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PROGRESS REPORT OF BASIC RESEARCH

An ever increasing field in the activities of the
National Energy Authority, (NEA) is the research

related to the exploration of the hydro-electric and
gecthermal power resources of the country. The

National Energy Authority also provides expert assistance
in fields related to its own activities.

Following is a series of short articles where the recent
developments of scientific interest within the field
of hydraulics are briefly discussed.



TIGHTENING OF WATER RESERVOIRS

by Jdnas Elfasson.

Abstract.

Since 1964 considerable effort has been diverted to the
investigation of reservoir tightening due to sedimentation.
Most of the Icelandic rivers are of the glacial type,
carrying sediments of grain sizes from fine clay to gravel.
In NEA’s experimental field, LANGULDUVEITA, it has been
experimentally verified that lava fields flooded with
water from a glacial river leak heavily to begin with,

but get Quickly tight, apart from very permeable contacts
where tightening may take some time.

Carpet tightening.

This is when a sediment layer of thickness s and permeability
ks tightens the reservoir bottom. Let the bottom be a

lava stratum of thickness L and permeability kp, overlying

an aquifer of constant potential H below the reservoirs,
then the overall permeability of sediment layer and lava
together is found to be

k, = k
s

(1) k = (Lts) —Ergm
S

L'®
Now, due to the varying conditions (thickness of lava

and sediment) at the bottom, only approximate calcula-
tions are justified, so we put

(2) s =C +«Q - t/A,

with Q the mean discharge into the reservoir, C concentration
of suspended load, t time and A reservoir area. Further-
more as L >> s, ks << kL and s growing with time, we

can put



kp - kg i L kp oo kg or
(L+s) - - ~ k., « s
kS L +kL s L
) K .t ) L ks - A -
( H - C.Q'H

o 1is a dimensionless constant. In the expression for
o , H/L is representing the average potential gradient
through the reservoir bottom, we hence may put:

kK « H o Q
T

AL

Qp, being the leakage through the bottom A; the lava

area, now we obtain

| Q: * t kA
(3) —2 - s
H * Ap c - Q

which also can be found more directly. kg varies within
wide limits, but eq. (3) can serve as a definition of
its average value. But in general, carpet tightening
should follow the equation

Qp ° t

D" A
where B 1is a constant, caracteristic for the particular
reservoir. D is some caracteristic depth. TField

experiments in Lang8lduveita gave a B value of B8 = 50

Tightening of contacts.

Where lava fronts are submerged in water, water can be
expected to flow through the highly pervious lava
contact, provided there exists a potential drop along
the contact layer. But if sediments of whatever
grainsize that can get in are carried into the aquifer,
it obviously tightens, as the porosity gradually
decreases.



Various relations between the coefficient of

permeability k, and the porosity n exist, we prefer:

kl-n

(5) k =
(1 - n)?

given by Frank Engelund 1. in a slightly different form.
Denoting the sediment flow vector by S the equation of
sediment continuity yields

3 n = div S
(6) T

Now:

(7) 8= ¢V

c concentration, and V the water velocity. For small
concentrations the equation of water continuity gives
div V = o and () and (7) yield:

(8) ——%%— - V -grad c

Now recalling Darcy’s law we get:
(9) dan = + k {gradh . gradc}

ot
The expression in the square brackets is a scalar having

the dimension of (length)~ l, but no general expression
can be found for its value for obvious reasons, The
purpose is, to find a qualitative expression for the
variation of k with time. The only way to integrate
'(9) is to produce a relationship between ¢ and h, but no
such relationship is known. We therefore proceed by

putting:
H C,
{gradh * gradc} = — = constant
L

The l1dea is of course that H/L should represent the "average"
hydraulic gradient and CO/L the "average" concentration
gradient.



Eq. (9) is now easily inwgrated. In wiev of the simpli-
fications already introduced the use of:

(10) k = ko * (= )
instead of the more ponderous (1) is easily justified.

ko
to:

and ng denote initial values at time t= o, and we arrive

(11

WI?&“!
o
I

=
+
[}
=
o O
t

where a = H2?C,/L? ng, which is dimensionless must be
treated as a constant, caracteristic for each particular
case. By using (5) instead of (10), eq. (11) gains
considerably in length, gains in accuracy being more
doubtful. Fig. 1. shows the result from a field
experiment, a 20 m deep borehole penetrates a 1 m thick
contact, water with average sediment concentration

0.115 o/oo (volume) is pumped into the hole under a
constant pressure of 21 m over original GWT. The experiment
lasted 2 weeks, and agreement with theory is fair, giving
an gof 1.37. This high value of g suggests that L, which
here represents "radius of the cylinder under tightening",
is rather low, it is found to be of the order 0,4 m,
which also explains why any agreement with theory at

all is found, where there in fact should be none, because
the special features of radial flow are not accounted
for, in the derivation of forumula (11l). The low value
of L also suggests that the tightening could be

washed out by applying higher pressure. A later test
also showed that a pressure increase of 100% washed out
the tightening.



B.

Application of the formulas

Carpet tightening is described by formula (4), which
can be used once B is know. When it is not, estimates
can be based upon formula (3), especially if data from
the same river (same ¢ and kg) are known. Contact
tightening is more complicated as can be seen from
formula (11) and the composition of o, which shows that
for small gradients, the tightening process may take
very long time. Research is now being carried out in
order to find the best way to accelerate this process.

References:
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GROUNDWATER FLOW _IN THIN AQUIFERS

By Jénas Elfasson.

Abstract.

Under a lava flow a highly permeable scorious contact
is usually formed. These contacts come to the surface
along almost any lava front. If a lava front is
submerged as a result of a hydroelectric development,

the interbed may give rise to. a serious leakage.

Basic equations.

In a cartesian co-ordinate system x, y, 2, with the z axis

vertically upwards, Darcy’s law is used to connect the

percolation velocity vector V = (u, v, w), the coefficient

of permeability k, and the energy h = z + p/y (p pressure,
Yy unit weight)

(1) Vv = + k gradh
continuity provides:

(2) div V = o

resulting in the well known Laplace equation:

2 2 2
(3) divgradh = ’h , 3’h , 3’h _ o

ax? dy? 9z?

Suppose that in a particular point x,y, z the coordinate
system is orientated thus that v = 0, then 3h/3y = o,
and if now the aquifer <thickness is considered uniform
and small in relation to its horizontal dimensions we

have in this particular point:



wNv i oeu

i being the inclination of the aquifer in the direction

of the x - axis. This immediately gives

and from this we derive, as i= i (x,y)

2 2

5 x? 9z9x ox 3 z
voie 2@ —%%

ox

Usually we have, i << 1

and in that case we can put

9%h - :2 «  3?%nh

9z2 ax?

which shows that:
2
(4) 3%h 4 9h
3 x? dy?

can be considered valid everywhere. On
the boundaries h is either known or the boundary is
impervious.



Numerical procedure

When equation (4) is established, an immense simpli-
fication from the more gmneral (3) is obtained and h is
easily found by relaxation processes:

+ h + h

h, . = h_ = 1/4*(h; h

i,3 n i,j+1 i,3-1 i-1,] i+1,3)
valid away from impervious boundaries.
hI,j = hn =1/3 (hI,j+l +hI,j—l+ hI-l,j)

,wvalid for i I+l,is animpervious boundary,a similar
equation for j = J + 1 impervious is easily found.

For i+l+j+l = K an impervious boundary we have:

h: . T h =1/2 (n,

153 n l:j‘l th

i-1,3); j=K-1i-2
This iteration process can be started from almost any
initial value, it is unconditionally stable, but

rather slow.

To speed up the process it is convenient to use an

acceleration factor 1 < a < 2

hi,3 T hi,5+ alhy - hy gy

Usually o = 1,7 a 1,8 renders processes that converge
about 25 times faster than a=1,0. When h is known,
any derived quantity, - such as the discharge through
any particular cross-section - is quickly found, so
the method is a convenient one, to calculate the flow
through thin aquifers of moderate inclination and any

planar shape.



STORM WAVE GROWTH

by Jénas Elfasson

Abstract

In the following, qualitative formulas for the growth
of ocean waves are derived. An expression for the wave
steepness is obtained, with combined use of the concept
of transported energy and the concept of wave thrust,
originally set forth by H. Lundgren.

The analysis, which are mainly dimensional in character,
are based upon the use of simplified expressions for

the transfer of wind energy to wave energy.

Dimensionless expressions.

The symbols used are:

H Mean wave height tw Wind duration
T " " period F Free fetch

C " " velocity p Unit mass

L " " length X Length

U " wind velocity

g Acceleration of gravity

Assumptions.

It is assumed that the wind shear stress, Tw can be
divided into a "current generating" part and a

"wave generating part" <t in such way, that

(1) lim T = 0
C+ U
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(1) can be formulated in several different ways, and
many arguments favour it, the most obvious being the
fact, that a boundary layer current is formed in the
surface region of the water, as the waves grow bigger,
and the waves don’t grow indefinitely.

Deep water and constant wind velocity is assumed, it is
also assumed, that the wave energy is conserved within
groups of waves.

Basic equations.

The average transported wave energy is denoted E,
and the average wave thrust P, with x orientated in
the direction of the wind, we get:

(1) 4dE ~n T + C

by averaging in time the equation of energy transfer,

and we get:

(2) dp =1
dx

by averaging in time the momentum equation, the pro-
portionality sign in (1) is because the time average
of the work done by the shear stress with average
value 1, on a water profile moving with average
velocity C, is not equal to 71°C,

If we now introduce the usual deep water expressions
for E and P, known from the theory of waves of small
amplitude, we get:
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d 1

d

da L 2y N
=pe ( P gH)

%) 15

The proportionality sign in (4) is due to the ratio ?etween
the time average of the squared wave height and Hy ify

Rayleigh’s distribution is assumed, this factor is m_
m

By eliminating 1T, (3) and (4) give:

2 2
(5) d (h6)=%kdhg , k =constant, (5) is easily

integrated, so we obtain:

(6) h =b 92

where b and a are constants.

By using (1) b is found to be:

b= hmax

hmaX is the value h approaches,if the storm proceeds indefinitely.

The constants a and b can only be found by observations.
If now (6) is fitted to C. Bretschneiders diagrams 1., the
constants should be:

a=1.5, h__ =0.145
Furthermore, if we put by definition

(7) h =2ns6?
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in accordance with the theory of waves of small
amplitude, we get:

(8) s =35 9 %

where h

s = Jax = 0.023
o 2m

is the mean wave steepness of fully developed storm

waves «

A functional relationship between h and f cannot be
theoretically calculated as science has not yet brought
about a reliable expression for T. An empirical

relation though exists, in the form of the above mentioned
diagrams. Using this relationship and (6), together

with:

(9) df = 3— o dt
a relationship between f and t is easily found by
numerical integration, thus relating the wind duration

to the equivalent free fetch.

Discussion of the results.

The derivation of the formulas is based upon two things
mainly, the existance of the "wave generating" Tt , and the
use of the formulas of the theory of waves of small
amplitude. To speak of the latter first, these formulas
can be used, provided they are accurate enough for

other technical use in coastal engineering, and if the

ratio between the actual value and the mean value of
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any physical parameter is a stochastic variable,
independent of x and ty, but the different variables
cannot be independent of each other (k=1 in (5) is

impossible).

A theoretical solution of the problem therefore

does not rest so much upon proofing (1), but finding
a reliable expression for the wind shear stress. But
here it is not sufficient to find its mean value,

its variation with the variable wave height must also

be found.

References
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SIMULATION OF SEDIMENT LOAD

by Jénas Elfasson
Abstract.

Since 1963 considerable effort has been made to find

the amount of sediment load transported by the Icelandic
big rivers. The research work is headed by the NEA
Sediment Research Committee, and covers e.g. regular
sampling from 5 sites, and irregutar sampling from

many others. Analysis of the samples show, that the
transported quantity follows the water discharge, but
the deviation from the expected value is a stochastic

variable.

Analysis of sediment discharge

The sites are usually so chosen, that all but the largest
particles are suspended in the stream. At all sites the
samples are always taken at the same place, using the
integrated sample technique, the sample is divided at
grain size 0.02 mm, and the fine, coarse and total
sediment discharges, analysed seperately. Detailed
description of the laboratory analysis is given in ref.
1. and 2.

Now, a linear regression of the logarithms of simultaneous
sediment and water discharges, defines a "Sediment

Transport Rating Curve" of the form:

Qg ig sediment discharge in kg/sec and QV water discharge
in m”/sec, so the coefficient A is not dimensionless.
Fig. 1 shows the result of one such regression. The line
is well defined, with the individual points scattering
around it. This scatter was analysed in three ways,
firstly,investigation of the variable x--qp—qs,qp being

the sample value, gave no definite results. Secondly,
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investigations gf the variable x = log qP - log qg
showed x to be approximately normally distributed
with the mean p = 0 and standard deviation o < 1.
Thirdly, the serial correlation coefficient p (x.

i+1
where i is the number of the day in the year, was

)y

found to be 0.3 or lower. But it must be pointed out,
that information on p is rather little, as the regular
sampling program does not include sampling at the same
site on 2 consecutive days. Nevertheless, it is
clear that X, can be treated as a normally distributed
stochastic variable, with sufficient accuracy for all

practical purposes.

Simulation

(2) q; = exp (O° yi)

51
where y. is a normally distributed stochastic variable
with mean 0 and standard deviation 1, is a statistical
model of the sediment discharge. Several results can

immediately be dervived from (2),

e.g.:

q; Qg expbey;) = Qqg; ° exp (0° y;)

qg; © ©XP (02/2)

or, the average sediment discharge is the factor exp(c2/2)
higher than the rating curve value, which again is the
median (50%) value. Also, if we denote by

c exp (O-y. .)

Q-=§q 3,1

J sj,1
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the total sediment discharge in the year j, we find

(3) _Q- = eXxp (02/2).‘-‘:q8i = exp (0-2/2) . 'Q'S
1

To find
2

0?2 (Q) = 63 - Q

we insert (2), and (3), and after som calculation we

arrive to

2
(4) 0%(Q) = exp (¢*)-(Q2 -10Q)

+ exp (g2)-(exp(c2) - 1) -qui
i
The first term is 02(Q) as it would be, if the sedi-

ment discharge at a given water discharge was constant,
equal to the mean value Ei. The last term therefore

originates from the fluctuations about this mean value.

(2) is ideal for simulation of the sediment discharge
on a computer. q.; is a function of the water discharge
only, and can be calculated aforehand, for any series
Q..., observed or simulated, and the factor exp (o- yi)

vi
is easily derived with the aid of any random variable.

If e.g. 0 < x; < 1 is uniformly distributed then
the distribution of

i T I %y

n > 11

converges in probability to the normal distributior
as n increases.
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RIVER ICE PRODUCTION

by Sigmundur Freysteinsson
Thoroddsen & Partners, Consulting Engineers

Abstract

Production of sludge ice in rivers may seriously hamper
power generation, or even stop it in severe cases.

NEA has since 1963 investigated the various factors

involved in the ice production of rivers. In 1964 the

work was headed by the Norwegian ice experts dr. 0. Devik
and chief eng. E. Kanavin and in the same time a cooperation
with Thoroddsen & Partners was initiated. Further ice
research is now carried on by the joint research staff

of Thoroddsen and NEA.

Water temperature in rivers and canals.

Neglecting dissipation of turbulent energy and radiation
effects the differential equation for the water temperature

in a turbulent stream is:

[ Ko ¥}
{3

k div grad T - ye V » grad T - ye div (T’V’)= yc

where k is the conductivity of the water, T the water
temperature, y specific weight and c the specific heat of
water, V the velocity vector and t time. The bars denote

time averages and T’and V’are the fluctuations.

For the simplest case: unform flow in a wide rectangular
channel, it can be shown that with the usual assumptions
and empirical relations of engineering hydraulics the
water temperature is a function of several dimensionless
groups

N D).

T =f (a, I, D/Z_, E, P o Ny

¢» Ps Ry N
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Here 2 is von K4rmén’s constant, I the slope of the
energy line, D the depth, Z, the equivalent sand roughness
of the bottom, F the Froude number, P the turbulent
Prandtl number, P the pPrandtl number, R the Reynolds number
and NS (Nusselt number) is a dimensionless form of the
boundary conditions at the surface:

Ne = -1 7
where S is the rate of heat loss from the surface per
unit area, and T, is a reference temperature. Ny is a
corresponding expression for the boundary conditions at
the bottom.

In swift rivers or canals where 3T/3t and §T/3x can be
assumed constant over the depth the water temperature
equation simplifies to:

oT aT S
Vm Ix ycD

where V_ is the mean velocity. The heat exchange with
the bottom is neglected here,as it is usually small

compared to that at the surface. For constant S the general
solution to this equation is

St
veD

d(x-vt, T + ) = 0

where ¢ is an arbitrary function. The solution can also
be written

T (x,t) = ¢(x-vt) - St__
yeD

)
which for the characteristics x-vt = a = constant

gives
a< 03 T(x,t)= T(0gFa/v) - St/yeD
a> 0; T(x,t) = T (a,0) - St/ycD

In the stationary case (9T/3t = 0):
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T(x) = T (o) - '%%Ev—‘“‘

m

The simplified equations have been used:
1) To calculate the ice-free reaches of proposed canals

from reservoirs for given values of S and reservoir
temperature.

2) To evaluate the heat loss, S, from measurements of
the water temperature in rivers.

Heat loss from rivers

The discharge of frazil ice during frost periods is a problem
of considerable importance at certain sites in the Thjorsd
Basin. As direct measurements or estimates on frazil ice
discharge are very scarce,the ice prodcution has been
computed from meteorological and hydrological observations.
The different formulas available in the literature for the
rate of heat loss from a water surface give widely

divergent results and therefore it was necessary to investi-
gate the subject. ‘

The set of formulas for the rate of heat loss per unit

area presently used in the Thjorsd Basin is the

following:
| =9 k4 2
s; - {13,18 107 -T. (0,46-0,06 Ye5)-G_(1-a){(1-0,012N%)
+ 13,18 © 107° (T - Th;
0,845
s, = 1,9 - Vg ? (eW -ea);
. . 0,845
S5 = 1,2 ° Vo> (T, - T).

s,: heat loss by radiation, Mecal km™2 st

" " " evaporation, "
Syt " " " convection, "

T_: air temperature, degrees Kelvin

T : water " ’ "
W
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e _: wapour pressure of the air, mb

" over water (saturation vapour pressure

of air at water temperature), mb

G : global radiation with clear sky, Mcal km~% 7t

o : albedo of the water surface
N: cloud cover, 0-8

Vg: wind velocity at 6 m height, m —

The empirical constants in the formula for radiation are
taken from the literature but empirical constants and the
exponent on the wind velocity in the formulas for evapor-
ation and convection,were determined by measurement of the
heat loss, from the water surface of specially constructed
calorimeters. As it is possible that formulas derived
from measurements in calorimetres will give to high a
rate of heat loss several methods have been considered

to verify the formulas, f.i. determination of the heat
loss from measurements of water temperature. The only
method that has been carried out sucessfully so far is

a comparison of calculated ice production to the increase
in volume of an ice jan. In March 1965 an increase of

19 + 1 million cubic metres of the Burfell ice jam in
Thjdrsd River was determined with photogrammetric methods.
According to the heat loss calculations, 13 million tons

of ice reached the jam, which agrees with the increase

in volume,if the mean water equivalent of the jan is

0,65-0,72, which is rather high, but not unreasonable.



