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FOREWORD

During three weeks in March 1981 I presented lectures on geostatistics
to the staff of the National Energy Authority (Orkustofnun) in Reykjavik.
Being in Iceland as an expert of the International Atomic Energy Agency
in Vienna, these lectures have been a part of my duty here. The idea,
however, to have lectures just on geostatistics as a part of the know-
ledge needed to geophysicists for analysis of field data is due to

Dr. Valgardur Stefdnsson of Orkustofnun, whose enthusiasm and preserving
will to reach the goal pushed me to write the notes for my lectures.
They have been written daily, as the sequence of the lectures was, and
almost instantly typewritten and figures drawn by the technical staff
of the Orkustofnun are appearing in the form as you have in your hands.
This part of the job was a big and harassing work which was perfectly
done. I am therefore deeply indebted to Ms. Sigridur Valdimarsddttir
and Ms. Audur Agustsddttir for their big effort to typewrite the whole
text and draw the figures. This enterprise could be accomplished due

to the organizing effort of Dr. Valgardur Stefansson who is highly

acknowledged.
My hope is that this introduction to geostatistics will permit to

somebody from the Orkustofnun people to have an easier access to the
more advanced geostatistical literature which finally will result in

a more sophisticated applications of this technique.

J.A. Czubek

Reykjavik, Rpril 1, 1981.
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J.A. Czubek
LECTURE 1 Reykjav:'.k, March 3, 1981

INTRODUCTION. WHAT MEANS GEOSTATISTICS ?

"Geostatistics" was introduced by G. MATHERON in France in the fifties

of this century to describe some special approach to the statistical

treatment of the geological data.

As geological data one can mention: porosity, bulk density,

ore grade, permeability, bed thickness etc. All these phenomena can
be characterized by the spatial distribution (one-, two-, or three
dimensional) of measurable quantities. We are goihg to call these
quantities the "regionalized variables". We denote any regionalized
variable by z known at the point x , thus: z(x). Usually we know the

values of z at several points x; , thus we have a set of values {z(xi)}

Fig. 1

connected with a given geological formation having the total volume V.
We can treat the set {z(xi)} as a particular realization of some

random variable Z(x):

z2(x)={z(x;), vx; € v} (1)

which is nothing else than to state that %(x) is a stochastic (in general

three-dimensional) process.

Now, what are the problems of geostatistics? They are several.

For example:



10 -

1. Can we predict the value Z at point Ko t
E [Z(x)] 2

and what is the variance D of such estimation ?

2. Can we predict the average value of Z inside some panel (block)
v, does not matter if some known, point like, value Z(x4) is

or is not inside this volume, i.e.

E [2,(x)] 2,

where x 1is a coordinate of a center of the block v. What is

the variance D of such estimation ?
3. Can we determine the k variable prcbability distribution function

F .
X1, X200 Xk (2, zy ,...zk)=Prob{Z(xi)<zl,..., Z(xk)<zk} (2)

and to find its moments ?

These three problems presented above using the statistical language can
nowrbe translated into the geological language. For example, in
problem No 1 we want to know an average porosity (permeability, density
etc.) at a new drilled well (for a given formation) at the point X, when
this parameter is still known at other wells situated at the points

X{ 1 X9 ... X; . Doing the same operation but for the point x, "walking
around" the whole area we are arriving at the notion of the interpolation
method for drawing the maps of isolines, which together with the second
question for this problem will give the second map. This one of the precision
with which the map of isolines is determined. The same procedure can

be used also to treat different geophysical fields like the gravimetric
or magnetic data, or meteorological data etc. Thus, it is, simply
speaking,some interpolation procedure, based aen the geostatiétical

principles. Just to give some more comprehensive examples:

Let us suppose some underground body B with linear form
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r’B \

P| L P|

|

P2 P2
Fig. 2

Ps - P,'

We are flying along the profiles Pj Pi P P2 Pé etc obtaining at some
regions the anomalies above this unknown body, i.e. the net result of

measurements is now:

Py

Py S\ Ps' 2z(x) profiles

When the usual polynomial method of interpolation is now used (together

with the least square method) to get the map of isolines, the result is:

P, 72\ P/’
=/
Py £S5 Ps' Z(x) map

which gives three-nested structure. When the geostatistical method of

interpolation is used (so called punctual Kriging )}, the resulting

&

map of the parameter will be as shown in Fig. 5. The one-standard

Z (x) map

deviation map for the isoline map in Fig. 5 will be of the form. shown in

Fig. 6.
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- T Fig. 6

—_——— A
Py —=—— ——— = _Pg
/\
 / o[z(x)] map

A typical example for the problem No 2 can be as follows:

During the mining operation by blocks we want to know what will be the

daily production (in tons of metal for example), and what is the precision

R R R T e N NI TrNE

R e R D

‘ . thannel sample along a
blocks planned for exploitation drift

of this estimate. The ore body is sampled €ither by drill-holes at the
points X1 4 Xy P Xs o0 Xy etc. or it can be channel samples along drifts,

or vertical channel samples in a drift, as below

drift wall

/

Fig. 8

\

vertical channel sample on the drift wall
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Another example for this type of problem is:

we know the ore grade (elemental content, porosity etc.) measured on
chips taken from percussion borehole along its axis. Each sample
contains a given mass (let say mll of the rock material. For the Ny
samples taken along the borehole axis we know the average value and

the variance of the parameter being investigated. Now we use some
geophysical method in this borehole to measure the same

geological parameter. Will the result be the same as previously?
Certainly not, because now the "geophysical sample" is much larger and
contains more rock material (let say my > ml). Thus, how to "translate"
the picture obtained at the laboratory on the borehole samples onto the
picture observed in situ by the borehole methods?

To depict better this problem Fig. 9 was prepared.

f{P(v) -
[ ]‘} f[P(v'ﬂ S(P-P) 4

A

Y V>V

)2

=(1-7)3
Af[P(O)] -P) 8 (P)

t[p(o)]=
4 =P (P-1)

f[p(Vz)]
> vi ~
2
w ~
| 3
[+
'8

Vo =

o : ./ >
0 P |

ore grade (gsological parameter of interest)

Fig. 9
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This is a three-dimensional plot of the frequencies f of the geological
parameter P measured on samples having the volume v (we call that procedure
the regularization of the random variable P on the volume v). V is

the total volume of a given geological formation. Let the parameter P
being investigated be the grade of mineral (or porosity). We take first

the samples having each the volume v = o (this is a theoretical example).
Thus, for each particular sample we are either in the barren grain or in

the mineral grain, and the frequency distribution will be the two Dirac

"delta functions:
f[P(o)] = (1-P)S(P)+P § (P-1) (3)

and because by definition it should be
40

J £ (P)dp= 1 (4)

-00

we really have

400 _ +c0 _+oo
JE[P(o)]ap= (1-P) [&§ (PYaP+P J§ (P-1)gP= 1-P+P =1 (5)

Here P is the expected value of the parameter P in the whole

deposit:
+00
P = E[P]= [ P.£(P)dP (6)

—c0
Now we start to sample the deposit taking the samples of volume V>0
each (for example 20 cm?). We obtain in this case the frequency

distribution

£[P (v5) ] (7)

which is again normalized to 1 and has the same first moment P. When
the P value is small in comparison with 1 (but P > o by definition),
the distribution (7) is usually asymmetrical. But what about the

dispersion D ?

The dispersion D of the statistical distribution £(P) is, simply
speaking, a second central moment, e.g.

oo 2
D(P)= [ (P-P)* £(P)dP (8)

-0



For the distribution given by E,. (3) one has:

+00 -
D[P(o)]= f (P-P)"-f[P(o)]aP =
+oo R _
= f (P2—2 PP+P“) . [ (1-P) S (P)+P & (P-1)]dP =

—00

+00 oo

=(1-p) [ P26(P)dp+f> J PZG(P—I)dP—

_ _ teo _ot® -
- 2p(1-P) [ PS(P)@P - 2P° [ P-S8(1-P)dP +

Tt N
+ P7(1-P) J S(P)ap+P~ [ §(p-1)dpP =
=0+P-0- 2P +5P° (1-P} + 53
=P - 282 + B2 - P>+ P° =P - D% = D_ (P)
or

DO(P) =P (1-P)

Now for the distribution f[P(vzﬂ let us assume that it

follows well the beta distribution

Blp/p,ql 0<P<1 , p>0 ,q9>0
defined as
Blp/p,q] = ——BX_ pP=l (4 p)a-t
@)y T (@)

For this distribution the n-th moment is simply:

1
S ®" Blp/p,qlap =
o T'(p) T (p+g+n)

T (p+n) - I' (p+q)

Thus the expected value is

p =B
ptq
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(9)

(10)

(11)

(12)

(13)
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D(P) = éEfq (14)
(p+a) © (p+q+1)

For p>l and 9>1 there is a unigue mode at the point

p = —BL (14)
p+a-2

(which is different from P !). A lot of geological data fit
well the beta distribution when the p and q parameters are well

adjusted.

Now, if

£ [P(vp)] = B [P/p,q] (15)

according to Egq. (14) and (13) we have

D [P(vy)] =D, (p) = £ PBX2D =

V2 ptq (pta) (pta+l)
_ i+éizﬁ) (16)
and because, by definition
prg+i1>1 (17)
by a simple comparison with Eg.; (10) we have
D[P(v,)] < D_(P) (18)

Thus, the bigger the volume.v of the sample the smaller the

variance of the samples.

Increasing further the volume v of the samples from vy to vy
(v1 > v2), in the case when the statistical distribution fits again

the beta distribution (which is not obvious at all !!!) it appears

as an increase . in the' values at the p and g parameters (for the
value P given in Eq- (13) remaining constant), which is equivalent to
the diminishing again of the D [P(vl)] value in comparison with the

D_[P(Vz)] value, thus
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D [P(vy)] > D [P(v)]

if (19)

Finally we can take the whole deposit as a sample. In that case the
volume of the sampleis V=v , we have one unique value of P = P and

the statistical distribution ig

£ [P(V)] =8 (pP-P) _ (20)
with
-l.w — -—
E(P) =P = [ P§(P-P)dP = P (21)

and with the variance

+co +o0 “+0o0

D(P)= [ (p—§)26(p—§)dp = f pza(p-ﬁ)dp-zﬁ / PS(P-P) ap+
+o0o
+ 5% §(P-B)ap = P° - 2p2 + B2 = o (22)

which is quite trivial because the variance of a constant P

should be equal to zero !

The last case (v = V) is still not as theoretical as the

first one (for v=o). We are really doing this when the whole deposit
is still exploited - we know its total volume V and. the total amount
of ore extracted, thus, we know P . But, of course, in this case the
knowledge of these parameters does not help very much, because the

deposit is still exploited !

By discussing the cases depicted in Fig. 9 we have obtained a firm
feeling that the bigger the volume of the geological samples the smaller
the dispersion of the geological parameter measured on them.

But how to translate them from one v value to another one? Is it
possible to translate the dispersions only,or may be the whole

frequency distributions f[P(v)]? The answer to these questions is

just given by the solutions of the problems No 2 and 3 of geostatistics

presented above.



The translation of the dispersions only is an easier task than the
translation of the whole frequency distributions. This last case is
solved by the so called non-linear methods of geostatistics. For this

case an example below is given:

The point values (v very small) came from a porphyry copper deposit

and were log-normally distributed with a mean of 1.19% and a variance
of 0.20 (%)2. It was 67 200 points on 50 ft x 50 ft x 12 ft grid over a
field measuring 2000 ft x 2000 ft x 504 ft. The frequency distribution

is given in Fig. 10.

{’ x 10 A
o0 }
| I
1
§000 } r- _r'r
[ i Fr
s000 2 r
4000 1
[ 1
00 } [ [ Fig. 10
2000
1000
Poee@ = =N pa:ag:d«;-—pn»ppp
SR RHSSESERRZE3R SEEEERE8g 252
RELATIVE COMULATIVE
Frequency distribution of point samples

Next, using the so-called conditional simulation [DOWD and DAVID 1975]
the new frequency distribution has been calculated, In this case for 2000
blocks each having the volume 100 ft x 100 ft x 100 ft. The result

is given in Fig. 11.. The expected value for the blocks is now

again 1.19% but the variance is 0.08 (%)2,

Knowing the frequency distribution of big blocks a lot of useful economical

data for the mining operations can be drawn.

I have presented during this lecture some basic problems which can be

solved by the geostatistical methods without, however, any description of
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]
x 104 x10°
o0 ¢
F‘,_
150 } 11
00 } n =1 .
- P"’_l- Eg'll
150 ¢
100
50 }
o 8 9O ~ -, e O o - e -
E= 5875894823 2553883888
RELATIVE CUMULATIVE

Frequency distribution of kriged block values.

the geostatistical methods themselves. This will be the subject of my

following lectures. What I want to emphasize now is, that the application

of geostatistics is not restricted to the geological data. These methods

are now used to treat geophysical data, in geomorpholoegy, hydrology,

meteorology and other branches of natural sciences.
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J.A. Czubek

LECTURE 2 , Reykjavik March 4, 1981

PROPERTIES OF REGIONALIZED VARIABLE

Our random variable Z(x) is called regionalized because it is defined
inside the field V (x€V) and moreover the Z value is always defined

on some support v - we call it in that case ZV (x}, and when v=o (point
like sampling] - we use simply Z (x) notation. We have seen in Fig. 9
(p.13) that this variable Z has some features of randomity and at the

same time, when v is big, some features which can be called deterministic.
We have still mentioned the joined pmobability function for this variable

( Eq. 2).
MOMENTS
We can speak about the moments of the random variable. If the
distribution function F X Xyt Xy (21 ’ z2...zkl of Z(x) has an
expectation (and we shall suppose that it has), then this expectation
is, in a general case, a function of x, and is written as

E{z(x)} = m(x) ' (23)
Note, please, the meaning of Eq. 23 . For the sake of simplicity we
can reduce the space V to the one dimensional line x. We can have,

generally speaking, an infinite number of realizations of the random

variable Z(x):
Realization No:

X Fig. 12

Doing many realizations of Z{x) we calculate the value E {z(x)} for a
given X according to the definition of the expected value. But in
geology we have only ONE realization of Z (x}] ! And we are not able

to repeat it! (except in the case of the simulation technique) .

-12-
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Another moments which are of interest here are the second order
moments. In geostatistics we are using three kinds of the second

order moments:

(a) The variance D[Z(x)]: this is the so called "a priori" variance

of Z(x), and if it exists, it is defined as:

p[z(x) 1= E {[2(x)-m(x) 1%} (24)

thus, the variance D is again, in the general case,

a function of x.

(b) The covariance C(x1 ' x2) - when the two random variables Z(Xl)
and Z(x2) have the variances at the points Xy and Xy 4 they also
have a covariance, which is defined as:

Clxy, %x,0=E {[2z (x))-m (x4)]-[2 (x3)-m(x3) ]} (25)

(c) The variogram 2-Y(k1, k2) which is defined as the variance

of the increment Z(xl)—Z(x2 = E(xl, x2):

2 Y(xl, x2)= D [Z(Xl)_Z(XZ)] =
-— o 2
= e {[z x4) =2 (x,) ] } (26)

The function Yy (xl, x2) is called the semi-variogram. Just this
semi-variogram (called sometimes for brevity the variogram) is the

most important relation in geostatistics.

The higher order moments (especially the fourth order ones) are sometimes

used in geostatistics for some very specialized purposes.

The definitions given in Egs. (23) to (26) are valid for any stochastic
process Z(x) and these moments are functions of either the position x
or of the two positions %, and Xy . To be able to perform some calcu-
lations, however, on the geological data, which are a unique realization
of a given process, we have to introduce some restrictions on the

character of the random process Z(x).
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STATIONARITY

For the special case, when
E[Z(x) ]=m(x)=m ATA4 (27)

i.e. the expected value is independent of the position x and the
second order moments depend only upon the distance h between 9 and

)

the process is said to be weakly stationary or stationary in a wide sense.
When all possible moments and joint moments (not only the second order
ones) are x invariant, such process is called strongly stationary. 1In
geostatistics we need only the weak stationarity. Thus, except of

definition given by Eq. 27 we have, for the weak stationarity:

C(h)=E{Z (x+h) - Z (x) }-m2 vx (29)
and immediately:
p[z(x)]1=E {[2(x)-m]°} = c(o}, Vx (30)

and

1

Y (h)= E{[Z(x+h)—Z(x)]2}'—'C(o)—C(h) vx (31)

N

As one can see from relation given by Eq. 31 , under the
hypothesis of a weak stationarity the covariance and the variogram

are equivalent each other.

INTRINSIC HYPOTHESIS

As a matter of fact, in geostatistics we need even less strict
assumptions about stationarity than these presented above. Looking

at the relation (31) we can see, that in some cases when the C(h)
function is not finite, the difference C(o)-C(h), i.e. the variogram
Y(h) can be finite. .And this is just the assumption which we need and
it is called the intrinsic hypothesis. Thus:

a random function Z(x) is said to be intrinsic when:



- 24 -

a) its mathematical expectation exists and does not depend upon the

supposed point x:

E[z(x)] = m , Vx; (27)
and

b) for all vectors h the increment [Z(x+h}-Z(x)] has af finite

variance which does not depend on x:

D{Z (x+h) -2 (x) }=E{[2Z (x+h) -2 (x} 12}= 2 y(h) (32)

Note, please, that the second order (weak) stationarity implies the
intrinsic hypothesis but the inverse is not true. The intrinsic
hypothesis can also exist when the random process is not even weak

stationary.

All geostatistical methods are based on the intrinsic hypothesis and
this is the main difference between the geostatistics and the usual

stochastic process approach.

In practice we cannot extend the vector h towards infinity because any
geological body has a finite dimension (remember that Z(x) and Z(x+h)

have to be taken from the same geological formation!). Let this limit

value of h be b (here b can be considered as a dimension of the ore

body, scale of experiment, etc.), thus
|h]<b

In this case we say that we need the quasi-stationarity or the quasi-

intrinsic hypothesis.
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PROPERTIES OF COVARIANCE AND VARIOGRAM

These properties appear directly from the stochastic process theory.

- Let Z(x) be a stationary random function with the expected value m and
covariance C(h) (or semi-variogram Y(h}). Let us take a linear

combination of Z(x):

Ai v ozZ(xg) (33)

=<

"
[ ne lte]
—

for any weights A; .

This linear combination is also a random variable and its variance

should never be negative, i.e.

D(Y) 20

which explicitly is written as:

D(Y) = Z L Xikj C(xj-x4)2 O (34)

1]

Thus the covariance function C(h) must be such that it furnishes
always a positive variance (or zero). By definition the function
C(h) is said to be "positive definite" (thus not any function can be

used as a covariance function!).

Taking into account Eq. (31) the last expression (36) .could be

written as:

PO = CO1- B Ai- By -2 ? ApAy Y (x5-%5) (35)

In the case, when C(O) does not exist, and only the intrinsic
hypothesis is assumed, and the variance of Y is defined, it follows

from (35} that
L A =0 (36)

and

DY) = = 5% Ahs ¥ (%5-x%:) (37)
i3
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In the last expression when D(Y) 2 O and with the condition (36),
the function Y (h] is said to be a "conditional positive definite"
function. Note, please, that when C(0O) does not exist, it means

that the variance of the random variable Z(x) does not exist either!

PROPERTIES OF THE COVARIANCE

c(0) = D[Z2(x)]20 - a priori variance cannot be negative (38)
C(h) = C¢c(-h) - the covariance is an even function (39)
lC(h)léC(O) Schwarz’'s inequality (40)

When the covariance function C(h) has a high value we say that

the two random variables Z(x) and Z(x+h) with distance h from each other
are well correlated, and when C(h)*0O we say, that there is no
correlation. Usual case is that for a big h values C(h) tends

to zero.

C(h)»0 , when h > ® (41)

The variogram Y (h),when for h»*0 is 7Y (h}-0O, we say that the

random variable Z(x) is well correlated. Usually when hPa where a
is a certain distance the variogram <Y(h) attains some sill (its
maximum value), which according to Egs. (30} and (31) corresponds
to the variance of the random variable. Finally the usual behaviour

of the C(h) and Y(h} functions is (Fig. 13}

C(Q)T _____________ y (@)= c(Q)
|
D |
) i
* : Fig. 13
| —_—
C(h) i
|
! C(@)=0 >
0 a h

The value h=a in Fig. 13 is called the zone of influence or
the range of variogram. Outside the zone of influence the values
of the random variables Z(x} and Z, (x+h), h>a , are independent of

each other.
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PROPERTIES OF THE VARIOGRAM

From the above discussion we have:

Y0l =0
Y(h) = y(-hl2 0O (42)
Y(®) = D[z(x)] = C(O}

Anisotropy: It is quite obvious that the behaviour of the Y (h)
function can be different when the vector h has different
directions. In this case we are calling that fenomenon the
anisotropy. When any geological formation has the same variogram
Y(h) independent of the direction of the h vector, such formation

is called isotropic. An example of the anisotropy is given

in Fig. 14 for the ore body of the lens type

horizontal

range
Q ZD vertical range
A

Fig. 14

y(h)

. HORIZONTAL

Q
N

@
=
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BEHAVIQUR OF THE VARIOGRAM NEAR THE ORIGIN

(h)
A)’

Parabolic Y(h)~A!}ﬂ2 for h»O

Y(h) is twice differentiable -

in highly regular spatial variability

y{h)

Linear Y(h)~A|h| for h»0

y(h)

Discontinuity at the the origin -

nugget effect

Y(0)F 0 although by difinition, from
the theory should be Y(0)}=0. It is
the effect of the so called white

noise due to the micro-variability

Pure nugget effect y(h) = c4 -

- there is no space correlation -
- the values of Z(x) function are

completely independent of each other.

Fig. 15
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BEHAVIOUR OF THE VARIOGRAM AT THE INFINITY

As it follows from Eq (37} the function
= Y(h)

is a conditional positive definite function, and it can be shown that

the variogram increases always more slowly at infinity than does [h|2 :

lim XiEL =0 : A (43)
[nfse |n|?2

If one observes for some geological formation that for large h its
variogram increases more rapidly than h? it means, that the random
function Z(x)is no morestationary, even intrinsic, that is,one has in

this case some drift (trend):

E {z(x)}=m (x) (44)

which depends upon x .
As an example
"Z(x) = agtagx+2¥% (x) (45)

where aoi-alzﬁ is a linear drift and Z* (x) is a random variable.
Calculating according to Eq. (31) the Y(h) value for Z (x) and

bearing in mind that

E[z¥ (x+h)-2%(x)] = O (46)

(because Z*(x) is a random function !), one arrives to the
expression:
2 y(h)= E{[2 (x+h)-2(x) ]2} =

= a;%n%+ 2y*(n) (47)

where
2 Y¥(h) = B {[z*(x+h)-2* (x) |2} (48)
When the drift is not so strong, for example, it has a form

m(x) = ag + a, VX (49)
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one has to calculate according to the general formula:

2v(h) = E {[m(x*h)-m(x) ]°} + 2v* (h) (50)

HOW TO CALCULATE THE VARIOGRAM ?

To be more instructive we now turn out the problem to be of only
one-dimension,. say X. In this case, when the drift is absent, one

has, according to Egq. (31):

YW= E [z -z (01} =

1im _l
o X

X
1 2
=5 J [Z(x+h)-2(x)]° dx (51)
o
This is the so called theoretical variogram which is computed
over an infinite number of pairs in a supposedly infinite field. We
of course never cbtain it in practice. Thus two other variograms

will appeax:

Instead of calculating the integral in (51) over an infinite field

we do it in the finite field L over which samples are spread. Thus:

._h 2
c{ [Z(xth)-2Z (x)]° ax {52}

[

1

1 =
Y (h) = 2 (-n)

The variogram Yl(h) is called the local variogram and again it
contains an infinite number of pairs of the Z wvalues. We will
never obtain it either. What is really computed is the so called
experimental variogram Y*(h) which can be considered as an estimate

of the Y(h) or Yl(h) variograms:

N (h)

1 2
RIS 1Ly [2(x+h)-2(x,) ] (53)

Y*(h) =

where N(h) is the number of pairs [Z(xi+hl-Z(xi)] available for a

distance h equal to a multiple of the sampling interval.
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It was proved by MATHERON (1965) [6] that the expected value of Y%(h)

and Y*(h) is always Y (h):

E[v* () ]=£e[y}(n1] = Y (h)

However, one should take into account the statistical discrepancy

which may occur in a given particular case. According to MATHERON

one has:

FLUCTUATION - it is the difference between the local Yl(h) and

the theoretical yY(h} variogram, and
ESTIMATION ERROR - it is the difference between the local

variogram Yl(h) and the experimental Variogram Y*(h)

One has for the fluctuation wvariance:

e{lym -y m11%} = A () [y (12 for n < %
P L
prohibitive for h >‘5

where A 1is a constant (A==%- for linear model Y(h) = |h|)

and for the estimation error the variance is:
1 Z
By -y 1%} 4y 29

where N1 is the number of the experimental data pairs and D(Z)

is the variance of the point like support variable % .

The practical rule here is that when one wants to get some idea
what is the behaviour of the theoretical variogram Y (h) having

the experimental data on <Y*(h), one can do this on basis of

6. G. MATHERON: Les variables régionalisédes et leur
estimation. Editions MASSON, Paris, 1965.

(54)

(55)

(56)
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the behaviour of the experimental variogram y* (h) within the
range O<h<L/3 only ! And again the number of pairs should be as
big as possible (N1 big !}.

The practical rule of calculation of the Y*(h) values according to the

formula (53) is following:

a) when the sampling is performed at constant intervals:

points at which Z values are known

PHe—H—H—X )6——-)6——-)6—-%*%——;5———4;’><
XXX | %\

2 i
—> L €« ' Fig. 16

< L >

L= N-1 1l - sampling interval
h= n-1 Number of samples: N+1

1 Non 2

* = ¥ = ———— i+ - .
Y* (h) = Y*(n) ST iEO [Z(i+n)-Z(1)]
X, = 1i-.1

i

and in Fig. 16 and example is shown for n = 2.
Repeating the calculations for the consecutive values
n=1, 2, 3 ... N

one obtains a plot presented in Fig. 17

)'*E(n)A

~ Fig. 17
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b) when the sampling is performed more or less randomly inside some

space. Let us take the two-dimensional space - cf - Fig. 18

a Z3
Z| ,22 o

Zig re

In this case the experimental variogram is calculated for a gi

Fig.

ven

interval of the azimuth and a given interval of distance. One

situates in this case the origin of the polar coordinates at a

given point X, - for example X§ =.x7 . One takes for exampl

direction W - E % 15° and the interval of distances between

ro-Y
Ly oy i.e. h1 = 22 ! . Thus, for the point X7 one has in this

3 pairs of data:

7 7 %19
29 = Z4g
27 = 244

which enter as the three pairs for the formula to calculate Y

e the
ry and

case

(hy).

Next one moves the origin of the polar coordinates to the next

point, for example 28 and one repeats the same operations for the

18

same range of angles and distances obtaining by this manner the further

pairs of data in the formula for the Y (hy) calculation.
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LECTURE 3 : Reykijavik March 8, 1981

MORE'ABOUT VARIOGRAM

When the sampling interval is constant (which is, for example the case
of any well logging operation) the variogram can be very easily
calculated using a pocket programmable calculator. Such program for
the TI-59 is given in the following pages. This program calculates

the Y*(h) values for h =i.l. ; i = 1,2, ... 10 , the average z value

according to the formula:

E{z(x)} 2z =

nmMm=

Zy (58)

1
Nkt

k

and the dispersion variance sz(z):

1 N -2
p{z(x)} = Sz(Z) * 1 ) (zk—z) =
k=1
N
1 2 -2
= — (I 2°-N-2°9 (53)
N-T 2 K

For variogram calculated according to the formula

1
N
YA = YRGD == D [zkeil-za]? (60)
k=1
here the notation is used: -
z(xk)E:zk = z(k) , (61)

The number of pairs N1 in Eg. (60} is equal to:

Ni= N-10 (62)

where N is the number of data in Egs. (58) and (59).

This program,VARIOGRAM 10, is presented in pages 38-341 of

this lecture. The N1 value is kept constant for all h = i-l
values which results in the fact that not all data are always
used for the calculation of the Y#*(i-1l) data - this is just the
boundary effect due to the fact that the total number of data is

limited at the beginning (there is no data for k< 1 and at the end -
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there is no data for k3>N1). The organizing diagram showing which

data are used only once or even not at all is given in Fig. 19.

SN

DATA USED FOR CALCULATION OF y*(i-1} VALUES IN THE
PROGRAM
ki: 1 2 3 4 5 6 7 8 9 10 VARIOGRAM 10
i X X X X X X X X X X
2 0 x DATA USED ONLY ONCE x
3 0 0 x (x) S
4 0 0 x X
5 0 4 X
6 0 x X
7 0 0 x X
8 0 DATA USED 0 x x
9 0 TWICE(0) 0 x x
0 0 b4
1 0 0]
. 0 0 Fig. 19
. 0 0 -
0 0
0 0
. 0 0
=Nl 0 0 0 0 0 0 0 0 0 0

k+1 X X X X X X X X X X

k+2 X DATA USED ONLY ONCE X
k+3 X (x) x
k+4 X X
k+5 X X
k+o6 DATA NOT X X
k+7 USED X X
k+8 X X
k+9 X X
k+10=N X

Let us take for example i=6 . For the k-values ranging from k=1

up to k=6 the data

Zl ’ Z2 PR Z6
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are used only once in Eg. 60 and they act with the data

2o 4y 2, ... Z12

respectively. Starting from k=7 the data z, are used twice in Eq. 60 ,
because, just for k=7 they enter as:

2 and (z, -z )2

(z,-z 137 %

7 1)

This is the situation up to a certain K=N1 where N1 is the total number of

pairs (Zk+6' zk) of data used in the calculation. Now, starting from
1 1

k=N+1 u to k=N+6 the

“nler v Palen ot Alag
data are used only once in the respective pairs:
2 2 2
Enteg = Znlog) g, (Bt = Bl - oer (gl - D °

The data for k>N!+6 are not used at all for the <Y*(6-1) calculation.

This certain assymmetry in the data utilization can in some cases give
discrepancies when the variogram is calculated dowﬁ—wards or up-wards,
because (slightly) different set of data is used. This is especially
the case, when the process being investigated is not entirely stationary

and when certain drift exists.

When the printer is not used while operating the program VARIOGRAM 10 R
at the positions: 147, 166, 181, 190, 199, 208, 217, 226, 235, 244,

253 and 262 the instruction R/S should be given instead of PRT. This
program fails also when some

should be Zk:% o .

z, data are equal to zero, thus it always

EXERCISE No 1

Calculate the experimental variograms using the program VARIOGRAM 10
for the porosity @ and for the bulk density p data reported in
Table 1 at the one meter intervals. Start k=1 for the depth 1708.45 m.
The plot of these data is in Fig. 20. Use the last data N = k+10 at
the depth 1847,45 m. Thus in this case N = 140
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TITLE_VARIOGRAM IO Pace_1 _oOF _4 Tl P OmmOble @
PROGRAMMER_C2 U 88K _DATE dec. (it980 Progrom Record
Partitioning (Op17) L1 s+ .1 | Library Module Printer_ YES :

PROGRAM DESCRIPTION

()= ,2‘_[ zg.«) Z(g#_“m-,n:*:&&&i s5.e2l940 . .. ..

SR py B B e T e -
o> N Ao Azwre,b,w.m - Z==_-—‘- Z Zc

Nuo.w e e e e e

e s e s e v e i =i 4 e R n e

e —
2)< < 2‘ ALK
fc) = z, Ce A

USER INSTRUCTIONS
STEP PROCEDURE ENTER PRESS DISPLAY

A4 | INSERT PROGRAM  lRsT lems| i
O

ridLd 1 IR . oL ZJH+o -

R/s
&s
1 [Rs
e | | R R T I N
S S L PRINT | I B¢

N¥ 1§

USER DEFINED KEYS DATA REGISTERS ([ EEl ) LABELS (Op 08) ]
0 aded . 11 wsed. . B O O o O 3 O = O = i 3

' ' wied AN Q‘C‘) | E_E_ N __Fal s [T

3 B 2 Lsed i} QNC“CZ.) E_O_ OO _FE_6B_X_

D 3 ""u'“d R TEERYY; K‘CfJ B I T DO -4 O 3 O 7S R e

= v N -

P - S DU Ce e e . B E3_BI_ ¥l HY —

N 5 wdest o 2N rcf), - o 3 B Im_E

8 o ¢ used Y 2Nes) ES_B_mm_ g5

e T wed boampd) m_m_B_E__E

o ¢ wied {e _z_ﬂ-q.[ﬂ 0B g3 _KN_om_omo

3 v aseal i 2N lCﬁi! m__

FLAGS 0 1 2 3 4 ) 5. [ 7 s 9

© 1977 Texas Instruments Incorporated 1014966-1
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TLE__V4RIO GR4N /O pce_2 of_4 Tl Pogrammable ‘l@
PROGRAMMER DATE Progrom Record
Partitioning (Op 17)' L s e o] Library Module Printer_YEs

PROGRAM DESCRIPTION

| WHEN (B IS _PRESSED_

PNE _CAN  POT FLRTHER _ 24TA-
_M_.D,, AGun  (AD  To WAVE. A NEw. s;:,y:_.z‘_s?(z,/ b o
_RESULTS ORTAAMNED FOR Toe NEN. N VACLE .

_APPEARS PRINT: Z, S%2), §(U)., 5(2) ek pCiQ)

//v~.~/ A2 eal‘_l PREgMG RfS

USER INSTRUCTIONS

STEP PROCEDURE ENTER PRESS DISPLAY
USER DEFINED KEYS DATA REGISTERS ( (7 8 ) LABELS (Op 08)

A 202N p(w0) 30 glio) W) _(ma)_ (el (@R _ (7 _
B VAN Y41 3 Sz () __ (/&) __ B0 __ R [ __ [T _
c 22 rQ) |32 2232' B_O_ O _[E._ e _X._
0 23 p(3) 3s_N+i0 G _(=)_@ (3 _Ry_(]
3 2.4 r(Q) 34 z F_E_0_ OB mwa
; s )y B Y Co o - I DO O s OO
A d‘cs . BN S (z.') — __ ) __.m__m_ fu ___m_
v Lo pie) 3 E_PE_rn D O
¢ 27 (i) 37 o JO - .
> W (P) 30 UD_O3_K3_©O_m_ En
e 29 ¢ (%) 3 o

FLAGS 0 2! 3] 4l s.] cl 7 [ 9
USER DEFINED KEYS DATA REGISTERS (@) 8l ) LABELS (Op 08)

A L L s N | W _m_@_ @ =G
e, 41 soea)t @ _ (& __ [0 __F__ (R __ (77 _
c 42 §2 ] (DO _&=_8_XJ_
o o es I & _ (O
£ lae . - E_E_M_m_C3_ o8
A., o " ) . . o SO o N - R oo DR s
- : e - CO R
® ; 4 o B m o
v 41 7 M_E_S_e_
o 4 s . P IR~ PR s O . D o DR
3 ('K 9 m_E_

FLAGS ] 2 3 4 s s ? ) 9

© 1977 Texas instruments Incorporated

1014886-1




- 40 -
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PAGE_3 OF.
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- Coding Form
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2 (+9)
z ((+8)
z (+7)
z (i+¢)
z (¢+8)
Z (i+4)
2 (c43)
Z (c+2)
2 (¢+1)
2 (¢)

l gl

LRI

st B

PoT e

HE {l
N i1
i

4 BN

4
b 4
e

w3

s

oo

% e [ommel L 1 T woos T N N N e Y 0 oo e s o 0 o T b Y

DN I

[

77 Texas Instruments Incoporated

A
™ Ju T3

T'.-‘ 1 v I o T T S SN

L)

e

P = T2 D

—

o

b

=

—

It - -
.

i

L I R T B S
e
i1

)
Y
H

T

N & (2)

2N (3)

2N ¢ ()

W‘{ﬂ

2N ¢ (e)

2N ¢(3)

i—‘r"i

10

4

S N i T

U SN
IR NI | R

b remis gk ok fuede foele fude fontd

o et Gl Smeds o

md i L

A2 PR
B T T S = ]
T g TE

Y

R d
-l el

e D E

ST A S
i

b Lo

oot Dol anele fromed:

ik foads

T3 L - 1

62 @
63 m M
64 0 1

~ MERGED CODES
7250 M
731
74 5od TR

N ¢ (3).

N1io ]
Z

83 I
84 X M
92 {wv] {soR)

TEXAS INSTRUMENTS

INCORFPORATE O

TI-24199



TITLE

VAR O GR 4M

lo

PROGRAMMER

DATE __.

PAQE 4 oF_% Tl Progrommoble

- 41 -
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T7age 41

bepm RESISTIVITY POROSIITY. seEvsTy

(m) ¢-n.m) AL®y (£a8)
1905739 94,70 0,521010 1. 36307
1704, 45 113,60 0.494950 2,0530
1707.45 654,10 0,187980 2.8590
1708.45 $94 .40 0,065260 - 2.7380
170%.45 264,10 0,080340 2.7850
1700.45 1004.,20 0,078920 C2.44¥70
1711,45% 1163.80 0.,073900 2,8%00
1712.,45 1431, 50 0,064160 2.7330
171340 0,0465340 2.0270
1714.45 D,0/0200 Fesl00
1730,43 D.072140 R IV
1714.45 De078470 2,7u80
171745 Sed, U G, 093590 2
{718.4% Lud, 4 0.125800 2
1719,45 408410 0.130760 el
1770,45 L2, a0 0,153980 KIS
1701.43 273000 0,073700 3,03
1722,45 14UY, 10 0,056480 di
1703.45 2E20.50 0542870 I
1724,45 2397, 40 H.037270 X
172%5,45 1772,50 0,030530 2
176,45 1735.,10 H,031510 4
1727.45 2474, 10 0.03iB30 3
1728,45 2862,80 0,084470 2,9
1729,45 819,20 0,034990 3.0410
1740,45 QUB3, /0 0,033020 2,7970
1733.,45 2225.10 0,026B30 3.0400
1732,45 1807.80 0,024650 3.0140
1733,45 1537.50 0.,066290 2. 7809
1734.45 913,40 0147170 2.7470
1735,45 114,50 0,171620 =2,7820
1734.45 258,90 0+167240 2,8600
173745 251,40 0,115180 3,0730
1738.45 369,10 -04,071110- 35,0930
1739 .45 1082,10 .. 0,0%2650 —. ~ 3,0720
1740,45 1468,70 0.047260 $.1730
1741,45 1397.50 0,938120 3.,175%0
1742,45 1486,00 0, 0399oﬂ; 3.19490
1743,45 1345.40 0.035370 3,142
1744,45 1444.,70 0.068960 2,9630
1745,45 848,00 0.126700. 2.9330
1746,45 550,30 0, 12&330 ...... 2,9130
1747.,45 602,10~  0,083350. 2.9900
1748.45 965,70 0,073230 2,9730
1749,45 980.60 0,080G530 3.0570
1750, 45 924460 0.044950 13,1020
1751.,45 1107,20 0.072530 . 2.8340.
1752.,45 509430 ©0.172049 - 2,8450°
1753,45 371,50 0.129840 2.8760
1754,45 511,00 0.,084340 2,9860
1755.,45 696,10 0.0685670 ~2.94600
1756 ,45 582,50 0,071830 2.8860
1757.45 829.40 0,077230 2,8220
1758,45 524,40 0,0%0110 3.1410
1759,45 849,00 0,050630 3.,0880
1760.45 127070 0,030400 ,2130
1761,45 1445,50 0,024510 41640

5,2920

1782,45

129744010

0.031890
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The results of calcﬁlation are given in Table 2 and the plots of these
variograms are in Fig. 21. The variogram of porosity is very regular
and for h 2 6 m the values Y*(h26 m) approach the s2(@) value very
well. This is not the case, however, for the bulk density variogram.
The values <Y*(h) for this variogram attain certain sill, which is far,
however, from the sz(p) value. Moreover, the shape of the density
variogram is not so regular as it was for the porosity variogram.
There can be two reasons for such behaviour of the density variogram:
1). the maximum distance h= 10 m is too small to reach the variogram
saturation level. 1In this case it means that the range of
correlation for density is much higher than the one for the

porosity, where it was a= range = ~ 6 m.

2). The density data are not representative for the stationary or

intrinsic Bypothesis process.
To check these two possibilities do Exercise No 2.

EXERCISE No 2

Using the same data as in Exercise No 1 and the program VARIOGRAM 10
calculate the density variogram,taking now 1 = 4 m. Do this variogram

downwards and upwards.

Using the same set of data given in Table 1 we take now each fourth
data as an input data for the VARIOGRAM 10. We run.this program four
times take each time as k=1 the first, second, third and the fourth

data, i.e.

Run No 1 Run No 2 Run No 3 Run No 4
k
2.738 2.789 2.687 2.690
2 2.733 2.727 2.777 2.780
3 2.758 2.810 2.885 2.841
etc. etc. etc. etc. etc.

Thus, we have four sets of the Y*(i) values: Yi* (1) , Yo* (i) Y3* (1)

and Y4*(i). The final result is an average value for a given i index:

Y* (1) =% {Yl*(i) FYR(L) YR (L) +ygR ()} (63)
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Table 2
Results of the variogram calculation for the data in Table 2.

Depth interval: 1708.45- 1847.45 m . Variogram calculated

downwards.

z 5.621 % 3.0478 g cm >
52 (z) 12.8499 32 20.3323- 1073 g2 cm™®
nt 140 140°

Nl 130 130

h Y* (1) % 2

(m) xlO—3 g2 cm_6
1 Y* (1) 2.8537 4.2830

2 Y*(2) 6.9701 7.0337

3 Y*(3) 9.7328 8.9541

4 Y*(4) 11.4762 9.8031

5 Y*(5) 12.2710 10.7828

6 Y*(6) 12.3711 12,1516

7 Y*(7) 12,5417 14.0251

8 Y*(8) 12.7281 - 14.2962

9 Y*(9) 12.6241 14.5804

10 Y*(10) 12,3829 13.8520
Remark The programs in the FORTRAN language for computers

are given in [1], [2] and [7]

7. Y. C. KIM, H. P, KNUDSEN : GEOSTATISTICAL ORE RESERVE
ESTIMATION FOR A ROLL-FRONT TYPE URANIUM DEPOSIT. (PRACTITIONER's
GUIDE). GJIBX-3 (77) - GRAND JUNCTION DOE REPORT, JANUARY 1977.
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Repeat those calculations for the upward direction.
The results of calculation are given in Tables 3 and 4 and they are

plotted in Fig. 22, where also for 1 = 2 m the values of the average

variogram have been plotted.

Table 3

Results of the variogram of the bulk density calculation for the data
in Table 1.

Depth interval 1708.45 - 1847.45 m . Downward variogram

0 g cm> 3.0422 3.0504 3.0594 3.0395 3.0479
s2(p) g2 cm®  22.2294-10° 20.8362  18.9823 20.8345  20.7206
N 35 - 35 35 35 140
N1 25 25 25 25 100
hy(d) Y1* (1) Yo* (1) Ya*(d)  vgR(d) yR(d)

(m) i x10™3 92 cm—6

4 1 13.8833 11.7825 11.5882  10.1077 11.8404
8 2 17.4517 17.6495 17.2920 17.0817 17.3687
12 3 20.8106 18.1939  14.8486 18.7237 18.1442
16 4 20.0587 17.4335 13.9190 12.1748  15.8965
20 5 14.4296 12.6248 12.9968  13.3225 13.3434
24 6 19.6047 14.3967 14.7707 17.0242  16.4491
28 7 18.8380 18.3681 18.3275 22.6167 19.5336
32 8 21.5341 19.1273 15.3088 19.3046 18.8187
36 9 14.3060 17.6192 10.4331 16.8680 14.8066
40 10 12.9682 13.1157 16.6064 16.8174 14.8769
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Table 4

Results of the variogram calculations for the bulk densities for

data in Table 1.

Depth inverval 1708.45 - 1847.45 m

Upward variogram.

N 25 25 25 25 100

h Y (1) Y * (1) Yz*(ig , Y3féi) Y, * (1) Y* (1)
(m) i x 10 7 g" cm

4 1 9.9013 5.5263 5.8101 5.6832 6.7302
8 2 14.7326 9.0277 7.9113  10.7307 10.6005
12 3 16.3118  10.4313 7.1634 10.5101  11.1041
16 4 14.8986  14.7162 10.2120 9.1780  12.2512
20 5 12.0684 10.7972 9.8776 10.5290  10.8180
24 6 15.0489 9.6220 10.3734 13.3975 12.1104
28 7 14.2367 13.1690 11.3309 17.4886  14.0560
32 8 16.7817  15.5397 9.7575  15.1249  14.3009
36 9 13.2754  17.2065 9.1836  15.1387  13.7010
40 10 12.9682  13.1157 16.5069 16.7685 14.8398

Remark: Note please a significant difference between the variograms
calculated downward and upward. It means that the bulk density data

set contains some trend (drift).
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Discussion of results

Porosity @ has a very regular variogram (cf. Fig. 21) which we shall
call the spherical variogram (will be explained in the following
lectures). The range of correlation for porosity is of the order

of 5 or 6 m . It means that samples taken at closer distances

influence. each other.

The variogram of bulk density shows some nested structure (at h=20 m)

and depends strongly upon the direction (downwards or upwards) at which
it is calculated. The eXperimental variance sz(p) is always much higher
than the values reached by the variogram at any point. These facts give
the reason to the hypothesis that on a long range the bulk density data
contain some drift. On the other hand, looking on the beginning of the
variogram Yp*(h) only, one can see that up to the range of about 10
meters the data are intercorrelated. In this case we can say that the
bulk density data follow the intrinsic hypothesis locally (within the

range of ~ 10 m).

There is another remark too. If one assumes the constant matrix density

Py ¢ the bulk density is given as:

p=(1-9) py +B-p, = py -8 - (Py-p,) (64)

where pw

we can write

is the water density. Because p and ¢ are depth dependent,

Plx) = py - B(x) - (pM- p,) (64a)
and inserting this expression into the formula (51) for the variogram

we have:

Yo 0 = (o= o) - vy () (65)

which means that the variogram of bulk density
h)
Yp(

should follow up to the constant multiplication factor (pM”‘pw)2
the variogfam Y¢(h) of the porosity. If it is not the case it can
mean that either the rock matrix density is not constant or the bulk

density or the porosity data or even both, are wrong. In this particular
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case we can copt for the hypothesis that the bulk density data are
probably not correct. Just to emphasize this hypothesis one can

calculate from Eq. (65) the Pu value as being:

- Yp(h)

which for the data given in Table 2 gives the result which is
plotted in Fig. 23 (for p, = 1.0)

Pm(gem )
5_

- / Fig. 23
o

_ \./.
(028 ' ' ' ' ' ' ' ' 1 '
o 1 2 3 4 S5 [ ] 7 8 9 IOm
For h=0 the value h
/52 (p)
= 67

is plotted.

The discussion of the reliability of the plot given in Fig. 23 is

out of the scope of this lecture and will be done elsewhere.
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J.A. Czubek

LECTURE 4 Reykjavik, March 8, 1981

ESTIMATION PROBLEMS

STATEMENT OF THE PROBLEM:

There exist two blocks, say V and v (usually the letter V or v stands
for a volume in the three-dimensional case, surface in the two-dimensional
case and the line in the one-dimensional case). We can assume (but it
is not necessary) that v < V. The volume v can be inside or outside

of the volume V

Fig. 24

Both volumes V and v are inside a given ceological formation of
interest which is a particular realization z(x) of a certain random
function Z(x) having the intrinsic hypothesis (at least). The volume

V 1s centered at the point %X , whereas the volume Vv at the point x1,

The expected values of the random function Z(x) within the blocks V

and v are

1

E{zy(x)} = v J z(x)ax (68)
V(x)
and
E{z\,_(xl)}=l S zZ(x)ax (69)
v 1
v(x!t)

and because they are taken under the stationarity hypothesis (or

intrisic) they are equal each other:

E{zy(0} = B{z,(x1)} = E {2(x)} = m (70)
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For a given particular realization of the random variable Z(x),

however, we can at least know the values:

zv(x) = %- S z(x)dx (71)
V(x)
and
z (xl) =1 I z(x)ax (72)
v v 1
v(x*)

which are the experimentally known z(x) values averaged over the
volume V and v , respectively. Note,please, that dx in Egs. (68)
to (72) has a meaning of length, surface or volume (elementary)

whether the problem is one-, two- or three-dimensional.

Now we attribute the value zv(x) to the volume V(x), which is
admissible in average because of the validity of equation (70).

But for this particular realization of the random function what is
the error in such estimation of the zv(x) value by the zv(xl) value ?

This error R will be, of course:
_ , 1 '
R(x) zV(X) zv(x ) (73)
but we are unable to calculate it unless the value zv(x) is known.

When it is not the case, however, we can try to find the expected

value of its square:

E{RZ(x)} = E{[zv(x)-z‘v(xl)lz} = cé[v(x) vixl)] (74)

which we shall call the estimation variance of

the volume V(x) by the volume v(xl).

Developing Eg. (74) and inserting the meanings of the zv(x) and

zv(xl) values according to the equations (71) and (72) gives:

2
o0 2 v, vixhl=E{z] ()4 E{z.(x1)}-2E {z,(x) -z, (x]) }

1 1
=E{= - J z(xpdxqc-—= [/ z(x)dx.} +
v V(x) 1 1 VV(X) 2 2
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1 1 1 1 1 1
+E{= [ z(x)ax, .= [ .z(x)dx.}-
v vixl) 1 1 v v(xl) 2 2

1 1
-2e{z J z(xpax,-= f
v V(x) v v(xl)

1 1y
z(xz)dxz} (75)
Here, to emphasize that each integration of the variable z(x) is

independent each other we have introduced the integration variables

: 1 1
%1 ,-Xz ,Axl and.x2 .

We can interchange the expectation and the integration signs (they

are independent each other), which gives:

2 1 -1 . y
o [V(x),v(x1)] = vz Jax Jax, E{z(x)) -z(xp) } +
V(x) ~ v(x)
1 1 1 el 1
+ 57 fldxl fldxz E{z(x)) 2(x))} _
vixl) © v(xh)

<,M

*Vv

Sax; S ax, Bla(xp)-zx} (76)
1
V(x) v(x')

But what are the expected values of the product of random variable

taken at two different points? According to equations (29) and (31)
they are:

E'{z(xl)'z(xz)} = C(xl—xz) + m2 =
=C() + m? -y (x,-%) (77)

Insertion of eq. (77) in Eq. (76) gives (remember that C(0} and
m2 are constants):

2 1 2 1 1
GE [V(X)IV(X )] = — f dX. j;. d“x2 Y(xl—xz) -

1 1 .1 1 1
—gzr faxp Joax, v(xmx) - = [ ax; [ ax; v (xi-x0)  (78)
v V(%) 1 V(%) 2 172 v v(xl) V(Xl)‘z 172
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Thus, we have obtained an expression for the estimation variance of
the block V by the block v where the average values of the vario-
gram Y{(h) appear. The averaging of a variogram is done by this way

that the two extremities of the distance h:
In| = X,7%, (79)
are "walking" independent each other throughover the volume V or v

depending upon which integral is involved in Eq.(78). As a matter of

fact three operations of the double integration are involved here:

\%
v
X S — .
h X
X2

Fig. 25

and in the case of the three-dimensional space it reans sextuple

integrations which are involved in Eqg.(78).

DISPERSION VARIANCE

Equation (78) is a most general formula giving the estimation variance
and it will serve to calculate all other particular cases. One of

them is the problem of the dispension variance:

We take again two volumes V and v assuming
v <KV

and we put v inside V , that is:

Fig. 26
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When we want to express the zV value using the zv(xl) value, the

variance of such estimation is just given by Eq. (78). But what will

be if we move the volume v towards another point xil r @gain and agaih?
What will be the estimation variance of such procedure when the volume

v will "walk" all possible positions inside V ? The physical meaning

of such procedure is just equivalent to the question, what is the variance
of the z, value inside the field VvV ? Mathematically one has again to

calculate the average value of

2 1
o LVx), vix')]
averaged over all positions of v inside V , that is:

1 1

J ax
V(x)

D(v/V) = 02 v, v(xh] (80)

Here D(v/V) is called the dispersion variance of v inside V.

To calculate the integral in Eq. (80) let us rewrite Eq. (78) using

the notation of "average" instead of integration:
2 1 - - 1 =
O V), vix)] =27 [Vix), vix)] - ¥ [V(x), v(x)] -
- 1 1
- Ylvix'), v(x)] (81)

The functions inside the brackets [ 1 indicate on which volumes
the variogram is averaged. As the random variable Z(x) is stationary
inside the field V, the averaged variogram values ? in the last two

‘s ol
terms do not depend upon the position X , thus:

Y [Vix), v(x)] = ¥ (v, V)
and (82)
Y Ivixh), vixh] = Y (v, v)

and as a consequence, these two terms remain invariant when being
taken on average over the field V(x), as it is needed by Eq. (80).

The first term in (81) when inserted into (80) becomes:

L S dx1 - Y lvix), V(x1)] =

V(x)
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11 1 1 1
== — [ ax S ax Joax, vix,-x,) =
v.ow V(x) V(x) vixl) 2 12
= %- J dxi<% S dxl-% J dx; Y (xl—x;) =
v (x) V (x) v(xh)
=1 Jax i S vygexd) =¥ W, W) (83)
V(%) V(x)
Finally equation (80) becomes:
D(V/V) = Y(V, V- Y(v, ) =
= 55— Joaxy [ oax, v(x1-%p)- 67 Joaxg Joaxy v(x-x,) (84)
v Vv v v

Equation (84) has a very important sense. When v is attributed
to the volume of the sample and V to the volume of the whole
geological formation in question (deposit etc.), the first integral

becomes a constant:

A= ;,17 Joax, [ ax, Y (%,-x
\Y

v

2) (85)
Usually the knowledge of the constant A 1is not really needed in
practice and even when the mathematical form of the function Y(h)
is known, the calculation of the integrals in (85) ‘are very often
troublesome because of the uncertainity in the volume V. This

integral can be, however, obtained in another way:

When some formation is sampled by a set of N samples having each
the volume v and the space distribution of samples is either
completely random or strictly regular we can approach the D(v/V)

value by a well known estimator:

2

1(zk-2)2 (86)

o™

V) % s2(z) = ——
DIV/V) =~ s (2) = =

K

where zk are the values of the random variable Z, measured on the

samples having each the volume v. Thus, in this case
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-2 1
A= s (z)+ 7 Q{ ax, {{ dx, Y (%,-%,) (87)

which demands now the knowledge of the Y(h) function only, the

volume v being known.

The main importance of Eq. (84) lies however in another point. Assume
the whole geological field Vv is divided into Ny blocks of valume V1
each and next each block is again divided into N2 small blocks having

the volume V2 each. Thus we have:

v = N1- V.1 = Nl- N2° V2 (88)

and we assume that both N, and N are large.

1
According to Eq (84) we can write:

2

- 1 ; _ 1 o
D(V,/V) = 77z / ax, s dx, Y(x,-%))- v S dx, Y (x,-x,)

2
v v 2 v,

=gz Jaxy yixg-xp)- vz Jaxy Jax, Y(¥ymxg)
1

v vy vy
1 e 1 -
tyz Jaxg Jax) Yxmx)- 2o foax, S oax, yixg-xy) =
= D(V,/V) + D (V, /Ny . (89)

Thus the dispersion variance of the small samples within the whole
field is the same of the variance of these samples within the blocks
plus the variance of these blocks within the whole field. This
property, first observed experimentally by D.G.

Krige has been explained mathematically #n the way as above, by

Matheron.

Another problem which can be solved using Eq. (84) is following:

Some geological formation has been sampled by a set of samples

each haying the volume v1 . One has the experimental dispersion

variance
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How will the dispersion variance be if the same formation is sampled

by another set of éamples each having another volume v, ?

This new dispersion variance is

ssz(z)zD(vz/V) (90a)

and together with the first dispersion variance

2 o
sy, (2) ® pwy/v) (90b)

by a single subtraction and taking into account Eg. (84) one

obtains:
52 (z) - s2 (z) =
V2 V1
1 o 1 -
;;g v{ v{ Y(xl—x2)dx1 ax,, ;;7 Vé Vé Y(xl—xz)dxldxzb (91)

Thus, knowing the variogram 7Y(h), the volumes vy and v, and the
value of svi (z) from the experiment the value of a new dispersion

variance

can be readily calculated from Egq. (91). This is just the case when
one wants to compare logging data with core sample data

obtained in the laboratory (cf. Fig. 9).
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LECTURE 5 Reykjavik, March 9, 1981

MODELS FOR VARIOGRAMS

Although the variograms are calculated using the experimental data
(cf. Eq. 60}, the knowledge of its theoretical form is of a great

importance in all geostatistical practice and calculations.

Generally speaking we have a few theoretical models to present the

semi-variogram Y(h), the most important of them are:

LINEAR MODEL:

Y(n) = a|n|+c, (92)

SPHERICAL MODEL:

_ 3(hy 1, h 3, .
Y =c [5|3]-5d2h 1 * ¢ h<a
(93)
= C + Cq h2a
EXPONENTIAL MODEL:
- h
Y() = ¢y [ 1- exp (- |g|)]+co (94)
1
De Wijs MODEL:
Y() = a, 1n h + by (95)

In these formulas the C, is the nugget effect value and Ci Cq.
a , ap, as, b2 are some constants characterizing the behaviour of

variograms. The behaviour of these variograms is given in Fig. 27.

The linear and the de Wijs models have the variograms increasing to
infinity for the infinite h values. Moreover the de Wijs model
has a negative infinite value of Y(h) when h-—o . This model cannot

be used for point-like samples.
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In the spherical model the'éonstant a 1is called the range of a vario-

gram. For the lags h larger than the range a the variogram has a

constant value C (the so-called sill) which means that the samples

at distances h> a are independent of each other. The name "spherical"

is due to the fact that when one takes two spheres with radius R each

and when the centers of spheres are at distance from each other the volume

of the first sphere which is intersected by the other one {(in relative units) is

h 3

3 h 1 =41
v S 173 op v )" = 1-2Y(h) (96)

VA 2 2R

Volume V=4 wR3

Fig. 28

In the exponential model the variogram reaches the value C1 asymptotically,

but the practical rule is that for the distance
h ﬁ3a1 ‘ ‘ (97)

this limit value Cy 1is practically reached. Thus, for the

exponential model the distance h = 3a; is called the range.

The theoretical models of variogram bPresented above concern the point-
like samples which never occur in geological practice, of course. The
random variable Z(x) is always regularized (i.e. averaged) over the

volume v of the sample, that is
1
Z2,x) == [ z(y) dy (98)
v
v (x)

where the volume v is centered at the point x. To calculate the
experimental variogram we are using the Zv(x) data, thus the question
about the regularized variogram Yy(h) arises and how it is related

to the theoretical variogram <Y(h).

Starting from the definition of variogram one has:

27, (h) =E {[2Zy (x+h)- 2y (x)]%} (99)
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To calculate this expected value we can consider the expression (99)
as the variance of the estimation of the mean grade Z,(x) by the
mean grade 32,(xX+h) separated by the vector h - cf.‘Eq. (79}, (78)
and Eq. (8l). Treating the problem in this way we have:

2Y¢ (h)=2y[v(x), v(x+h)]-Y [v(x), v(x)]-¥ [v(x+h), v(x+h)] (100)

Since the point semi-variogram <Y(h) is stationary (i.e. it has in
average for a fixed h value the same <Y(h) value wherever the vector
h is situated), the last two terms in Eg. (100) are equal to each other

and thus:

Ye(h) =y [v(x), vix+th)]-¥ (v, v) (101)

In this expression ?[v(x), v(x+h) ] means an average value of the
variogram calculated for the case when one extremity of the vector h
is "walking" inside the volume sample Vv centered at x and the
other end of this vector describes the same volume v but centered

at the point x+h , as it is shown in Fig. 29

!}x) v(xfh)

y (M)

xXe

X+h Fig. 29

The ?(v,v) is the same as in Eq. (82). When the dimension of v is
small compared to the distance h between the samples, we can use

an approximation:

YIvix), v(x+h)]=y(h) (102)
and in this case the regularized variogram is

Y¢(h) =Y (h) - Y (v, v) (103)

Formula (103) can be applied for example, for the variogram of the

core samples when the distance between the samples is much greater

than the dimension of the sample itself.

Just in the case of borehole, when the core segments of the length 1

and the cross sections is small enough in comparison with 1 (i.e.

/2; << 1), the regularized random variable Z(x) is:
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(0 =27 (k) =T [ z(ndy (104)
1(x)

and in this case the regularized variogram is
Yi(h)= ¥ [1(x), 1(x+h)] - ¥ (1, 1) (105)
for the situation presented in Fig. (30)
T f
| M X—x

L

Fig. 30.

l

Now let us try to calculate the regularized Yl(h) variograms for the

four models presented above.

The linear model

We take, for brevity, Eq. (92) in the form:
Y(h) = |n] (92.a)

Thus, according to Eg. (105) one has:

A h+l

1
= -1
Y [{1(x), l(x+h)] —-If 3 dx1 1{ I Xq=Xy dx2 (106)

which one has to solve for the two situations:
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when the cores are overlying

o | X2 hel
— s + 2 > X In] <1
xl [ - ;: 2
dx2
Fig. 31 when the cores are
—r————— apart of each other.
0 dx, | h dx2 hel
k # —1 + H } > X h>1
X} Fig. 31 X2

Solving the integral in Eqg.  (106) for both cases one has:

- 2
YL, 16em]=3 25 (3 1-m)+3 for |n| <1

(107)
12
and
Yil(x), 1(x+h)]=h for In| >1 (108)
the special case of equation (107) for h = o gives
= - 1
Y[l(‘x)l l(X)]-Y (1, 1) = T3' (109)
which is just the second term in Eq. (105). Thus, finally
one has:
h2
——5 (3 1-h) for |n| <1
1
Yl(hl= (110)
h - % for |h| 21

The regularized variogram Yl(h) is depicted

in Fig. 32. Because for
the experiment the region |hl5 1

is practically unaccessible, the

regularized linear variogram gives an apparent negative nugget effect

for extrapolated value towards h = O. This apparent nugget effect is

Y, (0)

w| =

(111)

Note that for [hl 2 1 the approximated formula (103) gives a

strict equation.
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The De Wijs model

Repeating now the same kind of integration for the De Wijs model but

written, for the sake of simplicity in the form
Y(h) = 1n |n|

one obtains for the regularized Y,(h) value:

for h <1 %=t ogt<l
M= v1 (0= 2 In(d - 1+t 1n (1-t2) + £ 1n 1L
Y1 Y1 2 2 2 1-t
here one has
_ 3
V(1,1 =1n1 -3
. h _ .. .
and for h21 1° t t2 1
) = yi () = £ 1o (1- =ty ¢+ L iner2y) 46 1n EED
Yl Yl 2 t12 2 t’—l
which for t'>> 1 becomes

Yy (h) = v () * 1n t’+—§’-

which again corresponds to the approximation given by Eqg. (103).

and for t =1 (h = 1) Dboth formulas (113) and (115) give
Y1 (1) = 1n 4 = 1.38629

The plot of Egs. (113}, (115) and (116) is given in Fig. 33.

(112)

(113)

(114)

(115)

(116)

(117)
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The spherical model

The regularization of the spherical model. given by Eq. (93). along the
core length 1 gives for this variogram a long and awkward expression .

The characteristic points of the regularized variogram are:

for h=1
A 1 7 13
Yl(l). =—£+C (';—-ro"g:;) (118)
for h = » 4is a sill
A 1 13
'Yl(°°) ='_:—L_ + C ( 1- '2—a'+ 50a3 ) (119)

where A is connected with the nugget effect and it is a

constant value.
The range of the regularized variogram is now

a+ 1

and knowing the values of the regularized variogram at points
h=1] and h*© we can draw from Eq. (119) and (118) the values

of C and A once the range a is known. The plots of the
reguiarized spherical variograms are given in Figs.. 34, 35 and 36

according to [1] and [2].

T ive)

§ 7 -ooﬂ
2/ 004
2/e002

204
2/er03

'-I3 LY/

Fig. 34 :
Smoothing of a spherical variogram; variogram of samples of length [ parallel to
the direction of computation of the variogram (pieces of core in a D.D.H.).
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As an example let us take the variogram of porosity presented in
Fig. 21 (lecture No 3l. This is just the regularized variogram of
the spherical type. The regularization is done by the fact that the
porosity used for calculation of the experimental variogram <Y* (h)

corresponds to the average porosity for 1 m borehole section.
From Egs-. (118) and (119) we have:

= Y1(*®) =Y1(1)

C - 31 . 313 (120)
2a 4a3
A=1 [y (l)-c(—l———j— l3)] (121)
1 a 10 a3
The experimental range in Fig. 21 is 6 m thus for 1=1 m one
has
a=>5
Next: Yp(®) = 02(¢) = 12.85 - %2
Y, (1) =v*(1) = 2.85 &2
¢
Thus from Egs.(120) and (121) one has:
C = 14.16 32
5 (122)
A=0.09 m-. %
thus the nugget effect is negligible here.
The 7Y(1,1) function for the spherical variogram is:
- _ 1 13
Y(1,1) = — - (for 1< a) (119a)

2a 20a3
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The exponential model

We take to simplify the formulae the values Cj; =1 and Cgy=0 in

Eq. (94). Thus the regularized exponential variogram will be of the

form:
2a42 o h a 2 _ h -
= 1/a1—1)+3—i‘é— +2heT A (2-e7HRY -
2
a (h-1) /a
.Yl(h): ""i‘2e 1 for hsl
a2
I;__ [e—l/al— el/al+_2£Il_ + (e—l/a1+el/a1_ 2) (1_e—h/a1)]

for h21

We can see that for h21 the regularized exponential variogram

is again exponential with some kind of "nugget effect"

2 1 1
_ a - - = 21
Cor = 1 [e a1 -el + ET—'] (124)
and the new sill value:
a2 1 1
o = it Ta1 +e¥1 - 2) - (125)
1,1 T ¢ T (e e
An approximation according to Eq. (103) gives for h>1:
_h/al -
Y1(h) = Co+Cq(l-e ) - y(1,1) : (R6)
al 1/ 21
by = 21 ==/ar e _
where Y(l,1) = 1- 12 [ 2e + a 2] (127)
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EXERCISE No 3

We can come back again to the example shown in EXERCISE No 1
(LECTURE No 3). From the experimental variogram of porosity we
have just calculated the parameters of the underlying theoretical
variogram of the spherical type, assuming the range

a=5mn

we have obtained

C = 14,16 32

and negligible nugget effect.

Now, we can again take the porosity data shown in Table 1 (page 32,
33, 34) and calculate using the program VARIOGRAM 10 again the
variogram but taking now as an input data the porosities averaged
by the segments of 2 meters. Thus, instead of introducing into the

program the set

B(x1) , B(xp), B(x3), Blxg) , ...etc @(xg3q), B (%140}

we introduce the sequence:
By = 2 [Bx)+B(xp)] ;3 B, = & [Bxg) + Blxy)] s
1 P X1 X9} H ) 2 X3 g 4 3 ceoscene

1
.. ¢K = 2 [¢(X2K—1) + ¢(32K)]---; ¢70=‘%' [¢(X139)+¢(x140)]

The result of this calculation is given in Table 5 and is plotted
in Fig. 37. Some nested structure at the h = ~ 18m is visible on
this variogram anc it becomes more similar to that one of the bulk

density given in Fig. 22.

Using the a and C values given above one can calculate from

Eq. (119a) the

C-Y(1,1) and C-¥(2,2)

values and the variance of the 2 m long samples can be obtained

from the relation (91) which in this case is written as:

D(2/V) -D(i/v) = c- [Y(1.1) -¥(2.2)] (128)



Calculation of the variogram of porosity for the 2 m borehole

segments (after the data in Table 1}.

@® O » gz

10

14
16
18
20

Average porosity

Variance of porosity

Number of data used

for calculation of average

Number of pairs in

variogram

W 0 9 0O U0 & w N =

-
@)

Y* (1)
Y* (1)
Y*(2)
Y* (3)
Y*(4)
Y*(5)
Y*(6)
Y*(7)
Y* (8)
Y*(9)
Y*(10)

and finally,

We have (a

Y(1,1)

Y(2,2)

5 m)

0.099%6

= 0.1968

cly(.1) -y(2.2)] = - 1.3763 %2

for

Table 5

5.612 %

11.480 %2

70

60

5.471
10.549
11.690
11.779
11.740
11.647
10.470

8.976

8.694
10.647

D(1/V) = 12.8499 %2 one has

- 77 -
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from Eq. 128 :

D(2/V) = 11.474 %2

whereas from the experiment (cf. Table 5) one obtained

S (@) = 11.480 32
for 1=2m

Let us remark that if one takes a = 4 mor a = 6 m the result
for the D(2/V) calculation will be 11.512 22 and 11.796 22

respectively.
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J.A. Czubek
LECTURE 6 Reykjavik, March 11, 1981

MORE ABOUT REGULARIZATION

Another example of regularization is the so called grading. Let for

example, in the three-dimensional space the point-like variogram be

Y(h) = vy (Vx2+y2+z2 ! (129)

where x, y, z are considered as the components of the vector h
(i.e. x = x1-%) 5 y= Y17Y¥2 7 2 = 21-23 - X1,¥q1,2; and X21Yo129
being a cdordinates at the two points Py and P2). vThe measurements
are performed in the boreholes along some layer thickness 1

Thus, in the wvertical plan the situation is:

Z Z; Z3

T Fig. 38

E—7r —>

We know the average values of the random function in each borehole.
It is averaged along the layer thickness 1 , and if the distance-

between two boreholes is r

Il

S z(u)du ' (130)
1(5;)

are the values at points X; on the map

ZG .(le

ZG(xl) <73

25 (%) Fig. 39
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This operation is called in geostatistics, "grading” (it comes
from the French translation of expression "to be promoted to
higher grade" as in the army, for example)l. When the experimental

variogram is calculated for the graded values of 2 , it is:

Yoo =3 B{ [25(err,) - 250 1%} =
(131)
=y[1(x), L(x+r)] - ¥(1,1)

Here we have used the general relation (101) applied to this particular

case. Thus, what one has to do is to calculate the average wvalues:

1 1 A
YI1G0, 16e+0)] = 55 S auy - [ au, v (/7% (ay-uy) 2 (132)
1° o e}
and
Y(1,1)=Y [1(x), l(x+r)] (133)
Y=0

where the variables wu; and u, are as in Fig. 40

h = /r2+(u1—u2)2

i

942 Fig. 40

o ]

du|: r
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[U.l"l.'lz! =Y

the double integral in (132) can be rewritten in the form

1 1 ) 1 1
1 oy
12 (f duy (f du, ¥ (VrZ+(ug-up)? '13'({ dy g' du, y(VrZ+y?Z )=

0 '—r — l
_ 2
=17 I (1-y)y(Vr2y?2) ay (135)
O
y K
Fig. 41
y =1 du, y
u2
| 4+ -+ I
\'4 v
y ' uz

The coefficient 2 in (135) appears because of the sign of the

absolute value in (134) - simply speaking we change here the

integration domain from up, u, onto Y{ Uy , as shown in

Fig.

Uq
|

0

42

A A

W

Uz o} |

Fig. 42

Similarily for ?(l,]) one has:
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1

31, 1)=—l?2 I apyway | (136)

which corresponds just to the integral used in the regularization

along the borehole cores.

The linear model

For the linear model

Y(h)= |n]

the exact expression for YG(h) according to Egs.
(131), (132), (133) and (135} is:

r2

1 1+/r2+12 2 E? 1
Yo (¥l= 3 Vr +'1 + 7 1n = *372 [x-V/rZ+12 ] - 3 (137)

with
< -1
Y(lll) - 3

and in practice, when r2 1l one uses the standard approximation

given by Eq. (103}
Yolr) = Y(x) -¥(1, 1)= r-3 (138)

Let us remark, that the graded variogram in the linear model for
large r values is indistinguishable from the model Yl(h)
regularized by cores - cf. Eq. (110]).

The de Wijs scheme (logarithmic model)

Here the graded variogram for the model

Y(h) = 1n |h|
is
vy.(r) ==+ 2 arc ct r, 1, (1r2 1 x? 12 139
G L 973 5 1n +IQ)"§“EQ in (1+;2 ) ( )

with again

Y(1,1) = 1n 1 -—23— (140)
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The variogram YG(r) given by Eq. (139)is shown in Fig. 43 together
with the variogram Yl(hl for the de Wijs scheme. One can see very

easily that both of them approach the line

Y 3
In =- +—
1T T3

for the % > 2, whereas for -% <1 they differ considerably.

Spherical and exponential models

For the spherical and exponential models the formmlae for the
YG(rl variograms are long and not very convenient to handle. For
the spherical model (with € = 1 and Cy = O) it is given in

Fig. 44 (according to Journel and Huiijbxegts 1978). The sill wvalue is here

_ 3
Yo(™) = 1-Y(1, 1) = 1= 3= - 55— (141)

and for r 2 a the rarge of the graded model is equal to the range a

of the point model, and when r>>1 one uses

T
5
0.90 uge>
: /,/u;.o?:o
¥ R
080 1 /r/j‘: O_AIO
‘ )/4// U2 @ |
L QR =
0.70 y 'r\\4, 2 ’//;;;;;:' R
| 7 X | +
S ) 010 s
4;6ttso F - // /C/{j - "’oé
) T 7 g 140! !
/// /;;;/, g :; l'\éo f
I s\
0.50 /// /;>;// - 7 k
(35
l;/ ///////// b o2
0.40 //éygﬂl////’ Zr:z
4 {,///éj‘ //‘//::T’/i~' l;uﬁo
0.30 ///é//// //,/// A 1/,-2:)0
/VKZV///?>/,/,:: ] lg:250
0.20 /(;/ﬁdégff/,/;/,/ﬂf/”// 1 Ug:3.00
e 1/g =400
g A e e
0.10 /// /7%/// L ——1 l/a-ﬂ)o
// Z E;;E:”/lﬂm—«—ﬂ*" {/5<10.00
% o 02 03 04 05 06 07 08 oo S
*fa

Fig. 44 . Spherical model. Grading over I: YG(I’-)
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Yelr) = y(r) -y(1, 1) (142)

For distances r £ a one has to use the exact formulae to calculate

the YG(r) values in order to be able to find out the parameters of the
underlying point variogram. These formulae are given in the doctoral
thesis of J. Serra in Fontainebleau (Center of Mathematical Geo-
morphology) and have never been published (but everybody can calculate
them starting from equation 131 !). When a >> 1 (in practice, when

a>31), and a >> r , or when
a>3 Vr2+12

it means, when we are at the beginning of the underlying spherical
variogram, we can neglect the contribution of the second term in it,

i.e.

|
w

1
-3 ) ]

Njw

Y() =c. [

and then this variogram becomes a linear variogram with the slope
equal to

1.5 ¢

In this case we are ﬁsing Eg. (137) to fit the model.

A similar situation occurs for the graded variogram over the
exponential model. For big r values in comparison with the 1
value one uses the approximation given by Eq. 142 , whereas when
al > l/x'z'i-'lz

(where aj; 1is given in Eg. 94) we can at the origin (when r—0)

treat this graded variogram as being from the linear model with the

slope equal to
C1

aj

The plot of variograms graded over the exponential model are given

in Fig. 45 (according to Journel and Huijbregts, 1978).
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In practice, any kind of regularization of the variogram requires
more or less some particular discussion, but the general approach
is always starting from Eq. 131. There is only a technical problem
now to calculate the double or quadruple or even sextuple integrals
involved. Very often one uses here a numerical guadratures to get

them. How important this question is, we are going to see in the next

subject treated in this lecture.
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MORE ABOUT DISPERSION VARIANCE

LINEAR EQUIVALENTS

Let us go back to Eq. 84 which is a basic equation for the dispersion

variance:
D(V/V) = Y(V,VI-Y (v,v) (84)

As mentioned the ?(V,V) value is a constant, very often unknown,
characteristic for a given geological formation and the size of the
geological samples has no influence on it. The whole dispersion
variance can be changed by the change of the ?(v,v) function only.
This function, ? (v,v), however is the average value of a given
variogram (point-like model), where the averaging procedure is
performed over the whole volume v of the sample. It is quite
evident, that different geometrical forms of v can have the same
average value of ?(v,v) ! If it is so, this means that the samples
of different sizes can have the same dispersion variance D(v/V)
inside a given geological field ! We can find an infinite number of

such corresponding volumes for which the function

Y(VIV)

is invariant. Among all these possibilities one isvespecially
interesting, when the sample has the shape of a line segment of the
length 1*. We call the value 1* a linear equivalent of a given
volume v. How to find the linear equivalent ? Just from the

equation:
Y(v,v) = Y(1%,1%) (143)

which has to be solved for a given shape v of the sample and for a
given underlying point-like variogram. More developed form of Eq. 143
is:

for the 3-dimensional samples (cf. Eq. 135)

712 fofdv1 fofdvz v (]r]) =—l%-2— idxl idxz Y (x-%,]) (144)
1 1%

where dvy and dv2 are the two elementary volumes situated at
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the two extremities of the vector r inside the

volume Vv as it is shown in Fig. 46

Fig. 46

In the two dimensional space the translation of Eq. 144 is immediate:

1 1

7 ST asy ITasy yUxl=—5 [axg [ax, ¥ ([x-x,]) (145)
S S 1 1 1

where dS; and dS, are again the two elementary volumes situated

at the two extremities of the vector r.

It can be also some confluent cases, (but rather artificial, though
not impossible), when the sample does not have plain surface
or the line sample is not a straight line (for example a perimeter of

circle or rectangular, etc.).

Now, to calculate the linear equivalents, we have to take into account
the particular forms of the samples and the particular forms of the
variograms. The easiest way, when the queétion is how to calculate

the integrals involved in Egs.(144) and (145), is to take the parallele-

pipeds and rectangles as the forms of the samples.
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LECTURE 7 Reykjavik, March 13 and 16 1981

AUXILIARY FUNCTIONS

All calculations of variances and covariances in geostatistics are
based on the calculation of some specially averaged values of the
variogram 7Y(h). We can distinguish few averaging procedures which
are of special interest and once these cases are pre-calculated they

are then very useful in the routine practice.

ONE-DIMENSIONAL CASE

For the segment AB = L as in Fig. 47

Fig. 47

(=}
[ =
© JD—\L

one calculates the average value of 7Y(h) when ore extremity of h is
fixed at the one end (say A)] and the other extremity describes the
whole segment AB , thus:

L
X (L)= Y (a; AB) =% J y(wau (146)

and it is a simple average of <Y(h) taken along the segment AB.
The auxiliary function F(L) is defined as the mean value of Y (h)

when the two extremities of the vector h are "walking" independently of

each other along the whole segment I , thus

L
dUﬂ du2 .
A M 8 —‘—‘—'————Flg. 8
| |
K—h——>

L L
o o

2 2 F
=17 Of (L-u) v (u) qu= = Of uy (u) du (147)
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We have met this function previously in Eq. (136}.

FOR TWO DIMENSIONS

One considers the rectangle ABCD:

A L ’B
du, Fig. 49
| .:dUZ
c (8]

and the two-variable function G (L ;1) is defined as: (cf. Fig. 49)

a(L31) =Y (AC; BD) (148)

i.e. the two extremities of the vector h are moving along the

sides AC and BD of the rectangle ABCD, that is:

1 1
@ (L ;1) =Y (AC; BD) =fg S auy J dup v ( /L2+(u1-u2)7- ) =
O (o]

1

2 - vy (AT Yau = ¥ [1(x0) 5 10x+D) ] (149)
o]

1

we have just met this function in Egs. 132 and 134. Note, that

the function o (L ; 1) is not symmetrical in its variables:
0 (L;1) # a (1; L) (150)

The twoevariable auxiliary function ¥ (L3 1) is defined as a

mean value of <Y(h) when one extremity of the vector h is moving
along the side 1 , whereas another one is walking along the whole
rectangle ABCD as is shown in Fig. 50 . Thus one has:

L

X (L31) =Y (AC; ABCD) = S a(u,1)au (151)
@]

1
L
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1 Fig. 50

T ——————

Q

€ u—3|

which is a simple average of the function o (L31) and in view of
Eq. (149) is given as a triple integral of the variogram <Y(h).

This function is again non-symmetrical in its variables:
X(L3l) %= x (1 L) (152)

The two-variable auxiliary function F(L; 1) is defined as the
mean value of <Y (h) when both extremities of h vector are
describing, independently of each other, the entire rectangle

ABCD, as in Fig. 51

| C‘h\‘j . Fig. 51

¥ D

Thus

. = . =_1 - 2 —v.)2 ) =
F(L; 1) =Y (ABCD ; ABCD) ~Iivi fofl ds Lj;{fl dsp Y ( V(x1-%9) 2+ (y1-y,) 2 )

2 L 2 L
=y of (L-u) o (u;l)du=£-2- Of uy (u3l)du (153)

Function F(L3j 1) is symmetrical in its variables.



94 -

This function can be also given as:

L L
F(L;1)=E12- fau S du, a(lul-uzl;l) (153.a)
o] o

Finally the two-variable auxiliary function H(L;l) is defined as a
mean Y(h) value when one extremity of the vector h is fixed at any
of the corners of the rectangle, and the other extremity describes

the entire rectangle; as it is shown in Fig. 52 , thus

< : >
A u
) //.?; B—u
——"h
a2
al Fig. 52
| the same h | e
¥¢ D
by
_ L L 1
H(L;1) =Yy (A; ABCD) === [ du S du,; Y (M1 Z+u? ) =
L-l 4§ 5
= Y ( AC ; AB) (154)

Thus, the function H(L;l), symmetrical in its variable, is also
an average value of the <Y(h) variogram when each extremity of the

vector h is describing the adjacent sides of the rectangle.

All these auxiliary functions, being some average values of Y (h)
can be derived one from another, and the following relations

(except those integral ones given above) hold:

oy 1 82 (o .1y 1= .9 .
o(L;l)= > 812 [L4-F(L31) ]= A [Lex(n;1) ] (155)
X(L3l) = 12 [L2. F(L31) ] (156)
’ 2L JL ?
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2
H(L;1)= 5%— g% [12 ¢ X(Ls1) 1= Zf%ﬁf sf%i [12-L2-F(L;1)] (157)

Next, contracting one of the sides of the rectangle ABCD to zero,one

can obtain from the two-variable auxiliary functions the one-variable

auxiliary function

03 L —>{ A€ L %
7RA B 7RA B c o
! !

Fig. 53

which gives:
o(L30) = Y (A,B) = Y (L) )
a (031) =Y (AC,AC) = F(1)
X (L3;0) = ¥ (A,AB) = (L)

(031) = Y (AC,AC) = F(1).
X _Y ( L (158)
F(L;0) = Y (AB,AB) = F(L)
F(03;1) = Y (AC,AC) = F(1)
H(L;0) = Y (A,AB) = Y (L)
H(03;1) = Y (A,AC) = X(1) )

The formulae (155) to (158) are very useful when one has to check the

correctness of a given formula.

IN THREE DIMENSIONS

One has the three-variable auxiliary functions similar to the two-
dimensional case. These functions are defined on the paralellepiped
P = ABCDEFGH and just for sake of simplicity one takes a square base

of this parallelepiped, thus its dimensions are LX12 as in Fig. 54.
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E y Fig. 54

The following auxiliary functions are defined:
1) the mean value of 7Y(h) between the two square bases 12 of P:
0.(L;12) = Yy (ACEG ; BDHF) (159.a)
2) the mean value of Y(h)l between one square face and the whole
parallelepiped P:
X(L;12) = ¥ (ACEG;P) (159.b)
3) the mean value of Y(h) within P:

F(L;1%) = ¥ (P;P) (159.¢)

4) the mean value of Y(h) between two adjacent faces of P

which is equal to the mean value between a side 1 and P:

H(L;12) = Y (ACEG;ABEF) = Y (AE;P) - (159.4)

Now by contracting one of the sides of the parallelepiped P
(L+>0 or 1+ 0) one obtains the two-variable auxiliary functions,
or when two sides are simultaneously contracted to zero, the one

variable auxiliary functions.
a(L;12=0) =y (L) (160.e)

0(0312) = F(131) (160.b)
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X (L312%0) =x(L) @ )

X (0312) = F(131) (a

F (L;120) = F(L) (e) r (160)
F (0512) = F(1;1) (£)

H (L;12-0) = x(L) (9)

H (0312) =y (1,1) i (h) )

Now one has to discuss all these auxiliary functions for different

models of the theoretical variograms <Y(h).

1. THE LINEAR MODEL

Y(h) = |n]

In one dimension:

=L
X (L) 5
(161)
sy = L
F (L) | 3
In two dimensions:
=1
t L
1 1 2 1 1
- 1)Y= = 2 el - =
p O(@31)= 3 Vites + = =5 (1 V142 ) +¢ In(t+ V1+t2 ) (162.a)
1 S S R e AT SO S AN G frywea
Ex(L,l)-6 jc-2+ 1+t (4 3 ?)+3 tln(t+ 1+t< ) +
+.._].'_ t2 ln.l.—t_._____._ vitt (162.b)
12 t
1 _ A 1 t2 11 3
PR = GRS = A

2 o2
+ —élg 1n (t+/1+t2 ) +—t—6— 1n _1i_t_1.t_t_ (162.c)
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2 T+t 2
%H(L;l) =-:1; 1+te + -t—6— 1n 1+t1+t + G'i‘ 1n (t+/1+¢2 ) (162.4)

Note here the special case for L =1 (t=1) which corresponds to
the rectangle:

H

1.0765 1
0.65176 1
0.5213 1
0.7652 1

a (1;1)
X (1;1)
F (1;1)
H (1;1)

(163)

2. THE LOGARITHMIC MODEL (DE WIJS SCHEME) :

Y(h) =1n |h|
In one dimension:

X(L)=1ln L-1

F(L)=1n L ——g— (164}

In two dimensions: (here again t--ll—‘ = tgh)

y=1n1-34 2 1 1, _ 1 2
o (L3l)=1n 1 > tparctgt+ 3 ].n(1+-€2) 2_1:7',1“(1’“: 1 (165.a)

.1y = _1 1 1 1,_ 1 2
¥ (L3l}=1ln 1 6+tarc tgt+21n (1+-t-_-2) -é-gln(1+t Y+

t
+-:~3-(

(STE |

- arc tgt) ’ (165.b)

oy 2
1) = _25 1 o 1, _1_ 2
F(L;1) ln 1 1o +-2 (1 3 ) ln(L+E7) 1512 In(1+t4) +

+2 ¢ & arc tgr)+ 2 3IS Lot -  (165.c)
3 2 3 t ‘
= - ; 22 1.2 . .1 1Incosb 2 8
lInl - 1n sin © 12+6tg e.ln.Sln 9+6 ©7 +3tge +

2 m
+ 5 tg 9. [.5_91 (165.4)



For the values t > 1 or

into the rapidly convergent series:

1
> 1: = —
For t t L
= 3,171 1_3
¢ (L3l)=1n 1 2+t+E21nt 5
3 Tl 1 1
;1) = - =+ - = = =
X (L,l) In 1 > 2t 3t2 1ln <
. (117 = _3,r1 1 1
F(L311=1n 1 -S4 35+ 0o ln g
And for t < 1:
2 4
= e _
o (L3l)=1n L + 2" ¢g + -
2 4
- T2
X (L3l)=1n L 1+6 t -3 *+ T80
F (L;1) =1 L——3—+£-t+321 t
3 n 2 3 "tteg n

t < 1 Egs.
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(165) develops

%2 - %%4 P (166.a)
%—1—%2-3‘15 21-4+ (166.b)
_2..2_%2 1é0 -1{4 boeen (166.c)

(167.a)
Yo (167.b)
- _;_;_ tZ;_l%% + . (167.c)

Now we can try to look on the difference between the linear and

de Wijsian models in two dimensions.
and the definitions of the F(L) and
and 153) we can write the difference
of the line sample and the variance

sample in the form:

02(L) - 02(L31) = F(L31) - F(L) for

or

02 (1) - 02(Ly1) = F(L31) - F(1) for

Knowing from equations (161) and (164) the functions

F(1) we have, for some more general

variograms 7Y (h):

According to Egs.(84) and (85)
F(L;1) functions (Egs. 147
between the variance OZ(L)

02(L;l) of the rectangular

<1 (168.a)

t>1 (168.b)

F(L) and

forms of the point-like



- 100 -

Y (h) =A-|h| for the linear model (169.a)
Y (h)=30- 1In|h| for the logarithmic model (169.b)
for t <1
02(L)-02(L;1) - F(L;1) _ 1 for the linear (170.a)
A-L L 3 model, and -a
02 (L) - 02 (L31)
2 =F(IL3l)-1Inl + In t + 1.5 for the (170.Db)
30, . .
de Wijs scheme
and for t > 1
a2 (1) - a2 (L31) Pl 1 1 for the linear (171.a)
Al L t 3 model :
02(1) - a?(L;1)
2 = F(L3;1l) - 1n 1+ 1.5 for the de (171.b)

3o Wijs scheme

The functions given by formulae (170) and (171) are plotted in
Figs. 55 and 56. In the following example we are going to explain

the practical application of these graphs.

Example

Let us refer to Exercise No 1 (Lecture No 3) where for the

samples having the length
L=100cm=1mn

taken from the borehole section of the length
L! = 140 m
the variance of porosity obtained was

02(L/tl) = 12.5 32

We shall calculate the variance of the rectangular samples with
the sides:

L=100 cm

1= 50 cm
assuming the linear or the logarithmic behaviour of the underlying

point-like variogram <y(h) in the form given by Egs. (169.a)



og?(L)~—o2(L1)

o?(L)-o2(L;l)

3d

L
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and (169.b).
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First, we have to calculate the constants A . and 30 for the variograms.

Because the initial samples are

(according to Eg. 168.a)

linear, their variance is

o2/l = r@l) - FL)= 12.5%2

Thus, for both models we have

Linear model:

1
2 1y =7 _ L
o< (L/LY) A[3 3]

_3-0%2@w/ml

A
Li-1

_ 3-12.5%2

= ?IZECTETE = 0.26978 %2 -1

A= 0.26978%2 m !

Logarithmic model:

o2(/nly =30 1n 2 =

12.5%2 2
= —_——— - %
1n 140 2.5295

30 = 2.5295%2

Now, for the sample configurations depicted in Fig. 57 for

1=50cm=0.5m one has:

_1 _
for t= L

0% (r)-02(1;1) .
A-L

02 (L31) =04 (L) -
here one has
Fig. 55 for t = 0.5

02 (L) -02 (L3 1)
A-L

= 0.069

thus A-L=0.26978%% and

0%(L31)=12.5 - 0.069-0.26978 =

= 12.481 2

A-L | 02(1;1)=02 (1) -

m

= 0.5

0 (L) -02(131)
30

3a

02(1)=0?(L/Ll)=12.5%2, and from

one has :

02 (r)-02(L;1)
3o

= 0.405

thus

02(L31)=12.5- 0.405-2.5295 =

= 11.475 %2
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LI
€t —> Initial samples )
o
v
New samples
Fig. 57
Finally, for the initial model (linear samples) was:
o(L)=o0(L/Ll) =/12.5 %= 3.535 %
whereas now, with the new samples 50x100 cm there is
O(L;1)= v12.481 = 3.533 % O(L3l) = v11.475 = 3.387 %

One can repeat now the calculations for two other values of 1 ,

for example:

1 =100 cm=> t=1 and. 1 =150cm= t = 1,5

which gives:

for 1 = 100 cm for 1 = 100 cm
=02 (51) - g 02 (1) -0% (1;1)
O A-L : . = 0.695
30
02(1003100)= 12.449 2 02(1003100) = 10.742 %2
0(100;100) = 3.528 % 0(1003100) = 3.277 %
for 1=150 cm for 1=150 cm
2 21 201y - G2 (1.
0c(1) - 0%(L;1) _ gc(l) - 0% (L31) _
T 0.1075 = 0.515
thus thus
201 — 02 (1.- 201 — 52 (T.+
gc(L) - 0%(L31) _ 0.3279 02(L) = 07 (L31) - ( 990
A-L 300
02(1003150) = 12.5-0.3279 x 02(1003150) = 12.5-0.920x2.5295 =
x 0.26978 = 12.411 %2 = 10.173 %2
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and and

0(100;150) = 3.523 % 0(100;150) = 3.189 %

Here, for the last example (t=1.5) because we know the 02 (L) value

and we do not know the 02(1) we had to transform the

02 (1)-02(L31)
A.1l

value found in Fig. 50 onto the OZ(L)—OQ(L 1) value according

A.L
to the obvious formula resulting from the symmetry condition of the

function F: F(L;1)= F(1l;L):

2 2(71. 2 2(7
0“(L)-04(L;1) _ 04(1)-02(L31) t 1
A LD A1 t+~§ 3 (172.a)
for the linear variogram, and
2 2¢(1 2 2¢(7 .
04 (L)-0 (Ls1) _ 04(l1)-0 (le)
= +
o o In t (172.b)

for the logarithmic variogram.

From this example we can see that in the case of the linear variogram
the gain in the precision of estimation when increasing the sample
from linear to the rectangular, is negligible. This gain for the
logarithmic variogram is visible in this particular case, though,
also not very exciting if one takes into account how much more rock materia.
has been taken to the analysis! Thus, in any practical case, before
entering into the detailed sampling operations one has to find out,
using a very rough and low cost sampling procedure, the variogram

for a given formation, to be next able, even approximately, to
calculate the total costs of the sampling operations in function

of the available accuracy of the sampling. This problem has to be

treated very carefully in each particular case.
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3. THE SPHERICAL MODEL

3
3 /hy_1h <
2 la' 2 Ial for Ihl‘a

Y(h) = (173)
1= sill for |h|2a

In one dimension the auxiliary functions become

3
3L _1 L <
22 B (a) for lLI__a
X (L) = (174)
1 —-g—% for L2 a
( 3
1L _1 L <
3 a 20 (a) for L>a
F(L) =% . (175)
3a_. 1 ,a?2 >
\ 1—4L+5 %) for L2 a

For two and three dimensions the formulae for the auxiliary functions

become very complicated. The graph of the function:

Yg(r) =Yg (r=L) = a(L;1)-a(031) =a(L;1)-F(1) (176)
was given in Fig. 44.

The function X (L;1l) is given in Fig. 58, the function H(L;1)
in Fig. 59, and the function F(Ljl) is given in Fig. 60. For the
three dimensional case in Fig. 61 the function F(L;12) is presented

and in Fig. 62 the differences
o (L;1%) - 0(0;1%) = a(L;12) - F(1;1)

are given. All these graphs are taken from the monograph of Journel

and Huijbregts [1]

For the parallelepiped of the sizes a>b>C the function F(ajb;c)
for the spherical variogram can also be obtained starting from

the model variogram <Yy(h) of the type
y(h) = |n|? (177)
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CHART NO. 6. Spherical model. Grading over I a(L; 1*)~a(0; I2).

Fig. 62

The spherical variogram given by Eq. (173) can be taken as some
weighted sum of the two variograms of the type given by Eq.(177)

forr A=1 and 3. 1In that case one has to calculate the functions:

a; a3, 3,
== J [/
a1 9 a3 o @] o

2j @0

A
Py (ag.ay,a3]= (51—x)(52—y)(53—z)(x2+y2+z2) /2dxdydz

[s}}

(178)

which is simply an equation (147) taken for the three dimensional

case. Here 51, 52, 53 and the sizes of the parallelepiped given

in the units of the range a of the spherical variogram, i.e.:

~

a, = a3/, (179.a)

o2
[

Q

]
~
V]

= a1/a a )

The integral of the form given by equation (178) cannot be expressed
by elementary functions, and has to be developed into convergent
series. The result, for the spherical variogram and for the special

case:
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= => 3. = 3 t = ax
a, = a, as as al
and for (179.b)
51 <y 1
‘1+2t2

(which means that the diagonal of the parallelepiped does not exceed

the range a of the spherical variogram) is:

FSph (al,_ t)
C
+ 7, 2.4072625 , 10~ - ¥, 3.58166 . 1072 + t5 .

= &[0.5 = £2(0.5 1n t - 2.8556905 . 10~7) +

. 2'1577381 L4 10-3 - ta . “06578412 ] 10-‘('ol .] -

- 320,05 + 8333317 + 1072 . 2 + £ (4.6203835 . 1072 -
- 7.083333 « 1072 1n t) + t2+ 3.1561263 « 107> -

- % - 5,3154739 « 1072 + t8 . 2.3189507 - 107% ...] (180)

Here the multiplicative factor C appearing in the definition
of the spherical variogram given in Eq. (93) and not depicted in
the formula (173) appears as a dividing factor for the function

F (allt) .

The plot of the function given by equation (180) is presented in
Fig. 63 . Eg. 180 could very easily be programmed onto the pocket
programmable calculator even of the type TI-56 or HP-25.

EXAMPLE

For the example discussed above we assume now the existance of the

spherical variogram with the parameters reported in Fig. 37 , i.e.

Co=0  C=14.16 32 a=5m o2(L/Ll) = 12.5 %°

L= 100 cm.

The general formula to calculate the variance 02(L;l) or OZ(L;IZ)
of the two or three dimensional samples will be, according to the

general Eq. (31):
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02(L31)-02(L31) = F(L)-F(L;1}
or (181)

02(r312) - 02(n/ul) = F(L)-F(1;12)

in our case, for L=100 cm and a=5 m r the value of F(L)

according to Eq. 175 is:
F(L) = 0.099%6

For the two dimensional samples Lx1 one finds in Fig. 60 the values

of the F(L;1l) functions:

1 1 L F(L;1)
[cm] a a
50 0.1 0.2 0.135
100 0.2 0.2 0.200
150 0.3 Q.2 Q.265

and according to the first formula in Eg. (181) one has:
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02(L31) = 12.5- 14.16 x [F(L;1) - 0.0996] (181.a)

and one has the results:

1 02(L31) o(L;l)
(cm) 32 %
50 11.998 3.464
100 11.078 3.328
150 10.158 3.187

Now let us try the three dimensional case. BAs a matter of fact the
porosity data in Table 1 used in Exercise 1 has been obtained using
the neutron probe. Assuming for the average porosity there @=5.6%
that the migration length M of thermal neutron is

M= 19 cm
one can assume, that 95% of the neutron signal is from the rock layer
distant not more than two migration lengths from the probe axis, thus
one has a right cylinder of the hight L=100 cm and the radius equal
to 2M= 38 cm , as the rock sample. Taking the same area of the square

as the base of this cylinder, one has the size of this square:

a, = Vs = /7T (2M)2 = 67 cm

Now the sizes of parallelepiped are (with a=5 m):

~ _ 100 _ ~ . 0.67 _ -
ay Z00 0.2 a2 = 0.134 , and the £t=0.67

and from Fig. 63 or Eg. 180 are now:
é, FSph (L,12)= 0.158 . Introducing this value to the formula (181.a)
instead of the F(L;1) value one has: 02(L;1%) =11.673 % and
0(Lgl2)= 3.416%, which again, in comparison with the value

o(r/tl) = /12.5 = 3.535% does not give any real improvement in the

precision of the estimation.
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4. THE EXPONENTIAL MODEL

Y(h) = 1- exp (-|n|/a)) _ (182)
In one dimension the auxiliary function becomes:

X(L) = 1- %1 (1- e /2y, (183)

and

Py = 1- 221 1221 7L/Ay (184)

For the two and three dimensions, similarilty to the case of the
spherical model, one uses the graphs of the auxiliary functions
calculated at the Fontainebleau Center of Geostatistics. The

graph of the function
"YG(r)EYG (r=L) =a(L;1) -a(031) =a (L;l) - F(1) (176)

was presented in Fig. 45.

,

The functions ¥(L;1), H(L;1), F(L;l), F(L;12)
and

0(L312) - a(0312) = 0(1312) - F(131)

are given in figures 64, 65, 66, 67 and 68 , respectively.

Example (continued)

Now, following the example discussed above, we assume that the
underlying variogram is exponential with the constants:

C=14.16% and a;=% = %m = 1.6667 m.

For L = 1 m the function F(l) given by Eq. (181) is:
L/ay=0.6 , F(L) =0.1733 and according to Eq. 181 one has:
(always for o2(r/nLl) = 12.52)

02(L;1) = 12.5- 14.16 x [F(L;1) - 0.1733] (177)

which for the rectangles with 1= 50; 1003 and 150 cm and
for the right cylinder, or rather parallelepiped discussed

previously gives (using the charts in Fig. 66 and 67):
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Fig. 68

1 1 L F(L;1) o2 (L,1) o(L,1)

[cm] aq ag
50 0.3 0.6 0.210 11.980 3.461
100 0.6 0.6 0.260 11.272 3.357
150 0.9 0.6 0.312 10.536 3.246
1x1= F(L;12) 02(L,12) o(L,1%)
672 0.402 0.6 0.260 11.272 3.357

Now we can present some resumée of the 0(L,l) calculations for
the some shapes of the samples, but assuming different variograms
(which are, however, compatible more or less with the real
situation, as far as concerns the variance of the linear one

meter samples, which is assumed to be constant for all cases).
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Standard deviations of porosity a¢(L;lI:%

Sample: L Lx1l Lx1l Lx1l Lxl2

100 cm 100x50 100x100 100x150 100x672

Observed 3.535

Linear 3.533 3.528 3.523

model

de Wijs 3.387 3.277 3.189

model

Spherical 3.464 3.328 3.187 3.416
model

Exponential 3.461 3.357 3.246 3.357
model

One can see from the results presented above, that there is not

a big difference in them when different models for the theoretical
variogram are used (when they are well normalized to each other, of
course!) and that the gain in the precision when increasing the
volume of the samples is almost not observable. This result is
valid just for the example being discussed here. A similar
discussion one has to perform in each individual case, when one

has to decide upon the sampling system for a given parameter

(porosity, thickness, etc.) in a given geological formation.
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MORE ABOUT THE ESTIMATION VARIANCE

In LECTURE 4 we have introduced the concept of the estimation

variance
o2[v(x), v(xl)]

of the volume V situated at x by the volume Vv centered at xl

(cf. Eq. 78). Equation 78 obtained for this estimation variance
demands :an integration over the volumes V and v. Let us assume
now, that the volume v(xl) - there is a set of point samples
situated at x1, xp «++¥ . How to transform Eq. 78 for the
calculations valid for this new situation? Let us repeat first

Eg. 78 here:

2 1y7. 2 . 1 1
o lvix), v(x')]= == [ ax; [ &x, vy (x,-%x.) -

1 1

1 1
2 Y (xl—x2 )] (78)

1 1
- 57 1 dxl J ax Y (xl—x ) - J ax J ax
v V(x) Vv (x) 2 2 ;2v(x1) 1v(xl)

. 1
Now the set of k point-like samples situated at points xi 1 Xy 4

1 .
x3 roeee xk can be given as a distribution of the samples density:

1 k :
dg(x b= v sxb-xh) (185)
X J‘_-’l 1

vev(xl) = f —-—I———d"(xl) caxt =g ]z; 8 (xl-xt)axl = (186)
Y x! e X i=1 1

Thus, it is simply a total number k of the point samples, and

Jaxy f ax!l z G(X%—-xi) Y (x1-x;)=
=1

Vi x) X 2 i
X 1
= I J dxy -y (x4 -x; ) (187)

izl v(x)
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and
1

1
Jax; [ dx,)

Y (xl-x1)=
vixl) 1v(x1) 172

k k
= [/ dxi )3 6(xi—x%) faxs %8 (xl—x%) Y (xl—xll =
Xl j=1 J xl 2 i=1 2 71 172
k k
= f dxi z 6(xi—x1.) - I Y(xi—xi) =
x! j=1 J i=1
k k 1 1 -
= ¥ I v(x.-x) (188)
j=1i=1

Now, setting equations (187) and (188) into Eq. (78) gives:

2 1 2k 1
o[V ;vix)]== ¥ J ax Y (xq-x;) -
E V-k k=1 V(x) i

1 1k k 1 1
- 32 S ax, J'dxz'Y(x1-x2)-EQ T I Y (%;-x;) (189)
V(x) V() j=1 §=1 ]

Denoting the set of the point-like samples as € we can

rewrite Eq. (189)in the shortened form:

cé [viel= 27 (V,8) =¥ (V,V) - Y(e,€) (190)

where V can again have a meaning of the set of the point

samples, line samples, surface or three-dimensional samples.

Now, using Eq. (190) or (189) we shall try to calculate some
estimation variances using the auxiliary functions just

learned.
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ESTIMATION VARIANCE PROBLEMS

1. One has a segment AB of length 1 and one point-like
sample has been taken in the middle of the segment

€<— t —> ‘ Line segment with
A o ‘//P’fﬂﬂ”ﬂ
o~ value z(1)

g —¥— —e
«—I/i— 3%
Point sample with value z Fig. 69

We extend the obtained value z on the whole segment AB
which really has some value z(1l).

What is the extension variance
2 _
0. = p{z-z (1)} ?

Eq

This is just done by equation (190) which in this case

is written:

o§= 2 Y(aB,0) -y (aAB,AB) - Y(0,0) _ (191)
with
- 1 1 1
Y(8B,0) =+ Jax; -y (|x, -3 == Saxvy (w =
1% 172 1/2 2
= X(1/2) =y (0a,0) =Y (0B,0) _ (192)
and
Y(2B,AB) = F(1) ; Y(0,0) =0 (193)
Thus in this case:
02 = 2x(1/2) - F(1) (194)

Eq

2. One has the same segment AB as in 1 (Fig. 69) but now
the point-like sample is situated at the point A (i.e.
at the extremity of the segment).

Thus now is:

Y(2B,0) =Y (AB,A) = y(1)
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and the estimation variance is:

o2 =2y (1) - F(1l (195)
Ey

3. We have again the segment AB but now two point-like samples
are situated at both extremities, i.e. at the points A and B.
As an estimated value of =z we take an average of Zp and Zp
and the estimation variance, according to Eg. (190), is:

62 = 2.5(c,BB) - Y(AB,AB)- Y (€,€) (196)

Ej

where by € we have denoted the ensemble of the samples.
Now: k=2 and

- 1
Y(e,mB) = T3 {lfdxly (|x,-0]) +lf dxly(ixl-ll)}=

=% fax y(x) =Y (a,AB) =Y (B,AB) = X(1) (197
1
Y(€,€) =—232 {¥ (0-0) +Y (0-1) +Y (1-0) +Y (1-1) } = %Y(l) (198)

and finally:

2 . _1
0E3 = 2)(1) - F(1) 5 Y (1) (199)
Exgggle

In the case of the spherical variogram the functions X (1) and
F(l) are given by Eg. (174) and (175) which gives, for 1<a

3

2 _ 11 3 1 .

OEl 7 3 + 160 (a) —3 (194.a)

2 _1 1 13

0E2 =7 g-(gﬂ X: (195.a)

3

2 11,11

0E3 TP 20('5) x X (199.a)
and for 12a one has:

2 - ,,31_ 113 3 a_ 1a? <1

UEl 1'+4 = 32(a) + 2 1 - g{Iﬁ for asll2a (194.b)
2 = 32_14a?

E, 2T S(Eﬂ for 122a (194.c)
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2 - ,.1a
0E2 =1 5(l) (195.b)
2
2 _ 1 1.a
gE =35 - 341) (199.b)
3
. \ 2 2 2
The graphs of extension variances o , O and O
Ep B E3

are shown in Figs. 70 and 71. It is surprising at a glance that the

variance OE is 1n some region bigger than the variance which

1
is obtained with only one sample at the middle of the segment. The
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reason is that in the case of the 0;3 variance the two samples

situated at the two ends of the segment "are seeing” also the
variability of the parameter z being measured outside.ithe
segment of question. It is only when 1>1.4a that the variance
Oé starts to be lower than the variance Oél and is asymptotically
going towards the value of 0.5 which is quite natural, because in
this case both samples are measuring the same value Zz, thus the

statistics of measurements is doubled.

The variance Géz is much higher than the variancg Gél just
because the sample situated at the extremity of the segment 1 is
influenced by the neighbour sample. It is asymptotically reaching
(and rather quickly) value 1. The variance for the case when the
sample is situated at the middle of the segment 1 (Oéll is also

going to this asymptotic value, but not so quick.
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When 1>>a all samples (belonging to the spherical scheme, however),
are independent of each other and they reach simply the value of the

sill of the variogram, i.e. the value C.

Formulae (194),(195) and (199) do not contain the sill value C.
Thus, to get the real variance one has to multiply the values
obtained by the sill value C. For example if one treats the
porosity data used in EXERCISE No 1 as the point like data with

the variogram (spherical one) described by

a=5m

and

C = 14.16%2

one has (for 1 = 1 m in this case) the values

o2 = 0.71132 o. = 0.84%
E E
1 1
2 _ 2 -
0% = 2.832% . = 1.68%
E2 E2
o2 = 0.711%2 o. = 0.84%
Ej Ej

Thus, just in this case,the fact of taking as an estimator for
the segment of the length 1=1 m the average value of data
obtained at its two extremities do not improve the result in
comparison with the situation, when only one sample is situated
in the middle of the segment and we take its value as a

representative for the whole segment.
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4, We have now a square ABCD as in Fig. 72

A K B
A x
\\
\ W2
AN
AN
N
Xo \A
L o T~ y Fig. 72
| — -
3 I%_-;_—_a
|
i
|
v s
I D
< | —>
of side 1 and one sample at its center O. The z value

measured at O we give as an estimate of z for the whole

ABCD.
(189) or (190) is:

square

to Eq.

og = 2y (0,ABCD( - Y (ABCD,ABCD) - Y (0,0
4

with:
Y (0,ABCD) =—11-2 f2 ¥ (| x-x]) a%x
1

J oy X=X )dzx = ? (0;00DI) =

-4
1 OJDI

=H(1/23;1/2)
Y (ABCD ; ABCD) = F (1;1)
and
Y(0.0) =y (0) =0

{nugget effect does not exist)

which finally gives

62 = 2.m(1/231/2)-F(1; 1)
Ea

The estimation variance in this case, according

(200)

(201)

(202}

(203)

(204)
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5. Taking the same square ABCD as in Fig. 72 we localize now
four point samples at its cornerxrs A, B, C and D , and as an
estimation for the square we take the arithmetic mean of
these four samples. The ensemble of samples we call €. The

estimation (extension) variance will be now (always according

to Eq. 189):
oéS = 2 Y(e;ABCD) - Y (ABCD,ABCD) - ¥ (€,€) (205)
where
Y (€3 ABCD) =-211— [ Y (a;ABCD) + v (B: ABCD) +

+ Y (C3;ABCD) + ¥ (D ABCD) ] =

Y (A3 ABCD) = H(1;1) (206)

here we have used a property of symmetry in the values of
Y (A,ABCD), ¥ (B, ABCD) etc.

For the correlation between the samples we have:

Y (€3 €) ——2 {Y(x = X) HY (X% )+ Y (- %) Y (% - xp) +
Y (xg - xg) +Y (X - xo ) Y (xg - xp) FY (X, -

+Y Xo - Xo) FY (K= xp) +Y (%o - xp ) FY (2 - x0) +

TY (xp-xp) +Y(Xp - % )Y (xp-x )Y (xp-x ) )=

= 7 YOt + ¥ (g~ ) Y (s =5 ) Y (3, - 00} =

1
=:11-{Y(O)+Y(l)+Y(l)+Y(l-/T)}=—;-(l)+Z Y (1V2) (207)
and finally one has:

o2 = 2H(l;l)—F(l;l)——:Zl—Y(l)—-i—y(l-/f) (208)

5
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2
0‘E

We take again the squaxe of Fig. 72 but now the four samples

are situated at the half length of the sides 1 at the
points I, J, K, L. '

For the estimation variance one has:

6

where

Y (€ 3ABCD) =Y (K;ABCD) =—§- Y (K3 KBDI) +

+ é—? (K 3 KICA) = Y (I’K;KBDIl'-‘- H(%; 1)

and

Y

(30 = 7 {2y (1/VD ey W}=3 v (1//D+3 v

2 Y (e3;ABCD) - Y (ABCD; ABCD) - Y (€, €}

and finally

6]

Here we have again made profit of the symmetry to
calculate the ? (E;ABCD) and ? (e3€}) values.

Example

Let us calculate the O

spherical variogram with

for

From Figs. 59 and 60 one has:

2
E

6

1=2m,

= 2 B(1/2; l)-F(l,l)—-;—'Y(]_/,/E)_.i_ y (1)

a=5m and C = 14.16%°

(0.2; 0.2) 2 0.230

(0.4;
{0.4;
(0.2;

0.4) = 0.310
0.4) =0.450
0.4) =0.345

values for the

3

thus 1/a = 0.4

o= ol

-

(209)

(210)

(211)

(212)
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Y (0.4) = 0.568
Y (0.5657) = 0.7580
Y (0.2828)= 0.41295

which gives:

oé = (2-0.230- 0.310)-C= 0.15x14.16 = 2.124%°2
4
cE4 = 1.457%
U§ = [2x0.45~- 0.31~- 0.5x0.568 - 0.25%0.758 ]xC =
5
= 0.1165%C = 1.6196%2
GES = 1.2843%
oé = [2x0.345- 0.31 - 0.5%0.41295 - 0.25x0.568 ] xC =
6 -
= 0.031525xC = 0.44639%2
OEG = 0.6681%

Thus, in this case the scheme No 6 gives the best estimate

among all discussed cases.

For some one- and two- dimensional cases the extension variances

Gé for the spherical and for the exponential models are also

given in Figs 73 and 74 after Journel and Huijbregts [1].

The corresponding schemes for the sample configurations are

given above each figure. Note please, that the numbers assigned there
for different extensions variances do not always correspond to

the numbers in the lecture notes.
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ESTIMATION VARIANCE IN TWO AND THREE DIMENSIONS

All precedent examples dealt with the case of the point-like samples.
One can have, however,some more complicated and at the same time more

realistic conditions. We are going to discuss them now.

7. We want to estimate the rectangle ABCD of the sides 1 and L
by the value of the 2z variable known for the median IJ of the

rectangle, as it is shown in Fig. 75.

A I B

X4 | Fig. .75

AC
-
v

Now, according to Eqg. (78] the estimation variance 0; will be

. 7
given as:
oé = 2 Y (IJ;ABCD) - Y (ABCD3;ABCD) - v (IJ31J) (213)
7 .
We have:
Y (IJ;ABCD) :fﬁ-{f i) dx, fdx’2 Y (xl—x;) =
ABCD 1

1 1 1 1 1 -
= L Saxy Jaxg v (xg-x)+ Sax, S dxg y(xg-xp) } o=
Lxlxl "] "2 jpos 1 172 1 2130a 2

1 1 1 1 1 1
=== {fax] - == [ax; yv(x,-x})+ fax. —— [fax Y(x,-x)} (214)
. 1 1
2-1 1 2 I24xl - 2 1 2 Ié.xl o 1 172
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Both integrals taken over the rectangles IBDJ and IJCA are equal to
each other, and the double integral which is left is equal teo the

average value:

?(IJ ; IBDJ) (cf. Fig. 19 and Eq. 151), thus one finally has:

Y (I3; ABCD)= Y (IJ;IBDJ) =Y (%; 1) (215)
For ?(IJ;IJ) we have
Y(I3;13) = F(1) (216)

and the result is:

2 =

(¢}
Eg

2X(3 1) - F(L31) - F(1) (217)

Just to give an idea, how the formulae for Oé look like,

7
using Egs. (161), (162.b) and (162.c) the variance has been

calculated for the linear variogram:

2
12 o Ll 11 1 €2
L%, T 2aer T It U-gml - g et oy - 3

1 1 3 t 1 2t+/1+4t2
G (EQ + t7) - 3tg n ———

ot t+/1+t2

2
Nrren
+ 1% Uiiiaae?) (218)
4t (1+/1+t2 )

with t==%-, as usually. A similar formula can be found for the

logarithmic variogram setting into Eq. 217 the formulae (l64),
(165.b) and (165.c).

The variance Oé for the spherical and exponential variograms

. . s 7
1s given in the form of graphs in Figs. 76 and 77 according to Journel

and Huijbregts [1]



- 133 -

- LL cbTa

3.0 dUELIRA UOISUIXT "[opou [enusuodxyg ‘g1 ‘ON LIVHD)

/7
I 80 90 0 €0 ¢0 _,O,

/

of/]

9L -b1a

**3.0 90UBLIRA UOISUAIXT ‘|opow [eduayds ‘g "ON LYVHD

Q\N
(01N ] w%\wﬁn 14 € 2 | m,O‘ 90 v 0 n.M N_V _O_AO
i
N s e e
T\ S NI NN AIEA -
LS e
DA il / \ \\ 1/ /

LA %s‘n.%o.oo - i \ 4 -4 €0
\ARM\\\\\\ Ssfs \\ [/ o
L S T T 77
) T T T
v §50 1
e A S Lo

S S S i o AV Y a—a 11

S R T :
l\.“\\ \ \ \\ A o\;\
=

] /] :
\...\.\ "
I\.\Tn\\.\\ i
H.\n\\.T\\.\.\\ b
e I
1 + 5
R :
A 6

2/7



- 134 -

8. Let us take now a three-dimensional case. The rectangular
parallelepiped P with a square base (Lx12) is recognized

(sampled) by its median square as it is shown in Fig. 78.

< + —>
2 I
|
J l /
' Fig. 78
// s
/ 7 /
/ V4
/ e
k 3 4
< L >
The estimation variance 0;8 is:
0538 = 2 Y(IJFE, P) - Y(IJFE;IJFE) =
= 2x(L/2; 1%} - F(L312) - F(1;1) (219)

The graphs of this estimation variance for the spherical and
exponential variograms are plotted in Figs 79 and 80 [1].

These graphs can also be used for the computation of the

Xﬂulzl values using the graphs of the F(L;12) and F(L;1)
functions given in Figs. 60, 61, 66 and 67 together with Eq. 219.

9. The same rectangular parallelepiped P can be recognized

by a single line sample (borhole) situated at its long axis L

as it is shown in Fig. 81 . Now the estimation variance Ué
9
becomes:
2 _ = = - -
oEg = 2 y(1IJ3,P) -Y(P,P) -7y (IJ, IJ) =

= 2 H[L;(1/2)2] - F(L3;12) - F(L) (220)
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The graphs of this estimation variance 0; are given by Journel
9
and Huijbregts [1] in Figs. 82 and 83 for the spherical and

exponential variograms.

/é; l/Z—-—#/

-
1/2 //

s _I__ L

Fig. 81

|
|
l
I
I
|

/ J
/

&
«<

\

And again, like for the graphs of the 0;8

in Figs 82 and 83 can be used to calculate the values of the three

variance,these graphs

dimensional auxiliary function H(Lj12).

Example

Let us take again a spherical variogram with a=5 m and C==14.16%2
for porosity. Now we want to know what is the estimation (or
extension) variance Oé when the rectangular parallelepiped
having dimensions 100x6%x67 cm3 we want to estimate using the

porosity data obtained from the core taken at the parallelepiped

axis L.

We have thus

|

=1
5 0.2

o
]

= 0.134

and from Fig. 82
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we have
2 - - 2
. = 0.015 x Cc = 0.2124%
E
9
OEg = 0.461% .

Let us understand better what this extension variance really
means. Remember that in the example on the dispersion variogram
(p. 106) we have calculated the dispersion variance for the same

block and for the same spherical variogram and obtaining there

o (L;1%) = 3.416%
What is the physical meaning of these two standard deviations ?

U(L,12)= 3.416% it is a standard deviation, that is a mean
deviation from the expected (average). value of the random variable
z when the block Lx12 is "walking" throughout the whole space
occupied by a given geological formation, when the average value

of z measured on the whole block Lx12 is taken into atcount.

The UEQ standard deviation is an average deviation between the
true value of Z regularized over the whole block Lxl2 (i.e. ZLx12)
when instead of the measured value zrx12 over this block we assume
that the Zr %12 value is equal to the average z value measured
along the central hole only. Thus, it is a standard deviation

of the extension procedure, when the knowledge of the axis we

extend on the whole block. Let us also remark that this procedure

is reciprocal - when one wants to estimate the value (average)

along the axial borehole ZL knowing only the average value of 2z
over the whole block, i.e. ZLx12 , the standard deviation of this
contraction in this case, will also be given as 02E9 . This mutual
reciprocity is well visible if one looks at Eqg. 78 - it is absolutely

symmetrical in V and v values.
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ESTIMATION OF RECTANGLE °

To get a better idea of how the auxiliary functions can be used in
the estimation problems let us work a little on the estimation

of rectangle ABCD as it is shown in Fig. 84.

A ‘ I B
A
|
|
0 .
K e e e L g Fig. 84
]
|
! v
c J D
< ~
< b >

We have a rectangulai panel P with sides a and b which is
located in an isotropic formation represented by the point model )
Y(r), let its thickness be c (not visible in Fig. 84). The panel
P = ABCD can be considered as an analogy to the parallelepiped
axbxc but graded over the thickness c.

Now we are going to evaluate the unknown value 2Z of the panel P

by each of the following estimators:

1. mean grade 2z of the perimeter ABCD of panel P (24 can be
- obtained by a continuous horizontal channel sampling along the

four sides of the panel PJ.
2. mean grade of the two parallel sides AB and CD.
3. mean grade of the two medians IJ and KL

4. mean grade of the single median IJ.

For these four different estimators we can write:

b.Zpp+3-?pp+Db-Zcp+a-Zpc
2a+ 2b

1) Zl= A (221-a)
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2)

2, = (z 4z ) w2 221.b)

“2 2 Y“aB ' “cpt T ¢ : _ ( .
3) b

_ a-Z13+ DPZyy, _

zq = e ~ oz (221.c)
4)

2y = 25 % Z (221.4)

The correspconding estimation variances will be:

1. Rectangle evaluated by its perimeter (Eq. 221.a)

0§1 = 2Y(ABCD, P) - Y(P, P ) - Y(ABCD, ABCD) (222.a)

here in this formula ABCD means just perimeter
i.e. 2at+2b.
According to the experience obtained for example in derivation

onyq. 215 one can write:

Y(ABCD, P) = Y(AC+AB,P)=

. 2:Y(AC,P)+b-Y(AB,P) _ a-X(bja)+bX(a;b)

ath atb (223.a)
Y (ABCD,ABCD) =Y (AC+AB;ABCD) =
- a-Y(AC;ABCD) + by (AB;ABCD)
2 D (223.b)
but B _ _
= . - a-Y(AC,AC)+ 2bY(AC,AB)+aY (AC,AB)
Y (ac;acp) ey
_ a-F(a) + 2b H(ajbl+a 0 (b3a)
> (atb] (223.c)
and
?(AB;ABCD) - bF(b)+2a H(bja) +b-a(a;b) (223.4d)

2 (a+b}
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Inserting now (223) ¢ and d into (223.b} and (223.b) and (223.a)

into (222a) one gives:

2 _ 2 a-Y(bsal) + by (asb)

1 atb

- F(a3b) -

2 2 2 2
_ a’F(a) + 4ab H(a;b) + b F(b) + a0 (bjal + b“a(ajb)
TSR (222.p)

This formula for a square (a=b) becomes:

2 _ 1 1 -4
qu- 2x(a,a) - F(a,a)—~z F(a)=- 5 H(a,a) 2 o(a,a) (222.¢c)

If one takes into account the linear model of the isotropic

variogram, one has (cf. Eqs. 161 and 163):

\

- a

F(a) = 3 " A

o(a,a) = 1.0766-a-A ' . (224)
X(a,a) = 0.65176 a.A

F(a,a) = 0.5214 a.A

H(a,a) = 0.7652 a-A /

When one inserts the above values into Eq. (222.c) one obtains:

o =0.0479-a-a (225.a)
1
for the total sampled length 4a.

For the logarithmic model 7Y(h)l = 3a ln |h| one has from
Egs. 164 and 165

\

1 - 4
5 ©%(a,al=1n a - 0.07079
S X(a,a)=1n a - 0.555087 - (226)
=+ F(a,a) =1n a - 0.805087

T a,a na .

1 _
o H(a,a) = 1ln a 0.073504
L F(a) = 1ln a - 1.5

3o n ' /
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Here the H(aja) value was obtained from the formula for H(L,1l)
derived from Egs.(157) and (165.b) which give:

1=y (T e 12_1 1 2y T _
H(L;L)=X(L;1)+ 5—[3 £ 2¥C tgt-FEEQ In(l+t4)+ 3(-2-- arc tgt)] (227)

Inserting now Eq. (226) into Eq. (222.c) yields

cr.f: = 30x0.1244 (225.b)
1

2. Rectangle evaluated by its two parallel sides AB and CD

2

o = 2Y (AB+CD,P) -7y (P,P) -Y (AB+CD ; AB+CD) (228)
2

and because:

Y (AB+CD,P) =Y (AB,P) =¥ (a3;b) (229.a)

Y (AB+CD,AB+CD) =Y (AB, AB+CD) =

[Y(nB,AB) +Y (AB,CD)] =

[F(b) + 0 (a3b)] (229.b)

(] R ST

Thus we have

Oéz = 2x(a3b) - F(a,b) —% [F(b) + & (a3b) ] (230.a)
which for a=b gives

of = 2X(aja) - F(a,al -—;- [F(a) + 0 (a3a) ] ’ #230.b(
=2

For the linear variogram this formula gives:

02 = 0.07715 a-A _ (231.a)
Ej

for a total sampled length 2a , and for the logarithmic
variogram one obtains:

6% = 30x0.4803 ‘ (231.b)
E,



3. Rectangle evaluated by its two medians IJ and KL

023 = 2y (IJ4KL;PI-¥ (P3Pl - ¥(IJ+KL;IJHKL]

but

a-Y (IJ;IBDJ) + by (KL;KABL)
a+b

Y (IJ+KL;P) =

and

Y (IJ;1IBDJ) = ¥ (b/2;a)
Y (KL;KABL) = X(a/2;b)

Next

Y (IJ+KLjIJ+KL) =

_ a-Y(IJ3IJ+KL) + b-Y (KL3; LJ+KL)

a+b
but
= . - 2-Y(IJ;1J3) + by (IJ;KL)
Y (IJ,I;+KL) i
and
- . - a-Y(KL3;1J) + b-Y (KL; KL)
Y (KL3;IJ+KL) Y
and again:
Y (IJ;1J) = F(a)
Y (KL:KL) = F(b)
~ . = ~ . = E- é— = é—- ..b_
Y (IJ;KL) =Y (IOoj;0L) = H (5331 =H G335 )

)

pjo

Y (KL';IJ).= H (

Nojo

which finally gives, with Y(P,P) = F(ajb)

the value for Gg

3
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(232)

(233)

(234)

(235)

(236.a)

(236.b)

(237)
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2a‘)((1—2)— ;al+ 2b - X (% ; bl
a = - F(asjb)l -
3 atb

_ a2 F(a)+2-a-b-H(a/2; b/2) + b2 F(b)
(a+b)?

(238.a)

This equation for a=b becomes:

0-}53 = 2x(a/2;a) - F(aja) -% [F(a) + H(a/2 3 a/2)] (238.6)

Now, for the linear <Y(h) model we have from Eq. (162.b)
X (-3-; a) = 0.45426-a (239.a)

which together with the formulae (224) gives for the
estimation variance

G2 = 0.02915 a-A (238.¢)
E3 .

whereas for the logarithmic model of variogram one has

from Eq. (165.b)

X (%;a) = 1n a - 0.926149 (239.b)

and together with the formulae (226)] it gives for the

estimation variance
0%3 = 0.086115 x 30 (238.4)

Note please, that here the total sampled length is 2a

4. Rectangle evaluated by a single median IJ

Here is:
054 = 2Y (I3;P) - ¥ (133101~ Y(p;pl . (240.a)

with
Y (I3;P) =% (IJ;IBDJ) =x(% ;a)

and (241)
Y (IJ;IJ) = F(a)

which yields:

02 = 2.x(b/2; a) - F(asb) - F(a) (240.b)
4



and for a=b

2
GE4 = 2x(a/23; a)l - F(ajal - F(al (240.c)
for the total sampled length equal to 1-a .
Knowing the values ¥ (a/23 al, F(aja) and F(a)
for the linear and logarithmic variograms
(Egs. 239.a and b , 224, 226] one has finally:
for the linear model:
o2 = 0.053787-a-a (240.4)
4
and for the logarithmic model:
o2 = 0.45279- 3 (240.e)
Eq
These four examples discussed above e¢an be  presented in
the following table: ‘
o2 < o2 < o2 < o2
Ej3 Ej , E, E)y
linear model: a-Ax 0.02916 < 0.0479 < 0.05379 < 0.07715

- 145 -

logarithmic model: 3ax 0.08611 < 0.1244 < 0.4528 < 0.4803

total sampled
length 2a 4da a

2a

As we can see from this table the best way to evaluate the rectangle

(or the square, exactly in this particular case) is to use the two

medians. The sampling along the perimeter does not give any better

estimate while the total sampled length is the longest one.

Geostatistics gives us a convenient tool to balance the quality

(the median information is better located) and the quantity of

information (the perimeter has the largest total sampled length

but does not correspond to the smallest estimation variance).
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J.A. Czubek

LECTURE 10 = , _ Reykjavik, March 19, 1981

PRINCIPLES OF KRIGING

We have seen in the last lecture that to evaluate of a rectangle different
estimators can be used, each of them characterized by different'
estimation variance. We have taken into account only a very limited
amount of estimators among all possible ones. Maybe there exists

another estimator giving better results? Or maybe, there is another

way of treating the data (i.e. sampling results) to get better results,

to be closer to the true (an unfortunately unknown) value for the

estimated body?

The idea of presenting the problem in that way and the first experi-
mental attempts to solve it is due to Danie G. Krige from the Anglo-
Transvaal Consolidated Investment Co. Ltd. in South Africa, buﬁ the
mathematical solution and especially justification of the problem:
belong to George Matheron from the Center of Geostatistics in
Fontainebleau, France, who gave the name Kriging to this procedure,

just to honour the first inventor D.G. Krige.

The problem

Inside some geological formation at the points ¥y (1=1,2, ....n)

the values Zy of the random variable 2Z(x) are known. We can

consider also that the z values are not necessarily taken on the
point-like samples, but each sample has some volume v(x;) centered

over the point X; . Thus the =z data can be considered as a

i
regularized over the volumes vy =

z(x) of the random variable 2Z(x). At the point X, 1is centered

V(xil values of a given realization

another volume V(x,) and the problem is to find the regularized

value Zy(x%,) of the random variable Zz(x), thus to find

S zZ(x)ax (242)
V(x,)

Zv(xo)=

<=

The random variable 2z(x) is defined on a point support and is

weakly (second-order) stationary with the expectation

E{z(x)}=m . (243)
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where the constant m is generally unknown and has a covariance

C(h):

C(hi = {z(x+h) - Z(x}} - m2 (244)

or variogram

2v(hi = E{[Z(x+h) -2 (x)]%} (245)

Because of the second order stationarity we are limited in the
classes of estimators to ‘the linear estimators only. Thus our

task is to find a linear estimator 2* of the unknown value ZV

using a set of the known data {z;,i= 1 to n}.

The conditions for such estimator are: the non-bias and the
minimum estimation variance, which we consider as the optimum

estimation conditions. An estimator fulfilling these optimum

*

conditions will be denoted as ZK

(for Kriging). Thus, we have

the following relations:

Linearity conditions gives the general form of the Z§ :.
N . n n
ZK[V(xO)]:ZK: .Z 7\i T2y < .Z >‘i . z(xi). (246)
i=1 i=1
The non-bias conditions gives:
. . n n
E{z,}=E{Z A 2}= I MNE(z)) =
i=1 i=1
n
=m- T =m=E{z,} (247)
i=1
which entails that
E{z_-2¥}=0 (248.a)
V. K .
and
n
X Xi= 1 (248.b)

i=1
Thus, the sum of the weighting coefficients should be

normalized to the value 1.0.

The minimum estimation variance requires the value
*.2
E{lz,-2,.1%}

to reach the minimum. We can develop the above expression:
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X2 2y .. Lk *2.
E{[ZV— zK] }= E{ZV}— 2 E{zV ZK}+E{ZK } (249)

with (cf. Egs. 29 to 31 and 77}:

E{z? }—vz Jax [ E{Z(x)°z(x1)}dxl =

v \'A
= C(V3V) +m? = c(0) +m? - Y(V3V) (250)
E{z -2¢} = z A Jax [ E{z(x)-z2(x!) ax! =
. V Vs
i=1 1 v vy
n —
= I A C(V3vy) +m? = C(0) +m? 3 ALY (V) (251)
i=1 i=1
n n
B{zf’1=2 I A A ol fax [ E(z(0-z(xh-ax! =
Y is=1 5e1 iVy vy vy
n n
= I LA Ay Clvysvy) +m? =
i=1 =1
n
= C(0) +m?- % 2 Ay A Y (vy3vs) (252)
i=1 j=1 J

Inserting Egs. (250} to (252) into Eq. (249} yields:

%42

=E{[z z]} c(vyv) -2 ZZ Ay C(Vv)+
l-
n
+ I Z Ay K C(v 3V ) (253.a)
i=1 §=1

orxr

{ 12120 T A YV Y
Et[Zy-2z.17}= Ly i Y(Vivi) -v(v,Vv) -

n

- Z X K Y (v $13V4) (253.b)
i=1 j=1 J



[8].

Derivation of Kriging equations

Comparing Eqs. (253]) with Eq. (78) we can see that Eqgs. (253) are,
simply speaking,the estimation variances subject of the constraint

C (only one) given by Eg. (248.b). The geometrical situation of

the volume V and v; 1s exactly the same as in Fig. 25. And the
problem of kriging is to minimize the function E{[Z- z;]z} subject
of the constraint C . This is a typical problem which is solved
using the method of Lagrange multipliers (cf. for example KORN AND
KORN 1961[8]). In this method, when the extremum of the multivariable
function F(xy, Xy ...X,) whould be found, subject to the k con-
straints Cj (i.e. 1, 2 ... k) with k< n, where Ci(xi' X oeoXp 1=0,

one takes a new functional
0 (xl’x2"'xl‘l Y 111: 112--- llk) =
k - .
= F(xl,xz...xn)+ 21 u; Ci (xl,xz...xn) (254)
i=

and solves  simultaneously (n+k) equations:

39 =0 j=1, 2 ... n - n equations
OXj
(255)
c; =0 i=1, 2...%k -k equations
which have the solution:
o o o
xl'x2'”xn'u1'u2"'uk
at which the functional (254) reaches its extremum when the
conditions Ci==0 are fulfilled.
In our case we have only one constraint
n
I A, -1=0 (256)
i=t * ‘ ‘
thus k=1 , the set of unknowns {xi} is just {Ri}—
- thus n unknowns and the (n+1)-st unknown U, which is
convenient to take
ulz—zp (257)

KORN G.A. and KORN T.M. Mathematical Handbook for Scientists

and Engineers. Mc-GRAW-HILL Book Co. INC., New York, 1961.



Now, to calculate the B¢/8xj we have

3 %2 ., 1 _
s—xi{E [zv-zKI 1 -2 (jzlxj—i 1%—102
1= r eeoIl

which, after insertion Eq. (253.a) or Eq. (253.b) yields:

- n -
=2C (Vyvi)+2 j§1 Ai°c(vi;vj1-2u =0 i=1, 2 ... n

or
- n - _ L
2y (Vyvy) - 2j§1>\i-y (vi;vj) -2Uu=o0 i=1, 2 ... n
with the (n+1) of equation
n P
z Ay-1=o0
j=1
Thus we have to solve the linear system:
n _ -
jgl}\i-C(Vi;vj) -H = C(Vi;V) i=1, 2 ese N
n
I A=1
j=1 7

or

n - S
iflxj Y(vi;vj)4-u =¥ tv;vil i=l, 2 ... n

hmMs
>
|
-

j=1

to find Ay , Ay ... An, + U unknowns (n+1 unknowns) .
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(258)

(259.a)

(259.b)

(259.¢)

(260.a)

(260.b)

This solution, when inserted into Egs. (253.a) or (253.b) yields

the value of the minimum estimation variance, which in this

2

case is called the "Kriging variance" GK - To calculate the

Kriging variance OE » let us take the first of Eg. (260.b) in

the form

n - -

(260.c)



- 152 -

We multiply both sides of Eg. (260.c) by Ai :

n _ _ .
and having n such equations (for i=1, 2 ... n] we are doing

the summation of the left and right sides, which gives:

n n - n

- n
ki'Y (V;Vi) -H z )\i (262.a)
J=1 j=1 i i=

1 1

but because of the constrain given by Eqg. (259.c} we have

n n _ . n -
r X kinY(vi;vj)= 21 A Y(Vsvi) -1 (262.b)

i=1 i=1 i=

which setted into Eq. (253.b) gives the Kriging variance

2
K i=

n — -—
gr = L AY(V3vi)+ H-Y(V3V) (263.a)
1

or, when using the covariance notation:

- n -
O, = C(V3V)+u - L A; C(V3v;) N (263.Db)

2
X i=1
The system of the Kriging equations (260.a) or (260.b) is

usually used in a matrix form

[k] - [A] = [M2] (264)

to solve them easier by using a computer. Here the Kriging

matrix [K] contains all C (vi;vj) or ?(vi;vj) terms with the
terms C(vi;vi) or 7Y(v;3;v;) on its main diagonal. The last
column and the last row of this matrix contain 1 except on the
main diagoﬁal where O 1is putted. The column vector [A] contains
the ki values (unknowns) and at the last place the Lagrange
multiplier | {(unknown). [M2] is the column matrix containing
the second member of the Kriging equations, i.e. the E(Vi;v) or
?(V;vi) values with the value 1 at the bottom. Note that in the
Kriging matrix the off main diagonal terms are symmetrical,
i.e.

E(vi;vj) = E(vj;vi) or ?(Vi;vj)=:?(vj;vi)
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and in the [A] one column matrix the last term is -J when the
covariances E(Vi;vji are used and +l1 when the variograms
Y(vi;vj) are used.

Thus, in terms of variogram one has:

?(vl;vli ..... ?(vl;vjl ceees §(V1;Vh) 1
?(vj;vl) ..... ?(Vj;vj) ..... ?(vj;vn) 1 (264.a)
(€] - ) )
¥ (vy3v, Vv Togvy 1
1 1 1 o J

Main diagonal

- - -
A
2 Y (V35v,)
A= | A | wel= | (264.b)
. Y(V3ivs)
J
i“ Y (Vsvy)
s i L1 .

When the matrix [K] is positive defined the solution to Eg. (266)

is in the standard form:

-1
[A] = [x] ™~ - [M2] (265)
and the Kriging variance is given as:

o2 = [A1% - M2] - ¥ (v3v) (266)
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where [)\]t is a one raw matrix transposed to [A].

For the reason of technical problems with the numerical
calculations the set of Kriging equations in the form of
Egs. (260.a} is usually preferred, even when the covariance
is not defined. For this purpose it is enough to define the

"pseudo-covariance" C(h]l such that
Y(hl = A-cC(h} ,

the constant. A being any positive value greater than the
greatest mean value ‘? used in the Kriging system (260.b}.

The non-bias condition
i

A, =1
i

allows to eliminate this constant from the system (260.b) which
in that case becomes of the type (260.a) written in the "pseudo-

covariance" C(h).

The co-variange system in the matrix form is:

)\2 E(V;VZ)

. ‘ : (264.c)
=] X 2] = C(v;vyl

AL C(V;vy)

-u 1

and the Kriging matrix [K] (which is simply a co-variance matrix)

is done as:
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(264.4)

[x]=

- ™\

main diagonal

where on the main diagonal are, in this case, the dispersion

variances of samples in the field.

In the case when some of the volumes vy of the samples are

zero (and in the limit case all of them can be zero i.e. -
point-like samples] and when the volume V is also reduced to
zero we are talking about punctual Kriging and in that case the
averaged values of the variogram ?(Vi;vj) or of the covariance
C(vi;vjl become simply the values of the point variogram Y(xi-xi)
or covariance C(xi—xj). This is just the case of the contour map
design using the Kriging method, when for a given implantation of

the point-like samples {Vi} the contour of a constant valﬁe of

%
ZK(x) is sought.
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LECTURE 11 Reykjavik, March 22, 1981

SOME REMARKS ABOUT KRIGING

1. The system of the Kriging equations(260.a} has a unique
solution when the matrix [K] given by Eq. (264.d) has a positive
determinant. It also means that no data support v, coincides
completely with another one, because when for i#k one has
E(Vi;vj)= E(vk;vj) for all j , then the determinant la(vi;vjl
becomes zero.

This condition of the unigness of the solution entails that the

Kriging variance is non-negative.

2. Kriging is an un-biased estimator and it is also an exact
linear interpolator. When the volume V coincides with one of

*
(samples) the Kriging estimator Zy Dbecomes

identical with the value zi measured at this sample with the

zero Kriging variance Oi=().

the volumes vy

3. The Kriging system and the Kriging variance depend upon the
structural model C(h) or intrinsic model <Y(h) and on the relative
positions at the samples v; and the volume V being Kriged.

The solution of this system (i.e. the values Ai and Oi) do not
depend upon the values z; being measured on the samples. This
permits, for a given configuration of samples and that of the
volume V to solve the Kriging system in advance, before the field

work is done (knowing, however, the intrinsic parameters Y(h)).

4. The Kriging matrix [K] depends on the sample configurations
and not on the volume V. Thus, for different positions of the
volume YV, having once the matrix [K] inversed, the solution

[A] is found by changing the matrix [M2] only, i.e.
1= [x17% [m2] ana [A1] = [x]7%. (M2l

where [Xll and [M21] are the solution and the column matrix M2
obtained for the new position of the volume V towards the sample

system.
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EXAMPLE No 1

Let us apply the Kriging system given by Egs. 264 to the following
problem:
One has a set of the point-like data situated along the straight

line at the regular distances, as it is shown in Fig. 85

-3 3¢ X XX~ 2 = =23 S =t » X
zq z, zq .2y Zo Zg zZg z4 zg

71 51 31 1 o0 1 21 51 71
X541 - %51 = 2-1 Fig. 85

We want to calculéte, using the Kriging method the value z, at the

point x when the values Zys 2y -.. 2Zg at the points Xi{s Xg +--Xg

(o}
are known and the variogram is Y(h).

The Kriging estimator will obviously be:
z*=>\-1( + zg) + .1( + )+>\-1( +zg)+ A -1-(z+ ) (267)
o 1735 Zytzgl+y¥, - 5 (zp+ 2, 3735 237 % 4 3'%47%5

Here, in practice, we have 4 samples

1
S]_ = -2- (21'1'28) h
1
82 - 5 (22+Z7)-
} (268)
S3 = 3 (Z3+26)
-1 ' \ ,
S4 =5 (z4+25 J

for which the weights A;, Ay, A; and A4 have to be found.

Now, to be able to calculate the mean ? values for the point-like
samples Zys Z9g ... Zg We have to use formula 189 (lecture No 8)
which explains, how to calculate the mean values of variogram

between the point samples.
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The system of the Kriging equations will be:

-

X_l":{.(sl;sll + 7\2'?(31;82)’4’- >\3"}(51;S3( + )\4"?(51;54) + '[J=’7 (zo ;Sll

Ap-Y(Sg3Sq) + ApY (S238,) + A3 (Sp354) + X4?(52;S41 +U=7Y(z,3S5)

~

MY (S4380) + Ag¥ (S43Sp) + 57 (843830 + Ag-¥ (S438,) + 1= Y(z_;35,)
>‘1 + )\2 + )\3 + A4 +0 = 1 J
Let us start with the variance terms:
Y (Sq384)
Xg=X1 = 14 1 Fig. 86
Xl/"—\%
& —
According to the last term in Eq. (189) one has k=2 and
’?(Sl;sl) = ;]é- [ 'Y(Xl—Xl) +Y (Xl—XB) + Y(-X8-X8) +Y (X8“X1) ]
= % [y (o) + Y(xg-%x41] = (270.a)
1
= 5 [Y(0) +Yv(14-1})]
Similarily:
?(SZ;SZI = % [y(o) + y(xy-x,1] =
= 2 [y(0) +y(10-1)] (270.b)
?(83;83) "_'% [Y(Ol +Y('x6"-x3)] =
(270.c)

[y(o) +yv(6-1)]

I
NI+
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- 1 .
Y(S4384) = 35 [Y(0) +Y(xg-x,)] =

270.4)
[Y(o) +y(2-11]

N =

For the mixed terms in Eq. (269) the situation is a little

more complicated (cf. Fig. 87}

P Fig. 87

—>» X

Always according to the last term in Eq. 189 (we have now k=4):
Y(S138,) = ‘—112 [y (xg=%q )+ ¥ (xg-%5) + Y (x9-%X) +Y(x9-%g) +

+ Y(xz-xl) + ’Y(xz-x2) + ‘Y(xz—x_]) + Y(xz—xe) + )

Y (=% ) + Y (X9=%5) + Y (X7-%9) + Y(-x7-‘x8) +

+ Y (xg=xq) + Y (xg-%)) + ¥ (Xg—x4) + Y (xg-xg)] =

]

21‘12 [47v(o) + 47y (2:1) + 4y (12-1) + 2y(10:1) + 2y(14-1)] =

= 5 [2Y(0) + 2y (21 + 2y(12:1) + Y(10-1) + y(14-1) ] (271.a)

Similarily:

“-{(51;53) = é [2y(o) + 2Y(4-1) + 2Y(10-1) +Y(6-1) +y(14.1)] (271.b)

Y(S13840 =3 [2Y(0) + 2Y(6:1) + 27(8-1) +¥(2:1) +Y(141)]  (271.c)
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V(833550 =5 [2Y(0) + 27(2:1) + 2y(8-1) +Y(6-1) +Y(10-1) ] (271.)
?(82;84)==é [ZY(o)+-2Y(4~1)-rzy(6-11-+Y(2-1)+y'(10-1)] (271.e)
¥(S3384) =3 [27(0) + 2Y(2-1) + 2Y(4-1) + ¥ (2-1)+7 (6-1) ] (2719

and because it is always
Y(si;sj) = Y(8438;) (272)

thus all terms in the Kriging matrix [K] are found.
Now, to determine the column matrix [M2], one has to use the
first term in formula (189) for the volume V reduced to the

point x5 (cf. Fig. 85). Thus, one has:

?(zo,sll = % [Y(xo—xll_+‘y(xo—x8)] =Y (7-1) (273.a)
Y(25,85) = Y (%5=%,) = Y(5-1) (273.b)
Y(25,84) = Y (x-x4) = ¥(1) | (273.4)

Now, because we are treating the point-like samples, let us
take the spherical variogram with the parameters a=6 m and C= 12.53%

and 1 = 1 m. Thus, the model variogram is of the form:

3
Y(h) = 12.53 [1.5- (- 0.5(F)] o2 27
[H in m]

which gives immediately:

Y(©) = o Y (5) = 12.04

Y(1) = 3.10 Y (6) = 12.53 (275)
Y(2) = 6.032 Y(h26)= 12.53

Y(3) = 8.61

Y (4) 10.67

il
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Now, setting the data from Eq.

(273) one has:

Y(8138,)
Y(S5185)
Y(S3355)
Y(S438,)
Y (84387
Y(84383)
Y(8,38,4)
Y(S,383)
Y(S,38,)
Y (5335,)
Y(z038,)
?(zo;szl
?(20;83)

Y(2038,)

Which, together with Eq. (272)

[x] =

]

6.265

6.265

6.265

3.016

7.773

8.9325

8.585

7.773

. 8.120

6.496

12.53

12.04

8.61

3.10

6.265
7.773
8.9325
8.585

1

7.773
6.265
7.773
8.120

1

and the column matrix [M2]

(275} into Egs.

gives the Kriging matrix:

8.9325
7.773
6.265
6.496

1

8.585
8.120
6.496
3.016

1

- e

(27011(2711 and

(276)

(277.a)
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12.53
12.04
[M2] = 8.61 (277.6)
3.10
1.0

This matrix equation can be solved, using for example the TI-59

calculator (Master Library program 02}, which gives the solution:

Ay ] [ -0.208 |
Ay -0.393
[A] = A = 0.034 (277.¢)
Ay 1.567
u 3.131

and the Kriging variance (cf. Eq. 263.a or 266)
for “_{(V;V)= Y(o) =0 is:

2 _ 4t I S -
OK - [)\] . [M2]"' ii:l }\i' Y(Zolsi)+u =

= 0.94349 %2 : (277.4)
and the Kriging standard deviation is:

Og = 0.971 =

What surprising result! The nearest samples to the point Zq
have the biggest contribution to the Zé value, whéreas the next
one situated at the points X3 and Xg have almost zero
contribution and further samples have even the negative A
values! This is a well known in geostatistics effect of screen.
The further samples are in the "shadow" of the nearest one.

They contribute, however, in the Kriging variance. If the
samples, for example, Z1r 291 27 and zg are absent, the system

of equations (269) will be reduced to the three last ones with

the values Y, = 12 = 0 and its solution will be
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Ay = =-0.547
Ay = 1.547
u o= 1.988

which will give the Kriging variance (cf. Eq. 277.d}
2

Oy = 2.07366 and Oy = 1.44 , thus the estimation error
in this case will be greater. Here the screening-effect is

even more emphasized - the second sample has still a negative

A value.



=
e
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LECTURE 12 Reykjavik, March 23, 1981

EXAMPLE No 2

Let us now take again 8 samples z,, Z3 ...Zg having the same

distances from the point x but now they are distributed in the

o
plane X,y as in Fig. 88,

AY
Fig. 88

/ s \
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where the X,y coordinates of the points are as below:

(in the 1 units):

Point X vy

Xo 0 0

X4 - 4.9497 + 4.9497
X9 + 3.5355 + 3.5355
X 0 +3

Xy -1 ' 0

Xg + 1 v 0

X 0 -3

X5 - 3.5355 - 3.5355
Xg + 4.,9497 - 4.9497

and the relative distances between the points (always in the units

of 1) are, according to their coordinates, given below -

XO x1 X2 X3 x4 XS X6 x7 x8
X, 0 7.0 5.0 3.0 1.0 1.0 3.0 5.0 7.0
xq 0 8.6022 5.3198 6.3324 7.7394 9.3674 8.6022 14.00
X, 0 3.5758 5.7507 4.3507 7.4305 10.00 8.6022
X3 0 3.1623 3.1623  6.00 7.4305 9.3647
X, 0 2.00 3.1623 4.3507 7.7394
X5 ’ 0 3.1623 5.7507 6.3324
g 0 3.5758 5.3198
X 0 8.6022

8 ' . 0
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The general form of the Kriging equations for this example is the
same as for the previous one (i.e. Eg. 269), but the particular
?(si; sj) values are different now. The ?(Si;si) values are the
same as previously, as well as the whole [M2] matrix and, referring

to Fig. 88, one has:
Y(S13Sq)= 711-2 [4Y(0) + 2y (x1-x,) + 2 (3)=%) + 2Y (X1 -Xg) +
+2Y (Xymxq) + 2Y (xp=Xg) + 2Y(x,-%g) ] =

[2Y(0) + ¥ (x1=%5) + Y (x1-X7) + Y (x1-%g) +

eI

Y (Rg=%7) + Y (Xg-%g) + Y (X9-Xg) ] (278.a)

which referred to the table with the mutual distances between

the points becomes:

Y(5135,)= 5 [2Y(0) +Y(8.6022) + Y(8.6022) + Y (14) + Y (10) +
+ Y(8.6022) +(8.6022)] =

= % [2yY(O) + 4Y(8.6022) + Y(10) + Y(14)] (278.b)
Y(S(384)= é— [2Y(0) + Y (x-%3) + Y (Xq-Xg) + Y (X;-Xg) +

+ Y(X3-Xg) + Y(x3-%Xg) + Y (xg-%g) ] =

% [2Y (0} + 2Y(5.3198) + 2Y(9.3647) + Y(6) +y(14)] (278.c)
?(sl;s4)= —é— [2Y(0) + Y (xy-%,) +y(§1-§<5) +y(;{1—§8) +
+ Y (xgmxg) + Y (Xg=Xg) + Y (Xg-%g) ] =

é— [2Y(0) + 2Y(6.3324) + 2y (7.7394) + Y (2) + Y (14) ] (278.4)
- 1 - - - - - -
Y(8y3830= g [2y(0) + Y (%y=%3) + Y (xp=%g) + Y (Xy=%4) +

Y (x3mXg) + Y (Xg=X7) + Y (X-%p) ] =

= —é— [2Y(0) + 2Y(3.5758) + 2Y(7.4305) + Y (6) + Y(10) ] (278.e)
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Y(8,38,) =—é— [2Y(0) + Y (Ry-Xg) + Y (Xp-X5) + Y (X=X} +
+ Y (Xg=Xg) + Y (X4m%) + Y(§5-§7L] -
= 1 [27(0) + 2Y(4.3507) + 2Y(5.7507) + Y(2) +Y(10)] (278.£)
?(s3;s4l=-%[2y(o)4—v(§3-§4)+rY(§3-§5)+-Y(§3—ie)+
Y (xymXg) + Y (Rg=g) + Y (Xg=%g) ] =
= -% [2y(0) + 47(3.’1625) +‘y(21 +y(6)] (278.9)
Taking again the spherical variogram given by Eq. (274) one has

additionally to the values given in Eq. 275):

3\

Y (3.1623) = 8.9887

Y (3.5758) = 9.8750

Y (4.3507] =11.2400 S (279)
Y (5.3198) =12.2976 ‘

Y (5.7507) =12.4980 )
which setted together with the formulae (275) into Egs. 278

gives:

- \

Y (S438,0 = 9.3975

Y (543530 = 9.3394

i (S438,) = 8.5854 [ (280)
Y (Sp3850 = 8.7337

Y (5,35,) = 8.2549

Y (S3384) = 6.8147 )

Now the Kriging matrix [K] is:
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6.265 9.3975 9.3394 8.5854
9.3975 6.265 8.7337 8.2549 1
9.3394 8.7337 6.265 6.8147 1
8.5854 8.2549 6.8147 3.016 1

—

[x] = (281)

1 1 1 1 0

the determinant of which is:
| k] = 98.31341151

The Kriging matrix (281) together with the one column matrix [M2]

given by (277.b) give the solution for the [A] matrix in the

form:
Al -0.330
Az -0.362 ‘
[A] = K3 = 0.114 ) (282)
A4 1.578
U 3.3867

which gives the Kriging variance Og according to

Eq. (277.4):

oﬁ 0.766677 32

(283)

Oy 0.876 %

Here again we have the screen effect visible for the samples
No 1 and 2 , but it is not 80 strong (in per cent) as in
Example No 1. Moreover the better spatial distribution of
samples gives here a lower Kriging variance Oi than in the

case of the aligned data.
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Example No 3

We go back to Example No 1 and for the sample configuration
presented in Fig. 85 we shall try to define the value Z,, of
the square ABCD located around the point z, with the side 2-1 ,

cf. Fig. 89
Fig. 89
{) %2 {3 Xe Xz Xs . X
Z, Z, 3 Zg Zy Zg
7/ 5/ 3/ 3/ 5/ 7/

The Kriging estimator =z is essentially the same as in Eg. (267),
but with different ki values. The Kriging system given by

Eg. 269 is still valid, with the same values of the ?(si;sj)
coefficients (the sample configuration has not been changed) .

The only difference is in the [M2] matrix. Here the ?(zo,si)

means now ?(ZV,Si) and it is an averaged value of the variogram,
when one extremity of the segment h in the variogram 7Y(h) is
"walking" around the square ABCD, and another extremity is fixed

at the sample S; this is just the first term of the right

i
hand side of Eq. 189 (cf. Lecture 8) divided by 2.

For the S; sample one has to calculate:

?(ZV;Sll = E%E [ Jasy(x-x)+ [ as Y (x-xg) ] =
ABCD ABCD

= é— I y(x-xq) as (284)
ABCD

where the point X 1is moving inside the square BABCD and

the point X1 is fixed, and X-X) means the distance between
the two points. The situation given by Eg. (284) is presented
with more details in Fig. 90 for the arbitrary rectangle

ABCD with sides L and 2-1 .
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< b ﬁf L %%
{_ —————————————— A\
|
|
|
EILO ° 2 A 21
Ix~x, I - am— ___..——"[
| \ - I
l *"\ P _— !

,U|T=:::____._.__ ____._“____.____::t:?::::t=qjds
- _ \
F C D
We have: Fig. 90

1
3 S Y (x-xqlds = E:%E-[ S Y (x-%¢)ds + J Y (x-%4)ds | =
ABCD ABGH GHCD
1 1 F H
= J y(x-x4)ds = —— [ du, [ du y(/u2+u12) =
L.1 Liel 1
GHCD E G
1 1 b+L
=TT [ auy J au Y(Vu2+u12) =
o b
1 1 b+L b
= ﬁ f du1 [ fdl.l Y(Yu2+u1 )- f du Y(Vu2+u1 )]
o o o
1 b+L
=btL _ 1 JZ a2y -
L (b+Ll1 Of duy Of du Y (Vustug ©)
b 1 1 b Ty
- E . '1')‘._1 O.’f dul é. du Y (vVyu +u1 ] =
=22 aie;] - 2 ommsn (285)

Here we have used the definition of the auxiliary function

H(L;1l) given in Eqg. 154.
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Adjusting now Eq. 285 to the conditions of Eq. 284 we have:
(=2 1, b=61)

Y(2Zy38y) = 4H[8 13;1] - 38[6 13 1] (286.a)
and similarily:

?(zv;szl =3H[61;1]~- 2H[41;1]

(286.b)
Y(z,389) = 26[4131] - B[2 131] | (286.c)
Y(2,354) = H[2131] ~ (286.d)

Now we can solve the Kriging system given by Eq. (269) and for

the Kriging variance (Eg. 273.a) one needs more the value

Y(V,V) = Y(ABCD;ABCD) = F(21321) (287)

Taking again 1=1 m and the spherical variogram given

by Eq. (274) we have: .
Lo12 01667 )
a 6
2. 12 5.3333
a 3
41_ 2 _ .
2= 2= 0.6667 } (288)
1= 1.000
a
81l.4 - 4.3333
a 3

/

The values. -é— - H(L;1l} for the spherical variogram can be
found on the graph in Fig. 59. One has for the values in
(288]: '

= . H(2131)=0.292 %H.(B 13 1) =0.730
L H(4131) = 0.445 > (289)
1 _
SH@B131) T 0.637
y,




The value

Now, for

F(21321) is taken from Fig. 60:

. F(213;21) = 0.255

C = 12.53%2 one has from Egs. (286) and (289):

12.53

= 12.53

= 7.49

= 3.66

Now one solves the system

(K] - [A] = [mM2]

With the matrix [K] given in Eq. (277.a) and the matrix

[M2] as below:

[M2] = |

12.53

12.53
7.49
3.66
1.0

which gives the

[A] =

vector [A]

0.0106
-1.1398
1.0722
1.0570
2.6714
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(289.a)

(290)

(291)

(292)

(293)
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The determinant of the matrix [K] is:

llx|| = 31.8663571 (277.e)

and the Kriging variance (cf. Eg. 263.a}l:

4
O™ Iy Ay Y (Zy3Si) + 1 = ¥(Zy32,) = 0.4219-0.255x 12.53 =

=-2.773 (294)

Thus, the value of the Kriging variance is negative, which

is, of course, not possible. This is a sign that something is
wrong in the calculation. The most probable error is in the
matrix [M2] the elements of which has been obtained as a
combination of the H(L3;l) functions. The values of the H(L31l)
functions have been found on graphs which does not give enough
accuracy. The matrix [K] has been obtained using the exact
formulae and the numerical calculations enough accurate. In the
solution, given by Eg. (293) the value AZ seems to be too low
whereas the values Xl too high. Next, the set of samples S,
have a higher weight than the sample S, which is situated just
at the perimeter of the rectangle ABCD.

To solve this problem we have to calculate the exact values of
the H(L,1l) function or rather, the exact values of the ?(ZV;Si)
averaged variograms. This is very often the case in any Kriging
matrix, and computer'programs for Kriging.contain'the

procedure to calculate all auxiliary functions needed for this

kind of calculation.

In our case the ? (z ;Sil functions can be written as (cf.

Eq. 285]):

1 bx+2 1
- J duy S du-<Y(Vu12+u2) X
° b

- 1
Y(Z_V;Sl =311

= - I I Y(fb 21 . 2,71 . 2y =
DN oo §=o [P+ oy (i+0.5)] +[n2(3+0-5] )
= HFUNC2 - C

The program for the calculation of the function HFUNCZ written for

the TI-59 calculator is given below. It is written for the spherical

variogram.
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The values of the HFUNC2 (g-;g';§-1 are now:
4 . 2 o 1 p— 1 - -1

HFUNC2 (g-,g-,gq = 0.9517 (ny=20;n3 = 10}
2.2.1 _ co0imn = 1

HFUNC2 (E',E',E' = 0.6912 (n1=203ny = 10)

HFUNC2 (0;%;'% ) 0.2906 (ny=503n, = 40)

which gives the new [M2] matrix

12.53
11.92
[M2] = 8.66 (292.a)
3.641
1.0

and the new set of solutions:

-0.212 A
-0.338 Ay -
[A] = 0.113 = AB . (293)
1.437 K4
3.139 U

which looks more reasonable. The Kriging variance, however
is still negative (slightly!}l. This is probably due to the
uncertainity in the knowledge of the ?(ZV;ZV) =F(21;21)
function, which again has te be vomputed numerically:

2 _

oy = 2.664 - 12.53 -F(21321) = - 0.530 ?
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J.A. Czubek

LECTURE 13 Reykjavik, 24 March, 1981

KRIGING IN THE PRESENCE OF DRIFT

We assume now that the random variable 2z{x) has a drift, i.e.

the expected value at x
E{Z(x1} = m(x) (296)

is now a function {usually unknown) of x. This situation

can be depicted as in Fig. 91:

z(x)

Fig. 91

Around the drift m(x} the particular realizations zy(x), z5(x)
etc. of the randcm variable Z(x) are osciliating. We are again
limited to the one particular realization, let say 2z1(x)Zz(x)

of the random variable 2Z(x).

We can consider that the random variable Z(x), according to

Fig. 91 is a sum

Z (x)= m(x) + Y(x} (297)

where Y(x] 1is a residual term having the zero expectation

value

e{ly(x)} = o (298)

and we can assume that it has a second order (weak}

stationarity or even it has an intrinsic hypothesis i.e. we

assume that for the residual Y (x) exists the variogram

298
Y(h).=—12~E{[Y(X+h)-Y(x)]2} (298)
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which together with (297) and (296) gives

Y(hi =1 E{[z(x+h) - 2(x)1%} - 3 [mEx+h) - m(x ] (299)

%— E{[Z(x+hl-z(x)]2} which is only accessible for
measurement when the drift is unknown, is simply an experimental

The value

variogram which can differ considerably from the underlying
variogram Y(h). It is not rigourously possible to determine
from one single realization z(x) of the random variable Z(x)
simultaneously the variogram and the drift. In practical
applications, however,one can assume the existance of the
intrinsic variogram <Y(h}, which for small values of h

(in comparison with the long range variability of the drift) can

be presented as a linear type:

Y(x,y)=y(h) = & |n
(300)
where h = (x-yl}

and the drift of the non-stationary random function Z(x) can be

assumed (at least at the vicinity of some point Xp) being of the

form:
k 1
E{z(x)} = m(x) = % a; * TE(x) (301)
1=1

where a; are unknown coefficients and lf(x) are the known
functions of xl (x power 1). These functions in the simplest
1

one dimension case are just the monoms x* , whereas in the

two-dimensional case (u,v} there is (for 1=2 , for example)

2 _ 2 _ 2
f(x) = f(u,v) = 2a1 u + 2a2 u-v+~2a3 . v2 (302)

etc. Approximation (301) can be regarded as the truncated

expansion of the function m(x) into the Taylor’s series.

9]. a.
[9]. . eamBoraTI, G. VOLPI, 1979. Groundwater Contour Mapping

in Venice by Stochastic Interpolators. WATER RESOURCES RES

15, No 2, 281 - part I ang 1T,

[10]1. a.
I. J.p.DELHOMME, 1979, SPATIAL VARIABILITY anp UNCERTAINTY IN

GROUNDWATER FLOW PARAMETERS :

A GEOSTATISTICAL APPROACH:
WATER RESOURCES RES.,

15, No 2, 269,
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Now, when the n data are available at n points x; (i=1,2...n),

e.g. z; = z(xi), and when D(xol is neighbourhood centered on
Xo r We assume that at this vicinity the co-variance <C(h) or the

variogram 7Y(h] are known and the Kriging estimator is

n
Z. = L A zZ. ' (303)

for some volume V. Assuming the non-bias condition:
* *}
E{z, - 2.} = B{z }-el{zg} = 0 (304)

one has here

k

(2.} = . 1 lewiax = 3 a,.lp
E ZV}—1§1 21 7 Tvix) 12, 21 (305)

i=1 1=1 Vi Vi
n k k
- 1
= % M- Ta-'m, = I A b, (306)
i=1 * 1=1 i i=1 i

1, ,
Here the bV coefficients are defined as a mean value of

lf(x) function inside the volume v :

b= < s lfmax (307)

V v(xo)

1
thus, the coefficients bv are the functions of the position
X, at which the volume v is centered. Expressions (305) and

(306) introduced intc the non-bias condition (304) lead to the

k. constraints:

n
T A Pv;= Py ofor 1=1,2 ...k (308)

When the conditions (308) are fulfilled, the estimation
variance contains only the covariance terms (without drift):
n

.2y = n - n -
E{[ZV—Zk] }=c(vyvy - 2151}& C(vyvy) +i51 jzl Aikj c(vi;vj) (309)
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For optimizing the Kriging estimator (303] the estimation
variance (309] subject to k constraints (308] has to have a
minimum value, which leads to the problem of the minimization
of this variance in respect to the li' values in the presence

of 1, (1=1,2 ...k} unknown Lagrande multipliers, i.e.:
1

n - n 1 _ N
e - b = .
i§1 Ai C(vi,vjl 121 B, vy C(vy;V)
3=1,2...n ¢ (310)
n 1 1
Z >\i b__ = bv;l: 1,2...k
i=-1 Vi 7

is now the Kriging system given by n+k equations with the

nt+k unknown parameters Ai and Yy with the Kriging variance

2 _ - 1 n - .

o, T CW;WI+ Iy by - T A Clvy;v) (311)
1=] i=1

Note please, that both the Kriging system (310) and the -

Kriging variance (311) can be presented in the matrix form

(see [1] page 319 , £f).

When the measurements z; are affected by the random errors

€ with
E(€;) =0 and D(g;) =E(e’) = 0> (312)
and these errors are non spatially correlated, i.e.
c(si;ej1=o
the system (310) becomes [9]:
£ oA G 2 ; " c( ) (314)
. C(v:svs) +0, AL - U, * = C(vssV 4
TSI B e ;

3=1,2,...n

and for the Kriging variance 0]‘3 one has an additional term

n 2 )
o= L A -0, . (315)
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Kriging in the presence of a drift is not yet a common procedure
introduced into the practice and there are even some doubts on
its correctness [9]. 1t seems, however, that especially in
small regions (in comparison with the drift variability}, it can

give very positive practical results [9, 10, 1, 2].



- 184 -

What was not said during the lectures

1. All possibilities given by the idea of the linear equivalents

have not been explored entirely.

2. The nugget effect - its behaviour in regularization and

Kriging.
3. Coregionalization and co-kriging.

4. Techniques of numerical calculus for auxiliary functions

and Kriging.
5. Random kriging.
6. Simulation of spatially distributed data in geology.
7. Non-linear geostatistics, disjunctive kriging. [3, 11].

8. Statistical distributions of the regularized (or graded)

data in the scope of non-linear geostatistics [3.11].

[11.] Y.c. KIM, D.E. MYERS, H.P. KNUDSEN: Advanced
. Geostatistics in Ore Reserve Estimation and Mine
Planning. (Practitioner’s Guide).: GIBX-65(77)
Grand Junction Bendix Field Engineering Corp. USA,
October 1977.





