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INTRODUCTION

The Geothermal Training Programme of the United Nations University (UNU) has
operated in Iceland since 1979 with six-month annual courses for professionals from
developing countries. The aim is to assist developing countries with significant
geothermal potential to build up groups of specialists that cover most aspects of
geothermal exploration and development. During 1979-2017, 670 scientists and
engineers from 60 developing countries have completed the six month courses, or
similar. They have come from Africa (39%), Asia (35%), Latin America (14%),
Europe (11%), and Oceania (1%). There is a steady flow of requests from all over
the world for the six-month training and we can only meet a portion of the requests.
Most of the trainees are awarded UNU Fellowships financed by the Government of
Iceland.

Candidates for the six-month specialized training must have at least a BSc degree
and a minimum of one-year practical experience in geothermal work in their home
countries prior to the training. Many of our trainees have already completed their
MSc or PhD degrees when they come to Iceland, but many excellent students with
only BSc degrees have made requests to come again to Iceland for a higher academic
degree. From 1999, UNU Fellows have also been given the chance to continue their
studies and study for MSc degrees in geothermal science or engineering in co-
operation with the University of Iceland. An agreement to this effect was signed with
the University of Iceland. A similar agreement was also signed with Reykjavik
University in 2013. The six-month studies at the UNU Geothermal Training
Programme form a part of the graduate programme.

It is a pleasure to introduce the 57" UNU Fellow to complete the MSc studies under
a UNU-GTP Fellowship. Moneer Fathel Alnethary, BSc in Geology from the
Geological Survey and Minerals Resources Board (GSMRB) in Yemen, completed
the six-month specialized training in Borehole Geology at UNU Geothermal
Training Programme in October 2010. His research report was entitled: Borehole
geology and alteration mineralogy of well HE-52, Hellisheidi geothermal field, SW-
Iceland. After five years of geological and geothermal energy work in Yemen, he
came back to Iceland for MSc studies in Geothermal Geology, at the School of
Engineering and Natural Sciences, Faculty of Earth Sciences, University of Iceland
in November 2015. In January 2018, he defended his MSc thesis presented here,
entitled: Petrology of the hornfels contact zone around the Hrossatungur gabbro in
the eroded Hafnarfjall central volcano, W-Iceland. His studies in Iceland were
financed by the Government of Iceland through a UNU-GTP Fellowship from the
UNU Geothermal Training Programme. We congratulate Moneer on the
achievements and wish him all the best for the future. We thank the School of
Engineering and Natural Sciences, Faculty of Earth Sciences, University of Iceland
for the co-operation, and his supervisors for the dedication.

Finally, I would like to mention that Moneer’s MSc thesis with the figures in colour
is available for downloading on our website www.unugtp.is, under publications.

With warmest greetings from Iceland,
Ludvik S. Georgsson, Director

United Nations University
Geothermal Training Programme
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ABSTRACT

This study focusses on a hornfels zone on the southern side of the Hrossatungur
gabbro, within the Hafnarfjall-Skardsheidi central volcano, W-Iceland. The intrusion
formed by repetitive injections of basaltic cone sheets, which were trapped at a lava-
pyroclastite boundary within the Hafnarfjall caldera fillings. During contact
metamorphism in response to the intrusion emplacement, a hornfels contact zone
was created by a recrystallization process of previously hydrothermally altered
basalt. Here, the hydrothermal alteration and chemical composition of minerals is
closely studied to evaluate the development during the contact metamorphism event
forming the hornfels around the gabbro.

The hornfels mainly contains clinopyroxene compositions ranging widely from
augite, salite, ferrosalite to hedenbergite in vesicle fillings, with minor
orthopyroxene, while the groundmass clinopyroxene ranges from diopside, augite to
salite. The plagioclase composition ranges from andesine, labradorite to bytownite
and occasionally to anorthite within the vesicles and veins, while the groundmass
plagioclase ranges from labradorite to anorthite. Other minerals found in the hornfels
are iron-titanium oxides (magnetite, ilmenite and titano-magnetite), garnet, titanite,
minor apatite and hornblende. The orthopyroxene include bronzite (Fsio-30),
hypersthene (Fs3o.s0) and ferro-hypersthene (Fsso-70). Garnet compositional range
goes mainly from andradite to about 20% grossular.

Loss-on-ignition measurements reveal that the majority of samples located at the
inner hornfels zone experience <1% LOI, while samples that show more extensive
LOI are mostly situated at the outer hornfels zone. A comparison of the hornfels LOI
with the LOI of Icelandic rocks in different alteration zones indicates that the
hornfels rocks should have shown LOI >1% to <10% prior to the gabbro
emplacement, which indicates that the water has been driven out of the rock by the
replacement of hydrous minerals by non-hydrous minerals.

For comparison, the mineralogy of the hornfels zone surrounding a dyke intrusion in
drillhole HE-42 in Hellisheidi geothermal field was studied. There the clino-
pyroxene ranges from augite to salite in veins and vesicles, with minor
orthopyroxene in the groundmass, the plagioclase composition ranges from
labradorite to bytownite and anorthite. The hornfels in the well was more intense
than that found around the gabbro observed by more pronounced granoblastic
crystallization, less iron rich clinopyroxenes and more calcium rich plagioclases.

The study shows that the formation of the hornfels is due to direct heat conduction,
the expulsion of water from the rock and preventing a direct water-magma
interaction.
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1 INTRODUCTION
1.1 Geological setting

Iceland, located in the North-Atlantic Ocean, lies astride the Mid-Atlantic Ridge, and is underlain by an
anomalous mantle plume. The volcanic zones cross the country in a complex manner as seen in Figure
1. Extension, with a half-spreading rate of about 1 cm/y in NE-SW direction, is contained within the rift
zones. The rifting occurs to a large extent within specific fissure zones each with a central volcano
residing in the central part. Each of these volcanic systems is active for 0.5-1.5 Ma (Franzson, 1979)
and then move outside the rift zone and become gradually eroded by the multiple glacial periods in the
last 3 Ma or so. Figure 1 shows the location of active and fossil central volcanoes.

FIGURE 1: Active central volcanoes (dark red) and fossil central volcanoes (orange) across
Iceland. The Hafnarfjall-Skardsheidi central volcano is in the area enclosed
by the black square (Hjartarson and Saemundsson, 2014)

The central volcano, to which this study relates, is Hafnarfjall-Skardsheidi and is located about 100 km
north of Reykjavik. It was active for about 1.5 Ma, or from 4-5.5 Ma ago, and is thus Tertiary in age
(Figure 1). The geology of the area was originally mapped by Franzson (1979), who recognized four
spatially separate volcanic phases, i.e., the Brekkufjall, Hafnarfjall, Skardsheidi and Heidarhorn phases
(Figure 2). Each of these phases produced compositions ranging from basalts to rhyolites. Franzson
(1979) identified two calderas, an early one in the Brekkufjall area and a later one in the Hafnarfjall
mountain range. Fossil high-temperature systems are widespread in the area, in particular associated
with the Hafnarfjall volcanic phase. The central volcano was formed at the initial stages of a new rift
zone, which was breaking through an older crust. Tertiary formations in Iceland have been eroded to
relatively deep levels by the multiple glaciations since about 3 Ma. In the case of Hafnarfjall-
Skardsheidi, the erosion has been estimated to range from a few hundred metres to <2 km.



1.2 Hafnarfjall caldera formation

The location of the Hafnarfjall
caldera is shown in Figures 2 and
3, the latter also showing the
locations of exposed and
postulated larger intrusions
associated with the central
volcano. The caldera consists of
three contemporaneous basin
structures. There are two main
eruptive units within the caldera,
steeply dipping lavas mostly
occupying the southern and the
northernmost parts and these are
succeeded by basaltic to basaltic
andesite  pyroclastics, which
indicate  volcanic  eruptions
within a caldera lake
environment. The dominant
intrusives found within the
caldera are cone sheet swarms,
which seem to coalesce at 2-3 km )
depth, coinciding with the center ’
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southern and western parts of the
Hrossatungur basin. Multiple
dolerite cone sheets are located
in a circular continuation of the
gabbro in the east and are
assumed to be a part of the same intrusive episode. No intrusions are seen cutting through the gabbro,
and all evidence suggests that the gabbro is the last intrusive in this part of the central volcano (Franzson,
1979).

FIGURE 2: A simplified geological map showing the division
of volcanic phases in the Hafnarfjall-Skardsheidi
central volcano (Franzson, 1979)

1.3 Geothermal systems

Hafnarfjall-Skardsheidi is a major and especially large central volcano, active for over 1.5 Ma, which is
an anomalously high age compared to other such volcanoes in Iceland. Geothermal activity was thus
widespread due to the high intrusive rate in the area. Figure 3 shows the location of large intrusions
found within the central volcano and vicinity, each of which is likely to have been a heat source for a
localized overlying high-temperature system. High-temperature alteration is present in all these areas,
which could be an evidence for the geothermal systems having developed by heat exchange between
these heat sources and the surrounding groundwater systems. Franzson (1979) only studied the
hydrothermal alteration within the central volcano in a preliminary way. However, later mapping has
confirmed that high-temperature alteration is present around these postulated and exposed intrusions.
The hydrothermal alteration within the caldera is particularly intense around the caldera margin and lava
succession inside the caldera at the northern and southern parts. In these areas, alteration characterizing
the epidote-actinolite zone is predominant. Low-temperature alteration is predominantly found within



the pyroclastic caldera fillings which implies the
hydrological control of the groundwater system
connected to the caldera lake (Franzson, 1979,
unpublished data).

1.4 GEORG-DRG project

The project titled Deep roots of geothermal
systems (DRG), conducted in cooperation with
the Geothermal Research Group (GEORG), aims
to understand the relationship between water and
magma in the roots of volcanoes, in particular
how heat is transferred into geothermal systems to
maintain their energy, and how to utilize
superheated steam from greater depths.

The understanding of geothermal systems in
Iceland and worldwide has been expanding in the
last decades, concomitant with increasing
utilization geothermal energy. One area of limited
understanding, though, has been the process of
heat exchange between groundwater systems and
magma heat sources. Does this occur as direct
heat exchange between molten magma and the
fluid (the most effective process) or is this
exchange more distant from the molten magma?
This is difficult to assess for active systems, and
very expensive, as deep drill holes are needed.
Another way to do this is to study deeply eroded
areas where fossil geothermal systems and related
magma bodies can be evaluated. To address this
issue, GEORG provided scientific grants in 2013,
including a grant for the mapping of a deeply
eroded gabbro body and the enveloping
geothermal system. The chosen location is the
Hrossatungur gabbro in the southern part of the
Hafnarfjall region. The project, which started in
2013, includes field mapping and sampling,
along with petrographic studies, mainly
addressing the hydrothermal alteration. The
results have so far only been presented in several
oral presentations. Below, data pertinent to this
study is presented.

1.5 Geological and geothermal features of
Hrossatungur gabbro and surrounding
area

Figure 3 shows the location of Hrossatungur
gabbro and its relation to the Hafnarfjall caldera.
Figure 4 represents a more detailed map of the
gabbro along with sample locations and points of
interests. Figure 5 shows the view from the south
delineating the gabbro. The gabbro was intruded

FIGURE 3: Location of larger intrusions in the
central volcano. Solid lines show exposed
intrusions, while intrusions outlined by broken
lines are proposed based on indirect evidence.
Intrusion marked 2 is the Hrossatungur

gabbro (Franzson, 1979)
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Field mapping |
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FIGURE 4: Simplified geological map of the
Hrossatungur gabbro, with lava series along
the south and west contact and pyroclastic
caldera filling to the north



FIGURE 5: A view of the Hrossatungur gabbro from south. The broken line marks the outer boundary
of the gabbro. Locations of profiles through the hornfels in this study are marked specifically

into the caldera fillings and appears to follow the boundary between the steeply dipping lava series and
the pyroclastic fillings, except in the west where it intrudes only the basalt. It forms a sub-circular body
with an indication in the east of ballooning, while it is more elongated in the western part. Geological
evidence points to the gabbro being formed during a multiple cone sheet intrusive event where magma
was pumped into a magma trap at the formation boundaries. Further evidence also indicates that magma
was ejected from the gabbro intrusion as cone sheets (see e.g. Figure 12). The gabbro is probably the
last intrusive event within this part of the volcano as no other intrusions are found cutting the gabbro.
This, along with the freshness of the gabbro, implies that it was also the last heat source for a geothermal
system in this part of the volcano.

One of the features studied within the DRG project was hydrothermal alteration. For this purpose,
several samples were taken for petrographic analyses (Franzson, pers. comm.). The results show two
main types of hydrothermal conditions. Very intense hydrothermal alteration is found within the basalt
succession south of the intrusion, west and above the intrusion to the west. There, the hydrothermal
minerals include very common garnet, wollastonite, actinolite, quartz, chlorite and wairakite and minor
epidote. Calcite is also widespread but becomes particularly dominant above the roof of the gabbro in
the west where it aggressively alters the primary mineralogy. High-degree alteration is found at the
caldera fault structure to the south, and it is proposed that it served as a geothermal upflow channel prior
to or contemporaneously with the geothermal system associated with the HTG. The postulated two
geothermal systems are shown in Figures 6a and b.

A sharp contrast in hydrothermal alteration is between the basalt succession to the south and the one
found within the pyroclastic caldera fillings north of the HTG, where the alteration dominantly belongs
to the zeolite zone, with scolecite/stilbite dominating in vesicles and vugs. There is an obvious lack of a
high-temperature system that might relate to the HTG heat source. The only plausible explanation for
this is that the pyroclastic fillings contained a powerful cold groundwater system, which flowed towards
the gabbro heat source, and thus prevented geothermal flow into that area (Franzson, unpublished data,
and Brett et al., 2016).

Figure 6 shows an overall model with the high-temperature system associated with the caldera fault
structure preceding the HTG (a), followed by the gabbro intrusion and its derivative geothermal system



(b). In both cases, the groundwater system within the caldera (controlled by the overlying caldera lake)
prevented the flow of geothermal fluids into that domain, as this was the inflow towards the heat source.
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FIGURE 6: Geothermal systems in the study area a) The first geothermal system coinciding with
the approximate extent of hydrothermal alteration around the caldera fault. The gabbro would not
have intruded until later. b) The later geothermal system coinciding with the approximate extent of
hydrothermal alteration around Hrossatungur gabbro (figures from Brett et al, 2016)

Brett et al., (2016) conducted a
preliminary study of
homogenization temperatures
(Th)  within  the  high-
temperature alteration area
south and west of the HTG,
mainly in quartz. Maximum
fluid inclusion temperature in
water-dominated geothermal
systems is confined to the
boiling point curve. Higher
temperatures may be
experienced if  vigorous
boiling occurs or in dry steam
systems. Figure 7 shows
histograms of Th versus the
altitude of sample locations. A
boiling point curve fitted to the
Th measurements is very
important as it puts definite
depth constraints on the
geothermal system. Indeed, it
provides a potent evaluation of
the intrusive depth of the HTG,
and indicates that the water
table of the “overlying caldera
lake” at that time was at
approximately 1300 m a.s.L.
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FIGURE 7: Histogram of homogenization temperatures (Th)
measurements of fluid inclusions, mainly in quartz, plotted
against temperature and relative altitude of samples. Best fit of
boiling point curve (Brett et al., 2016)



2. DEFINITION AND PREVIOUS STUDIES OF HORNFELS IN ICELAND

Hornfels is a type of granofels that is typically a fine-grained and compact metamorphic rock. It develops
at the contact (thermal metamorphism) with a magmatic intrusion. Hornfels is a hard rock that tends to
splinter or display conchoidal fracture when broken. The structure of hornfels is distinctive with lack of
foliation or preferential plane of fracture. These shallow rocks occur under conditions of low deviatoric
stress (Winter, 2014). However, although pressure is not an important factor in the rock formation, these
rocks show the tendency for alignment parallel to the direction of least resistance, which gives a
characteristic type of micro-structure (Harker, 1964). The hornfels rocks evolves towards granular or
granoblastic textures and they occasionally include porphyroblasts. Hornfels rocks were first described
and defined by Goldschmidt (1911) for a series of contact-metamorphosed hornfels of palaeozoic age
in the Oslo region, southern Norway. He described the relationship between the equilibrium mineral
assemblage of the metamorphic rock and its bulk composition. Eskola (1914) studied similar hornfels
conditions in the Orijarvi region of southern Finland and confirmed the concept of Goldschmidt by
noting the same relationship between the mineral assemblage and chemical composition (Eskola, 1914).
On the basis of this predictable relationship, Eskola (1920) developed the concept of metamorphic
facies. Five original metamorphic facies were proposed; greenschist, amphibolite, hornfels and eclogite
facies. Numerous classification schemes have further been proposed that include other facies and sub-
facies (Winter, 2014). Thus, hornfels mineralogy is typically split into the following metamorphic sub-
facies: albite-epidote, hornblende, pyroxene, and sanidinite hornfels facies.
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FIGURE 8: Temperature-pressure diagram showing the general
limits of various metamorphic facies. Boundaries are approximate
and gradational (Winter, 2014). The dotted line at the bottom of
the figure indicates the approximate pressure expected around the
gabbro during the hornfels event. The arrow shows the location of

the pyroxene hornfels at Hrossatungur

The hornfels in  the
Hrossatungur  area  was
brought about by the

emplacement of the gabbro
intrusion. As the depth of the
hornfels  occurrence s
approximated as 800-1000
m, it will correspond to the
broken line in the lower part
of Figure 8. The temperature
of the gabbro can be
estimated as 1000-1100°C.
This should have been the
maximum temperature of the
hornfels nearest to the
gabbro, but the temperature
should diminish in a
conductive way with distance
from the gabbro. Evidence of
rocks belonging to sanidinite,
pyroxene and hornblende
hornfels  facies should
therefore be searched for in
this locality.

Fridleifsson (1983) studied
the chemical composition of
pyroxene in the hornfels
around an exhumed gabbro
system in the Geitafell
central volcano. He
extensively analysed
pyroxene and plagioclase
compositions in lava hornfels
and illustrated their



compositional range in terms of the pyroxene quadrilateral (Wo-En-Fs) and the plagioclase ternary (Ab-
An-Or). His study revealed that the compositional variation and transition from the rock into the
vesicle/vein centres is augite, salite, ferroaugite, ferrohedenbergite and hedenbergite with Fe-enrichment
trend toward the centre of the veins. By this trend in composition, he inferred the cause of the thermal
metamorphism as being the gabbro intrusion, whereas primary pyroxene of basaltic rocks are mainly
augite with higher Fe content in the groundmass augite. The plagioclase in Geitafell central volcano, as
described by Fridleifsson (1983), is characterized by a narrow zone of oligoclase and albite. The study
revealed also that the hydrothermal system is created by the interaction of hot intrusive rock and
groundwater system. Moreover, heat transfer in the system was dominated by supercritical or
superheated fluids, which existed within the hornfels contact zone (Fridleifsson, 1983).

Other studies of hornfels mineralogy have also been conducted in Iceland. Marks et al. (2011) referred
to Fe and Mg in Reykjanes as dominant substituted elements in the compositional variation of pyroxene,
because they are sensitive to hydrothermal change in the system. They reported the composition of
igneous, hydrothermal and granoblastic clinopyroxene in terms of the familiar Wo-En-Fs system
(CaSi03-MgSi0;-FeSi0;). The typical granoblastic clinopyroxene compositions are consistently of less
calcic composition (augite) than the hydrothermal clinopyroxene, which is found in quartz-epidote-
actinolite veins. The hydrothermal clinopyroxene ranges from salite to ferrosalite. The igneous augite is
less calcic and less Fe-rich than both granoblastic and hydrothermal clinopyroxene (Marks, et al., 2011).
This hydrothermal calcic plagioclase and recrystallized granoblastic hornfels are associated with the
transition from amphibolite facies to pyroxene hornfels facies alteration in RN-17. It shows that high-
temperature granoblastic assemblages are found with epidote, actinolite and spinel. The study also
showed that granoblastic orthopyroxene is common below a depth of 2150 m.

Helgadottir et al. (2017) studied samples that were taken from cores drilled into the eastern side of the
alteration contact surrounding the Geitafell gabbro body. They discovered that the majority of pyroxene
is Mg-rich clinopyroxene, which falls close to a composition between hedenbergite and diopside (salite-
ferrosalite), but some compositions are shifted towards the diopside end-member. Microprobe analyses
confirmed the existence of alteration minerals that formed at supercritical condition. Helgadottir et al.
(2017) observed a high-temperature mineral assemblage in veins, including secondary clinopyroxene
(salite and ferrosalite), actinolite, garnet, titanite, epidote and feldspar, which are part of the contact zone
that formed at the time of the cooling a gabbro intrusion in the Geitafell central volcano (Helgadottir et
al., 2017).

Schiffman et al. (2014) studied the granoblastic hornfels which is located above a molten rhyolitic
intrusion in well IDDP-1 in Krafla geothermal system. Temperatures assessed as high as 615-954°C
were recorded within the pyroxene and oxides within the hornfels. This temperature exceeds the brittle-
ductile transition zone for mafic rocks in the oceanic crust at the depth of 2.1 km. Therefore, the
conclusion of the study is that, because of the ductile conditions at those temperatures, the hornfels
would be incapable of sustaining an open fracture network to allow convection, and thus the heat transfer
from the roof of the molten rhyolite would be conductive. Furthermore, the strong thermal gradient
extending from the gabbro causes alteration and recrystallization, and drives the water out of the rock,
forming a water-phobic environment. Hence, heat mining by direct “water” contact with magma appears
not to exist (Schiffman, et al., 2014).



3. THE PRESENT STUDY
3.1 Objectives

One of the main purposes of the GEORG-DRG project was to evaluate the process of heat exchange
between a molten magma body and the surrounding groundwater system. An important factor in this
respect is the study of the contact rocks around the heat source in order to find evidence either for the
infiltration of the groundwater towards the magma or the outwards conduction of the heat from the
magma into the surrounding rocks. Hornfels is defined as a rock that has been altered and partly
recrystallized due to heating from a nearby magmatic intrusion, also termed contact alteration. This
study focusses on the processes of the formation of hornfels and an evaluation of the role of water and
heat in its formation. It is divided into the following parts:

* A review of field relations.

* ICP-OES chemical analyses of about 30 samples from the hornfels zone to evaluate the chemical
exchange that may have taken place during the hornfels process and potential contamination from
the gabbro.

* Petrographic analyses of about 33 hornfels rock samples

» Loss-on-ignition analyses of about 30 hornfels samples to estimate the water and carbon content
within the hornfels zone.

* SEM and partly electron microprobe analyses to identify the mineralogy of the hornfels.

* A comparative study of a hornfels zone found in drillhole HE-42 at Hellisheidi high-temperature
system.

* A comparison with other hornfels locations, which have been studied in a similar way.

3.2 Field relations

Figure 9 shows a geological map of the HTG and surroundings. A hornfels zone is marked around the
intrusion. Its thickness is variable as indicated in the figure. In appearance, the hornfels rock is very
dark, very fine grained, hard and flinty (Appendix VII). This character is most pronounced near the
margin of the gabbro (dolerite) but gradually changes into a normal intensely hydrothermally altered
rock at some distance from the gabbro. This transition is evidenced by the change from the fine grained
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FIGURE 9: Hrossatungur gabbro and the surrounding basalt and pyroclastic caldera filling. The
red contact indicates the relative thickness of hornfels around and at the roof of the intrusion



and dark colour of the rock into the more heterogeneous high-temperature alteration. It is also seen by
the decreasing hardness away from the gabbro, which shows up as more erodible rocks. Another
interesting feature is the similar cooling jointing that crosses the contact from the dolerite to the hornfels,
which indicates contemporaneous consolidation of the margin of the gabbro and the hornfels. This
conclusively shows partial melting and recrystallization of the hornfels contemporaneously with the
margin (dolerite) of HTG. The thickness of the hornfels in the south part, as defined above, ranges from
about 20-40 m, while the thickness to the north, where the HTG contacts the pyroclastic caldera fillings,
appears to be much less. There, the exposures are more scree-covered, which in turn indicates that the
rock never went through hornfels recrystallization/consolidation, as on the southern side. Instead,
exposures show pillow-like structures, evidence for magma migration into water-saturated pyroclastics.
At one location, clear brecciation has occurred, which has been interpreted as being due to the intrusion
of water into the gabbro, causing steam-explosion activity and brecciation of the dolerite/gabbro. The
hornfels on the northern side may therefore only be in the range of a few metres. This difference is
interesting as it clearly implies that the transfer of heat from the intrusion is drastically less on the
northern side, where it contacts with the pyroclastic caldera fillings, than at the southern contact against
the basalt. An interesting aspect is that a thin hornfels zone is found in the central part of the gabbro, as
shown in Figure 12, which marks the roof of the intrusion. The field relations are mainly derived from
earlier unpublished studies from 2016 by Franzson and Brett.

3.3 Sampling

Sampling was done specifically for this hornfels research. The sites where most of the numbered samples
were collected are shown in Figure 10. The total number of samples is 52. The sampling was threefold;
firstly, individual samples from various hornfels locations around the gabbro; secondly, sampling of
three specific profiles away from the gabbro (Figures 11, 12 and 13); and thirdly, a few samples from
the roof of the intrusion in the eastern part.
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FIGURE 10: Geological map of the Hrossatungur gabbro and surroundings. Small squares enclose
the locations of sampling profiles (a), (b), (c) and (d) while A, B, C and D subfigures show the
analytical numbers referring of as listed in appendices. The varying colours of the numbers
represent different field days. Sample location 272, represents a profile containing
four samples (id of the four samples)



Cone sheets Older dyke

FIGURE 12: The southern margin of the gabbro showing the hornfels zone, profile b, roof hornfels
profile c, steeply dipping lavas and cone sheets contemporaneous to the gabbro

FIGURE 13: Hornfels contact zone, profile d

10



4. ANALYTICAL TECHNIQUES (METHODS)

The collected samples underwent several types of analyses as described below.

4.1 Binocular microscope analyses

Binocular microscope is one of the primary analytical techniques carried out with the aim to identify
rock characteristics, such as texture, rock type(s), primary minerals, hydrothermal alteration intensity
and vein fillings. The analyses were done at Iceland GeoSurvey (ISOR) petrography laboratory using
an Olympus SX12 binocular microscope. Hornfels samples were collected from different locations
around HTG as described earlier. Descriptions of the rock samples collected for this research are in
Appendix VIL

4.2 Petrographic microscope analyses

The petrographic analytical technique assists in determining the finer details of the primary and
hydrothermal alteration mineralogy and paragenetic mineral sequences. This method is used to add more
details of the characteristics and features of minerals not distinguishable by the binocular microscope.
Samples for thin-section analyses were selected from the hornfels zone around the HTG, mainly within
four representative gabbro distance related profiles as inner and outer hornfels zones (a, b, ¢ and d),
along with individual samples along the hornfels zone. The locations of the profiles are shown in Figures
9-12. The aim of the study was to map and obtain a better overview of mineral distribution, degree of
remineralization and hornfels types. A total of 33 thin-sections were analyzed based on the optical
properties of the minerals using a Leitz Wetzlar and an Olympus BX51 petrographic microscopes
(magnification range between 4x to 50x) at [SOR and at the Institute of Earth Sciences, University of
Iceland (IES).

4.3 Inductively Couple Plasma-Optical Emission Spectrometry (ICP-OES)

Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) is one of the most powerful
tools of optical emission spectrometry for quantitative elemental analysis. The basic principle behind
this technique is atomic emission spectroscopy. A sample in the form of a solution is injected into the
ICP unit through a narrow torch tube. Argon gas is supplied to the torch coil where it is ionized and
plasma generated by an electromagnetic radiation field. This plasma has high electron temperature and
density (10000 K) that is used for the excitation of the sample, which emits radiation as it goes back to
ground state. The intensity and characteristics of the emitted radiation is measured optically with a
detector (Xiandeng et al., 2000). The detector measures wavelengths and the intensity of the light, which
is used to determine how much of each metal is present. The information is collected from the data
system and compared with standard curves. A total of 30 samples from the hornfels zone around the
HTG was analyzed. Most of the samples are homogeneous as they are derived from homogeneous basalt.
A few of the samples, however, are hornflesed basalt with injected dioritic to silicic veins derived from
late-stage gabbro melts. The samples from the hornfels contact zone around HTG were pre-treated by
dissolving them. A Spectro Ciros 500, ICP-OES instrument at IES was used to measure major and trace
elements.

4.4 Loss-on-ignition analyses (LOI)

The ICP-OES analysis described above does not take account volatiles that may be present in the
samples. As this study focusses on the interaction between a molten magma and the surrounding
groundwater system, it was deemed necessary to evaluate the amount of volatiles, mostly considered to
be water and CO,. This was done with loss-on-ignition test (LOI), which measures the amount of
volatiles lost when the sample is ignited. The ruling factors controlling the analyses is the combustion
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time and temperature. The ratio of the two aforementioned constituents is not determined directly by
this method. This can, however, be assessed by petrographic observations of the samples.

In this study, about 30 samples were selected for LOI analyses in order to determine the water/carbon
content in the hornfels. From 0.9 g to 1.6 g of each sample was accurately weighed, heated to 1000°C
and weighed again to calculate the LOI ratio. Procedures and sample preparation for LOI analyses are
described in detail in Appendix [V. The results are presented and discussed in Chapter 5.

4.5 Scanning electron microscopy (SEM)

In a scanning electron microscope (SEM), a narrowly focused beam of electrons (typically <I pum in
diameter) is used to probe the surface of a sample. Different detectors are used to measure electrons of
different energy that are emitted from a sample and X-rays that are produced from the interaction of
beam electrons with the sample. By scanning the beam over the sample, an image of the sample surface
can be generated. Relatively low-energy secondary electrons are useful for imaging the surface relief of
a sample, whereas emission of higher energy backscatter electrons (BSE) is strongly dependent on the
mean atomic number of different parts of a sample. BSE images are therefore especially useful for
distinguishing different minerals, as well as rock textures and zonation of minerals.

Each element in a sample emits X-rays of characteristic wavelengths with intensity that is proportional
to the concentration of the element in the sample. This can be used for quantitative chemical analyses.
Compared to an optical microscope, the scanning electron microscope (SEM) is capable of imaging at
much higher magnification and greater focal depth. It is a versatile instrument for examination, capable
of yielding multiple types of information about a geological sample, such as microstructural
characteristics, crystal structure and chemical composition.

The SEM analyses (Appendix II) were done at IES. The analyses were performed with a Hitachi TM
3000 instrument, which is equipped with a BSE detector for imaging. This SEM also has an energy-
dispersive spectrometer with a silicon-drift detector (SDD-EDS) from Bruker that was used for
quantitative analyses and elemental mapping.

For chemical analyses of samples and good BSE images, it is important to use well-polished thin
sections to avoid any surface topography. Moreover, it is also essential to have good electric
conductivity on the surface, and for this purpose, the thin sections in this study were coated with about
25 nm thick carbon layer. Nine specific samples were selected from the southern part of the hornfels for
inspection and analyses with the SEM.

4.6 Electron microprobe analyses (EMP)

The electron probe micro-analyzer at IES is a JEOL-8230 SuperProbe equipped with a LaB6 thermionic
electron emitter. It has five wavelength-dispersive spectrometers (WDS), one with four different
analytical crystals and the other four WDS with two different crystals each. This equipment provides
the most accurate analyses of the minerals studied. It is, however, more expensive to use, and the main
purpose of the EMP study was to confirm the SEM analyses.

For all analyses, the accelerating voltage was 15 keV. The probe current was measured at the Faraday
cup prior to each analysis. Apatite and plagioclase were analyzed with 5 nA and 10 nA cup current,
respectively, whereas pyroxene, oxides, garnet, amphibole and titanite were all analyzed with 20 nA.
All of the minerals were analyzed with a focused beam, except amphibole with a 5 pm beam diameter.
The standards used for the EMP analyses are listed in Tables 19a-g (Appendix VI). Most of the standards
were provided as a courtesy of the Smithsonian Institution (NMNH and USNM standards). The CITZAF
correction program (Armstrong, 1991) was used for all analyses, except for oxides and titanite where
ZAF correction was applied.
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Five samples (226, 230, 290 and 291) from the hornfels around HTG and from Hellisheidi geothermal
field (well HE-42) were selected for analysis. These samples were carefully selected to present inner
and outermost hornfels zone around HTG and compare with a hornfels zone around a dyke within the
high-temperature geothermal system at Hellisheidi. The elements analyzed were Si, Mg, Fe, Ca, Na, Al,
K, Mn and Ti. The structural formula has been recalculated on the basis of 24 oxygen, while Fe is
calculated as ferrous iron in all analyses. The chemical composition of the representative minerals
obtained in wt% and full results are shown in Appendix I11.
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5. RESULTS
5.1 Whole-rock chemistry

The rocks around HTG originated as eruptives, which subsequently were buried, and suffered after that
variable but progressive hydrothermal alteration within the geothermal system(s), which is bound to
have changed the rock compositions (e.g. Franzson, et al., 2008). The hornfels is the last major alteration
phase of the rock. This involves both heating up and partially remelting of the rock. Further to that, one
may speculate whether there have been some metasomatic reactions reaching outwards from the gabbro.
The chemical analyses are an attempt to evaluate what changes took place during these episodes. For
this purpose, a total of 30 samples from the hornfels zone around HTG were analyzed for whole-rock
composition (major and trace element concentration). The major oxides include SiO,, Al,Os, FeO (total),
MgO, CaO, Na,O, K,0, MnO, TiO; and P,0s. Trace elements include Ba, Cu, Ni, Zn, Zr, Co, Cr, La,
Sc, Sr, V and Y, as shown in Table 1. A detailed description of the procedures and sample preparation
for ICP-OES analyses is presented in Appendix .

Si0; is always the most abundant oxide and exhibits a wide variation in concentration. It was proposed
by Harker (1909) that SiO, content increases steadily with magmatic evolution and that it could be used
in variation diagrams to indicate the extent of differentiation (Harker, 1909). SiO, in the hornfels
samples show a wide range in concentration, or from 30-75% by weight. Petrographic analyses of
samples 248, 225, 231, 272c, 20604, 250, 229 and 273, which had elevated silicic contents, are affected
by veining of andesitic to silicic material. The heterogeneity of the hornfels compositions indicates the
shift in the original composition toward dacitic composition. For instance, sample 248 (basalt hornfels
+ magmatic), 225 (hornfels + magmatic diorite), 231 (quartz abundant in groundmass), 272c¢ (quartz
veining occurred after the hornfelsing process), 20604 (hornfels + diorite and silicic veining), 250
(quartz veins and intermediate rock composition), 229 (hornfels + diorite veining), and 273 (hornfels +
silicic veins). These instances of veining explain the high silica content that has been added to the
hornfels rocks during the metamorphism process. The veins originated as late stage melts, ejected from
the gabbro and into the hornfels. The veins are fresh magmatic material, and the sample compositions
cannot therefore be adequately interpreted in the context of the hornfels process. These veins do not
show any cooling against the hornfels, which indicates similar temperatures as prevailing in the hornfels.
The samples that contain dioritic to silicic magmatic veins are marked specifically on the diagrams.

Harker variation diagrams have been prepared to display the chemical data obtained from the ICP-OES
analyses. These simple X-Y diagrams depict major elements content (Figure 14) and trace element
concentration (as ppm) (Figure 15) versus SiO, content (wt%). The analyses have also been done in
order to evaluate the chemical evolutionary trend of the system (Franzson, 1979). These samples, plotted
together with the hornfels samples in Figures 14 and 15 were taken from relatively fresh rocks that have
experienced minimum hydrothermal alteration, and are used here to establish the difference between the
primary chemical trend and the hornfels, and in that way unravel the possible chemical enrichment or
depletion that has taken place. This is evaluated below. In any comparison of chemical analyses, a
consideration has to be made of whether the major elements are calculated in terms of percentage where
the total is always 100% (Winter, 2014), because in that case, if one or more constituents are not
included, it will proportionally increase the percentage of all the other constituents.

5.1.1 Major elements

Major elements are plotted against SiO; in Figure 14. These are grouped, as mentioned above, into two
parts; on the one hand, primary rock compositions (X and field encircled as shown in Figures 14 and
15) (Franzson, 1979); and, on the other, the compositions of the hornfels samples. If a sample falls
within the primary compositional field, one may not be able to interpret whether enrichment or depletion
has taken place or not. However, if an analysis falls outside the primary field, a change is likely to have
taken place, but it may not be clear which of the oxides (elements) plotted has been added or removed.
Therefore, the interpretation of the chemical change may have to rely more on the overall shift of
oxide/elemental abundance of the hornfels samples rather than individual analyses.
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TABLE 1: Major and trace elements of the hornfels contact zone around Hrossatungur gabbro based
on ICP-OES analysis. See Figure 10 for location of the samples

ICP No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample

No. 225 226 227 228 229 230 231 248 250 251 252 271 272A  272B 272C
Major elements in wt%

Si02 59.56 46.61 48.71 48.71 53.71 50.35 55.57 75.47 53.82 49.37 42.73 4531 47.99  49.36 55.17
AI203 13.16 1691 1381 = 15.11 13.72 13.59 1234 1137 14.75 14.84  22.87  18.02 16.75 = 16.53 14.71
FeO 1439 1471 13.09  14.82 12.75 14.97 12.33 2.78 14.03 1440  21.92  17.60 17.18  18.17 14.81
MnO 0.13 0.21 0.23 0.31 0.20 0.27 0.21 0.03 0.38 0.36 0.15 0.39 0.31 0.26 0.20
MgO 271 9.51 6.08 3.13 3.64 3.47 2.78 0.39 3.18 2.86 1.65 2.90 2.88 3.89 1.70
CaO 4.00 6.49 11.47 9.29 7.87 10.08 7.28 0.72 4.55 9.37 3.38 9.96 8.17 4.61 4.72
Na20 2.31 2.70 2.96 2.90 3.22 2.78 3.59 0.85 4.67 4.12 0.72 0.41 1.24 1.08 3.39
K20 0.63 0.19 0.25 0.83 1.03 0.26 1.97 7.81 0.16 0.11 0.66 0.10 0.43 1.21 0.09
TiO2 2.78 2.27 2.91 3.80 3.11 3.46 2.68 0.23 3.02 3.09 4.65 4.42 4.26 4.29 3.59
P205 0.19 0.20 0.34 0.95 0.59 0.62 1.04 0.02 1.29 1.34 0.98 0.72 0.63 0.42 1.49
Trace elements in (ppm)

Ba 147.65 | 12329 | 9293 15411 253.54 140.92 34930 1833.87 5023 = 43.58 13448 4139  152.66 237.53 28.92
Co 66.59 78.57 65.12 58.97 52.82 63.54 57.37 3.94 45.04 44.94 104.03 89.34 77.77 82.51 49.87
Cr 2549 30037 16.98 3.92 5.94 4.94 8.53 4.18 4.64 4.12 8830 3046  27.14 3876 8.15
Cu 180.81 12594  98.69 = 4509 = 2487 @ 5320 4393  67.13 37.69  43.16 56549 113.72 | 114.45  220.17 58.60
La 21.03 12.45 22.66 42.44 43.45 35.16 70.50 80.86 52.64 55.91 36.15 48.30 39.57 36.00 54.26
Ni 48.03 | 250.63  60.36 25.76 2.47 6.07 10.82 15.78 16.50 10.88 85.34 42.35 52.07 75.76 89.68
Sc 38.99 45.89 43.28 36.07 30.59 3537 36.22 2.05 33.67 35.12 71.88 51.18 46.56  45.61 35.77
Sr 150.35 | 211.33 | 262.45 22279  297.61  237.12 35232 210.57 273.29 286.74 9829 13827 15635 123.83 136.36
v 361.02 | 386.04 | 395.62 232.05 22975 29470 181.86 = 25.68 = 121.81  131.82  910.10 = 463.97 459.98 472.77 142.41
Y 36.16 2633 3493 8118 6408 6623 10720 115.00 10445 108.01 = 6470 = 7474 = 60.98 = 55.26 106.81
Zn 129.13 15745 105.04 166.31 119.53 17496 17445 7631 177.92  183.57 277.03 = 22449 187.95 180.30 116.89
Ir 22478  173.74  196.36  368.44 41528 29430 636.25 63477 | 485.80  488.11 37648 41541 334.69 286.94 475.92
ICP No. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Sample

No. 272D 273 274 292 293 20592 20603 20604 20604 20606 20608 20622 25 26 27-gabbro
Major elements in wt%

Si02 50.75 5254 51.11 4898 = 48.51 49.83  47.07  49.05 5422 50.63 4833 4871 4431 30.83 48.76
Al203 16.23 15.41 13.86 20.45 17.96 19.03 13.73 16.25 14.34 15.49 13.39 13.50 15.24  23.65 18.74
FeO 13.19 12.29 12.93 14.62 16.25 11.35 16.34 15.71 13.94 15.53 14.84 15.10 15.03 29.56 8.17
MnO 0.16 0.19 0.23 0.27 0.40 0.22 0.28 0.20 0.18 0.27 0.20 0.27 0.26 0.22 0.14
MgO 5.46 5.41 4.52 2.64 3.35 3.77 3.79 4.50 3.92 2.50 6.61 5.41 7.11 2.05 5.56
CaO 9.26 8.69 9.61 5.69 6.39 6.76 12.72 7.41 6.86 6.71 11.03 10.44 12.30 2.53 14.31
Na20 1.91 2.19 3.34 2.24 1.79 4.39 2.13 3.03 2.84 4.41 2.08 247 1.85 1.13 2.35
K20 0.25 0.48 0.82 1.70 0.75 0.20 0.11 0.27 0.30 0.16 0.05 0.16 0.14 2.83 0.26
TiO2 242 2.35 2.88 3.04 3.84 3.76 3.25 2.98 2.84 2.89 3.02 3.37 3.24 6.10 1.47
P205 0.25 0.28 0.54 0.17 0.57 0.50 0.44 0.43 0.41 1.26 0.31 0.43 0.36 0.80 0.12
Trace elements in (ppm)

Ba 9294  172.03  176.05 341.57 181.00 123.14 = 92.45 103.39  113.51 29.89 52.21 77.22 93.25 69293 69.61
Co 61.84  60.14 = 57.51  70.67  80.41 63.42 7559  60.92 54.14  39.06 68.64 7019 = 73.82  142.03 47.28
Cr 9406 9192 1433 109.59  37.66 @ 7242 @ 2753 16.01 14.13 5.98 40.74 2649 = 4630  50.89 90.56
Cu 106.02 = 181.50 = 103.09 199.00 107.25 182.53  100.08 118.19 = 141.68 @ 23.62 97.77 8723  197.70 = 201.91 171.02
La 16.50 17.17 31.27 19.89 38.14 28.76 28.46 40.57 39.74 55.75 19.82 24.99 25.06 | 49.35 11.17
Ni 96.24 92.43 18.18 62.46 31.62 65.46 40.31 36.37 19.87 2.84 59.49 31.80 6622  129.34 207.96
Sc 4240  41.87 3505 50.75 =~ 4808 = 56.10  41.61 = 3832 3514 3471 41.07 4132 4717 873 34.55
Sr 198.70  244.52 27421 179.76 = 189.08 ~ 429.53 = 244.34  250.19 = 25333 190.77 = 192.46 = 223.23 227.50 109.28 315.70
v 285.08  313.33 32238 457.99 476.11 42274 41936  380.41 @ 357.86 @ 133.10 41643 467.76 454.10 875.10 245.84
Y 22.95 26.08 51.07 37.96 76.12 50.74 46.48 70.75 63.98 109.78 32.80 44.66 35.59 90.87 14.01
7n 109.26 ~ 108.75  122.30  160.79 = 198.81 112.84  141.09 = 170.69 147.00 194.83 = 151.14 143.06 141.25 324.51 81.20
r 153.42 | 14691  284.49 163.18 30517 302.02 21575 422.01 403.32 557.70 16471 219.09 194.29 402.08 99.61

Four of the samples show SiO» content less than 45%, which indicates depletion. One of them has only
30%, a sample taken from a zone of strong sulphidisation superimposed on the hornfels process. Six
samples have 52-56% SiO,, which may indicate enrichment as described above. Al,O3 appears to show
general enrichment, while CaO shows a sign of depletion, as does MgO. FeO seems, in general, to stay
within the primary field, but a few samples appear to be enriched. Na,O has tendency to be depleted,
while K>O shows more diverse compositional tendencies, as do MnO and P,Os. TiO; falls largely within
the primary compositional field.
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FIGURE 14: Harker variation diagrams for major
oxides in samples from the Hrossatungur hornfels.
Xs are least altered rocks from Hafnarfjall central
volcano (Franzson, 1979). Circles are hornfels
rocks collected in this study Filled circles are
samples which show evidence of dioritic-silicic
magma veining. The line encloses the primary
compositional field of the volcano.
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5.1.2 Trace elements

Trace elements plotted against SiO; in the hornfels rocks show, as do the major elements, greater
compositional diversity compared to the fresh rock equivalents, and only general observations can be
made regarding compositional changes. Zr, Zn, Cu and Ni appear to show an overall increase, while Ba
and Sr may show signs of depletion. These trace element trends are described in detail below.

Barium concentration increases with SiO» concentration during magmatic differentiation. It was pointed
out by Deer (1965) that Ba and Sr often replace Ca in titanite. Sample 248 is enriched in La due to the
silicic vein enrichment. Samples 272 and 231 are located at the inner contact and have higher La
compared to 225 and 226 located at the outer margin. Strontium concentration increases with SiO2 and
ranges from 98-429 ppm. Samples 251, 229, and 274 at the inner hornfels zone have higher Sr than
samples 248, 226 and 225 (outer margin). Yttrium concentration is enriched in some samples and
depleted in others. Apatite tends to have relatively high concentration of Y. Zirconium concentration
increases with SiO2 and samples 248 and 231 from the outermost hornfels zone have higher Zr contents
due to the high sulphide contents, while samples 292 and 226 (inner margin) have the lowest Zr contents.

Barium, Sc, V, Cr and Co show depletion. V tends to substitute for Ti in titanite (Deer, 1965). Samples
292,272,273 and 252 show higher amount of Cr, while samples 225 and 248 have the lowest amounts.
It is notable that the Ni concentration ranges by two orders of magnitude. Nickel is a strongly siderophile
element and is depleted in the silicate portion of the Earth. It is much concentrated in the core, but
behaves similar to Mg in silicates and is concentrated in early forming mafic minerals (White, 2013).

5.1.3 Comparison between Zr and major or trace elements

The degree of chemical exchange can commonly be evaluated by plotting element concentrations of
both samples affected and unaffected by hydrothermal alteration versus immobile elements like Zr
(Franzson, et al., 2008). This method allows us to test the alteration trends of the hornfels samples around
Hrossatungur gabbro compared to the least altered samples collected from the Hafnarfjall central
volcano. Figures 16 and 17 show major elements and trace elements, respectively, plotted against Zr.
The diagrams show a division of the hornfels samples into two groups, where the filled circles indicate
samples (petrographic analysis) that contain dioritic-silicic magma veins and thus apparent silica
enrichment. As it is known that Zr is an immobile element, samples falling outside the primary
compositional field would imply mobility of that particular oxide or trace element. SiO, largely follows
the primary trend with Zr, but there seems to be an overall shift of the hornfels sample group towards
depletion. This is in particular the case for highly sulphidised rocks. Al,Os, on the other hand, shows in
general enrichment, also in particular in the sulphide-rich samples. FeO and MgO seem to fall nicely
within the primary trend, while Na;O only partly follows the trend with slight shift towards depletion.
Other major elements do not show clear deviation from the primary compositional trend.

Trace elements plotted against Zr, on the other hand, show a clearer picture. Zinc, Cu and Ni seem to
show an overall slight shift towards enrichment, but Ba, and possibly Sr show depletion. Copper, Ni and
Zn enrichment might be connected to sulphide-rich volatiles released from the gabbro.

5.2 Loss-on-ignition (LOI) analyses

The LOI method is used to estimate water and carbonate content in rocks. Igneous rocks generally
contain only small amount of primary water. For example, tholeiitic basalts on the seafloor usually
contain about 0.25% primary water and Hawaiian basalts about 0.5% (Moore, 1970). When
hydrothermal alteration starts, primary minerals break down to form hydrous varieties, which then
increases the water content of the rocks. Prior to the intrusion of HTG, the surrounding rocks had gone
through hydrothermal alteration to a different degree, relatively high alteration south of the intrusion,
but only to the smectite-zeolite stage within the pyroclastic caldera fillings north of the gabbro intrusion.
For this study, 30 samples were collected within the hornfels contact zone, same as the ones that were
chemically analyzed (Appendix IV). The purpose of the LOI analyses was to evaluate the volatile
content of the hornfels zone.
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FIGURE 16: Major elements plotted against Zr. Xs are least altered rocks from Hafnarfjall central
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FIGURE 18: A histogram showing the range of LOI
in the hornfels samples around Hrossatungur gabbro
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Figure 18 is a histogram showing the range
of LOI of the samples. The majority of the
samples experience <1% LOI. The samples
that show higher values are mostly from the
outer hornfels zone, in particular samples
250 and 272. Figure 19 shows a comparison
of LOI values of Icelandic rocks in different
alteration zones with the values from the
hornfels (Franzson, et al., 2001). These
show clearly that the hornfelsed rocks,
which should have had LOI contents >1 to
<10% prior to the gabbro emplacement,
have had water driven out by the
replacement of hydrous minerals by non-



hydrous minerals. The petrographic Hornfels LOI vs. Alteration zones LOI of Icelandic rocks
evidence is ample as the hornfels
contains dominantly plagioclase, ] _
pyroxene and oxides. Minor
carbonates are present in the
hornfels, indicating that the LOI

present water and carbonate. Only o T
minor amount of garnets and

amphiboles are observed which |_

may contain the water, largely EG_

found in the former vesicle and vein §

fillings of the rocks.

5.3 Petrography and mineralogy
of the hornfels around 2]
Hrossatungur gabbro

The Hrossatungur gabbro intrusion 0 I

in the Hafl’larﬁ all Caldera fOI’l’natlon Fresh Smectite zeolite Mixed L clay Chlor-epid Epid-act Hornfels
was emplaced at the boundary
between the lava-dominated high-
temperature system to the south and
the low-temperature system
belonging to the pyroclastic caldera

FIGURE 19: Comparison between loss on ignition (wt%) of
different alteration zones in Icelandic rocks (Franzson, et al.,
2001) and LOI of the hornfels around Hrossatungur
gabbro. Solid line in the boxes indicates a median

fillings in the north (Franzson, et al., value. Horizontal lines in the boxes represent

2008). The exposed hornfels contact 25, 50 (median) and 75% of value

zone around the southern part of Hrossatungur gabbro is shown in Figure 9. The contact zone is loosely
divided into two zones; an inner and an outer zone. The inner one is the hornfels nearest to the gabbro
margin, while the outer one is located up to 20 m further out from the gabbro.

When viewing the hornfels petrography, one has to consider the protolith. In this case, the hornfels
protolith comprises various basaltic lava flows, which were partially altered. That includes vesicles and
fractures in the rocks being partially or fully filled with alteration minerals, which may have included
clays, silica, zeolites and perhaps higher temperature minerals, like epidote, prehnite and amphibole.
Volatile content may also have varied in different parts. When the rocks then went through the hornfels
stage, all this heterogeneity played a part in the variable mineralogy occurring in the rock. Although the
hornfels represents a partly recrystallized
rock, vesicle and vein fillings are easily
recognized in hand specimens and
certainly in the microscope, which
strongly indicates recrystallization in situ.
Two observations are notable in this
respect; the vesicle and vein fillings most
often show larger crystals than the
surrounding groundmass; and we often
find a clear reaction zone around the
vesicles/veins (e.g., see Figure 20), often
represented by the disappearance of oxides
and an increase in the amount of pyroxene.
The groundmass is very fine grained, and
apparently made of pyroxene, plagioclase
and then charged with opaque oxides. It is
debatable whether the groundmass
represents a possible pseudomorphed
primary crystallinity or not. In a few

FIGURE 20: Quartz veinlet and Fe oxides increased
towards the rim and groundmass (sample 291). Thin
section viewed in plane polarized light
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locations, the rock possibly shows granoblastic texture of oxides, pyroxene and plagioclase, which is
well known in hornfels rocks.

5.3.1 Inner contact zone

The fine-grained hornfels in the inner contact zone is characterized by a heterogeneous texture and high
degree of recrystallization, and is in places granoblastic, due to the high heat from the cooling gabbro.
Vesicle fillings contain abundant opaque minerals in the center, changing to pyroxene nearer to the
margins. This pyroxene occasionally shows zoning towards more pleochroic varieties and rare
amphibole is present. This indicates that Fe released from magnetite increased the growth of pyroxene.
The chemical transfer also included Mg and Ti, which participated in the growth of garnet and titanite
in the inner contact zone as a product of thermal metamorphism. The andesine composition of
plagioclase is further discussed in the section on SEM/EMP analyses. However, apatite, which is an
example of a primary mineral of igneous crystallization, is found in a magmatic veins cross-cutting the
hornfels. Three samples 252, 25 and 26 have very high sulphide content and were taken from within
sulphide “chimneys”, which superimposed and succeeded the hornfels. The analyses of the sulphides
are further discussed in the section on SEM analyses below.

Interesting mineral zoning is seen within a vesicle fillings in sample 226 (Figures 21 and 33 (see later)).
There, the pyroxene is transparent in the centre, as observed in a petrographic microscope, but contained
within a more pleochroic outer margin, and then changing to fibrous amphibole in the outermost part.
These mineralogical changes are discussed in more detail in Chapter 5. Felsic veins are found in the
hornfels. They provide information about the temperature of the hornfels, against which they show no
indication of cooling, which indicates magmatic temperatures of >800°C.

FIGURE 21: (a) Pyroxene grading into actinolite/hornblende (thread-like). Some pyroxene remain
as high relief areas in the hornblende cores and along cleavages at the rims in sample 226.
Thin section viewed with crossed polarizers. (b) Compositional zoning in pyroxene
(sample 226) with pronounced colour variation visible in plane-polarized light; the
rims are higher in iron than the cores grading into amphibole

5.3.2 Outer contact zone

The apparent petrographic difference between the inner and outer hornfels zones is the generally finer
crystallinity of the rock in the latter. There, the rock appears to be more charged with opaques and have
less pronounced reaction rims around the vesicles. The crystallinity increases within the vesicles in the
inner zone. Similarly, we see in the inner zone more of pyroxene than opaques along with plagioclase.
The granodiorite veining is assumed to be more dominant in the inner contact of the hornfels zone.
Garnet and titanite are relatively common within the vesicles and minor amphibole. Calcite is
occasionally seen in the vesicles.
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5.4 Mineral analyses with SEM and EMP

The main objective of using the SEM was to evaluate the chemical composition and compositional range
of several minerals in the hornfels, in particular pyroxene, plagioclase and oxides. As this method may
not provide adequately accurate quantitative analyses in all cases, a selection of the thin sections was
also analyzed using the microprobe in order to ascertain the reliability of the former. The rocks are
dominantly very fine grained and impossible to pinpoint the same grains to compare the analyses of the
two instruments. Pyroxene, plagioclase and oxides were the main phases analyzed, but other minerals
were also of interest. Of importance was to observe variations in mineral compositions in the
groundmass and compare with compositions of minerals found within vesicles and veins.

The samples chosen for these analyses were basically selected from profiles a, b, ¢ and d (Figure 10),
covering the inner part to outermost margin of the hornfels zone. The samples chosen for SEM and EMP
analyses are listed in Appendix VII. Further to this, a sample of a hornfels rock located at the margin of
a dyke at about 1500 m depth in well HE-42 at Hellisheidi geothermal field (described in Chapter 6)
was analyzed in a similar way.

5.5 Chemical variation of pyroxene in the hornfels
5.5.1 Inner border of the hornfels contact zone

Sample 290 was analyzed with both SEM and EMP. The sample comes from the roof hornfels adjacent
to the gabbro in profile c¢ (Figures 10 and 22). Clino-pyroxene composition in the vesicles fillings in
sample 290 ranges from salite, augite, ferrosalite to ferro-augite, while the orthopyroxene composition
observed is hypersthene. Clinopyroxene in the groundmass of sample 290 has salite to ferrosalite
composition. The EMP analyses in general show similar compositions and reveal similar compositional
range, except that analyses are fewer and orthopyroxene was not encountered. Clinopyroxene
composition in sample 230 (inner hornfels zone) from profile b (Figure 10 and 22), determined with
SEM, reveals the range from salite to augite and EMP showed similar compositions. SEM analyses
furthermore identified Mg-rich orthopyroxene.

Sample 291 is collected from the hornfels at the top of the HTG in profile ¢ as shown in Figures 10 and
22 and analyzed with SEM and EMP. The centre and the margin of the vesicles imply salite composition,
while the groundmass appears to fall within the augite compositional range. No analyses were made of
orthopyroxene.

Sample 251 is from the inner margin of hornfels in profile a in Figure 10 and 23. It was only analyzed
by SEM and shows that augite and salite reside in vesicle centers, with minor augite found in
groundmass.

Sample 271 is from the inner margin of the contact zone and was only analyzed with SEM.
Orthopyroxene is found in the centre and margin of vesicles. The orthopyroxene of the vesicle center
ranges from hypersthene to ferrohypersthene composition.

Sample 274 was taken from the hornfels inner margin in profile d (Figures 10 and 23). The
clinopyroxene composition is augite with a groundmass composition extending to diopside. The
orthopyroxene composition is magnesian bronzite with less than 1 wt% CaO content, as classified in
Figure 25.
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FIGURE 22: Pyroxene composition in the inner hornfels contact zone determinated by
both SEM and EMP in term of Ca-Mg-Fe element, data from Appendices II and II1.
Xs are pyroxene composition at the vesicle centre. Circles are the
composition at the margin while squares are at groundmass
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FIGURE 23: Pyroxene composition in terms of the Wo-En-Fs components in the inner hornfels
contact zone determined by SEM. Data from Appendix II. X denote pyroxene composition at
vesicle centre. Circles are the composition at the margin while squares are at groundmass

5.5.2 Outer border of the hornfels contact zone

SEM analyses of sample 226 from profile b (located at the outer hornfels margin) show clinopyroxene
composition at the boundary of salite-augite in the center of vesicles (Figure 24). The EMP reveals
augite to salite composition at the centers of vesicles and salite to ferrosalite to hedenbergite at the
margins. The groundmass shows salite to augite composition. Thus, the variation in clinopyroxene
composition from vesicle centers to rock wall is augite, salite, ferrosalite and hedenbergite, and is shown
in Figure 24. This means that there is Fe enrichment in the composition of clinopyroxene at the outer
hornfels margin. No orthopyroxene (Figure 25) was found in the outer zone, except in one sample 248,
which may indicate that orthopyroxene tends to form at the higher temperature range of the hornfels.
This sample (248) is from the hornfels taken about 10-40 cm from a cone sheet at the outer hornfels
contact zone, and was analyzed only by SEM. The only orthopyroxene analyzed is within the
compositional range of hypersthene.

While six samples were analyzed within the inner zone, only two were analyzed in the outer one, which
makes a comparison difficult. However, there seems to be a difference between the groundmass

pyroxene and vesicle fillings. The groundmass clino-pyroxene is dominantly in the salite-augite range,
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FIGURE 24: Pyroxene composition in the outer hornfels zone determined by both SEM/EMP.
Data from Appendices II and III. Xs denote pyroxene composition at vesicle centres.
Circles are the compositions at the margin, while squares at the groundmass

but the compositional range is wider reaching to much more iron rich varieties, namely to hypersthene

in the vesicle fillings.

5.6 Chemical composition of plagioclase within the hornfels

Plagioclase was analyzed with SEM and EMP in a similar way as pyroxene, and classified into three
different categories depending on the origin, i.e., from the groundmass, vesicle margins and from near
the center of the vesicles at the inner and outer margin of the hornfels contact zone.
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FIGURE 25: Classification diagram for orthopyroxene (Deer and Zussman, 1997)

5.6.1 Inner boundary of hornfels zone

Sample 230 (profile b) was both analyzed with SEM and EMP (Figure 26). Both show mainly labradorite
composition, though extending slightly into andesine in the SEM analyses.

Sample 290 (roof hornfels, profile c) also shows the labradorite as the dominant composition but
extending slightly towards andesine in the SEM analyses and bytownite in the EMP analyses.

Sample 291 (roof hornfels, profile c) has plagioclase compositions within the labradorite range and is
similar in both SEM and EMP analyses, slightly more anorthite-rich in the latter.

Sample 251 (profile a) was analyzed by SEM and shows the range from andesine to labradorite both
within vesicles and groundmass.

Sample 271 (from the southern corner of the gabbro as shown in Figure 27 has plagioclase with
compositions within the anorthite field, both in the groundmass and vesicle fillings.

Sample 274 (profile d) analyzed by SEM shows vesicle compositions of andesine and one analysis of
groundmass within the labradorite field.

5.6.2 Outer boundary of hornfels zone

Sample 226 (profile b) was analyzed both with SEM and EMP (Figure 28). The former gave largely
labradorite composition for plagioclase, extending into the andesine field, while the EMP showed
labradorite to bytownite compositions. The groundmass plagioclase appears to be more anorthite-rich.
Sample 248 (profile a), which was only analyzed by SEM, has anomalous plagioclase composition,
which is within the oligoclase range. A possible reason for this Na enrichment is that this sample
contains silicic magmatic veins, which may have increased the Na content of the plagioclase.
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FIGURE 26: Plagioclase composition in the inner hornfels zone determinate by both SEM/EMP,
data from Appendix II and III. Xs are plagioclase composition in the vesicle centre.
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SEM in term of An-Ab-Or element, data from Appendix II. Xs are plagioclase
composition at the vesicle centre. Circles are the composition at the margin
while squares are at the groundmass

5.7 Mineral phases in the hornfels zone around Hrossatungur gabbro
5.7.1 Main mineral phases

The texture of the hornfels zone around Hrossatungur gabbro is mainly fine grained with coarser parts
showing granoblastic texture. Pyroxene, plagioclase, Fe-Ti oxides and quartz represent the majority of
the coarser grain size.

Pyroxene ((Ca, Na, Fe*2, Mg) (Si, Al), Og) is one of the main phases in fresh basalt. These are mainly
of salite and augite compositions but only rarely orthopyroxene. It is tentatively assumed that the
alteration of the basalt around the gabbro was not intense enough to alter the primary pyroxene prior to
the hornfels alteration. The pyroxene formed in the hornfels phase shows similar composition as one
expects to find in fresh basalt, which indicates that the chemical change is rather limited, and they may
possibly have kept their original primary crystal shape. Pyroxene, however, is not expected to have
formed within the vesicles and veins and is thus obviously formed during the hornfels phase.

29



Or Or
KAISi308 KAISi308

0100 0100

Sample 226
(SEM)

Sample 226
(EMP)

1
i

Andesine X ite’ Andesine

Sgbradonte \ Bytownite \Qnor‘h Labradorite ; Bytownite \Qnonhite
L L X L Q [nivml
0 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

0
Ab An Ab An
NaAISi308 CaAl2Si208 NaAlSi308 CaAl2Si208

Or
KAISi308

0100

Sample 248
(SEM)

Anorthoclase

Labradorite \ Bytownite \nonhite .

0 10 20 30 40 50 60 70 80 90 100
Ab An
NaAlSi308 CaAl2Si208

Oligeoclase Andesine

FIGURE 28: Plagioclase composition in the outer hornfels contact zone determined with
SEM/EMP in terms of An-Ab-Or component. Data from Appendices II and III. Xs are
plagioclase composition at vesicle centres, circles are the composition at the
margin, while squares represent the groundmass

The pyroxenes in the groundmass were dominantly salite to augite compositions while the vesicle and
veins ones extend more into the ferrosalite to hypersthene fields and show even tendencies to be zoned
towards more iron-rich compositions at the rims, and in places even zoning towards hornblende and
actinolite, suggesting slight hydrous conditions as shown in Figure 29.

The pyroxene in the vesicles is usually larger than the pyroxene in the groundmass. A difference between
the inner and outer hornfels zone is not obvious, partly because of less analyses of the latter.
Orthopyroxene may be more commonly found in the inner zone than the outer one (see Figure 29).
There seems to be a reaction relationship between the abundance of oxide and pyroxene. In places, there
is a distinct reaction rim around the voids, where there is a disappearance of the oxides and increase in
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the amount of pyroxene. Oxides may though re-appear near the center of the vesicles, with simultaneous
disappearance of the pyroxene.

AL \I\;""V“\/\v’\.’v"wﬁ'ﬁv/ ‘/‘v"v'“v

T T T T T
10 20 30 40 50
Distance / ym

w1
D78 x300 300 um g 4
[ [ —— 3
9
(¢ 3 &
AN
1( A
r
- e
[sEm Md
» ”
IAG: 2000%°F8 i

FIGURE 29: BSE micrographs of the hornfels around the Hrossatungur gabbro showing
compositional zoning in pyroxene (sample 226). Zoning in different grains of pyroxene
within a vesicle filling (b) A profile across a vesicle centre towards the margin showing
the distribution of Mg, Fe, Al and Ca. The scale bar is 20 um. (c¢) SEM elemental map
showing the distribution of Mg and Fe within a vesicle centre. Scale bar 20 pm. (d)
Pyroxene showing strong compositional variation, dark to light grey colour, with
thick a reaction rim overgrown by zonation

Plagioclase (NaAlSi;Os - CaAl:Si;0s) is, like pyroxene, one of the main mineral phases in basalt in
which its dominant compositional range is from labradorite to bytownite as seen in Figure 26. This is
quite similar to the compositional range found in the hornfels and the HTG. Hydrothermal alteration of
the plagioclase within the chlorite epidote zone is mostly towards albite composition (Franzson, et al.,
2008). Whether such alteration took place prior to the hornfelsing is not known. The compositional
range of plagioclase in the hornfels is to a large extent the same as that of the primary plagioclase, so
the primary plagioclase may mostly have been in a relatively stable environment and only have changed
composition to a minor extent. An interesting occurrence of plagioclase phenocrysts in the roof hornfels
appears to be primary (Figure 30), which could indicate compositional change without changing the
primary crystal shape. The chemical composition of plagioclase varies from oligoclase (minor) -
andesine - labradorite - bytownite towards anorthite. Figure 27 shows that andesine is less abundant
(sample 274 and 251) while labradorite and bytownite is more abundant (samples 290, 291, 226 and
HE-42). The anorthite composition is less common and mainly represented by sample 271 and samples
from well HE-42 (see Chapter 6). Anorthite seems to be more commonly found nearest to the gabbro,
which infers higher heat of formation.

31



Fe-Ti oxides (magnetite, Fe "2 Fe™ ,0, ilmenite
FeTiO; and titanomagnatite Fe ** (Fe*3, Ti); O4,)
Oxides are the third major primary component in
primary basalt and is a mixture of magnetite and
ilmenite. Magnetite usually forms cubic crystals,
while ilmenite tends to be more elongated. The
abundance is quite varied within the basalt range
and is dependent on the iron content of the rock.
Oxides become abundant in contact alteration and
so it is in the hornfels. They are often most
abundant within the groundmass, but may
disappear in the reaction zone around vesicles and
reappear in the central part of the voids, there in
general larger in size. They seem to be reacting

-1
15.0kV COMFO

FIGURE 30: BSE micrographs of plagioclase
phenocrysts showing an apparent primary
composition (sample 291)

with the clinopyroxene. The oxides were analyzed
in the same way as pyroxene and plagioclases,
and the results are shown in Figure 31 (SEM) and
Figure 32 (EMP), where the main components,

TiO; and FeO, are plotted. Most of the analyses

show a sum of 90-100% of those components. Both analytical methods show a bimodal distribution
indicating the dominance of magnetite and ilmenite. Both minerals are equally found in the groundmass

FeO vs. TiO2 (EMP analyses)
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FIGURE 31: FeO vs. TiO; classification for oxides of the HTG and
Hellisheidi hornfels samples (SEM analyses). Data from Appendix III
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FIGURE 32: FeO vs. TiO; classification for oxides of the HTG and
Hellisheidi hornfels samples (EMP analyses). Data from Appendix 11
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and void fillings, though magnetite seems to be a little more common within the vesicles. A number of
analyses fall between the magnetite and ilmenite and are probably titanomagnetite. The EMP analyses
show a few compositions off the tieline between magnetite and ilmenite with total < 90% and thus an
addition of other elements. Three of them are from the well HE-42 hornfels (see Chapter 6) and the low
iron oxide is from sample 248. Other elements, like Al,O3 (0.1-6.4%), MnO (0.4-5.3%) and MgO (0.03-
4.66%), are commonly found in the oxides.

5.7.2 Other mineral phases

Titanite (sphene) (Ca Ti (SiO4) (O, OH, F)) is not found as a primary magmatic mineral in basaltic rocks
in Iceland, but may be an accessory mineral in intermediate and felsic plutonic rocks. During
hydrothermal alteration, oxides are observed to break down and form titanites. Titanites are, however,
not seen as specific deposition within voids of hydrothermally altered rocks. Titanites are commonly
found within void fillings in the hornfels (Figures 33).

FIGURE 33: BSE micrographs of the hornfels around the Hrossatungur gabbro
showing the diamond shaped section of titanite in the centre of the
vesicle filling (sample 226). The scale bar is 100 um

It is euhedral and has a diamond shape. The texture is defined by the lamellar twins and the obvious
cleavages. It is distinguished by very high relief and extreme birefringence under the plane-polarized
light.

Basically, the titanite is correlated with iron content (Deer, 1965). The FeO content of the titanite in the
hornfels zone around HTG ranges between 0.4-25% while Ti ranges from < 1-36%. Titanite was studied
by the SEM/EMP and was found to be very common in the inner and outer zone of the hornfels around
HTG, like in samples 230, 251 and 271 (inner zone) and samples 226 and 248 (outer zone). It was also
found in HE-42 well in Hellisheidi geothermal field (see Chapter 6). One may speculate that the titanite
formed during the magnetite-ilmenite-clinopyroxene recrystallization with the separation of TiO,
leading to titanite deposition.

Apatite (Cas (PO4)s (OH, F, Cl)) is the commonest P-bearing mineral found in metamorphic rocks.
Apatite is often found as primary mineral in evolved rocks. It is easily observed (petrographically) in
the late melts of the Hrossatungur gabbro and is particularly notable in the dioritic and silicic veins
cutting the hornfels. The hornfels apatite was found by SEM/EMP analyses in samples 226, 271, 274,
290, 251 and HE-42. The high concentrations of P>Os in these samples obtained by SEM/EMP are in
good agreement with the results of the ICP-OES analyses. Many of the EMP analyses in the hornfels
rocks have totals lower than 100%, which renders them as probable occurrence as shown, in Table 16,
Appendix III. These analyses are though satisfactory in the hornfels in well HE-42 (Appendix III in
Table 15). Other elements such as Zr (6-7.58%), FeO (0.1-0.28%) and MgO (0.1-0.18%) are common
in this apatite chemical composition. The SEM and EMP analyses show that apatite was more abundant
in the vesicle fillings in the inner zone of the hornfels around the HTG, like in sample (271, 274, 290
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and 251). Apatite is also common in samples of well HE-42 at Hellisheidi geothermal field. The apatite
is normally associated with hornblende and garnet in the HTG hornfels zone.

Amphibole (Na Ca; (Mg, Fe, Al)s (Al, Si)s O (OH)>)

Amphibole group of minerals is both formed in plutonic rocks as hornblende, as well as developed by
metamorphism contact and alteration of ferromagnesian minerals into hornblende (Deer, 1965).
Amphibole, in particular actinolite, is commonly found in the epidote-actinolite zone where
temperatures exceed 270°C (Franzson, et al.,
2008). There they are found both as alteration
product of pyroxene and as void deposition.
Hornblende is relatively rare in drilled high-
temperature systems, but seems to occur at higher
temperatures. Hornblende hornfels succeeds the
pyroxene hornfels (c.f. Figure 8) away from the
gabbro and one could interpret the existence of
the mineral as an indication of the transition
towards that facies. The commonest type of
amphibole in the hornfels contact zone around
HTG is actinolite, both observed in veins and
groundmass. It is identified petrographically in
this study and distinguished by the two perfect
cleavages intersecting at 120 degree. A fibrous
structure, indicating actinolite cleavage and FIGURE 34: Actinolite crystal (sample 294)

rough cross fractures, is common as well (Figure with green brown colour that shows the
34). Radial cleavage (sample 226) indicted high interaction of two cleavages at 60° and 120°.
alteration degree. The composition of amphibole Thin section viewed with crossed polarisers

in the HTG hornfels zone is characterised by

ALOs; <2%, FeO < 21%, Ca0O < 16% and MgO <12% with minor MnO < 0.8%, Na,O <0.3% and K,O
<0.2%, found in the vesicle fillings as well as in the groundmass. Figure 35 shows a division of the
amphibole into two groups where low- and high-Al types are observed. Hornblende is relatively rare in
HTG hornfels because the rocks belong to the pyroxene hornfels facies (Figure 8). This type of
amphibole composition (actinolite) is different from the hornblende composition in Hellisheidi
geothermal field (see Chapter 6).

AI205 vs. Fe0, Mg0 amd Ca0 (SEM) AI205 vs. FeO, MgO amd CaO (EMP)
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FIGURE 35: Classification of amphibole in the HTG hornfels zone and
Hellisheidi using both SEM/EMP

Garnet (X3Y2(SiOy)s; X occupied by Ca, Mg, Fe and Mn, while Y by Al, Fe** and Cr) is particularly
characteristic of metamorphic rocks but also found in some igneous rocks and as detrital grains in
sediments. Garnet is seen in the HTG hornfels through petrographic microscope observation in vesicle
fillings more than in the groundmass. The garnet is yellowish in colour and forms anhedral to euhedral
crystals. The electron microprobe analyses confirmed the occurrence of garnet.
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The end-member composition of Grs
the garnet (Figure 36) is calculated
from the result of EMP analyses as

shown in Figure 36. The Sample NO.
composition was around 65-97 ><§ -
mol%, andradite which 1is the A 226

dominant composition of the
garnets in the hornfels around HTG.
The grossular component ranges to
about 17 mol% and almandine
component to about 7 mol% (see
Appendix V). Garnet is used in
geothermal systems as an index
mineral, indicating temperature
above 280°C. This garnet is
normally andradite with <35 mol%
grossular and <5 mol% pyralspite
components (Brid, et al., 1984).

Hedenbergite and garnet were the . ] o
ideal secondary minerals for FIGURE 36: Triplot showing the distribution of garnet end-

confirming the occurrence of members. Adr-Andradite, Alm-Almandine, Grs-Grossular

Adr Alm

supercritical fluids or superheated
steam at the time of the cooling of the gabbro body associated with the Geitafell geothermal system
(Helgadéttir, et al., 2017).

Sigurjonsson (2016) studied the garnet composition related to quartz veins in Hafnarfjall by petrographic
and SEM analyses. The garnet is mainly found within vesicles and veins. Many of the samples were
taken further away from the hornfels zone in his study. The study indicated that the garnet had an
alternating zoning of andradite- and grossular-rich bands with dominantly andradite-rich cores, which
is different from the andradite-only garnet of the HTG hornfels (Sigurjonsson, 2016).

Quartz (Si0O;) occurs as an essential constituent of many igneous and metamorphic rocks. It is found as
primary mineral and as deposits fillings amygdales in the hornfels contact zone in the study area. It is
distinguished under the microscopy by its lack of colour and cleavage. The quartz-rich veins may
influence the chemical compositions analyzed by the ICP-MS.

Sulphides (FeS,) include strong basic and inorganic anions of sulphur with the chemical formula S*.
Sulphide minerals were petrographically observed in reflected light showing strong yellow colour.
Sulfides are present in subordinate amounts in most of the hornfels and are also quite frequent in the
alteration zones further away from the gabbro. Specific patches of sulphides are observed within the
hornfels, which are considered to represent late volatile degassing of the gabbro. Figures 37, 38 and 39
show diagrams where 9 elements are plotted against sulphur by SEM. Iron and sulphur are the dominant
elements, which renders them within the pyrite compositional range. They, however, contain 5-11.7%
Pb, and other elements include <0.24% As, <0.25% Ti, <0.33% Sb, <0.38% Cu, <0.51% Zn, <0.29%
Au and <0.11% Ag. The analytical results of individual grains are quite similar. Therefore, the type
sulphide in the hornfels zone around HTG is pyrite, while only two samples analyzed in well HE-42 at
Hellisheidi geothermal field show lower totals as they contain 28-29% Cu and considered as Cu-
sulphides.

Gunnarsdottir (2012) reported the formation and composition of the typical sulphides in geothermal
fields (well HE-42 in Hellisheidi). The study shows that the hydrothermal sulphides started to form
when sulphide-bearing fluid reacted with igneous Fe-bearing phases. The hydrothermal sulphide types
most commonly found in the cuttings samples were pyrite, pyrrhotite and Cu-sulphides (Gunnarsdéttir,
2012), whereas the sulphide type in the hornfels zone around HTG is mainly pyrite, which contains
<11% Pb as a major element, and As, Ti, Sb, Cu, Zn, Au and Ag as trace elements.
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FIGURE 37: Variation of sulphide composition in HTG hornfels contact zone.
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FIGURE 38: Variation of sulphide composition in HTG hornfels contact zone.
(Svs. Au, Cuand Ag)
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FIGURE 39: Variation of sulphide composition in HTG hornfels contact zone.
(S vs. As, Zn and Sb)
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6. WELL HE-42 IN HELLISHEIDI GEOTHERMAL FIELD

Well HE-42 is a vertical 3340 m deep well
drilled at Hellisheidi high-temperature field
in 2010. The cuttings analyses showed a
stratigraphy consisting of lavas and
hyaloclastites, which were intersected by
basaltic intrusions. From about 1400 to 1000
over 1700 m depth, the well was drilled L 700
through a mixture of a fine to medium —
grained intrusion and a surrounding zone of
hornfels  (Gunnarsdottir, 2012). An
interpretation of this is shown in Figure 40
where the drillhole is shown penetrating ]
along the dyke and the contact 0] %
metamorphic aureole. A sample was taken Lo [
from the well to compare this kind of — ]
alteration in an active high-temperature
system with that in a fossil system. The
purpose of including this hornfels is to
relate with the HTG and show the e
similarities between a fossil geothermal 1600
environment and an active one. The L 1300
intensity of the hornfelsic recrystallization 1700
in well HE-42 is particularly high, even ]
compared with the inner hornfels at HTG,
often showing granoblastic character. The
thermal effect from a normal dyke injected
into a stratigraphic sequence is not e
sufficient to produce such a strong hornfels - 1600
recrystallization. However, this could have 2000 J b=t
been produced if the dyke was a “long
term” magmatic feeder to a volcanic
eruption above, creating a more
pronounced thermal anomaly, and leading
to the formation of the hornfels zone
around the dyke. The rock was originally
vesicular basalt, probably altered within the
chlorite to epidote-actinolite zone prior to
becoming hornfelsed.
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FIGURE 40: A stratigraphic succession of well HE-
42 from 900 to 2000 m. Interpretation of the relation
between the borehole, intrusion,
contact alteration and the surrounding
strata is shown to the right

A handpicked sample was taken from the cuttings samples at about 1500 m depth for a petrographic
section, which was analyzed using the SEM and EMP. The sample is very fine grained with some
heterogeneous variation in crystallinity. This is seen as very fine grained groundmass but slightly larger
crystals within the vesicle fillings. Granoblastic crystallinity is more commonly observed within the
vesicles, and indeed appears to be more dominant than found in the HTG hornfels. Occasional younger
veining is observed, mainly occupied by amphibole. The analytical results are shown in Figure 41 (a to
d). Similar reaction zoning around vesicles as in the HTG hornfels is seen, where there is a reduction of
oxides near the rim and a simultaneous increase of pyroxene. Both SEM and EMP show compositional
range of salite and augite, and the SEM shows additionally magnesian to intermediate orthopyroxene in
the groundmass (Figures 41 a and b). Compared to the groundmass, there seems to be a slight Fe
enrichment in the vesicle fillings according to the EMP analyses. Plagioclase was also analyzed, as
shown in Figure 41c and d. Both analytical methods show that plagioclase in the vesicle fillings has
more anorthite-rich composition compared to the groundmass one. Overall, the composition of the
plagioclase ranges from bytownite to nearly pure anorthite.
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FIGURE 41: Pyroxene and plagioclase compositions in the hornfels zone in well HE-42
(Hellisheidi) determinate by SEM/EMP in term of Ca-Mg-Fe and Ab-An-Or components,
data from appendix II and III. Xs are compositions at the vesicle centre. Circles are the
composition at the margin while squares are within the groundmass

The mineral assemblage in the hornfels in well HE-42 is clinopyroxene, plagioclase and oxides.
Granoblastic texture is even more pronounced than found in the HTG hornfels, indicating more mature
recrystallization. Figure 41a and b show the SEM/EMP analysis of pyroxene, which shows a range
confined to salite-augite. SEM analyses showed also Mg-rich groundmass orthopyroxene, ranging from
bronzite to hypersthene, as shown in Figure 25. Plagioclase shows a range from Ca-rich labradorite to
anorthite composition. The plagioclase compositions seem to be more Ca-rich in the voids than
groundmass. Amphibole was analyzed in Hellisheidi by both SEM/EMP, and has a high-aluminium
hornblende (Tschermakite) composition, as shown in Figure 35. This composition is chemically
described by Al <24%, Fe <48%, Ca < 12% and Mg <13% with minor Mn <0.5% and Na <0.7%, which
are found both in vesicle fillings and in the groundmass. Amphibole veining is observed and is obviously
succeeding the hornfels, an indication of lowering temperature and the access of fluids into the hornfels.
The presence of apatite, titanite, sulphides and amphiboles was noted, all found in the vesicles and
groundmass, but no garnet was observed. The oxide composition in well HE-42 is mainly magnetite,
minor titanomagnetite and ilmenite, which are observed in the vesicle fillings and in the groundmass,

which is comparable to HTG hornfels.
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7. DISCUSSION

It is difficult to determine how intimate the interaction is between a water reservoir and a magmatic
intrusion in active geothermal systems due to the depth at which this occurs, and also how expensive
such a study is in deep boreholes. This can be assessed, however, in deeply eroded fossil high-
temperature systems. Hafnarfjall central volcano in West Iceland with the Hrossatungur Gabbro heat
source is one of these areas. A previous study has shown that the gabbro was emplaced relatively
shallow, or from about 700-1500 m below the original surface of the volcano. The high-temperature
system surrounding the gabbro shows temperatures of <350°C if it follows the boiling point curve (Brett,
et al., 2016). There is strong evidence indicating that the gabbro is the last intrusive phase in the area,
and one can thus associate all the hydrothermal imprints to that intrusion as being the heat source for
the surrounding geothermal system.

The main research question in this study was what the hornfels tells us about the magma-water
interaction.

In the field, one encounters a hard, flinty, very fine-grained dark rock, which in places shows jointing
common with the dolerite contact, indicating contemporaneous consolidation. Filled vesicles can easily
be observed. The thickness, which is recognized by the aforementioned characteristics of the rock, is
quite variable, but appears to be on the order of about 20-40 m on the southern side of the gabbro, that
is where it lies against the basalt succession. Exposures on the northern side are covered largely by scree,
which is indicative of softer rocks and may indicate the lack of hornfels. The thickness is estimated to
be a few metres at the most. The focus of this study is on the southern side.

The methodology used is a mixture of geochemistry, petrography and SEM/EMP mineral analyses and
it was hoped that this combination would unravel the water-rock processes near the boundary of the
gabbro.

The results of the LOI analyses are very informative, in particular in comparison with LOI in other
alteration zones. It shows that LOI increases towards the chlorite-epidote zone, but diminishes and
reaches a minimum at the hornfels stage. This decrease is mainly due to the alteration minerals become
less hydrous, and when reaching the proper hornfels, the mineralogy is dominantly composed of water-
free minerals like pyroxene, plagioclase and oxides. Only minor garnet and amphibole are present. This
minor amount of LOI is likely to be caused by remaining water and/or CO2 in the rock since prior to
the hornfels alteration. This indicates that thermal conduction around the gabbro has dried up the rock
and prevented the access of water/steam to the molten magma and associated heat-mining from the
magma.

The chemical analyses of the hornfels rock show that the overall compositional range is in many ways
similar to the fresh-rock equivalent of the volcano. However, there seems to be an apparent overall
depletion of Na,O. SiO; content shows a wide range, which can to some extent be explained by dioritic
to felsic veining from residual magmatic fluids injected from the gabbro, but also quartz veining and
possibly even an andesitic protolith. A few samples show anomalously low values. These samples were
taken from locations with a high sulphide content in the rock, which are superimposed on the hornfels.
These suggest local late-stage sulphide volatile penetration of the hornfels, probably due to rock
dissolution and formation of permeability within a very acidic environment. These samples also show
elevated Fe and Al content. Furthermore, there appears to be an overall enrichment of Zn, Ni and Cu in
the hornfels samples, probably due to the diffusion of sulphide vapour from the magma into the hornfels.

As noted earlier, the hornfels rock is very fine grained, although the grain size varies to some extent,
with the groundmass usually being finer grained than minerals in vesicles and veins. The main minerals
analyzed were pyroxene, plagioclase and oxides. The compositional range of pyroxene is dominantly
salite-augite-ferrosalite, but may slightly extend into the diopside and hedenbergite fields as seen in
Figure 42. Although compositions do vary from one sample to another, there seems to be a tendency for
the composition of pyroxene analyzed within veins and vesicle to extend more into the ferrosalite field
compared to the groundmass. Secondly, the pyroxene in the hornfels nearest to the gabbro, where
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recrystallization is most pronounced, is more dominantly within the salite-augite field, while the
composition of pyroxene further away from the contact falls more in the ferrosalite field. Furthermore,
orthopyroxene is found in four samples. It is mostly Mg-rich, but one grain belongs to the ferro-
hypersthene field (Figure 42). All grains of orthopyroxene are found within vesicle fillings. Zoned
pyroxene is found within the vesicle/vein domain with Fe enrichment towards the rim. Oxides are
observed in some places in central parts of vesicles, suggesting abundance of Fe in this re-crystallization
sequence.
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FIGURE 42: Compositional range of pyroxenes in the HTG hornfels.
See text for further explanation

Plagioclase shows a wide range of composition, but is dominantly found to be labradorite, but extends
into the andesine field (Figure 43). Only one sample has oligoclase composition, but that sample has a
high proportion of silicic veins, which could imply Na,O contamination of the feldspar. One sample
(271), which was taken at the hornfels/gabbro boundary (located separately out of the profiles), shows
an anorthite composition. A comparison with the results of the analyses of plagioclase in the hornfels
from well HE-42 is highly informative. In well HE-42, the crystallinity of the hornfels is more
pronounced than in the hornfels near the gabbro boundary in Hafnarfjall and with very explicit

or Or
KAISi308 KAISi308

0100 0100

SEM - All Samples

60

EMP- All Samples

A>§6é§ine XD] rite Bytownite % Bytownite
e (sal

o 10 20 3 4 5 60 70 8 90 - 100 o 10 20 3 4 5 60 70 8 9 100
Ab An Ab An
NaAlISi308 CaAl2Si208 NaAlISi308 CaAl2Si208

Andesine

FIGURE 43: Compositional range of plagioclase in the HTG hornfels.
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granoblastic crystallization. In HE-42, pyroxene is in general more confined within the salite-augite field
and plagioclase is more Ca-rich labradorite and extends to nearly pure anorthite. Within vesicles and
veins, there is a tendency for the pyroxene to be more Fe-rich (in particular in the EMP analyses), and
also for the plagioclase to be more anorthitic.

It is interesting to compare the mineralogy and geochemistry. In this regard, one can see that whole rock
samples of the hornfels and least altered rock equivalents from the Hafnarfjall-Skardsheidi central
volcano have comparable compositions. This is perhaps not surprising as the hornfels is a recrystallized
rock with similar plagioclase and pyroxene compositions, although the pyroxene may shift a little
towards Fe enrichment and the plagioclase towards the Ca end. Oxides are also similar to the primary
ones.

The oxides dominant in the HTG hornfels are magnetite and ilmenite, which are equally found in
groundmass and void fillings, although magnetite seems to be more common within vesicles. Titano-
magnetite is also observed in vesicle fillings. Apatite found in the hornfels, both around HTG and in
well HE-42, represents the first known occurrence of it as an alteration mineral in Iceland. The
occasional garnet and titanite are mostly found in vesicles and veins. A comparison of the present study
with the study of Sigurjonsson (2016) shows that andradite compositions are more dominant in the
hornfels, while getting more enriched in the grossular component further away from the gabbro.

Sulphide compositions in the HTG hornfels contact zone are characterized by high amounts of Fe and
S and up to 11% Pb, which means that they are within the pyrite compositional range. Other elements
in minor amounts are As, Ti, Sb, Cu, Zn, Au and Ag. This chemical composition is somewhat different
from compositions typical for sulphides in geothermal fields (well HE-42 in Hellisheidi), which are
classified as pyrite (common), pyrrhotite and Cu-sulphides. Hence, the main sulphide composition type
in HTG is pyrite, while in well HE-42 at Hellisheidi geothermal field show richer Cu-sulfides.

The outer limit of the hornfels was assessed in the field to some degree by the apparent change from
fine, dark grained rock to the more normally appearing altered rocks. In some of the samples taken at
the outer margin, amphibole (actinolite, hornblende) becomes more abundant. That would suggest the
transition from pyroxene hornfels to hornblende hornfels, which also is seen by the abundant garnet in
vesicles and veins. Figure 8, which is metamorphic facies pressure-temperature diagram, shows the
stability field of hornblende hornfels and how pyroxene hornfels succeeds the former as temperature
increases. The temperature of the transition is just above 600°C. The silicic magmatic veins cutting
through the hornfels do not show any marginal cooling against the hornfels, which may imply similar
temperatures of the hornfels. This would mean temperature in the range of 800-900°C, which is at the
upper boundary for pyroxene hornfels. As there is no sanidine found, the hornfels did not reach the
sanidinite facies, which is not to be expected, the protolith being basaltic.
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8. SUMMARY AND CONCLUSION

Hrossatungur gabbro was the heat source for a high-temperature system and is surrounded by a hornfels
contact zone. The evidence suggests that the gabbro is the last intrusive phase in the Hafnarfjall-
Skardsheidi central volcano which influenced by multiple inflation and deflation events, became
fractured, and increased the permeability of the rocks to allow magmatic gases, like sulphide volatiles,
to escape from the magma chamber. The hornfels is badly exposed on the northern side of the caldera,
but well exposed on the southern side, which allowed us to study the southern part in detail.

Loss-on-ignition analyses show that the hornfels is the least hydrous part of the rocks around the
intrusion, due to the mineral assemblage being dominantly water-free. This was caused by thermal
conduction from the gabbro intrusion, which also prevented fluid heat-mining from the molten magma.

The hornfels rocks have a composition range that is almost identical to the equivalent fresh rocks of the
volcano, although the hornfels appears to have suffered some Na,O depletion. SiO, content shows a
wide range, which can be explained partly by diorite to felsic veining of late-stage melts from the
intrusion, but also quartz and a possible andesitic composition of some of the protolith rocks, while
samples that have anomalously low SiO, content come from locations of late sulphide volatile migration,
which in turn indicates rock dissolution and formation of secondary permeability.

The main minerals analyzed were pyroxene, plagioclase and oxides. The pyroxene composition range
is dominantly salite-augite-ferrosalite with slight diopside and hedenbergite. The pyroxene in the zone
nearest the hornfels is more recrystallized and dominantly of salite-augite composition, while further
away from the gabbro, it becomes dominantly ferrosalite. Orthopyroxene is mostly as Mg-rich vesicle
fillings. Pyroxene within vesicles and veins tends to have more Fe-rich outer boundary.

Plagioclase shows a wide range of compositions in the hornfels contact zone around HTG, dominantly
with labradorite to andesine composition, which extends to anorthite composition in some cases.

A comparison between the hornfels compositions around HTG and well HE-42 at Hellisheidi indicates
that the pyroxene composition is within the salite—augite field and the plagioclase is more Ca-rich
labradorite and extends to pure anorthite in well HE-42. The crystallization is more pronounced and
tends to be granoblastic, which is indicative of more intense hornfels crystallization, leading to less Fe-
rich pyroxene and more common orthopyroxene. Plagioclase will probably become more anorthitic
under those conditions.

The similarity between the bulk chemical composition of the hornfels and primary basalts is probably
due to the similar compositional ranges of the pyroxene, plagioclase and oxides in both types.
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APPENDIX I: Procedures and samples preparations for ICP-OES analysis

The main procedures to prepare the samples for ICP-OES analysis are as the following:

1.

2.

Crush the samples using laboratory jaw crusher to fine gravel and sieve them to finer chips.

Grind the chip samples using an agate mortar to a fine powder of about 100-mesh.
Note: It is important to keep the mortar and pestle as clean as possible after grinding each sample
using acetone to avoid contamination.

. Weigh 100 mg + 2 mg of the sample into epicure graphite crucible. After re-zeroing the balance,

add 200 mg £2 mg of lithium metaborate (LiBO2) flux to the sample. Carefully mix the sample
with the flux and make sure that the mixture does not stick to the wall of the crucible.
Note: The flux of lithium metaborate is added to facilitate the melting process in the oven.

Preparation of a chemical solution, which will be used to dissolve the sample, by mixing the
HNOs (5%), HCI (1.33%) with a semi-saturated oxalic acid, C;H>O4 (1.33%), and de-ionized
water.

Note: Keep everything clean and avoid contamination.

. Prepare the working standard samples. The four standard samples prepared are K9119, ATHO,

BTHO and BAIK by mixing 250 mg £1 mg of each sample and 500 mg =1 mg of the lithium
flux. Then standard bottles prepared by weighing 30 ml of the prepared chemical solution and 75
ml of the solution into individual bottles.

. The sample melted in an electric furnace at 1000°C for 30 minutes and then to cool down for

another 20 minutes. Transfer the glassy pellet (the solidified sample after melting) into a 30 mg
bottle mixture.

The new solution (glassy pellets in their mixtures) immediately run in a carousel to avoid any
silica precipitations by completing the solution. The shaking process take 3-4 hours until the
solution become homogenous. By now, samples are ready for ICP-OES instrument analysis.

Initially, ICP-OES instrument calibration, then analysis starts by running four-calibration
standards. The instrumental reference sample (REF) is made of the same parts of internal
calibration standards, which are used to monitor drift during the process of analysis. In addition,
spectra software used in the calculation of 3-4 points for every single element. As the beginning
of the session, REF was analyzed at 4 or 5 samples interval across the whole analytical samples
(30 samples). The four other calibration standard (K9119, ATHO, BTHO and BAIK) were
individually and alternatively used in between a batch of 4-5 samples.

. The output raw data then copied for correction to a spreadsheet. Thereafter, all the samples values

normalized to 100%. Then time variation calculated to each sample, in order to obtain correction
for the batch results to be equal to the absolute values of the references samples.
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Scanning electron microscope
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Table 4.Quantitive analysis results for apatite (SEM)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cao 65.47  66.29 68.97 65.04 67.6 70.04 68.68 69.88 65.88 68.37 66.89 70.08 71.33 70.83
P205 21.15 20.8 27.26 22.23 20.61 24.65 2591 24.2 21.24 24.91 25.69 24.1 24.31 25.63
F 4.44 4.19 3.77 1.95 4.7 4.7 4.57 3 2.4 2.48 3.58 3.95 4.35 2.73
cl 2.68 3.22 0.96
Zr 7.58 7.42 7.46 6.47 6.96
Sio2 1.37 1.35 1.93 0.84 0.89 0.84 1.02 1.85 1.86 0.81
271- 274-
271- marginl-  271- 271- 274- vesfilling-
Sample 226- 271-margin-marginl- carbonate marginl- marginl- vesfilling- carbonate- 290-ccpol- 290-ccpo2-290-ccpo3- 290-ccpo4d
No. ves5 230 HE-42 sulfidel sulfide2 1 carbonat2 carbonat6 sulfite2 sulfite3 vesfillingl  vesfillingl vesfillingl  vesfillingl
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Cao 72.18 67.25 68.04 72.24 66.89 70.08 71.33 70.83 72.18 67.25 70.04 68.68 65.88 68.37
P205 24.85 26.64 23.43 26.88 25.69 241 24.31 25.63 24.85 26.64 24.65 25.91 21.24 24.91
F 0.92 4.84 3.58 3.95 4.35 2.73 0.92 4.84 4.7 4.57 2.4 2.48
cl 0.54 0.96 0.54 2.68 3.22
Zr 7.23
Si02 1.51 1.28 0.93 1.85 1.86 0.81 1.51 1.28 0.84 0.84 1.02
251-
290- 251-vesl-vesl- 251-vesl- 251-vesl- 271- 274- 274-
ccpo5- center-  center- margin- 290-cc- 290-cc- center- 271- marginl- vesfilling-  vesfilling-
Sample vesfillin carbonat carbon carbonate- pol- 290-cc-p02- 290-cc-po3- 290-cc-po4- po5- carbonate- marginl- carbonate carbonate- carbonate
No. gl e-P2 ate-pl pl vesfillingl vesfillingl vesfillingl vesfillingl vesfillingl with- p2 carbonatel 2 sulfitde2 sulfitde3
Table 5.Quantitive analysis results for titanite (SEM)
1 2 3 4 5 6 7 8 9 10 11
Si02 21.8 21.59 22.66 22.57 22.9 24.58 22.47 22.64 26.64 24.42 22.64
CaO 35.7 35.09 35.7 34.43 33.93 34.74 35.13 34.98 33.19 34.29 34.98
Ti0o2 38.25 39.54 37.5 38.73 38.82 32.29 38.26 34.97 31.04 32.72 34.97
FeO 2.99 2.69 2.78 2.52 2.57 3.79 2.71 3.95 3.52 3.87 3.95
Al203 1.16 1.09 1.32 1.75 1.78 4.47 1.28 3.45 5.6 4.69 3.45
MgO 0.1 0.05
Na20 0.05
MnO 0.05
226- 226-
230-16- groundm vesfilling 248- 248- 248- 248-
230-SI-As-  230-SI-As- sphene- 230- 230- ass4- 5-sphene- sphenel- sphene2- sphene3- sphene 1-
Sample No. sphene sphene3 230-2 sphene-2 sphene-4 sphene crystal-2 veinfilling veinfilling veinfilling veinfilling
1 2 3 4 5 6 7 8 9 10 11
Sio2 26.64 24.42 24.77 24.47 23.47 20.57 21.55 20.61 24.14 23.69 33.56
Cao 33.19 34.29 33.3 33.49 32.56 36.45 36.21 36.7 33.6 32.88 28.85
TiO2 31.04 32.72 32.65 33.37 33.95 38.33 38 39.1 36.27 34.23 11.38
FeO 3.52 3.87 4.48 4.66 5.14 3.12 2.8 2.37 3.05 5.54 3.45
Al203 5.6 4.69 3.73 3.15 3.67 1.41 1.45 1.21 2.74 3.67 22.77
MgOo 1.07 0.87 1.21
Na20
MnO
HE- HE- HE-
sphenel- sphene2- sphene3-
248- 248- locl- locl- locl- 251-vesl- 251-vesl- 251-vesl- 271- 271- 271-
sphene2- sphene3- groundm groundm groundm center- center- center- vesfilling vesfilling vesfilling
Sample No. veinfilling veinfilling ass ass ass sphenel sphene2 sphene3 1-shenel 1-shene2 1-shene3
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Table 7.Quantitive analysis results for amphibole (SEM)

1 2 3 4 5 6 7 8
Na20 4.21
MgO 6.52 17.07 12.77 9.47 5.89 14.67 12.49 15.03
Al203 22.28 14.1 21.78 17.82 23.41 13.83 13.13 14.47
Sio2 43.65 31 39.79 23.78 39.73 30.67 31.41 32.14
Cao 12.4 1.6 1.26 0.51 2.15 2.27 2.19 1.95
FeO 10.92 36.22 22.72 48.41 25.01 38.56 40.77 36.41
K20 1.68 3.81
HE- HE- HE- HE- HE-
HE-amphl- amph2- amphl- amph4- amph5 amph3-
loc2- locl- locl- HE- HE- locl- locl- locl-
Sample groundmas groundm groundm amphl- amph2- groundm groun groundm
No. s ass ass loc2-vesl loc2-vesl ass dmass ass

Table 8.Quantitive analysis results for carbonate (SEM)

1 2 3 4 5 6 7 8 9 10 11
Si 2.89 2.7 38.86 38.51 37.65 39.34 0.89 0.7 1.27 2.44
P 18.63
S 1.99 1.41 0.2
Cl 2.64
Ca 90.22 91.86 94.39 28.03 29.78 29.5 23.84 55.86 89.59 89.6 92.32
Al 1.69 1.69 30.72 29.58 29.51 32.69
Fe 5.2 3.76 2.66 2.39 2.13 2.46 4.14 3.21 3.26 1.56
Mn 2.95
271- 274- 291- 291-
251-vesl- 251-vesl- 251-vesl- groundm 271- 271- 271- vesfilling- veinfilling-291- veinfilling
center- center- margin-  ass- marginl- marginl- marginl- carbonat inner-rim-veinfilling-  inner-rim{
Sample carbonate- carbonat carbonat carbonat carbonat carbonat carbonat e- carbonat inner-rim-  carbonat
No. no pl e-nop2 el el e3 ed e5 sulfitdel el carbonate2 e3
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Table 15.Quantitive analysis results for apatite (EMP)

1 2 3 4 5 6

CaOo 55.520 56.130 55.250 55.220 55.930 54.960
P205 39.160 41.200 41.440 40.590 41.120 41.460
F 3.740 2.640 3.320 3.930 3.030 3.610
cl 0.065 0.049 0.045 0.068 0.053 0.035
FeO 0.198 0.239 0.283 0.284 0.239 0.277
MgO 0.149 0.145 0.123 0.124 0.106 0.184
Si02 0.304 0.234 0.104 0.617 0.130 0.275
MnO 0.050 0.064 0.078 0.043 0.048 0.060
SO3 0.002 0.007 0.000 0.002 0.016 0.003
Total 99.187 100.708 100.643 100.878 100.671 100.864

HE- HE- HE- HE- HE- HE-

apatite- apatite- apatite- apatite- apatite- apatite-
Sample NO. locl-inner-locl-inner-loc3-rim- loc3-rim- loc3-rim- loc3-rim-

ves-grn4 ves-grn7 ves-grnl ves-grn5 ves-grn6 ves-grnl0

Table 16.Quantitive analysis results for unpure composition of apatite (EMP)

1 2 3 4 5 6 7 8 9 10 11
Si02 0.166 3.000 0.353 0.141 0.239 0.235 0.209 0.083 0.205 0.447 0.313
FeO 0.202 0.372 0.200 0.196 0.263 0.323 0.319 0.277 0.245 0.236 0.453
MnO 0.054 0.069 0.045 0.072 0.053 0.064 0.040 0.054 0.048 0.046 0.043
Mgo 0.109 0.864 0.114 0.149 0.125 0.154 0.131 0.125 0.139 0.115 0.109
CaO 55.750  55.010 56.570 @ 56.340  55.940  55.850 @ 56.250  56.080 @ 56.270  55.050  56.120
P205 41960 38.680 41.220 40.750  41.180  40.690 41.310 41.410 41.390 41.670  41.390
F 3.350 3.160 3.290 4.180 3.660 3.920 2.990 3.660 4.910 3.980 3.930
S03 0.000 0.002 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.005 0.003
Cl 0.044 0.055 0.040 0.051 0.041 0.047 0.046 0.041 0.052 0.056 0.051
Total 101.635 101.212 101.832 101.880 101.501 101.286 101.295 101.731 103.259 101.604 102.412

HE- HE- HE- HE- HE- HE- HE- HE- HE- HE- HE-

apatite- apatite- apatite- apatite- apatite- apatite- apatite- apatite- apatite- apatite- apatite-
locl-inner-locl-inner-locl-inner-locl-inner-locl-inner-loc3-rim- loc3-rim- loc3-rim- loc3-rim- loc3-rim- loc3-rim-
ves-grnl ves-grn2 ves-grn3 ves-grn5 ves-grn6 ves-grn2 ves-grn3 ves-grnd ves-grn9 ves-grnll ves-grnl5

Sample NO.
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APPENDIX IV: Procedures and sample preparation for Loss-on-Ignition (LOI) analyses

1.

2.

Grind the samples to a very fine (100 mesh) powder before starting the LOI analysis.

Clean white ceramic crucibles and completely dry them in one of low-temperature (0 — 400°C)
ovens. Let them cool down to room temperature (ideally in a desiccator) for 20 minutes before
continuing to next step.

. Label and weigh empty white ceramic crucible, note the weight and label in notebook as shown

in Table 17.

i.  Put one of samples in the crucible, weigh both crucible and the sample and note weight and
sample number. Repeat this step for all samples.

ii. Note: The weight of samples is supposed to be in the range 1-5 g.

. Put the crucibles in the low-temperature oven (0-400 °C) and heat them up to 105°C for about 10

hours (the purpose of this step is to remove initial pore water). Let them cool down for 20 minutes
to room temperature.

. Weigh crucibles after the 10 hours heating, and note the weight.

Put the crucible in the high-temperature furnace (0 - 1000 °C). Heat the oven gradually, in small

steps, at a rate of 200 °C /hrs (smaller increments make the temperature gradient smoother,

otherwise the crucible breaks) up to 1000 °C. Leave the crucibles at 1000 °C for 10 - 12 hours and

cool thereafter again at the same rate (200 °C /hrs in increments of 15 or 30 minutes).

i.  Note: The permanent marking will evaporate by heating to 1000 °C, so it is important to note
the position of the crucibles in the oven. Then can be re-labelled when taking them out of the
oven.

. Weigh the crucibles after these procedures one more time and note the weight.

Now calculate the loss on ignition to be able to obtain the percent of mass lost on ignition from
the following formulas:
i.  Sample weight = (Crucible + Sample) — Crucible empty

ii. Loss-on-ignition = Heated 105 °C — Heated to 1000 °C

iii.  Percent of mass lost on ignition = (Loss on ignition /Sample weight)*100
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Table 17. The weights of the ceramic crucibles and samples during loss on ignition

Crucible Sample (thin Crucible Crucible + Heated Heatedto Sample Losson Precent of Mass
number section) No. empty Sample 105°C 1000°C weight Ignition  Lost on Ignition
1 225(121) 19.255 20.397 20.395 20.377 1.142 0.018 1.61
2 226 (118) 19.456 20.628 20.619  20.609 1.171 0.010 0.84
3 227 (124) 20.281 21.901 21.897 21.887 1.620 0.010 0.64
4 228(120) 19.932 21.222 21.217 21.210 1.290 0.007 0.53
5 229(119) 19.698 20.812 20.810  20.809 1.114 0.001 0.12
6 230(123) 18.920 20.027 20.025 20.027 1.107 -0.002 -0.16
7 231(125) 18.899 19.927 19.926  19.924 1.029 0.002 0.20
8 248A (101) 18.945 19.935 19.935  19.928 0.991 0.007 0.70
9 250 (103) 19.866 20.891 20.888 20.867 1.025 0.021 2.09
10 251(102) 19.195 20.210 20.207 20.191 1.015 0.016 1.58
11 252 (106) 18.353 19.447 19.446 19.432 1.094 0.014 1.25
12 271(105) 21.270 22.593 22.591  22.576 1.324 0.015 1.13
13 272A 21.365 22.397 22.395 22.385 1.033 0.010 0.98
14 272B 19.801 21.076 21.072 21.047 1.275 0.025 2.00
15 272C(108) 19.256 20.631 20.614  20.538 1.375 0.076 5.51
16 272D (109) 19.454 20.477 20.471 20.469 1.022 0.002 0.18
17 273 (112) 20.279 21.698 21.695  21.697 1.419 -0.002 -0.18
18 274 (111)  19.932 20.993 20.991 20.989 1.061 0.001 0.12
19 292 (114) 19.698 20.721 20.714 20.701 1.022 0.013 1.31
20 293 (116) 18.919 19.973 19.968  19.951 1.054 0.017 1.59
21 20592 18.898 20.099 20.095 20.065 1.201 0.030 2.53
22 20603 19.394 20.566 20.565  20.554 1.172 0.011 0.95
23 20604 18.944 20.042 20.038 20.022 1.097 0.017 1.53
24 20605 19.865 21.016 21.012 20.990 1.151 0.023 1.95
25 20606 19.195 20.425 20.421  20.406 1.229 0.015 1.22
26 20608 21.269 22.506 22.504 22.506 1.236 -0.003 -0.21
27 20622 21.365 22.540 22.535  22.498 1.175 0.036 3.07
28 25 19.802 21.158 21.151 21.119 1.356 0.032 2.37
29 26 18.353 19.477 19.477 19.475 1.125 0.002 0.19
30 27-Gabbro 19.394 20.788 20.785  20.773 1.394 0.012 0.83
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APPENDIX V: End-member composition of garnet

Table 18. Garnet end-member compositions calculated from the result of EMP analysis, numbers in mole %

mole%
point Sample Almandine Pyrope Grossular Spessartine Uvarovite Andradite Ca-TiGt  Total
1 115-ves 2-3 garnetinnerrimgr1ptl 1.70 0.34 0.00 0.79 0.00 97.06 0.11 100.00
2 118-ves 2-3 garnetinner rimgr 1 ptl 1.05 0.18 0.06 0.94 0.00 97.67 0.11 100.00
3 115-ves 2-3 garnetinner rimgr 1 pt3 1.39 0.12 0.09 0.91 0.04 97.43 0.02 100.00
4 118-ves 2-3 garnetinner rimgr 1 pt3 2.93 0.04 0.05 0.99 0.00 95.92 0.07 100.00
5 115-ves 2-3 garnetinner rim gr 1 pt5 1.03 0.52 0.07 0.67 0.01 97.62 0.08 100.00
6 118-ves 2-3 garnetinner rimgr1pt6 1.03 0.52 0.07 0.67 0.01 97.62 0.08 100.00
7 118- ves 5 garnet center gr 1 ptl 1.66 0.01 0.00 1.09 0.00 97.24 0.01 100.00
8 118-ves 5 garnet center gr 1 pt2 1.57 0.05 0.00 0.99 0.00 97.26 0.13 100.00
9 118-ves 5 garnet center gr 1 pt3 7.75 0.29 11.26 0.71 0.03 74.29 5.68 100.00
10 115- veinrim garnetgr 1 pt2 4.13 0.55 11.44 2.15 0.00 78.31 3.42 100.00
11 115- vein rim garnet gr 1 pt3 4.84 1.03 17.48 2.67 0.00 65.69 8.29 100.00
12 115- vein center garnet gr 1 pt2 0.68 8.24 3.32 0.92 0.00 86.83 0.01 100.00
13 115- vein center garnet gr 1 pt3 0.68 8.24 3.32 0.92 0.00 86.83 0.01 100.00
14 115- vein center garnet gr 1 pt4 1.21 0.20 1.18 0.52 0.00 96.72 0.16 100.00
15 115- vein rim garnet gr 1 pt4 4.10 0.65 6.59 2.86 0.05 82.19 3.56 100.00
16 115- vein rim garnet gr 1 pt5 5.06 1.01 10.24 2.65 0.00 73.42 7.63 100.00
17 117-rim-vesl-garnet-grnl 2.01 0.14 3.02 2.02 0.03 92.38 0.40 100.00
18 117-rim-vesl-garnet-grn2 1.71 0.21 2.80 1.18 0.00 93.31 0.79 100.00
19 117-rim-ves1-garnet-grn3 1.37 0.19 1.21 1.21 0.04 95.71 0.28 100.00
20 117-rim-vesl-garnet-grn4 2.93 0.09 0.24 3.09 0.00 93.43 0.23 100.00
21 117-rim-vesl-garnet-grn5 2.52 0.17 1.17 1.24 0.00 94.64 0.26 100.00
22 117-rim-vesl-garnet-grn6 7.92 0.47 6.86 1.88 0.00 78.41 4.47 100.00
23  117-rim-vesl-garnet-grn7 3.67 0.34 1.73 4.16 0.00 89.98 0.11 100.00
24 117-rim-vesl-garnet-grn8 2.90 0.13 0.02 1.11 0.00 95.85 0.00 100.00
25 117-rim-vesl-garnet-grnl0 2.93 0.10 0.05 1.29 0.00 95.54 0.08 100.00
26 117-rim-vesl-garnet-grnll 1.43 0.06 0.23 0.96 0.06 97.20 0.06 100.00
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APPENDIX VI: The standards used for EMP analyses

TABLE 19a: Standards, spectrometers and analytical crystals used, counting times
on peak and background on each side of peak for apatite analyses

Element | Spec. | Crystal Standard Peak (sec) | Backgr. (sec)

Si 5 TAP Plagioclase (NMNH 115900) 60 60

Fe 4 LIFL Garnet (NMNH 87375) 60 60
Mn 4 LIFL Bustamite (Astimex Standards Ltd.) 60 60
Mg 5 TAP Diopside Glass (NASA) 60 60

Ca 2 PETJ Apatite (Astimex Standards Ltd.) 60 15

P 2 PETIJ Apatite (Astimex Standards Ltd.) 60 15

F 1 LDEI Topaz (Astimex Standards Ltd.) 120 60

S 3 PETH Pyrite (Astimex Standards Ltd.) 60 60

Cl 3 PETH | Scapolite (Meionite) (NMNH R6600) 60 60

TABLE 19b: Standards, spectrometers and analytical crystals used, counting times

on peak and background on each side of peak for amphibole analyses

Element | Spec. | Crystal Standard Peak (sec) | Backgr. (sec)
Si 1 TAP Augite (NMNH 122142) 20 10
Ti 2 PETJ | Hornblende (Kakanui) (NMNH 143965) 45 45
Al 1 TAP Pyrope (NMNH 143968) 30 15
Fe 3 LIFH | Hornblende (Kakanui) (NMNH 143965) 30 15
Mn 3 LIFH Bustamite (Astimex Standards Ltd.) 30 30
Mg 5 TAP Hypersthene (USNM 746) 30 15
Ca 2 PETJ Diopside (NMNH 117733) 30 15
Na 5 TAP Omphacite (NMNH 110607) 30 15
K 4 PETL Corning Glass D (NMNH 117218-3) 30 15
F 1 LDEI1 Topaz (Astimex Standards Ltd.) 45 45
Cl 4 PETL Scapolite (Meionite) (NMNH R6600) 45 45
Cr 4 LIFL Chromite (NMNH 117075) 30 15
Ni 3 LIFH Pentlandite (Astimex Standards Ltd.) 30 30

TABLE 19c: Standards, spectrometers and analytical crystals used, counting times
on peak and background on each side of peak for garnet analyses

Element | Spec. | Crystal Standard Peak (sec) | Backgr. (sec)
Si 1 TAP Pyrope (NMNH 143968) 30 15
Ti 2 PETJ | Hornblende (Kakanui) (NMNH 143965) 30 30
Al 1 TAP Pyrope (NMNH 143968) 30 15
Fe 3 LIFH Garnet (NMNH 87375) 30 15
Mn 4 LIFL Bustamite (Astimex Standards Ltd.) 30 15
Mg 5 TAP Pyrope (NMNH 143968) 30 15
Ca 2 PETJ Garnet (NMNH 87375) 30 15
Na 5 TAP Omphacite (NMNH 110607) 30 30
Cr 4 LIFL Chromite (NMNH 117075) 30 30
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TABLE 19d: Standards, spectrometers and analytical crystals used, counting times on
peak and background on each side of peak for oxide analyses

Element | Spec. | Crystal Standard Peak (sec) | Backgr. (sec)
Si 1 TAP Pyrope (NMNH 143968) 30 30
Ti 2 PETJ Rutile (Astimex Standards Ltd.) 30 30
Al 1 TAP Garnet (NMNH 87375) 30 15
Fe 3 LIFH Hematite (Astimex Standards Ltd.) 30 15
Mn 4 LIFL | Bustamite (Astimex Standards Ltd.) 30 30
Mg 5 TAP Hypersthene (USNM 746) 30 30
Cr 4 LIFL Chromite (NMNH 117075) 30 15
Ni 3 LIFH | Pentlandite (Astimex Standards Ltd.) 30 30

TABLE 19e: Standards, spectrometers and analytical crystals used, counting times
on peak and background on each side of peak for plagioclase analyses

Element | Spec. | Crystal Standard Peak (sec) | Backgr. (sec)
Si 1 TAP Plagioclase (NMNH 115900) 40 20
Ti 2 PETJ | Hornblende (Kakanui) (NMNH 143965) 40 40
Al 1 TAP Anorthite (NMNH 137041) 40 20
Fe 3 LIFH | Hornblende (Kakanui) (NMNH 143965) 40 20
Mn 3 LIFH Bustamite (Astimex Standards Ltd.) 40 40
Mg 5 TAP | Hornblende (Kakanui) (NMNH 143965) 40 40
Ca 2 PETJ Anorthite (NMNH 137041) 40 20
Na 5 TAP Anorthoclase (NMNH 133868) 30 15
K 4 PETL Microcline (NMNH 143966) 40 20
Ba 4 PETL Corning Glass C (NMNH 117218-2) 40 40

TABLE 19f: Standards, spectrometers and analytical crystals used, counting times
on peak and background on each side of peak for pyroxene analyses

Element | Spec. | Crystal Standard Peak (sec) | Backgr. (sec)
Si 1 TAP Augite (NMNH 122142) 30 15
Ti 2 PETJ | Hornblende (Kakanui) (NMNH 143965) 30 30
Al 1 TAP Pyrope (NMNH 143968) 30 15
Fe 3 LIFH | Hornblende (Kakanui) (NMNH 143965) 30 15
Mn 4 LIFL Bustamite (Astimex Standards Ltd.) 30 30
Mg 5 TAP Hypersthene (USNM 746) 30 15
Ca 2 PETJ Diopside (NMNH 117733) 30 15
Na 5 TAP Omphacite (NMNH 110607) 30 15
Cr 4 LIFL Chromite (NMNH 117075) 30 15
Ni 3 LIFH Pentlandite (Astimex Standards Ltd.) 30 30
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TABLE 19g: Standards, spectrometers and analytical crystals used, counting times
on peak and background on each side of peak for titanite analyses

Element | Spec | Crystal Standard Peak (sec) | Backgr. (sec)
Si 1 TAP Augite (NMNH 122142) 20 10
Ti 2 PETJ Rutile (Astimex Standards Ltd.) 30 15
Al 1 TAP Pyrope (NMNH 143968) 30 15
Fe 3 LIFH | Hornblende (Kakanui) (NMNH 143965) 30 15
Mn 3 LIFH Bustamite (Astimex Standard Ltd.) 30 30
Mg 5 TAP Hypersthene (USNM 746) 30 30
Ca 2 PETJ Anorthite (NMNH 137041) 30 15
Na 5 TAP Omphacite (NMNH 110607) 30 30
K 4 PETL Corning Glass D (NMNH 117218-3) 30 15
F 1 LDEI Topaz (Astimex Standards Ltd.) 45 45
Cl 4 PETL Scapolite (Meionite) (NMNH R6600) 45 45
Cr 4 LIFL Chromite (NMNH 117075) 30 3
Ni 3 LIFH Pentlandite (Astimex Standards Ltd.) 30 30
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APPENDIX VII: Description table and analyses for the
hornfels samples around Hrossatungur gabbro

Table 20.Description of hornfles samples and analysis

No. (thinsection)

11

12

Sample

No.

247A

2478

248A (101)

2488 (104)

250 (103)

251 (102)

251 (107)

252 (106)

271 (105)

272A

2728

272C

Fieldbook description

On the western side of Halsgil we have dominant
dolerite-micrograbbro in scree probably Il to the
slope as it does not extend into the eatern gully
slope. Sample taken to see alteration difference cf
to main gabbro.

10 cm vienfilling of llcc and Quartz. Taken in scree on
eastern side of Halsgil derived from above there.
Hornfels taken 10-40 cm form the lower contact of
the porph cone sheet. Sample shows 2 kinds of
crystallnity that should be takien into consideration
when analysis is done. much more slica and
plagioclase then all the other samples and felsic
veins as well

Sample taken from the porph cs in order to check the
alteration to assess the alteration succeeding the
intrusion.

5 m up gully sample of hornfels of vesicular basalt
ve. Fine grained

Contact of hornfels and fine grained intrusive
contact of the gabbro. Picture taken. Dark grained
sample taken about 0.5 m from contact.

Fine grained intrusive taken about 1.5 m from the
contact, apparently relatively fresh, rare pyrite in
rock. Itis interesting to see the same kind of cooling
jointing going from the intrusion into the hornfels.
Interpretee as showing similar cooling features i.e
the hornfels is at least in a plastic state

Three sulfide chimneys seen, some 4x4, 2x2 and 2x2
cutting through the fine grained "gabbro", ca. 15- 20
m from the gabbro contact. These agrees with the
degasing chimneys venting off the volatiles from the
magma.

A two sample profile. This sample is about 30 cm
form contact of finegrained chilled gabbro contact.

Sample taken about 70 cm from contact

Profile taken from outer rim of hornfels up to the
chilled margin of the gabbro. Small gairns build
along the sample trail

Crumbly hornfels, no vesicle seen. As in other places
the jointing in the hornfels extends into the doelrite-
gabbro indicating common solidification.
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No

14

15

16
17

18

19

20
21

22

23

24

25

26

Sample
. (Thinsection)
No.
272D (108) 3 m from first sample
6 m from second sample. Fine grain and few
272E(109) phenocrysts plago that forms from old phenocysts

Fieldbook description

lava after the hornfelsed processes

Hornfels rock with white to yellow color minerals
273(112) , v

assimbledge

Dolerite about 6 from the contact to check on the
274 (111) i

alteration
274(122)  small dioritic vein at the gabbro contact. =

size probably due to recrystallization of vesicle
290(117) fillings. Sample for petrography and chemistry
analysis
Exposure ca. 8-10 m from point 290. Probbly relics of
ves fillings.
Small hornfels sample about 1 m from chilled margin
of gabbro. Porphertic texture of phenocrystis of
292 (114) plagio with vary compositions, some magnitite is
found in the plagio crystals which caused by the
processes of hornfeling.
293 (116)  Small patch of hornfels
Crumbly hornfels ca 1.5 m above the fine grained
gabbro cntact.
,Contact”to the intrusion hornfels. Very strong
jointing, which probably is due to the later faulting
20592 in the pass. Sample light coloured and difficult to
identify. Veins filled with Quartz and ore
laumontite in vesicle
Doelrite veinig in basalt breccia near to
gabbro/dolerite exposure. Hornfels with py in
groundmass and common pyrite veins. Dark veins
that may be older than pyrite.

291 (115)

294 (113)

20603

Hornfels at gabbro margin. Probable granophyric
veins and vesicle filling. Granophyric veins cutting
through hornfels. Volatile pores in granopyre and
20604 magmatic Quartiz crystallizing from the margin. And
fine nedles that may be amphiole. Large sample
vesicular basalt hornfels, vesicles mostly filled with
Quartz and minor garnet
Fine light gray grain size (granophyric =felsic colors
intrusion in the hornfels which come from the felsic
magam remains after the partial melting of the mafic
menrals ), the granophyric veins characterized by
20605 vescaular texture with empty porous that may taken
for daitals fluid inclusion, lining viens along all the
rock, big viens of white colors wich filled, some
vesicals are empty, some others filled with vesicals
like epidote gz. Veins are cut crossing?
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27

28

29

30
31
32

33
34
35
36
37
38
39

40

Sample

No. (Thinsection) Fieldbook description Thin section ICP Lol SEM EMP
No.
Sample from hornfels, numerous felsic vesicle
fillings. vesicular hornfelsed basalt. Vesicle-massive
20606 Quartz+occational ore, especially near margin but X x x
also within the Quartz. These are cut through by
softer veins with darker minerals and threads of
actinolite
Sulphide vein in hornfels cuts through the hornfels.
Very dark and fine grained hornfels charged with
opaques, crosscut by sulfide veiningi.e.
26 (26) hornfels>sulfide. Sulfide contaminating the X X X
boundary of the hornfels. looking on top of the vein
it looks like the sulfides are spherial pitting into the
rock?
Vesicular hornfels with vesicle fillings mostly quartz.
Dark band (possibly chlorite altered to opaque)>gt
20608 (faintgreen)>Q, gt+ore>Q, dark opaque ring around X X
the vesicles, former chlorite or just opaque
deposition during hornfels stage?
Hornfels, rare vesicles filled with dark material,
20622 seems fine grained, dark and hard. Standared X X X
charctersitcs of hornfels rocks.
25 Hornfels contains pyrite, plag and Quartz X X
225(121)  Two profiles of hornfels samples in Koppakofugil X X X
226 (118) Hornfels profile with some pyroxene and maybe « « « « «
hornblende
227 (124)  Hornfels with gz veinfilling X X X
228(120)  Fine gran texture of hornfels X X X
229(119)  Very recrystalized type of hornfels X X X
230 (123) Fine grain texture of hornfels X X X X X
231 (125) Ver.y fine.grain.with white and gray c?lorand « « «
vesicals fills with green may be chlorite.
HT Gabbro This sample is taken as a gabro rock from « «
Hrossatungur gabbro
This sample collceted from the cutting samples of
HE-42 (1500m) i L . x X X
well HE-42 in Hellisheidi geothermal field
Total 33 30 30 9 5
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