIDS	727.30	CONDENSATE/	DEG.C 1.00/	23.0	MEASU	RED DOWNHOLD	B TEMP.	FLUID	INFL	JOW WO.
AL	.4800				DEC	GREES C/METH	BRS	DEPTH	(METH	(RS)
В	.0000								7.	
FE	.0000	CONDENSATE	(PPM)			.0	.0		.0	
NH3	.0000	PH/DEG.C	3.82/	23.8		.0	.0		.0	
Li	0.08	C02	989.00			.0	.0		.0	
		H2S	173.00			.0	.0		.0	
		NA	.71			.0	.0		.0	
						.0	.0		.0	
						.0	.0		.0	
						.0	.0		.0	
		CONDENSATE	WITH NAOH (P	PM)		.0	.0		.0	
		C02	1979.00			.0	.0		.0	
		H2S	172.00			.0	.0		.0	
TONIC STRRND	17H - 00777	TONTC BALA	NCR · CATT	ONS (NOL	RO)	00730503				
TONTO DIMENS	111 - 100111	TORIO BADA	ANTO	NS (NOL.	RQ. I	00722357				
			DIFF	BRENCE	(%)	1.12				
DEEP WATER (PPM)			DBBP ST	BAN (PP	H)	GAS P	RESSURES	(BARS	ABS.)
\$102	232.94	CO2 11	1.69	CO2		.00	C02	. 8.	29B-0	
NA	157.98	H28 1	.7.48	HZS		.00	HZS	.4	(5B-07	2
R	10.91	HZ	.03	HZ		.00	HZ	.1	99B-01	1
CA	1.60	02	.03	02		.00	02	.8	028-03	5
MG	.002	CH4	.03	CH4		.00	CH4	. 2	91B-01	2
804	42.95	NZ	1.37	NZ		.00	NZ	. 7	97B-01	
CL	128.51	NH3	.00	NH3		.00	NH3	.0	DOR+01)
F.	1.50						HZO	. 6.	328+01	
D188.8.	718.11						TOTAL	.6	01B+0	1
AL	.4739			-						
В	.0000			H2O (%)		. '	00			
F.R	.0000			BOILING	PORTIO	Ν.	00			

SAMPLE = REP.HRGD.001

ACTIVITY	COBFFICIENTS	IN DEEP WATE	B						
H+	.893	KSO4-	.883	FB	++	.614	FECL+	.879	
OH-	.877	F-	.877	FB	+++	.362	AL+++	.362	
H38I04-	.879	CL-	.876	FR	OH+	.882	ALOH++	.610	
H28T04	.610	NA+	.879	FR	(OH)3-	882	AL(OH)2+	893	
12801-	874	V1	975	20	(00)/	505	AL (OR) A	.002	
14003-	.017	E T	.010	10	(Un/4	.606	AL(OH)4-	.880	
HCO3-	.819	GA++	.614	FE	OH++	. 606	ALS04+	.880	
C03	.602	NG++	.529	FE	(OH)2+	.883	AL(S04)2-	.880	
HS-	.877	CAHCO3+	.885	FB	(OH)4-	.883	ALF++	.610	
8	.606	MGHC03+	.879	FB	S04+	.882	ALF2+	.883	
HS04-	.880	CAOH+	.885	FB	CL++	.606	ALF4-	.880	
804	.598	MGOH+	.886	FR	CL2+	.882	ALF5	. 602	
NASO4-	.883	WHA+	874	FR	CL4-	879	ALPS	320	
movi				C D	001-	1012	WDL0		
CHENICAL	COMPONENTS I	N DEEP WATER	(PPH AND LOG M	OLB)					
H+ (ACT.)	.00	-7.229	NG++	.00	-7.314	FE(OH)3	.00	.000	
OH-	.96	-4.249	NACI.	56	-5.017	FR(OR)4-	00	000	
LASTOA	38 935	9 497	RCL	01	C 99C	PPOL 1	.00		
USOTAL	11 99	2 007	NIGOL	1 09	-0.110	PBOUT	.00	.000	
838104-	11.11	-3.901	NASU4-	1.92	-4.792	FRCPS	.00	.000	
H28104	.00	-7.480	KS04-	.45	-5.480	FBCL++	.00	.000	
HAH3SI04	1.05	-5.052	CASO4	.53	-5.407	FECL2+	.00	.000	
H3B03	.00	.000	MGSO4	.00	-7.545	FBCL3	.00	.000	
H2B03-	.00	.000	CAC03	.12	-5.924	FECL4-	.00	.000	
H2C03	37.06	-3.224	NGCO3	.00	-9.454	FRS04	.00	.000	
HCO3-	117 61	2 715	CARCOLL	00	-5 011	PPROAL	00	000	
001	111.01	5 200	VALOOST		-3.011	200017	.00	.000	
003		-5.120	EGECOST	.00	-8.043	ALTTT	.00	-19.883	
828	3.80	-3.976	CAON	.00	-7.137	ALOH++	.00	-13.684	
HS-	13.47	-3.390	NGOH+	.00	-8.789	AL(OE)2+	.00	-8.132	
8	.00 -	11.525	NH40H	.00	.000	AL(OH)3	.93	-4.925	
H2SO4	.00 -	15.503	NH4+	.00	.000	AL(OH)4-	.54	-5.246	
H804-	.01	-6.889	FB++	.00	.000	ALSO4+	.00	-19.744	
804	40.69	-3.373	FR+++	.00	.000	AL(S04)2	00	-20.970	
HP	.00	-6.945	FROH+	00	.000	ALR++	00	-16 099	
R.	1 49	4 104	PP/OU19	.00	.000	ATPOL		12 010	
	1.13	-9.109	PB(OR)2	.00	.000	ALEAT	.00	-13.810	
06-	128.17	-6.446	FE(OH)3-	.00	.000	ALF3	.00	-13.404	
NAT	157.18	-2.165	FE(OH)4	.00	.000	ALF4-	.00	-14.822	
K+	10.77	-3.560	FB(OH)++	.00	.000	ALF5	.00	-17.412	
CA++	1.00	-4.602	FE(OH)2+	.00	.000	ALP6	.00	-21.223	
TONTO OBD	- 100M	07E9 TON		di Brova	(NOT TO)	00010010			
TONIC SIS	SNGIN = .U	UIDI TON	IC BALANCE :	CATIONS	(405.86.)	.00717245			
				ANIONS	(MOP'R6')	.00706562			
				DIFFBBB	NCE (X)	1.50			
CHRNICAL	CROTURDHOWET	n padobdu bad		10.00/7		AL			
CUPUTCAP	USV1ABBBUDD1	saa usuassa v		1000/1	DEGERES EEL	VIN = 6.30			
QUARTZ	181.8								
CHALCEDON	¥ 160.9								
NAK	163.5								
									e.
OIIDATION	POTENTIAL (VOLTS) :	BH H2S=48	2 BE	CH4=511	BH H2= -	.549 BH	NH3= 99.999	
LOG SOLUB	ILITY PRODUC	TS OF MINERAL	S IN DEEP WATE	R					
	TEOE.	CALC.		TEOR	. CALC.		TEO	R. CALC.	
ADULARIA	-15.419	-15.708	ALBITE LOW	-14.84	7 -14.312	ANALCINE	-12.0	16 -11.885	
ANHYDRITE	-6.543	-8.410	CALCITE	-10.53	3 -10.754	CHALCEDO	NY -2.4	27 -2.427	
MG-CHLORI	TE -80.256	-88,925	FLUORITE	-10.58	6 -13.136	GORTHITR	-2.1	91 99.999	
LAUNONTIT	B -25.153	-24,142	NICROCLINE	-15.43	0 -15 708	NACURTIT	R -24 P	98 99 999	
CA-NONTHO	R75 717	-73,891	E-MONTHOP	-36 16	5 -18 151	NC-NOVON	OP _77 0	88 .75 595	
WA-NONEMO	P _26 226	-16 755	MUSCONTER	-10 70	5 -16 710	DDDDNNIG	0511.0	00 -10.303	
DVDDUART	D CA A11	-30,133	NUSCOVITE DESTRO	-10.70	J -10.718	PEBHNITE	-30.7	34 -33.141	
FIRSHUTIT	a -69.014	33.333	PIRITE	-103.87	33.333	QUARTZ	-Z.5	06 -2.427	
WALKAKITS	-23.838	-24,142	WOLLASTONITE	9.21	4 7.218	ZOISITE	-35.4	77 -35.646	
REIDOLE	-39.075	99.999	MARCASITE	-83.68	5 99.999				

APPENDIX 2.1 Computer Output for Downhole Sample of Well ZK-323

REP.YBJ.004	YANGBAJING ZE-323	TIBET

PROGRAM WATCH2.

WATER SAMPLE	(PPM)	STEAM SA	MPLE					
PH/DEG.C	7.85/20.0	GAS (VOL	.%)	I	EFERENCE TEMP.	DEGRBES	C .0 ((CHA)
SI02	250.00	C02					3	14
NA	448.00	H2S		1	AMPLING PRESSU	RE BARS ABS		
K	51.75	H2		I	ISCHARGE ENTHAL	LPY MJOUL/K	G	
CA	14.00	02		1	TSCHARGE	KG/SEC	0	
MG	.400	CH4						
C02	351.00	N2		1	RASURED TEMPER.	ATURE DEGREES	C .0	
804	34.35	1115		1	RSISTIVITY/TRM	P. OHMM/DRG.	C .0/	.0
H2S	5.50				RH/TEMP.	MV/DBG.	C .000/	.0
CI.	489.00					,		
R	10.80	LITERS (AS PRR KG					
DISS SOLIDS	00	CONDENS	TR/DRG C		MRASURED DOW	NHOLE TEMP.	FLUTD INFLO	W
AT.	1 9800	OOMD BINDI	110/00010		DEGREES C	/MRTRRS	DEPTH (MRTER	8)
R	59 9750				<i><i><i>bbdabbbbbbbbbbbbb</i></i></i>	, 112 1 2 10	obrin (norse	
99	3 0300	CONDENS	TR (DDM)		0	0	0	
L D A D	1350	DU/DEC	and (ma)		.0	.0	0	
NH S	0 03	CO2	<i>.</i>		.0	0	.0	
DI	0.415	199			.0	.0	.0	
Da Ba	1 525	MA			.0	.0	.0	
Dr	1.040	an.			.0		.0	
					.0	.0	.0	
					.0	.0	.0	
		CONDENG	AND STOR NAC	I (DDM)	.0	.0	.0	
		CONDENIA COS	AID WIIN WAV	i (rra)	.0	.0	.0	
		1006			.0	.0	.0	
		120			.0	.0	.0	
IONIC STREN	GTH = .02317	IONIC	BALANCE :	CATIONS (MC ANIONS (MC DIFFERENCE	L.EQ.) .0216174 L.EQ.) .0232317 (%) -7.2	11 77 20		
DEEP WATER	(PPM)			DEEP S	TEAM (PPM)	GAS PRE	SSURES (BARS	ABS.)
SI02	250.02	C02	351.00	C02	.00	C02	.110E+00	
NA	448.00	H2S	5.50	H2S	.00	H2S	.630B-03	
K	51.75	H2	.00	H2	.00	H2	.000E+00	
CA	14.00	02	.00	02	.00	02	.000E+00	
MG	.400	CH4	.00	CH4	.00	CH4	.000E+00	
804	34.35	N2	.00	N2	.00	N2	.000E+00	
CL	488.96	NH3	.33	NH3	.00	NH3	.274E-04	
F	10.80					H20	.638E+01	
DISS.S.	.00					TOTAL	.649B+01	
AL	1.9799							
В	58.9695			H20 (K)	.00		
FB	3.0302			BOILI	NG PORTION	.00		
to an all the second	THE REPORT OF A							

SAMPLE = REP.YBJ.004

ACTIVITY (CORFFICIENTS	IN DEEP WATER						
8+	.843	KSO4-	.822	FR	+	.469	FRCL+	811
0H-	.809	F-	.809	FB	++	.220	AL+++	220
H3SI04-	.813	CL-	.805	FRO	+B+	.820	ALON++	461
H28I04	.461	NA+	.813	FR	OH13-	.820	AL(0812+	899
H2B03-	.801	X +	.805	FR	0814	455	AL(OR)A-	916
HC03-	.813	CA++	.469	FRO	8++	.455	41.9044	.010
C03	.447	MG++	.497	FR	OH12+	.822	AL/80412-	.010
HS-	.809	CAHCO3+	.826	RR	OH)4-	.822	ALR11	.010
s	.455	MGHCO3+	.813	RRS	104+	820	41.891	. 401
H804-	.816	CAOH+	.826	FRO	1.++	455	ALRA-	916
804	.439	NGOH+	.829	FRO	1.2+	.820	ALR5	.010
NASO4-	.822	NH4+	.801	FBC	£4-	.813	ALF6	.164
CHENICAL (COMPONENTS I	N DEEP WATER (PPH AND LOG NO	DLR)				
H+ (ACT.)	.00	-7.632	NG++	.27	-4.962	FR(OH)3	34	-5 495
-80	2.65	-3.808	NACL	5.13	-4.057	FR(OH)4-	6.08	-4.309
H4SIO4	361.55	-2.425	KCL	.19	-5.590	RRCL+	0.00	-7 769
H3ST04-	32.35	-3.468	NASO4-	2 91	-4 608	FRCI 2	.00	-15 069
H28104	.03	-6.551	KSO4-	1.15	-5 072	PPCLIA	.00	-10.004
NAH3STO4	6.95	-4.230	CISON	1 25	-5 032	PROLITY	.00	-61.061
H3803	317.04	-2.290	NCSON	21	5.550	PROLET	.00	-66.301
H2R03-	19.92	-1 485	C1003	1 11	-1.155	PROLA	.00	-42.404
82003	49.24	-3 100	MCCO3	1111	- 5 977	PBOD4-	.00	-40.401
HC03-	424 78	-2 157	CAUCO31	15 45	5 910	PROV	.00	-0.400
003	1 30	-4 666	MOUCO3+	10.40	-3.010	FBBU4+	.00	-21.225
199	1.50	-1 951	CLOUL	.16	-0.034	ALOTA	.00	-20.471
00_	1 07	1 011	CAUET	.05	-0.001	ALUH++	.00	-13.949
0	10.1	-3.031	BGUET	.03	-0.102	AL(OH)Z+	.00	-8.077
12001	.00 -	11.911	Adiod	.00	-4.733	AL(OH)3	2.50	-4.494
1004	.00 -	10.301	NH4+	.02	-5.928	AL(OH)4-	3.92	-4.384
804-	.00	-1.561	FS++	.01	-6.957	ALSO4+	.00	-20.773
304	30.01	-3.505	FE+++	.00 -	23.454	AL(804)2-	.00	-22.264
nt P	.01	-6.521	FROH	.09	-5.928	ALF++	.00	-15.948
e-	10.80	-3.246	FR(OH)Z	.05	-5.181	ALF2+	.00	-12.922
66-	485.76	-1.853	FE(OH)3-	.00	-7.401	ALF3	.00	-11.722
BAT .	444.06	-1.714	FE(OH)4	.00 -	11.875	ALF4-	.00	-12.282
8÷	51.32	-2.882	FE(OH)++	.00 -	15.621	ALF5	.00	-13.952
CA++	5.70	-3.847	FE(OH)2+	.00	-9.331	ALF6	.00	-16.779
IONIC STRE	BNGTH = .0	2249 IONI	C BALANCE :	CATIONS	(HOL.EQ.)	.02109279		
				ANIONS	(HOL. 80.)	.02296164		
				DIFFERS	ICE (X)	-8.48		
CHENICAL (BOTHERMOMET	EES DEGREES C		1000/T [EGREES KEL	VIN = 2.30		
QUARTZ	182.2							
CHALCEDONY	161.2							
NAK	217.2							
OXIDATION	POTENTIAL (VOLTS) :	BH H2S=519	9 BH (H4= 99.999) BH H2= 99.	.999 BH	NH3= 99.999
LOG SOLURI		TT AT WINDDING	TH DEED HIMED					
	TROP	CALC.	TH APPL MULT	TROP	0110		920	D CHIC
ADULARTA	-15.412	-14,473	ALBITE LOW	-1/ 9//	-12 201	ANAL OTHE	19.0	11 10 000
ANHYDRITE	-6.549	-8.038	CALCITE	-14.040	-13.301	CULLOPDON	-16.0	11 -10.018
NG-CHLORT	-R -R0 253	-73.247	RUNDITE	-10.640	-3.131	CORRUTER	-2.4	40 -2.425
LAUMONTIT	R _25 145	-22 310	ALCOOCLEND	-10.081	-16.631	GOBTHITS	-2.1	10495
CA-NONTHON	-75 697	-69 838	R-NONDADD	-10.94	-14.413	RAGNETITI	5 -24.8	10 -10.074
NA-NONTHON	10.001	-34 636	MIRCONTER	-30.13	-35.807	RG-RUNTHO	1817.0	-70.928
PYRRHATIT	-69 930	-51 594	DADIAD	-10.09	-10.118	PESHNITS	-35.7	36 -31.869
WATRAKTTP	_21 917	-22 110	VOLLASTONTED	-103.03	-12.837	QUARTZ ZOTATER	-2.6	03 -2.425
RPIDOTR	-10 051	-12 364	MADCASTON	3.600	70.000	LOISITE	-35.4	30 -32.192
MI IDOID	-11:000	-32.304	HAGGAGITS	-03.403	-16.831			

APPENDIX 2.2 Computer Output for Calibration of the Downhole Sample from Well ZK-323

										222
REP.YBJ.004		YANGBAJIN	IG ZK-323	1	TIBET					
PROGRAM WATC	CH3.	TEMPERATU	RE FIXING	STEAM LOSS	135.0 DBG	REES C				
WATER SAMPLE	(PPM)	STEAM SAN	IPLE							
PH/DEG.C	7.85/20.0	GAS (VOL	*)		REFERENCE T	EMP.	DEGREES (C .0	(CHA)	
S102	250.00	C02				100mmu	1277-012 - 112-21			
NA	448.00	H2S			SAMPLING PR	ESSURE	BARS ABS			
K	51.75	H2			DISCHARGE E	NTHALPY	MJOUL/KO	G		
CA	14.00	02			DISCHARGE		KG/SEC	0		
MG	.400	CH4						21		
C02	351.00	N2			MBASURED TE	MPERATURE	DEGREES	C .0		
804	34.35				RESISTIVITY	/TEMP.	OHMM/DEG.	C .0,	.0	
H2S	5.50				BH/TEMP.		MV/DEG.	C .000	.0	
CL	489.00									
F	10.80	LITERS G	AS PER KG						2222	
DISS.SOLIDS	.00	CONDENSA	FB/DEG.C		MEASURED	DOWNHOLE	TEMP.	FLUID INF	LOW	
AL	1.9800				DEGRE	ES C/METE	RS	DEPTH (MET	BRS)	
В	58.9750		territoria			-20	(15)			
FB	3.0300	CONDENSA	TE (PPM)			0	.0	.0		
NH3	.3350	PH/DEG.C				0	.0	.0		
Li	9.93	C02				0	.0	.0		
Ba	0.415	H2S				0	.0	.0		
Br	1.525	NA			6	.0	. 0	.0		
					1.0	.0	.0	.0		
						.0	. 0	. 0		
					2	.0	. 0	.0		
		CONDENSA	TE WITH NA	OH (PPM)		.0	. 0	.0		
		C02				.0	.0	.0		
		H2S				.0	.0	.0		
IONIC STREN	IGTH = .02317	IONIC F	ALANCE :	CATIONS (N	IOL.BQ.) .02	161741				
				DIFFERENCE	10L.BQ.) .02. 8 (%)	-7.20			8	
DBBP WATER	(PPM)			DEEP	STEAM (PPM)		GAS PRES	SSURES (BAH	ABS.)	
8102	235.68	C02	687.43	C02	2	00	C02	.116E+0	00	
NA	422.30	H28	7.15	H2S		00	H2S	.462B-0)3	
K	48.78	H2	.00	H2		00	H2	.000B+	00	
CA	13.20	02	.00	02		00	02	.000B+0	00	
MG	.377	CH4	.00	CH4		00	CH4	.000B+	00	
S04	32.38	N2	.00	N2		00	N2	.000B+	00	
CL	460.91	NH3	.34	NH3		00	NH3	.197E-	05	
F	10.18						H20	.676B+	01	
DISS.S.	.00						TOTAL	.687E+	01	
AL	1.8663									
В	55.5867			H20	(%)		00			
FB	2.8563			BOIL	ING PORTION		00			

GAS SOLUBILITY MULTIPLYING FACTOR : .10

SAMPLE = REP.YBJ.004

	100030000									
ACTIVITY C	OBFFICIENT	S IN DREP WA	TBR							
H+	.845	KSO4-	.825	FB	++	.475	FECI	÷.	.816	
OH-	.812	F-	.812	FR	+++	.225	ALt	++	.225	
H3ST04-	.815	CL-	.808	FR	OH+	.823	ALOI	1++	.467	
H28T04	467	NA+	816	FR	(08)3-	823	AL.((11121	825	
02003-	202	R.	000	PP	(04)4	461	ALL	NUL A	910	
86003-	.000	AT CL.	.000	CD DD	(Un) 4	101	AL	10/4-	.013	
HCU3-	.810	CATT	.475	FB	08++	.401	ALSO	74+	.819	
C03	.454	NG++	.502	FR	(OH) Z+	.825	AD()	804)2-	.819	
HS-	.812	CAHCO	.829	FB	(OH)4-	.825	ALF	**	.467	
8	.461	MGHCO	.816	FB	804+	.823	ALE	2+	.825	
HS04-	.819	CAOH	.829	FB	CL++	.461	ALF	4-	.819	
804	.446	MGOH	.832	FB	CL2+	.823	ALF	5	.454	
NASO4-	.825	NH4+	.805	FB	CL4-	.816	ALF	6	.169	
CHEMICAL	COMPONENTS	IN DEEP WAT	BR (PPH AND LOG NO	LB)						
H+ (ACT.)	.00	-6.645	NG++	.27	-4.958	1	E(OH)3	.81	-5.118	
08-	.28	-4.777	WACL	4.70	-4.095	1	FR(OH)4-	1.54	-4.904	
HASTOA	372 96	-2 411	KCI.	18	-5 621	1	RCL.4	.18	-5.710	
UIOTOA.	3 49	-1 444	NISO1-	2 73	-1 640	3	PRCL2	00	-13.788	
NSCIO4-	0.16	0 501	REGU-	1 07	E 103		DOLT	.00	19 202	
H43104	.00	-0.044	1304-	1.07	-3.103		BOLTT	.00	-10.303	
NAEJS104	.70	-5.225	CASU4	1.30	-5.020		FBUUGT	.00	-13.113	
83803	315.88	-2.292	HGSO4	.34	-0.000		FRCP3	.00	-22.219	
H2B03-	2.02	-4.478	CAC03	.50	-5.299	3	FBCL4-	.00	-25.106	
H2C03	514.79	-2.081	NGCO3	.00	-7.236		FBS04	.06	-6.431	
HC03-	435.82	-2.146	CAHCO3+	17.17	-3.770		FBS04+	.00	-17.999	
C03	.13	-5.663	MGHCO3+	.13	-5.804		AL+++	.00	-17.378	
828	3.48	-3.990	CAOH+	.01	-7.003		ALOH++	.00	-11.777	
88-	3.56	-3.968	HGOH+	.00	-7.044		AL(OH)2+	.01	-6.832	
8	.00	-12.581	NH4OH	.44	-4.897		AL(OH)3	4.80	-4.211	
82804	.00	-14.558	NH4+	.13	-5.139		AL(OH)4-	.71	-5.124	
HSO4-	.03	-6.520	FR++	.70	-4.899		ALSO4+	.00	-17.667	
804	28.17	-3.533	FR+++	.00	-20.265		AL(SO4)2-	.00	-19.167	
HP	.05	-5.535	FROH+	1.10	-4.820		ALF++	.00	-12.843	
P-	10.13	-3.273	FR(OH)2	.09	-6.017		ALF2+	.00	-9.812	
CL-	457.91	-1.889	FR(OH)3-	.00	-8.175		ALF3	.00	-8.619	
NA+	419.79	-1.739	FR(OH)4	.00	-13.631		ALF4-	.00	-9.197	
K+	48.38	-2.908	FR(OH)++	.00	-13.367		ALF5	.00	-10.894	
CA++	5.80	-3.839	FB(OH)2+	.00	-8.005		ALF6	.00	-13.762	
IONIC ST	RENGTH =	.02117	IONIC BALANCE :	CATION	S (NOL.EQ.)	.0200	2969			
				ANTONS	(NOL.BQ.)	.0213	9642			
				DIFFEB	ENCE (%)		6.50			
CHEMICAL	GEOTHERMO	METEES DECEE	BS C	1000/1	DEGREES KE	BLVIN :	= 2.29			
QUARTZ.	184.4							8		
CHALCEDO	NY 163.6									
NAK	217.0									
OXIDATIO	N POTENTIA	L (VOLTS) :	BH H2S=42	IG BE	CH4= 99.9	99	BH H2= 99.99	9 BH	NH3= 99.999	
LOG SOLU	BILITY PRO	DUCTS OF MIN	BRALS IN DEEP WATH	ER TRI	DIAD 90			TR	OR. CALC.	
ADIILADIA	-15	164 -14 490	ALBITT LOW	-14	197 -11 10	7	ANALCING	-11	982 -10.896	
ANUVADIA	-10.	587 _9 046	CALCIPP	-10	-10.10	8	CHALCEDONA	-2	411 -2.411	
MC CULO	0 -0.	220 .00 050	PLUODID	-10.	503 .10 00	0	CORTUTED	-0.	072 - 190	
TAUMONAL CUTOR	11D -00.	000 -00.331	PDUVELLE	-10.	10.03	0	VICUDATED	-6.	£70 _1E 100	
LAUNONTI	-25.	120 -22.300	RICKUCLINK	-10.	306 -14.48		HAUNDIIIS	-24.	010 -13.130	
CA-MONTH	10875.	478 -58.249	K-MONTHOR.	-36.	014 -30.04	3	AG-BONTHOR.	-10.	000 -09.344	
NA-HONTE	10836	188 -28.870	RUSCOVITE	-18.	643 -13.23	8	PESHNITE	-35.	192 -33.787	
PYERHOTI	TB -67	.541 -42.728	PYRITE	-102.	025 -54.96	5	QUARTZ	-2.	587 -2.411	
WAIRAEI	TB -23	.829 -22.300	WOLLASTONIT	B 9.	153 6.71	5	ZOISITE	-35.	503 -33.166	
EPIDOTE	-38	.915 -33.90	MARCASITE	-81.	954 -54.96	5				

.

APPENDIX 2.3 Computer Output for the Calibrated Downhole Sample

						=================			:::
REP.YBJ.004.	Ą	YANGBAJIN	3 ZK-323	TI	BBT				
PROGRAM WATCH	H2.								
WATER SAMPLE	(PPM)	STEAM SAM	PLB						
PH/DEG.C	5.54/1111	GAS (VOL.	6)	I	EFERENCE	TEMP.	DEGREES	C .0 (CHA)	
8102	235.68	C02							
NA	422.30	H2S		5	SAMPLING	PRESSURE	BARS ABS		
E	48.78	H2		I	ISCHARGE	ENTHALPY	MJOUL/K	3	
CA	13.20	02		1	ISCHARGE	3	RG/SEC	0	
MG	377	CH4							
CO2	687.34	N2		1	ARASURED	TEMPERATUR	E DEGREES	C .0	
204	32.38			-	RESISTIVI	TY/TRMP.	OHMM/DEG.	c .0/ .0	
190	7 15				RH/TRMP		WV/DRG.	C .000/ .0	
n50 CT	460.01						ar / south		
5	10.10	ITTRDS CA	S DED EG						
P NTOD GATTRO	10.10	DIIDED GA	DIDE C		MRASH	TONNAOD GAS	R TRMP	RLUTD INRIGH	
UIGG.GUUIDG	1 0000	UVNDBRGA1	D/DDG+U		nproor	DEDS C/ME	ND IDUI .	DEDTH (METERS)	
A D	1.0000				0.01	UNEDO VINEI	D Setu	NDITH (UDIDNO)	
5	00.0001	CONTRACT	D (DDM)			0	0	0	
FB	2.0000	OUNDENER!	E (FFG)			.0	0	0	
NH 3	.3400	PH/BEG.C				.0			
61	3.36	002				.0	.0		
Ba	0.39	HZS					.0	.0	
Br	1.44	NA				.0	.0		
						.0	.0		
						.0	.0	.0	
				10000		.0	.0	.0	
		CONDENSAT	E WITH NACH	(PPM)		.0	.0	.0	
		CO2				.0	.0	.0	
		H2S				.0	.0	.0	
IONIC STRENG	JTH = .02117	IONIC B	LANCE : CA	ATIONS (MC	L.EQ.) .	02002947		3	
			A	NIONS (MC	L.BQ.) .	02139542			
			D	FFERENCE	(%)	-6.59			
DEEP WATER	(PPM)			DEEP S	ITBAM (PP	(M)	GAS PRE	SSURES (BARS ABS.)	
0100	095 50	303	207 91	002		0.0	002	1168401	
8104	400 00	102	001.04	1002		.00	1298	161R-02	
NA.	444.30	140	1.10	1100 110		00	120	.1018-00 .0008-00	
8	40.10	14		0.9		.00	09	000R+00	
GA	13.20	02	.00	04		.00	024	0008+00	
MG	.311	UHR	.00	019		.00	100	0008100	
804	32,38	NZ	.00	N 4		.00	19 12	1000.04	
CL	400.87	NH3	.24	NH 2		.00	1120	2727101	
1. A.	10.18						TOPIT	7097101	
0138.8.	.00						TOTAD	134DTV1	
AL	1.8662			200	W 1		0.0		
B	00.0010			120 (a) No bober	NV.	.00		
1 K	2.8565			BUILI	NU FUETIU	1.14	.00		

SAM7.E : REF.783.004.A

.816 .224 .467 .825 .819 .467 .825 .819 .467 .825 .819 .454 .169 5.118 4.903 5.710 3.788 8.304 9.780 2.216
.224 .467 .825 .819 .819 .467 .825 .819 .454 .169 5.118 4.903 5.710 3.788 8.304 9.780 2.216
.467 .825 .819 .819 .467 .825 .819 .454 .169 5.118 4.903 5.710 3.788 8.304 9.780 2.216
. 100 . 825 . 819 . 819 . 467 . 825 . 819 . 454 . 169 5.118 4.903 5.710 3.789 8.304 9.780 2.216
.819 .819 .819 .467 .825 .819 .454 .169 5.118 4.903 5.710 3.789 8.304 9.780 2.216
.819 .819 .467 .825 .819 .454 .169 5.118 4.903 5.710 3.788 8.304 9.780 2.216
.819 .819 .467 .825 .819 .454 .169 5.118 4.903 5.710 3.788 8.304 9.780 2.216
.819 .467 .825 .819 .454 .169 5.118 4.903 5.710 3.789 8.304 9.780 2.216
.467 .825 .819 .454 .169 5.118 4.903 5.710 3.788 8.304 9.780 2.216
.825 .819 .454 .169 5.118 4.903 5.710 3.788 8.304 9.780 2.216
.819 .454 .169 5.118 4.903 5.710 3.788 8.304 9.780 2.216
.454 .169 5.118 4.903 5.710 3.788 8.304 9.780 2.216
.169 5.118 4.903 5.710 3.788 8.304 9.780 2.216
5.118 4.903 5.710 3.788 8.304 9.780 2.216
5.118 4.903 5.710 3.788 8.304 9.780 2.216
4.903 5.710 3.788 8.304 9.780 2.216
4.903 5.710 3.788 8.304 9.780 2.216
5.710 3.788 8.304 9.780 2.216
3.788 8.304 9.780 2.216
8.304 9.780 2.216
9.780
2.216
5.105
C 199
5.934
8.000
1.378
1.778
5.832
4.211
5 124
7 666
1.003
9.108
2.844
9.813
8.620
9.198
0.895
3.763
= 99.
C
-10.
-2
15
-10.
-09.
-33
-2.
-33.

Table 2.1 Chemical Composition of Typical Geothermal Waters

		Approx.			Concentrate atmosph	ons (mg/kg)	for water collection disch	lected at		Conn	har) suotiezuu	tikg) for water (ollected at atme	sphenc press	eure from disch	aller	
Source and releven	1	1	Depth (m)	Ha	а	ž	×	ą	J	Mg	0	Mn	*	-	σ	Br	-
Sorne. Revkisvik.	Iceland (a)	8	•	9.6	0.00	159	14			60	19	000	000	10	8	90	10
Drillhole, Reykiavi	k, Iceland (b)	300	9	8.6	<0.1	56	11	<0.02	0.02	ł	0.5	I	1	1	16	I	1
Sonne. Hveraeerdi	L. Iceland (b)	100	0	5.9	1	I	1	1	1	0.6	25	1	l	11	146	l	1
Hole G-3, Hverage	rtdi. Iceiand (b)	316	650	9.6	0.3	212	22	100	<0.02	00	1.5	0 00	0.1	1.9	261	0.45	00
Spring, Paurhetsk,	. Kamchatka.	100	0	8.4	ī	0101	8	ł	ı	10	3	ı	0.0	0.8	1684	32	0.0
USSR (c) Pauzhetsk drill hol Kamchatka, USSI	R (d)	170-195	300-400	6.8	ı	ž	×	1	1	ts	611	1	1	1	0211	ı	1
Jubilee Bath, Ngaw Defineds 1, Neewb	vha. N.Z. (c)	8 2	•	6.5	11	870	2 8	0.5	0.5	25	-	18	12	5	3051	I.	1:
ineint 't aloumur	(a)	4	Ŕ	5	1		3	1	5		3	-		3		ı	2
Ohaki Pool, Broadi	lands, N.Z. (e)	58	•	7.05	7.4	860	8	63	n	1-5	46	Ļ	ı	3	10901	3.0	0.6
Drill hole 2, Broadi	lands, N.Z. (e)	260	0001	3	11.7	1050	210	a	IJ	0.3	12	0.009	10.05	23	176	5.7	8.0
Champagne Pool. 1	Wastakei.	8	٩	8.0	10.6	1070	ar	11	27	•0	36	ı	į		1770	4.0	0.7
N.Z. (r) Drill hole 24. Wain	abei, N.Z. (e)	350	8	3	13.2	1250	210	34	25	100	п	0.015	10.01	-	0122	55	5
Senne 6. Rotokaus	N.2 (6)	5	•	25	7.8	066	30	ı	1	511	a	1	9	1	101	9	1
Drill hole 2, Rotoka	141. N.Z. (c)	220	090	1.1	10.2	1525	921	I.	1	ı	20	1	1	9.6	3675	1	62
Spring, Tahuangsu	1	5	•	I	3.0	611	25.9	I	ı	36	315	2.5	11	23	367	ł	I.
Hole E103. Tahuan (f Tatun, Taiwan (f)	Atani.	8	3000	7	ı	282	x	т. Т	ı	4	0	ī	1346	i.	1221	ī	1
Shofuso Hotel, Mat	subura.	78.5	6	ч.	1	40	9.6	ı	I	C1 .	31.6	ı	91	I	. 01	I	1
Japan (g) Hole 1. Matsukawa.	L. Jepan (g)	-900	576	••	ı	364	Ŧ	I	ı	11	ŝ	ī	508	ı	12.4	ı	ï
Spring 22. Mesicali.	L Mexico (h)	1	d	ı	3.11.6	0529	\$05	ī	1	34	010	i	ı	I	86.00	12.3	1
Hole 5. Mestcali, M	dentes (h)*	340	317	ı	51	5820	1570	ı	ı	*	260	1	02	ı	10.420	191	1
Wister mudpots, Sa	ulton Sea.	12	•	1.7	9.6	6470	400	1	I	335	54	60	0.8	M	8480	ł	1
Calif. (1)* Salton	Sea.	940	160	47	215	50.400	17,500	38	×	×	28.000	1400	0622	15	155.000	120	1
Spring, Makhachka Dagestan, USSR	į	3	0	*1	82	2011	54	I.	ı	*	P4	i	1	9.0	\$0E	1.6	1
. Rejerances: (a) (c) (c) (c) (c) (c) (c)	 Bodvarston (1961). Demutry Division. Ivanov (1958). YC. Liu (personal c Mulfiler and White (1). 	DSIR, N.Z. w communication	10 10 10 10 10 10 10 10 10 10 10 10 10 1	omm. from D vveryev et al. iasamura and anov and Ne	r. G. Bodvarseo (1961). (Suumi (1967). vraev (1964).	n, and Dr. ((e) Chemu (h) Mercad	 E. Sigvalda Inty Divisit o (1966). 	uon. DSIR.	* Concentrate	ons and pH in the sure silo, etc. is use	brep aquiter total CO, +	HCO, + CO,"	expressed as CI	0. silica + s	alicate as SiO, .		

Table 2.2 Summary of the Chemical Equilibria Controlling the Composition of Geothermal Fluid

Native copper Anglesite $8Cu + 8H^+ + SO_4^{2-} \rightleftharpoons 8Cu^+ + 4H_2O + S^{2-}$ PbSO4 = Pb2+ + SO42-Pyrrhotite Cerrusite $FeS \rightleftharpoons Fe^{2+} + S^{2-}$ PbCO, = Pb2+CO,2-Sphalerite, Wurzite Tenorite $ZnS \rightleftharpoons Zn^{2+} + S^{2-}$ $CuO + 2H^+ \rightleftharpoons Cu^{2+} + H_0O$ Galena Smithsonite $PbS \rightleftharpoons Pb^{2+} + S^{2-}$ $ZnCO_{a} \rightleftharpoons Zn^{2+} + CO_{a}^{2-}$ Covellite Siderite $CuS \rightleftharpoons Cu^{2+} + S^{2-}$ FeCO, = Fe²⁺ + CO.²⁻ Acanthite Dolomite $Ag_2S \rightleftharpoons 2Ag^{2+} + S^{2-}$ $CaMg(CO_g)_2 \rightleftharpoons Ca^{2+} + Mg^{2+} + 2CO_s^{2-}$ Chalcocite Anhydrite $Cu_2S \rightleftharpoons 2Cu^+ + S^{2-}$ $CaSO_4 \rightleftharpoons Ca^{2+} + SO_4^{2-}$ Pyrite Gypsum $FeS_2 + H_2O \Rightarrow Fe^{2+} + 1.75S^{2-} + 0.25SO_4^{2-} + 2H^+$ $CaSO_4 \cdot 2H_9O \rightleftharpoons Ca^{2+} + SO_4^{2-} + 2H_9O$ Chalcopyrite Quartz $CuFeS_2 \rightleftharpoons Cu^{2+} + Fe^{2+} + 2S^{2-}$ SiO₂ + 2H₂O ≓ H₄SiO₄ Bornite Microcline $Cu_8FeS_4 \rightleftharpoons 4Cu^+ + Cu^{2+} + Fe^{2+} + 4S^{2-}$ $KAISi_{3}O_{8} + 4H^{+} + 4H_{2}O \rightleftharpoons K^{+} + 3H_{4}SiO_{4} + AI^{3+}$ Cuprite Low Albite $Cu_{2}O + 2H^{+} \rightleftharpoons 2Cu^{+} + H_{2}O$ $NaAlSi_{0}O_{a} + 4H^{+} + 4H_{0}O \rightleftharpoons Na^{+} + 3H_{4}SlO_{4} + Al^{3+}$ Magnetite Anorthite $Fe_{s}O_{4} + 8H^{+} \rightleftharpoons Fe^{2+} + 2Fe^{3+} + 4H_{s}O$ $CaAl_{2}Si_{2}O_{8} + 8H^{+} \rightleftharpoons Ca^{2+} + 2Al^{8+} + 2H_{4}SiO_{4}$ Hematite Leucite $Fe_2O_3 + 6H^+ \rightleftharpoons 2Fe^{3+} + 3H_2O$ $KAISi_2O_6 + 2H_2O + 4H^+ \Rightarrow K^+ + AI^{3+} + 2H_4SiO_4$ Brucite Nepheline $Mg(OH)_2 \rightleftharpoons Mg^{2+} + 2OH^ NaAlSiO_4 + 4H^+ \rightleftharpoons Na^+ + Al^{3+} + H_4SiO_4$ Gibbsite Analcite Al(OH)₃
⇒ Al³⁺ + 3OH⁻ $NaAlSi_2O_6 \cdot H_2O + H_2O + 4H^+ \Rightarrow Na^+ + Al^{3+} + 2H_4SiO_4$ Calcite Kaolinite $CaCO_{s} \rightleftharpoons Ca^{2+} + CO_{s}^{2-}$ $Al_2Si_2O_8(OH)_4 + 6H^+ \Longrightarrow H_2O + 2Al^{3+} + 2H_4SiO_4$ Na-Montmorillonite $Na_{0.333}Al_{2.333}Si_{3.667}O_{10}(OH)_{2}+7.332H^{+}+2.668H_{2}O \rightleftharpoons 0.333Na^{+}+2.333Al^{3+}+3.667H_{4}SiO_{4}$ **K-Montmorillonite** $K_{0.333}Al_{2.333}Si_{3.667}O_{10}(OH)_2 + 7.332H^+ + 2.668H_2O \rightleftharpoons 0.333Na^+ + 2.333Al^{3+} + 3.667H_4SiO_4$ **Ca-Montmorillonite** $Ca_{0.1665}Al_{2.333}Si_{3.667}O_{10}(OH)_2 + 7.332H^+ + 2.668H_2O \Rightarrow 0.1665Ca^{2+} + 2.333Al^{3+} + 3.667H_4SiO_4$ Mg-Montmorillonite $\mathrm{Mg}_{0.1665}\mathrm{Al}_{2.333}\mathrm{Si}_{3.667}\mathrm{O}_{10}(\mathrm{OH})_2 + 7.332\mathrm{H}^+ + 2.668\mathrm{H}_2\mathrm{O} \rightleftharpoons 0.1665\mathrm{Mg}^{2+} + 2.333\mathrm{Al}^{3+} + 3.667\mathrm{H}_4\mathrm{SiO}_4$ Muscovite $KAl_{3}Si_{3}O_{10}(OH)_{2} + 10H^{+} \rightleftharpoons K^{+} + 3Al^{3+} + 3H_{4}SiO_{4}$ Illite $K_{0.6}Mg_{0.25}Al_{2.50}Si_{3.50}O_{10}(OH)_2 + 8H^+ + 2H_2O \rightleftharpoons 0.6K^+ + 0.25Mg^{2+} + 2.30Al^{3+} + 3.5H_4SiO_4$ **Biotite** (Annite) $KFe_{s}AlSi_{s}O_{10}(OH)_{2} + 10H^{+} \rightleftharpoons K^{+}3Fe^{2+} + Al^{3+} + 3H_{4}SiO_{4}$

Source: From Helgeson, 1970, Copyright 1970 by the Mineralogical Society of America.

Table 2.3 Equations Describing the Temperature Dependence of Cation/Proton Ratios and Un-dissociated Weak Acid Concentrations in Geothermal Well Discharge

Weak acid/ ion ratio	Temperature function	Mean	Standard
(moles/kg)		deviation	deviation
10g1145102	-0.588 -0.00441.T -1515.21/T +1.3470.logT	0.06	0.05
10g112009	-1.794 -0.00510.T -4469.63/T +4.1414.10gr	0.30	0.26
logli25°	-1.678 -0.00355.T -5071.05/T +3.8889.10gr	0.36	0.33
109112508	-6.436 -0.03906 ·T -13335.68/T +14.7958 · logr	0.57	0.48
logIF°	-5.262 -0.03511.T -7964.11/T +12.1022.logr	0.32	0.28
logNa+/H+	2.694 +0.02023 ·T +4243.47/T -6.2069 · logr	0.14	0.12
10gK+/11+	2.505 +0.01971.T +3325.71/T -5.7814.10gr	0.12	0.09
log/Ca+2/11+	1.733 +0.01117 T +3890.51/T -3.9977 logr	0.17	0.12
10g/Mg+2/11+	1.816 +0.01078 T +3727.48/T -4.1640.logr	0.34	0.27
log/Fe ⁺² /II ⁺	-4.696 -0.04273 T -1011.46/T +10.8032.10gr	0.18	0.17
10gA1 (OH) 4/OIT	-3.407 -0.02364.T -3417.36/T +7.8426.logr	0.21	0.12

				M	lonoch	romator	ð	La	mp	Bur	ner		
	Conc. Range (ppm)	Dilu- tion [*]	Wave- length (Å)	I	п	ш	īv	Typed	Cur- rent (mA)	Slot length (mm)	Align- ment ^e	– Flame ^e	Sam- pling height (mm)
Li	0.5-30	(0)	6708	335	vis	in	3	HCL	10	70-100	1	C ₂ H ₂ -air (fuel lean)	8
	1-150	(D)	6708	335	vis	in	3	HCL	10	70-100	II	C+H+-air (fuel lean)	8
Na	100-1000	(D)	5890 5896	295	vis	in	4	ODL	900	70-100	ï	C ₂ H ₂ -air (fuel lean)	8
K	4-400	(D)	7699	385	vis	in	4	ODL	400	70-100	H	Hair (fuel rich)	8
Rb	0.1-10	(B)	7800	390	vis	in	4'	ODL	250	70-100	ii	Hair (fuel rich)	8
Cs	0.2-20	(B)	8521	426	vis	in	51	ODL	400	70-100	ii	Hair (fuel rich)	8
Mg	0.001-1	(B)	2852	285	uv	out	4	HCL	6	70-100	ii	C+H+-air (fuel lean)	8
0	0.002-2	(O)	2852	285	uv	out	3	HCL	8	50-70	ii	C.HN.O (RZ 3)	8
Ca	2-200	(D)	4227	211	vis	out	3	HCL	15	50-70	1	C+H-NO (RZ 5)	13
Mn	0.005-5	(B)	2795	279ª	uv	out	3	HCL	20	70-100	11	C2H2-air (fuel lean)	8
Al	0.04-50	(B)	3092.7 3092.8	309	uv	out	3	HCL	25	50-70	ü	C2H2-N2O (RZ 12)	8
Fe	0.01-0.1	(B)	2483	248	uv	out	3	HCL	30	70-100	Ш	C.Hair (fuel lean)	8
	0.1-20	(0)	2483	248	uv	out	3	HCL	30	50-70	li	C.HN.O (RZ 3)	8
SiO ₂	50-1000	(B)	2507	251	uv	out	3	HCL	40	50-70	ii	C.HN.O (RZ 25)	7
B	20-1000	(B)	2497	250	uv	out	4	HCL	30	50-70	li	C.HN.O (RZ 25)	7

Table 3.1 Analysis of Geothermal Waters with AAS

^a Operating conditions are for models 303, 305, and 403; data are from Goguel, (1973).

^b I, wavelength counter setting; II, grating; II, filter which excludes wavelengths shorter than 550 nm (5500 Å); IV. slit setting: (numbers correspond to spectral bandwidths) for the uv grating, 3 = 2.4 Å, 4 = 7 Å; for the visual grating, 3 = 5 Å, 4 = 14 Å, and 5 = 50 Å.

" RZ denotes height of the red zone in millimeters.

^d HCL, hollow cathode lamp; ODL, Osram discharge lamp.

⁶ Of the flame in the light path of the spectrophotometer: perpendicular alignment produces 0.1 or less of the sensitivity of the parallel alignment. ⁷ An extra filter must be inserted into the light beam near the window of the spectrophotometer to the left of the flame in order to exclude modulated scattered Na light which reaches the photomultiplier via the reference beam. Filter holder 040-0251 (model 403) or 303-0828 (models 303-305) and a red filter Schott RG 5 or Corning 2-58 (Perkin-Elmer No. 290-1518) are required.

"Shortest wavelength of the triplet.

^h Dilutions: (B) 1.1 fold. Add 5 ml of a buffer solution (2.5% recrystallized Sr (NO₃)₂, 4% KC1, 1 N HNO₃) to 50 ml of each sample of standard. (D) 51 fold. Deliver 2 ml of sample or standard into 100 ml of a buffer solution (0.1% CsCl, 0.1N HNO₃).(O) Undiluted water sample. Note: Sr(NO₃)₂, KCL, and CsCl are reagents of high purity (e.g., Merck "Suprapur"). Table 4.1 Equations Expressing the Temperature Dependence of Equilibrium Constants in CaO-CO₂-H₂O System

 $K_{H}^{\circ} = -7656970 - 3122.11449T + 1.092229T^{2} + 1.880778E8 * T^{-1} + 3.1771246E6 * logT$

 $k = 108.875 + 0.174114604T - 1.9845113E(-4)*T^{2} + 1.0131668E(-7)*T^{3} - 58.867703*logT$

 $logK_1 = 124.4478+0.0056623T-5.86972601E3*T^{-1}-45.589821*logT$

 $logK_2 = 143.4475+0.034559T-1.9732326E(-5)T^2$ -6.16187137E3*T⁻¹-57.248899*logT

 $logK_c = 30.8131 - 0.1728295T + 3.271501E(-4)T^2$ -2.5529153E(-7)T⁻¹+2.95989303*logT

 $A = -11092.1143+11.562984T+0.01454757T^{2} - 1.2064489E(-5)*T^{3}+4.4598806E(-9)*T^{4} + 1.76312033E5*T^{-1}+5229.515*logT$

 $B = 3.8096+0.01846467T+4.8075571E(-5)T^{2} - 6.0838461E(-8)*T^{3}+3.0473184E(-11)*T^{4} - 2.617130669E2*T^{-1}$

 $logK_p = -1823.663+3.9000818T-0.00412503T^2 + 1.75503E(-6)*T^3+4.2179661E5*T^{-1}-3.9002725E7*T^{-2}$

Table 4.2 Ionic Strength of Typical Geothermal Waters

Geothermal source	Ionic strength	Res.	lemp.
	(molality)	(°C)	pH
Reykjaból, Iceland	0.005	152	7.23
Namafjall, Iceland	0.007	252	7.48
Hveragerdi, Iceland	0.009	184	6.99
Leira, Iceland	0.014	127	6.73
Broadlands, N.Z. well 2	0.052	260	8.3
Wairakel, N.Z. hole No.24	0.062	250	8.3
Matsukawa, Japan hole No. 1	0.065	300	4.9
Sulphur Bank, CA Geyser spring	0.094	230	6.8
El Tatio, Chile geyser 238	0.230	220	7.32
Ahunchapan, El Salvador, ave.	0.312	230	6.3
Cerro Prieto, Mex. ave. 12 wells	0.431	388°	8.2
Matsao, Taiwan well 205	0.429	245	2.4
Sen water Std. Cl = 19'hn	0.709	20	8.0
Halls Bayon, TX, FF No. 1	1.111	150	6.8
Chocolate Bayou, TX, Angle No. 3	1.348	118	5.9
Salton Sea Woolsey	3.434	1761	5.8
Salton Sen Magmamax No.1	4.203	1961	5.5
Salton Sen hole 1 1112	6.931	340	4.7

35

*Max temp. †Well head temp.
Table 4.3 Aqueous Species for Proton Mass Balance and Alkalinity Equations

	Hydrogen	ion mass bal	ance spec	cies		Alkalinity s	pecies
Coefficient		Coefficient		Coefficient		Coefficient	
1	H+	-1	AIOH2+	-2.875	Fe (OH) 5	1 1	OH-
-1	011-	-2	A1 (0H)	1	PbH. S.	2	H2 5106
-2	11,5102-	-4	AI (OH)	1.125	Cu2+	1	H15104
-1	H, 5105	-1	Hg (OH) +	1.125	CuC1+	1	HCOT
1	HF	1	HallCO	1.125	CuCl 2	2	col-
i	HET	-1	Feol	1.125	CuCli	1	HS-
i	HC1	-3	Fe (OII) 1	1.125	CuC1	2	S2-
.5	0:89	.25	Fe (OII)	1.125	CUOH	2	Nacoj
.25	Hang	1.125	Fest	1.125	CuSOs	2	CaCOs
1	Clived	.125	FeOII2+	1.125	CuF ⁺	1	CaOH
1	HCOT	1.125	FeC15	-1	HnOH+	1	CallCO;
2	H; CO:	1.125	FeCl 2+	-2	llgS1-	2	HgCO
1	Has	1.125	FeC1:	1	HgHySs	1	HgOH*
-1	5 ¹ -	1.125	FeC1	-2.25	Hgit	1	HgllCOs
1	11505	1.125	FeF ^{2‡}	-1	HgC10H	1	BaOH
-1	NnOH	1.125	FeF1	-1	HgOH+		
1	KIISO	1.125	FeSOT .	-2	Hg (OH) :		
-1	CaOll	.875	Fe (011)	2.25	AuC15		
-1	CallCot	-1.875	Fe(OII);	-1	AugHaST		

Table 5.1 Schematic Layout of the Function of WATCH Program

GEOCHEMICAL MATERIAL	SELECTED PARAMETERS	COMPUTED PARAMETERS
 Het-steam well discharges (steam and water phases) Boiling hot springs Hot-water wells and non-boiled hot spring waters 	I Reference temperature a. measured b. chalcedony equilibrium c. quarts equilibrium d. Na-K feldspar equilibrium e. arbitrary 2 Degassing factor (only for geochemical material 1 and 2) 3 Discharge enthalpy (only for	1 Deep vater composition 2 Species concentrations 3 Activity coefficients 4 N ⁴ activity 5 Pedox potential 6 Gas partial pressures 7 Mineral solubilities
	wet-steam wells)	SPECIAL COMPUTATIONS 1 Speciation of variably hotied and cooled water

Table 5.2 Input Data for WATCH Program

CHEMICAL DATA	
Water samples:	1/1/°C, SIO, B, Na, K, Ca, Ma, Fe, Al,
	solids, electric conductance".
Steam samples:	(only for wet-steam wells) CO2, H25, MI2, N2, O2, H2, CH2, and Na or C1 to check dryness of steam.
PHYSICAL DATA	
Wet-steam wells:	Sampling pressure, enthalpy of well discharge.
Not springs and	hot water wells: Discharge temperature.
DATA WHICH ARE	DESTRABLE
townhole tempera	ture of wells.
Agulfer Inflows	of wells.
Discharge rates	of wells and hot springs.

Temperature at which the pH is measured. These data are not necessary for the programme calculations.

Table 7.1 Effect of Process Parameters on Scale Formation

	Equilibrium Effect on Potential Scale Species(a)			
Process Parameter	Sill2	CaCO ₃	Sulfide	Sulfate
Temperature decrease (as in plant cycle)	•	0	٠	o Ca • Ba
Temperature increase (reheat during injection)	0	٠	0	• Ca o Ba
Increased pH (as CO ₂ is flashed)	• o pH >9	٠	٠	٠
Decreased pH (acid addition)	0	0	0	0
Increased salinity (flashing; mixing)	•	0	0	0
and the state of t				

(a)
 aggravates problem
 o alleviates problem.

Table 7.2 Factors affecting Silica Deposition Kinetics

Factor	Impact	Comments
рH	Lowering pH slows kinetics by a factor of ~10 for every pH unit.	
Supersaturation ratio	Precipitation becomes rapid as the ratio exceeds 2.	Reduce pH and temperature
Temperature	Kinetics slows dramatically as temperature drops, which counteracts the increase in supersaturation ratio as a saturated solution cools.	The maximum silica deposi- tion rate may occur 25 to 50°C below the temperature at which the cooled solution reaches amorphous silica solubility limits.
Salinity	Increased salinity increases kinetics of deposition	
F catalyst	This equilibrium (precipitation) accelerator may become the dominant controller of deposi- tion in lower pH brines (pH 3?) where the normal precipitation mechanism is pH inhibited.	
Chemical inhibitors	Retards growth of silica particulates	Limited testing described in the Inhibitor Treatment section.

Figure 1.1 Output Decay due to Scaling in Well, Svartsengi

Figure 1.2 Formation of Calcite Deposition in Well 4 in Svartsengi

Figure 2.1 Schematic Flow Diagram of Double Flashing System in Yangbajing Power Plant

Figure 2.2 Flow Diagram of Svartsengi Power Plant (Björnsson and Albertsson, 1985)

Figure 2.3 Flow Patterns of Vertical Two Phase Flow

Figure 2.4 Flow Pattern Map for Vertical Two Phase Flow

Figure 2.5 Flow Regimes in Horizontal Two Phase Flow

Figure 2.6 Flow Pattern Map of Baker as Modified by Scott

Figure 2.7 Relationship of the Product of Calcium and Carbonate Ion Concentrations with Temperature and Sodium Concentration in Equilibrium Reservoir Conditions

Figure 2.8 Concentration Ranges for Elements in Geothermal Water

Figure 3.2 Collection of Water Phase

Figure 3.3 Collection of Condensate and Gases

Figure 3.4 Collection of Vapor Phase into NaOH Solution

Figure 3.5 Flow Chart for Comprehensive Sampling and

Analysis of Geothermal Fluid

Figure 3.6 Positions of Sampling Points on Surface Piping

Figure 4.1 Aragonite-Calcite Phase Transition Diagram

Figure 4.2 Stability Relations in Ca²⁺-Mg²⁺-CO₂-H₂O System

Figure 4.3 Effect of Salt Concentration on Henry's Law Constant

Figure 4.4 Fraction of Carbonate, Bicarbonate, Carbonic Acid and CO₂ Present as a Function of pH at 100°C

Figure 4.6 Solubility of Calcite in Water up to 300°C at Various Partial Pressures of Carbon Dioxide

Figure 4.7 Plot of Free Energy of Precipitation vs Crystal Size Illustrating Nucleation and Growth

Figure 4.8 Schematic Representation of Concentration in Solution as a Function of Radial Distance

Figure 5.1 Difference Between Function and Output Values vs Gas Solubility Mutilplication Factor

Figure 5.2 Calcite Activity Product for Samples from Yangbajing Geothermal Field

Figure 5.3 Calcite Activity Product for Samples from Svartsengi Geothermal Field

Figure 5.4 Calcite Activity Product for Samples from Hveragerði Geothermal Field

Figure 5.5 Comparison of Calcite Activity Product for Samples from Yangbajing, Svartsengi and Hveragerði Geothermal Fields

Figure 5.6 Ratio of Calcite Activity and Solubility Products for Samples from Yangbajing, Svartsengi and Hverageröi Geothermal Fields

Figure 5.7 Difference of Calcite Solubility and Activity Products for Samples from Yangbajing, Svartsengi and Hveragerði Geothermal Fields

Figure 6.1 Mechanical Cleaning Equipment in Yangbajing

Figure 6.2 Reaming of Scale in Svartsengi

Figure 6.3 Sketch of a Plant for P_{CO2} Control

WELLBORE NARROWING (FILTER CAKE)

WELLBORE FILLING

Figure 7.1 Types of Wellbore Impairment Caused by Suspended Solids

Figure 7.2 Silica Solubility as a Function of pH

Figure 7.3 Effect of Lime Treatment on Silica

Figure 7.4 Metal Sulfides Solubility in Water as a Function of pH

Figure 7.5 Solubility of Sulfides in Solution as a Function of Temperature

Figure 7.6 Iodide Breakthrough Curve in Well 6, Svartsengi