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1 Executive Summary 
 

The document describes the architecture of the system being developed in the project. The 
principal contribution of this work is to the engineering of autonomous systems in a general 
fashion, i.e. independently of the target domain. This work is not “biologically inspired” and 
contributing to modeling natural intelligences is not an objective of the project. 

 

The main challenge set for the system is to adapt in dynamic open-ended environments with 
insufficient knowledge and limited resources. The system is to perform in real-time and extract 
knowledge from the domain it operates in. In particular, this means discovering meaningful 
states in the environment and learning skills by observing intentional agents in the domain. 

 

No system facing the complexity of the real world is able to learn effectively and efficiently from 
scratch. For each domain our system is plunged in, we hand craft a bootstrap code (called the 
Masterplan) that consists of the necessary initial and minimal knowledge to observe and act in 
the domain. 

 

The system is model-based and model-driven, meaning that its architecture is unified and 
consists essentially of dynamic hierarchies of models that capture knowledge in an executable 
form. The system is thus composed of executable models. From this perspective, learning 
translates into building models, integrating them into the existing hierarchies and revising them 
continuously. This perpetual rearranging of the internal agency of the system addresses the first 
objective of the HUMANOBS project: 

 to design an auto-reconfigurable architecture. 

Learning is based on model building, which in turn is driven by goals and predictions, i.e. the 
evaluation by the system of the observed phenomenology of the domain. In other words, the 
system infers what it shall do (specification) and observes ways to reach these goals 
(implementation). In that regard, this addresses the second objective of the project: 

 to build a system that can auto-generate specifications for skills and behaviors based on 
their observation. 

Learned specifications and implementations are highly context-dependent, which raises the 
challenge of identifying when to reuse (or refrain from reusing) learned models. Specifications 
and implementations are built hierarchically, which means that the system is able to reuse 
previously learned skills, however said skills are by design executable in parallel: this raises the 
challenge of coordinating (or sequentializing) the operation of the models that implement said 
skills. The architecture has been designed from the onset to solve these issues, and this 
addresses the last objective of the project: 

 to build behavior generation and coordination mechanisms for the reproduction and reuse of 
observed skills. 

 

The architecture has been designed in a principled way (each part of the architecture is based 
on the same architectural template), and organizes the cooperation of four continuous 
processes: Model Acquisition, Model Revision, Compaction (or model compression) and 
Reaction (reactive behavior in the domain). It is the interplay of said processes that not only 
ensure the viability of the whole system but also improves its performance. For example, 
acquiring models only requires a few examples, performs in real-time and is fast, but this 
process requires another process that revises models also rapidly and in real-time, and this in 
turn is supported by the reactive behavior of the system that pays attention only to meaningful 
entities and phenomena – which it has learned previously, the whole cycle having been 
bootstrapped by the Masterplan. This is in sharp contrast with traditional Machine Learning 
approaches which ignore the other cognitive processes of a system and thus, left on their own, 
require enormous quantities of training examples and cannot perform in real-time. 

 

A functional prototype has been developed as a proof of concept of the architecture, and the 
preliminary results reported in this deliverable strongly indicate that the architecture is sound 
and that our approach towards the engineering of autonomous systems is tractable and 
promising. 
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This prototype has been expanded, generalized and optimized furthermore into the final state of 
the architecture (with respect to the time frame of the project). The implemented final system 
satisfies the requirements of the project (although the evaluation results are presented in a 
separate deliverable) and, in particular, is completely domain-independent. 

 

Future developments and related research avenues have been identified and will bring the 
architecture beyond the requirements of this project. In the main, these developments are 
aimed at addressing the issues of (a) adding curiosity and imagination to the system's 
capabilities and, (b) controlling the autonomous bottom-up growth by means of top-down 
allonomic constraints. 

 

 

2 Introduction 
This document describes the model of the system being developed in the HUMANOBS project: 
a system able to learn socio-communicative skills by observing people. 

We have to mention from the onset that the system described here is being developed as a 
contribution to the engineering of autonomous machines. The architecture is not “biologically 

inspired” and making contributions to the fields of cognitive science, philosophy of mind, is not 
per se an objective of the HUMANOBS project (although the project results might prove to be 
relevant to these fields, and others). Furthermore, it is worth noting that the HUMANOBS 
architecture has been designed to be domain-independent. In particular, the domain of 
application of the architecture (the socio-communicative domain) has been chosen only 
because it presents a set of technical challenges suitable for stressing soft real-time systems. 

In the main, the system is designed to reason in dynamic open-ended environments with 
insufficient knowledge and limited resources – in that we adopt the working definition of 
intelligence proposed by Wang [2]. Additional requirements include scalability with respect to 
the complexity of the environment and generality – independence from the application domain. 

Knowledge is understood as operational constructive knowledge: it is executable code, which 
implements the system’s ability to act in the application domain. Bearing this definition in mind, 
a system acquiring/revising/integrating knowledge is in fact re-programming some of its own 
constituents – as has been proposed in [3]. From this developmental perspective, the problem 
is cast into a Machine Learning framework, within which the system controls the expansion of 
its own code during the several stages of development that are needed to keep said system 
adapted to its environment. This expansion is controlled using some given prior knowledge 
(called the Masterplan) and stems from some bootstrap code – essentially, hand-crafted 
learning and programming code, also provided in the Masterplan. 

We identify two sub-systems, the Domain System – designed to act in the primary application 
domain (social communication), as defined by the project - and the Meta-System – whose 
domain is the Domain System itself. The Meta-System controls the development of the Domain 
System, i.e. the former modifies the code of the latter - including the Masterplan. 

The architecture is called AERA, which stands for Auto-catalytic Endogenous Reflective 
Architecture. In a nutshell, this acronym refers to both the operational and semantic closures,  
discussed in [3] – see section 7.1 for details. 

AERA is to be described at three increasing levels of detail: 

 the architectural principles – this was the object of the first release of this document; 

 the plunging of these principles in the domains identified for the Domain System and the 
Meta-System – this constitutes the focus of this second release, and focuses on the 
implementation of a functional prototype; 

 last, this release (the third and last) specifies the architecture in an executable form: all the 
constituents of the architecture are specified at code-level – that is, all structures and 
processes are specified at the level of detail needed for a direct implementation in the 
Replicode language – the language and its underlying executive are specified in [1]. 

The work reported here is two-sided: it is (a) the inception of the architecture of a real-time 
system as a coordinated set of components that cooperate for the efficient and effective 
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continuous learning from the environment it is plunged in and, (b) the integration of efforts 
carried out by “satellite” work-packages focusing on specific components and concepts put in 
use in the whole architecture. These works are: model observers (WP2), imitation learning 
(WP5), agent in the domain (WP6) and, last but not least, reasoning process (WP3). In 
particular, WP3 and WP5 each conducted case studies on other domains than the target 
domain of the project. These domains are, respectively the Pong video game which addresses 
specifically the time issues of a real-time system plunged in the continuum of physics which 
does not involves hard challenges in planning, and the Sokoban video game which addresses 
both the problem of imitating goals from observed surface behaviors as well as the case of 
decision making in a discrete environment more suited for investigating reactive planning 
issues. Both case studies propose specific architectures that shall not be confused with the 
reference architecture presented in this document. These studies constitute feasibility studies 
and proofs of concepts that proved valuable for the achievements presented here. Most of the 
results of these studies have been integrated as parts of the whole final architecture. 

Following this introduction, section 2 summarizes the general requirements for the system and 
section 3 describes our general design approach. Section 4 presents the set of principles that 

govern the design of the architecture. Section 5 describes the architecture that results from 
putting the principles into action in the domain for meeting the requirements. Section 6 presents 
the implementation of a prototype developed as a proof of concept for the principles presented 
throughout this document. Finally, section 7 describes the final and complete incarnation of the 
architecture in an implementable form. 
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3 General Requirements 
This section summarizes the high-level requirements of the system having a significant impact 
on the architectural design. They are formulated independently from the domain and task 
environment. The behaviors expected from the system, its constraints and evaluation 
procedures are described in a separate document [4]. 

Achieving Multiple Goals – Initial goals are defined by the programmers, and the system has 

to build new ones dynamically, in accordance with the situations it faces. It also has to build 
improved ways of achieving goals - either known or new. 

The system has to handle cases where multiple goals have to be achieved concurrently. In 
particular, constraints are considered goals (constraints define states to be avoided) and, as 
such, compete with other goals. 

Resource Limitation – The system has to run in realistic conditions and has therefore to 

perform despite computing power limitations, and within acceptable times depending on the task. 
This requires the system to control the resources it allocates to its various internal processes. 

The maximum available computing power is a cluster of 8 computing nodes
1
. This computing 

power envelope does not include I/O processing, which is to be performed on additional 
machines. I/O processing comprises any task that is not performed cognitively, i.e. hard-coded 
functions that do not evolve over time. 

Acceptable response times vary depending on the task environment, but, as we strive for a level 
generality encompassing at least the experimental setup defined by the project (learning socio-
communicative skills), it is safe to establish these response times in the range of 0.5 to 5 
seconds, that is, reasonable response times compared to the latencies observed in human 
communication. 

Knowledge Limitation – The system has to handle situations for which it has incomplete 

knowledge. In particular, the environment is not axiomatized (nor can it be) and the prior 
knowledge given to the system does not have to be a consistent and exhaustive model of the 
domain. 

Notice however that part of the system can be fully specified: this is the case for example, for 
the system’s operational boundaries. 

Knowledge Extraction
2
 – The system has to be able to identify and capture skills as they are 

performed by relevant entities
3
 in the environment, and integrate them, i.e. adapt them to its 

own capabilities and reuse them. It also has to revise this new knowledge according to new 
facts. 

This acquisition/integration/revision cycle does not have to be performed on the fly: the system 
can do so during dedicated sessions where the system becomes a passive observer of a scene 
where entities demonstrate the skills to be acquired, and it is acceptable that knowledge 
integration and revision are performed while the system is not busy interacting in the 
environment. 

Dynamic Open-Ended Environment – The environment is expected to change as the system 

performs: events unforeseen by the programmers are to be expected. In addition, the 
environment is open-ended: the system has to handle new phenomena resulting from principles 
for which little knowledge has been given or accumulated previously. 

However, the causal principles and the ontology of the environment are not expected to change 
dramatically over short periods of time. Only incremental changes are part of the requirements. 

Cross-Modality – The system has to handle simultaneous inputs sampled from several sub-

domains (e.g. auditory and visual inputs), possibly at different frequencies. 

                                                 
1
 Each node features eight 2.66 GHz CPU cores (reference CPU: Xeon E5430) and 8 GB of memory; the 

interconnects are one 4x DDR Infiniband link and two gigabit Ethernet links. 
2
 Although this is not a requirement of the system per se – it is rather a mean to an end – it is nevertheless 

part of the requirements of the project. 
3
 Such entities are any individual displaying consistent behaviors in the environment. This includes but is 

not limited to humans: other entities are also considered. Depending on the domain, these can be, for 
example, software components, automatic devices, animals, etc. 
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Preemptibility – The system has to be able to suspend its current operation in favor of more 

urgent tasks, and resume the former when possible, if it is still desired. 

Robustness – When the system achieves consistently a set of goals within some constraints, it 

shall continue to do so despite novelty occurring in the environment, provided this novelty 
changes the initial goals and constraints only marginally and provided the system can possibly 
remain in its (fixed) operational boundaries. 

Scalability – The system shall maintain a constant level of performance independently from the 

complexity of the environment and of the complexity of the knowledge it has accumulated. 

The level of performance is defined as the number of goals actually achieved, moderated by 
their respective importance – these goals include keeping accuracy and response times within 
the expected limits. All these goals are defined by the programmers as part of test procedures. 

Generality – Whereas the system has to include domain-dependent knowledge, its model – the 

architecture – cannot, and shall be applicable to any domain and task environment of a 
complexity similar to the one of the initial domain (social communication). In that respect, we 
have to mention two notable limitations to the generality of the architecture: (a) it does not target 
hard real-time systems - full determinism is not a requirement and response times are not to be 
guaranteed - and, (b) optimality of either the system’s behaviors or of their delivery is not a 
requirement either. 
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4 General Design 
Given the set of requirements mentioned in the previous section, the system is designed to 
exploit experimental facts and prior knowledge rather than to rely on a decision theoretic 
framework. The system is case-based and accumulates representations of these cases, 
derives models of their outcomes and, possibly, models describing actions that lead to reaching 
some goals in these cases. In that sense the system is model-based. These models are 
executable, meaning that the processes within the system are the execution of such models. 
This execution is in turn controlled by other models: the system is also model-driven. 

Actually most of the knowledge is represented as models: these either predict the behaviors of 
entities of interest (forward models) or prescribe courses of actions to be taken in given 
contexts (inverse models). Entities are not restricted to individuals observed in the environment 
but also include internal phenomena: in other words, models are also used to predict the 
system’s own internal behavior or to generate these behaviors. The representation of 
knowledge using executable models is independent of the scale and scope of what is described. 
In particular, components of the system are modeled at arbitrary levels of granularity: the 
system is thus composed almost entirely of models. 

According to this approach, learning is a process that generates models, integrates them in the 
existing structure that forms the system, and evaluates the resulting behaviors to compute 
feedback for generating better models. Learning is a process of the system and as such, results 
from the execution of models and could also be learned, in the same fashion. Notice however, 
that meta-learning is not a capability that is expected from this version of the design. 

The system performs four fundamental activities, largely independent from each other: they are 
performed concurrently and continuously. These activities can be outlined as follows: 
 

I. Model Acquisition – the system strives to transform observations of interesting behaviors 

into reusable models (either predictive or normative): 

 build models of the behaviors of the entities it interacts with; these new models either 
add to the existing set of models or are replacement candidates for existing models in need 
of improvement; 

 among these models, to identify the ones that are relevant to the system itself as 
describing possible behaviors that can solve some known goals and to integrate them in the 
system for future reuse. 

 

II. Reaction – the system reacts to events using its current models: 

 sample events from the environment; 

 identify the situation and select the models deemed most appropriate to predict the 
outcome of the situation or to prescribe courses of action for reaching goals; 

 execute these models – some of which produce commands to control the sampling of 
the environment; 

 measure the progression with regards to the current goals, and possibly generate new 
goals; 

 

I. Model Revision – the system checks the validity of its current models: 

 evaluate the performance of the newly integrated models and generate feedback (i.e. 
internal events); performance evaluation is carried out by monitoring the execution of the 
models and compare their outcome with new evidence with respect to goals; 

 according to the revision results, increase or decrease the rating of existing models 
(roughly speaking, identify them in a scale ranging from good to poor performance), and 
produce more appropriate candidates: this impacts the model selection during the Reaction 
activity. 

 

II. Compaction – the system strives to transform its models into more compact forms – also 

called compression. This activity addresses specifically scalability issues: 

 from existing models, produce new models that are more general: these can replace a 
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number of narrower models and thus free memory and reduce computation time (as less 
models would need to be executed). Generalization possibly leads to generating new 
ontological categories; 

 integrate models known consistently as good performers into the Masterplan. The 
Masterplan contains robust knowledge and its models are revised less often than others: 
assuming that the environment does not change dramatically over short periods of time, 
models having been identified as good performers over a long period are less likely to be 
invalidated by small changes in the environment – such models are thus likely to be fairly 
general. 

These four activities are high-level processes that result themselves from model execution and, 
theoretically, other instances of the same activities can be applied to the former instances, in a 
recursive fashion. For example, the system has to cope with possibly large amounts of inputs, 
not all of them relevant for its current operation: some filtering has to be performed for the sake 
of keeping performance in the prescribed envelope. However, such a filtering cannot be entirely 
hard-coded as the system is meant to operate in open-ended environments and sampling the 
environment has to be learned. In other words, we have to assume that all inputs are a-priori 
relevant, and asserting actual relevancy is a process to be acquired. Sampling the environment 
is a behavior of the system, resulting from the execution of some models: these models can in 
turn be subjected to the aforementioned activities, respectively: new models for sampling can 
be acquired (I), put in use in a reactive fashion (II), revised (III) and, generalized and integrated 
in the Masterplan (IV). 

Conceptually, we refer to the Reaction process as the Domain System, since it is responsible 
for the production of actions in the domain, whereas the Meta-System encompasses the other 
three activities, being their overall mission to tune the Reaction, by modifying its models, to 
improve its performance. 

Figure 1 – General Architecture 
The global workspace is organized in sub-workspaces, each containing models 
implementing a specific process. For example, each of the fundamental activities 
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is implemented this way. 

Flows of knowledge (arrows) form several feedback loops spreading all over the 
system. Encapsulation is not strictly enforced and workspaces (groups in 
Replicode, defined in [1]) allow inspection by code from other workspaces. For 
example, the models forming the reactive part are modified by both the Model 
Acquisition and the Model Revision. 

Some of the system’s activities can themselves be implemented as the main 
system is – here, the Model Acquisition is broken down into an organization 
similar to the top-level one. The input workspace for the Model Acquisition is the 
same as for the reactive part of the top level. Its output workspace is the top level 
reactive part itself. 

The Masterplan is distributed in the system: in the case depicted here, it is the 
union of Masterplan1 and Masterplan2. The bootstrap code is part of the Masterplan. 
I/O devices are hard-coded external software components that constitute the 
interface between the dynamical part system (the “cognitive” part) and the 
environment. 

To predict the outcome of its own actions in a given situation or the outcome of other’s actions, 
the reactive part of the system relies on models of the entities it interacts with. Such models are 
also executable models and are organized internally as the system itself: the model of an entity 
implements the same four main activities - notice that, as models are executable, the model of 
the system is the system itself. Models of relevant entities are part of the reactive component of 
the system where they are executed concurrently and potentially continuously, depending on 
their relevance and available computing resources. 

The proposed architecture is of a “single mind”. The system maintains models of some entities 
in the environment but this does not mean that the system results from some kind of 
collaborative operation of these models. The system is not a multi-agent system in the sense 
that each of the models does not have any goal of collaborating to achieve the system’s own 
goal - they merely capture the behavior of observed entities. 

The general structure of the system is a global workspace containing inputs, processed by 
models. As models constitute knowledge, they are themselves possible inputs for other models: 
we therefore make no distinction between code and data: everything is executable code

4
, 

contained by the global workspace. Notice however, that the workspace is organized in sub-
workspaces (see section 4.1 below). 
From a technical point of view, the system relies on a distributed computational substrate - 
Replicode. Its execution model is data-driven: model execution is triggered by the occurrence of 
salient knowledge, that is, knowledge deemed worth processing by other models. Models 
operate like rules: they match input knowledge and produce other knowledge – possibly other 
models. Models are all executed concurrently and their execution is also controlled by other 
models (models can be activated or deactivated). Once produced, knowledge cannot be 
modified, but instead, is granted a limited life expectancy: useful knowledge has to be explicitly 
kept resilient

5
 whereas useless knowledge is simply left to its fate and dies unattended. Last, 

the substrate injects runtime reflective knowledge in the workspace. These are notifications of 
the execution of the models and constitute internal inputs - the substrate provides the system 
with a trace of its own execution. In short, such a system is a distributed reflective production 
system capable of adding/deleting models very frequently and in which the control of both the 
execution of the models and the relevancy of inputs is performed collectively (by sub-sets of 
models) – consult [1] for full details. 
The system is unified as every knowledge fragment is executable code and every process is 

implemented by knowledge fragments. Unification applies primarily to cognitive processes, i.e. 
processes that have to be modified at runtime. Depending on what the system is required to 
produce in a given application domain, some processes are not identified as cognitive 
processes: the implementation of these can be externalized, that is, hard-coded in software 
components that communicate with the global workspace but are not included in it. 
Externalization applies in particular to device drivers – components that perform actions in the 

                                                 
4
 at least at this high-level of description: Replicode allows for example the definiton of markers on code, 

goals and sub-workspaces: these are not executable – see section 4.1. 
5
 i.e. models have to produce it again or, more simply, to extend its life time. 
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environment in a blind manner, i.e. controlling the sensors and actuators of the system. They 
constitute the interface between cognition - the domain of reflective code modification, driven by 
“programming laws” - and the environment - driven by the laws of physics - and transform 
representations between these two domains. Depending on the requirements, these 
transformations can vary in complexity: the less complex the more able the system is to adapt 
its control over the real world. For example, in the HUMANOBS project, the main part of speech 
recognition is left to external components: this means that the way phonemes and words are 
recognized cannot be altered dynamically by the system, thus limiting the system’s ability to 
improve its connection to the environment. However, the system is still able, a-posteriori, to 
filter and modify the output of the speech recognition component, for example, to reduce the 
amount of false positives according to its current knowledge (e.g. its expectations). 
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5 Architectural Principles 
This section describes the architectural principles governing the design of the HUMANOBS 
architecture. These principles define the general organization of computation, that is, the 
exploitation/generation/compaction of the structure of the system by fundamental algorithms: 
learning, decision making, attention control, resource allocation and generalization. 

The structure of the system develops dynamically and incrementally as the enrichment/revision 
of an initial code base, the Masterplan, also described in this section. 

 

5.1 Low-Level Organization 
The fundamental building blocks of the system are objects, instances of classes defined in 
Replicode. We thereafter list the most essential of these structures in a short summary, as they 
are already described in the language specification [1]. 

States – States are defined as patterns of temporal sequences of knowledge fragments. Such 

fragments are instances of object classes defined in Replicode. Patterns specify constraints on 
both the content of each fragment, on correlations between these fragments and on the relative 
order of their occurrence. 

Goals – Goals are specified as states, i.e. as patterns specifying states to be reached. We 

distinguish between goals and instantiated goals. A goal is an objective that a system may 
pursue, whereas an instantiated is a goal actually pursued. 

Groups – Groups are workspaces where reduction occur - reduction is the production of 

knowledge triggered by the matching of an input with a pattern. Groups aggregate knowledge, 
and knowledge can be member of several groups simultaneously: in other words, models are 
shared. Models can control a group as they would control any single object, by means of 

changing its saliency/activation
6
 – thus impacting the behavior of the group’s content. 

Models - Knowledge is executable code: it is also said to be grounded, that is, it expresses 

ontologies in terms of actions
7
 that can be performed either by the system itself or by a model of 

the described entity – in this case, this model is built and maintained by the system. Models are 
implemented at three levels of organization: 

 Level 0: This is the lowest level, the level of Replicode constructs. Models are encoded 

as programs, forward models and inverse models: all are instances of predefined 
Replicode object classes, each being executed as a single lightweight thread. 
Programs produce code whenever some knowledge matches the patterns they define 
– as for specifying states, patterns specify complex time series of knowledge occurring 
in the workspace. Notice that Replicode also allows coding programs to react to 
negative knowledge: the absence of inputs able to match their patterns. Forward 
models are similar to programs except that they define two sets of patterns: a set to 
identify a state, and a set to identify some actions. They output predictions about the 
outcome of the specified actions taken in the specified state. Symmetrically, inverse 
models prescribe courses of actions to be taken in a given state for reaching a target 
state – here also, both states are specified in distinct sets of patterns. 

 Level 1: Objects of level 0 output code that may become input for other objects - this 

forms reduction graphs. Models at this level of organization are implemented as such 
reduction graphs. For example, a model M0 can specify patterns to identify the context 
of validity C of another model M1 and activate M1 when some inputs match the patterns 
that specify C. 

 Level 2: Several models of level 1 can be aggregated in groups. This allows an entire 

aggregate to be treated by other programs as one single object. 

Markers – Patterns of temporal sequences specify part of the dynamics of the system. This 

comes at the cost of a high apparent complexity – when such patterns are to be matched by 

                                                 
6
 Activation is an attribute of models defined to control whether they can be executed or not when salient 

inputs match their patterns. Saliency is another attribute of any kind of knowledge defined to control 
whether said knowledge is worth processing or not. 
7
 We make no difference between sensing and actuating: both are actions since they control the I/O 

devices responsible for carrying out these operations in the enviroment. 
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others. Markers are structures for abstracting patterns: they encode and name the trace of a 
persistent relationship between objects. For example, the state of an object being an instance 
of a certain category is generally established by the execution of some model, and when this 
model asserts the state in a relatively constant way (e.g. the model always outputs the same 
category when it matches the object), it is useful to encode this fact as a static structure, thus 
saving computation time. This is achieved by defining a marker holding references to both the 
object and the class (and also possibly to the model mentioned above), in the fashion of a 
predicate. In particular, the notification of model execution is encoded as such markers. Notice 
also that markers are not executable code – they are the trace of an execution. 

 

5.2 High-Level Organization 
Low-level structures do not prescribe any constraints on the computation which is actually 
performed at the low-level of organization. In this section we introduce architectural constraints 
on the semantics of the computation implemented using the low-level structures. 

 

5.2.1 Schemas 
The basic control structure of the architecture is called a schema. A schema is an anticipatory 

controller composed of an inverse model coupled with a forward model, as proposed in [5] and 
[6] and put into an architectural perspective in [7]. We adapt the proposed structures and 
organizations to comply with (a) our data-driven execution model and, (b) our need for learning 
schemas (i.e. to modify them dynamically). 

Figure 2 – Schema 
The inputs of the inverse model are a prediction of the state of the system (pS) 
and an instantiated goal (iG). It outputs commands (C) that modify the behavior of 
the controlled entity. The inputs of the forward models are the actual state of the 
system (aS) and a copy of the outputs of the inverse model. Its outputs are a 
prediction of the state of the system, i.e. the outcome of the commands given the 
actual state. 

Technically speaking, the controlled entity and the models depicted above are 
implemented as Replicode structures. In particular, the controlled entity is 
generally a group in which the forward model attempts to match its patterns and 
in which the inverse model injects commands, i.e. objects that will be processed 
by code located in the group. They will either match some inputs defined by 
models describing the entity – in case the system is predicting the behavior of the 
entity -, or be sent to I/O devices by programs in the group – when the system 
actually attempts to control the entity in the real world. 

Both models in a schema are of arbitrary complexity: for example, it may require several models, 
each being valid only in some specific contexts. The ability to determine the context and to 
select the right model is out of the scope of the schema in question: this schema has the 
knowledge required to control one entity, but not for controlling itself in the whole system. This 
requires the operation of the schema to be integrated with the operation of other parts of the 

system which have the necessary knowledge. This means that other schemas are dedicated to 
control other schemas, in a recursive arrangement, also called Integrated Cognitive Control (see 
[8]), where control is distributed in a hierarchy of models that permeates the entire structure of 
the system. 
Controlling the internal structure of a schema by models exterior to the schema is to be 
performed by other schemas, the former being the entity controlled by the latter – to allow such 
control, the structure of a schema is made transparent to its controller. To illustrate this 
approach, let us consider Wolpert’s example [6]: to design a system able to lift a carton of milk, 
not knowing if it is empty or full. Depending on the context (empty or full), the system will have 
to behave differently (here, apply more or less force to lift the carton). This means that the 
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forward model of the lifting schema depends on the context. if the carton is empty, applying a 
certain force will lead to a small change in the carton’s position, and vice versa. In our approach, 
the forward model of the lifting schema is composed of two embedded forward models, one for 
each context. The identification of the context – and the selection of the right forward model – is 
performed by another schema: its input is the difference between the position of the carton 
predicted by the forward model of the lifting schema and the actual position sampled from the 
environment. Its output is the activation of one of the embedded model, and deactivation of the 
other. 

Figure 3 – Schema Control 
The schema S1 controls the forward model of the schema S2. aS2 is the sampled 
position of the carton, and C2 is the command to an I/O device (a motor 
command). The forward models in S2 output predictions of the future position of 
the carton (pS2). A program (comparator) computes the difference between the 
prediction pS2 and the actual position aS2: this forms aS1. 

In S1, the forward model anticipates the difference between the predictions made 
by S2, and the actual position of the carton: this forms pS1. The goal of S1 (iG1) 
is to have this difference equal to zero, and its output (C1) is the activation of one 
of the forward models in S2, say the forward model tuned to predict the next 
position of a heavy object. Another instance of S1 would be needed to control the 
activation of the other forward model in S2 (predicting the next position of a light 
object - not represented). 

This way of controlling forward models in a schema also applies to the case where the inverse 
model of a schema is implemented as a group of models: some schemas can modify the 
implementation of the inverse models of another schema. Schema control can be exerted at 
different levels of granularity: from the constituents of schemas (as discussed above) to the 
schemas themselves: the activation which is controlled would then be the activation of the entire 
schema. Control is not restricted to model/schema activation: models can be added to a 
schema and schemas to schema assemblies (these are defined in section 4.2.2 below). 

The activity of a schema is a trace of a state. In our example, the state of the carton being full or 
empty is captured by the activity of the schema controlling the validity (activation) of the forward 
model that predicts the position of the carton. Referring to Figure 3, the trace of the execution of 
S1 actually represents the state of the carton: the carton is full when S1 activates the 
corresponding model in S2. This high-level representation of a state is compatible with the low-
level representation since the latter defines patterns of temporal sequences, whereas the former 
produces an instance of such sequences

8
. 

Shall a model (like S1) be needed to control more than one schema (like S2), then three main 
design options are available: 

I. the model is replicated; 

II. the model is  shared, i.e. made a member of the groups implementing the other schemas; 

III. the output of the model is encoded in a marker to be matched by some code in the 
controlled schemas, and internal parts of the controlled schemas are shared. 

                                                 
8
 Notification of schema execution – therefore of model execution – is provided automatically by the 

Replicode executive. 
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The main difference between these three techniques is a difference in plasticity (the ease of 
code modification): the last is to be used in parts of the system having reached a late stage of 
development, whereas the first is more adapted to earlier stages – the second standing in 
between. Since markers encode statically the trace of a process, the revision of such 
knowledge has to be explicitly coded for – a marker asserts that a predicate consistently holds 
and shall this have to be verified, the execution of some extra code would be needed which 
represents an overhead. This however is less likely to happen when knowledge has been 
consolidated, i.e.  the system has accumulated reasons to believe that said knowledge has 
become a persistent fact. More over, the inputs of such a shared model have to be general, i.e. 
computed the same way regardless of the schemas to be controlled: in the example above, the 
inputs of S1 are computed locally by S2 and shall a schema S3, similar to S2, be also controlled 
by S1, then the two comparators shall be fused into a single one and externalized from the 
schemas it originates from. In contrast, the second option does not require such a 
generalization and uses as many variants of the comparator as needed. The first option is 
redundant and can sustain local modifications without impacting the other copies of the model: 
this technique is more appropriate to the cases where the system frequently needs to re-
implement some of its components. 

 

Figure 4 – Plasticity of Schema Control 

A schema is represented as a pair of two groups: one implements a forward 
model (white) and the other, an inverse model (grey); a goal is represented as an 
arrow (dotted line) pointing downward to the middle of a schema. 

I – Early stage of development: the controlling schema (S1) is replicated. On 
one hand, this arrangement is robust to local modification, at a minimal cost in 
terms of processing time. On the other hand, it takes more time to execute than 
the other arrangements – roughly speaking, it involves more models and these 
are larger. 

II – Intermediate stage of development: the controlling schema is shared by the 
controlled schemas (S2 and S3). 

III – Late stage of development: sharing occurs at decreasing levels of 
granularity: the comparator (the model C, taken from Figure 3) is shared by S2 
and S3; S1 produces a marker that in turn, is converted into a control signal (by 
the model M). This arrangement is more integrated than the first one (a): it is 
more general and requires less computation time, but is more expensive to modify. 

 

5.2.2 Schema Assemblies 
There is no restriction on the semantics of schema outputs, and in particular, schemas can 
instantiate goals. These in turn, can match patterns defined by inverse models: such an 
organization leads to hierarchical assemblies of schemas where goals are generated from the 
top to the bottom. 

In general, the collaboration between schemas (i.e. schemas achieving the sub-goals of a top 
level one) is indirect: there is very limited direct coupling between schemas, as their interactions 
are mediated by the common workspace – the controlled entity. This loose coupling is critical for 
allowing the system adding new schemas to an assembly without having to modify the existing 
ones (re-wiring). 
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Figure 5 – Indirect Coupling 

For clarity, the controlled entity has been split into two groups. Predictions flow 
from the bottom up (left side), while goals flow from the top down (right side). The 
rank of a schema in a hierarchy indicates the reactivity of the control loop it 
implements (the higher, the less reactive). 

Schemas are unaware of each other: they communicate via the entity they control in common 
and the environment. For example, goals are published in the entity by the top schemas, and 
they match patterns specifying the admissible goals for the lower-ranking schemas. 

Assemblies are dynamic: their composition depends on pattern matching and is thus subjected 
to change shall some models in the schema be replaced by others (e.g. integrated as a result of 
learning), or as a result of changing the activation of models reacting to the occurrence of the 
goal (as mentioned above, in the case where models are selected by other models), or also, as 
a result of changes of the goal saliency (as its importance may vary over time). In short, instead 
of static data structures, assemblies are identified as reduction graphs. 

Figure 6 – Hierarchical Schema Assemblies 

Each group of schemas at a given level in the hierarchy provides case-based 
alternatives for implementing a model of a schema one level higher. The selection 
of these alternatives according to context is performed by other schemas (left 
side), as mentioned above. This control of schemas’ internals by other schemas 
(as depicted in Figure 3 above) is represented by plain arrows. The controlling 
schemas do not necessarily belong to the same hierarchy as the schema they 
control. 

Schemas in a given hierarchy take their inputs from the same group (the 
controlled entity) and also output their productions in that group. The hierarchy 
has the same global structure as a schema’s; it has also the same capabilities - 
controlling an entity in an anticipatory way. 

The architecture follows the principle of Integrated Cognitive Control mentioned earlier and 
every activity of the system is implemented as a set of hierarchical schema assemblies: 
Reaction, Model Acquisition, Model Revision and Compaction are four distinct sets of 
assemblies, and this also holds for their sub-activities. The last three activity control the 
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Reaction in the same fashion a schema controls the internal models of another one, as 
discussed above. 

A schema producing a goal is a specification of an action: essentially, it describes what to 
achieve when a state is reached, with regards to its own goal. Goal-driven schema assemblies 
thus constitute specification-to-implementation hierarchies

9
. 

Figure 7 – High-Level Control 
Schemas controlling other schemas can do so at arbitrary levels of granularity: 
here, an assembly (left) controls the internals of another one (right). 

The system is organized in two global orthogonal hierarchies of schemas: (a) an 
implementation hierarchy (vertical) where predictions flow bottom-up and goals 
top-down and, (b) an integrated cognitive control hierarchy (horizontal) which 
drives the activation and addition of models or schemas in the first hierarchy. 

High-level schema control can also be implemented at various levels of plasticity, as discussed 
above, using the same techniques. 

 

5.3 Learning 
The general learning principle is a goal-driven procedure involving three independent activities: 

I. for a given goal, produce a candidate model able to solve the goal – i.e. implement a 
model according to specification; 

II. integrate the resulting model in any pre-existing model structure that produce instances 
of the goal in question; 

III. observe the performance of the model and revise it accordingly, i.e. resume the 
procedure: produce an alternate candidate, integrate it and revise it. 

This procedure applies to learning models at arbitrary level of granularity – from individual low-
level models to entire schema assemblies: this level of granularity is directly related to the level 
of abstraction of the goal for which models have to be learned. 

 

5.3.1 Implementation From Specification 
This activity is carried out by inferring causation between events and encoding such causal 
relations into models. This is performed in two distinct ways, outlined as follows: 

I. observation: the system observes humans demonstrating a task, attempts to find a 
correspondence – to identify common capabilities between itself and the model of the 
demonstrators – and translates the causal chain of events it has observed into a model. 

II. induction: the system applies case-based reasoning to infer linear transfer functions 

(more generally, piece-wise linear functions). Prior knowledge to do so is included in the 
Masterplan in the form of hand-crafted models. 

Observation - The process of observing causal sequences of events is guided by prior 

                                                 
9
 When read the other way around (from bottom to top), these hierarchies can also be considered defining 

increasing levels of abstraction. 
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knowledge, and proceeds as follows – consult [9] for full details: 

a) the system identifies the input data that are the most relevant to subsequent 
computations (essentially, decision making, see section 4.4 below), and ignores the others. 

Such relevant data form the Area of Interest (AoI) – a subset of the input data: the system will 
try to build models able to produce only these relevant data; 
b) the system attempts to detect correlations between the input data and the data in the 
Area of Interest. In other words, the system tries to identify sequences of events that are 
believed to cause the occurrence of the data in the AoI. 

As a result, the input data that have triggered the production of useful state predictions or useful 
actions with regards to the current goals are identified as forming the Area of Interest, i.e. a 
subset of the input data. For each event in the AoI, the system stores the patterns said events 
matched during the first iterations of the decision making processes. This allows the system to 
map the AoI to the set of patterns mentioned above. 

Figure 8 – Finding the Area of Interest (AoI) 
Top - One short horizontal line represents one event, the set of which is the 
stream of input data. The system (actually, the progress monitoring process, 
defined below) identifies the event(s) in the input section that triggered the 
production of useful data: these events form the AoI. 
Bottom – When events from the stream of input data are presented as inputs to 
models (rounded rectangles) (by a decision making process), the system 
remembers which patterns (rectangles at the left of the models) they matched. 
This allows each event (e) in the AoI to be mapped to a set of patterns (A, B and 
C). 

Inferring causal relations among the input data is performed by a hard-coded component, a 
classifier called the Correlator. Its inputs are: 

a) the input data; 

b) one event taken from the AoI. 

The output from the Correlator is a time-ordered sequence of pairs containing (a) a set of 
events that constitute a context for (b) a sequence of pairs – the definition is recursive, a 
terminal pair being a sequence where the context is empty and followed by a set of events. 
The Correlator’s output has the following form: 

(p0, ..., pn) where the pairs pi are: 
(ci, si) where the context ci is: 
(c0

0
, ..., c0

N0
) a set of events, 

and the sequence si is either a context cj followed by a sequence of sets of events: 
(cj, ((e0

0
, ..., e0

P0
), ..., (em

0
, ...,em

Pm
))) - the set of events having occurred at the same 

time. 
or: 

a context cj followed by a sequence of pairs. 
Events are identified as members of a context when they constitute invariants for a sequence. 
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The transformation of the values carried by the output of the Correlator into variables – i.e. the 
transformation of objects into patterns – is performed by hand-crafted programs: they are 
encoded for each class of objects, and substitute variables to values that change over time 
according to the (known) semantics of the values. 

The time horizon needed to limit the scope of the computation of the AoI is determined by the 
construction of episodes. An episode is, in our system, the history of all inputs leading to the 
satisfaction of a goal, from the time when the goal has been instantiated. Implementing by 
observation is carried out incrementally, one goal at a time for a given hierarchy. For example, 
an episode contains sequences of events such as abc where c matches a goal g, and what 
the system observes is in fact “to satisfy g, produce c from a”. Episode construction is driven by 
goals and if the system knew already how to produce b, then the episode would have 
comprised only the events happening between b and c: what would have been learned is “to 
satisfy g, produce c from b”. 
When a model is built from a goal-driven observation as discussed above, the system has to 
assess whether or not it can reuse this model, i.e. it has to find a correspondence between the 
entity that was performing an action and its own capabilities. Finding such a correspondence is 
not an independent process per se, but is rather the result of integration (see section 4.3.2 

below): essentially, no correspondence is found when integration fails. In other words the 
“correspondence problem” is a question of integration. Notice that correspondence is not only a 
question of ascribing capabilities observed in foreign entities to the system, but is also needed 
the other way around. The system has to learn not only skills from people, but also has to learn 
models of people and ascribe to people some of its own behaviors and goals. We have 
identified the finding of a correspondence to a successful integration and this still holds in the 
present case: foreign entities are modeled as assemblies and finding a correspondence from 
the system to such entities is also the positive result of an integration. 

Induction – As for the transformation of events into patterns mentioned above, producing 

models able to reach a given goal results from the execution of hand-crafted code that 
leverages prior knowledge. 
Technically, the task is akin to an informed goal regression, i.e. to produce a model M matching 
some patterns and producing some code able to match the given goal g: (a,b,c)  M(a,b,c) 
where M denotes a model such as, for any data a’, b’ and c’ matching respectively the patterns 
a, b and c, M(a’,b’,c’) matches the target state defined by the goal g. Notice that a, b and c are 
taken from  areas of interest computed as discussed above in the case of learning by 
observation. Producing M given a, b, c and g is guided by the ontology in the Masterplan, i.e. 
models that describe the semantics of a, b, c and g. For example if g is a pattern targeting a 
position, a a velocity, b an initial position and c a duration then, given an ontological inverse 
model such as “to compute a position update, given the initial position, the velocity and duration 
of the movement, compute initial_position+velocity*duration”, finding M is quite simple, at least in 

non-ambiguous cases, assuming both sufficient coverage of surface phenomena (here, models 
for controlling trajectories in the intuitive geometrical space) and relevance in the hand-crafted 
ontology

10
. 

The activity of acquiring models - regardless of the way candidate models are computed – is a 
cognitive process and as such, is implemented as a goal-directed hierarchy of schemas, and 
controlled by another. The latter activates further model acquisition processes with respect to a 
goal when it has evidence of the system’s poor performance while attempting to achieve the 
goal. This calls for a continuous evaluation of the system’s abilities, carried out by a continuous 
process – a progress monitoring process – that accumulates the success rates of the existing 
schemas and implements decision procedures to control the need for further model acquisition. 

 

5.3.2 Integration 
Model candidates produced by the activity described above are low-level constructs; these 
models need to be integrated in schemas, and in turn, these schemas in pre-existing 
assemblies. 

                                                 
10

 To learn such ontological inverse models is not a requirement of the project and constitutes an open 

issue in itself (inductive programming): future projects will focus on teaching the system how to acquire 
such models, i.e. teaching it how to program by demonstration, leveraging the system’s imitation learning 
capabilities as they are defined in the current architecture. 
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Integrating a Model in a Schema - This is performed in a rather straightforward fashion. In the 

case of an inverse model, integration is carried out by identifying the goal defined by an existing 
schema to the productions of the model: any newly acquired model is injected into the group 
receiving all inputs from the environment, and activated; any of its production that matches an 
existing goal triggers the injection of the model into the schema implementing the goal. 
Productions generated this way are quickly removed from the system (e.g. they are output with 
a very low resilience) since they are generated only for the purpose of model identification and 
do not correspond a-priori to any ongoing decision making process. The case of a forward 
model is handled in a similar way:  instead of identifying the productions of the model with the 
goal of the schema, these productions are identified to the input patterns defined by the inverse 
models of the schema, the identification procedure being the same as for inverse models. 

Integrating a Schema in an Assembly – This integration follows the same principle as above, 

the only difference being of granularity. This is possible thanks to the similarity in structure and 
semantics between a schema and an assembly – in short, a schema is to an assembly what a 
model is to a schema. 
 

5.3.3 Revision 
Revising models has to be performed differently depending on the semantics of the model: 

 forward models: models are tested individually to evaluate their predictive performance; 

 inverse models: models integrated in existing hierarchies are compared to existing ones  
to determine their functional performance. 

Revising Forward Models - The system verifies continuously the adequacy of known forward 

models by trying to reproduce new input data from past input data. We call this process a 
coverage test, in other words, the measurement of the ability of existing models to predict data 
in the AoI according to new facts. 
To check the validity of known models, the system proceeds as follows: 

a) execute the models on a subset of the input data, i.e. on the input data from a time t to 
t minus a certain time horizon; 

b) check if all the input data in the AoI at time t and after (i.e. at t plus another time 
horizon) have been produced by the models; 
c) as for integration, the outputs resulting from the coverage test are discarded. 

If the test is positive, then the system reinforces its belief (using a confidence value) that these 
models will produce accurate predictions in similar (pattern-wise) situations - the situation is 
recognized. Otherwise, some of the data in the AoI have not been produced by the models – 
then the system faces a situation it cannot anticipate. 

In the case of success, nothing new is to be learned (only the confidence values are increased). 
In the case of failure, the confidence value associated with the model is decreased and a new 
model has to be built. 

Revising Inverse Models – Newly acquired inverse models constitute tentative alternatives to 

existing models and to evaluate their relative performance the system has to undergo several 
simulated executions, one for each candidate model to be tested against the best known model. 
These multiple evaluations are performed offline – when the system is not expected to act in 
the environment (think “sleeping time”): the system reevaluates the production of its decisions 
using the episodes it has accumulated so far - they are selected according to the goals they 
correspond to. 
Instead of performing in the actual environment, these simulations execute the models of the 
entities involved in the episodes. The procedure we just described assumes that the new model 
implements a behavior of the system. If instead, said model was implementing the behaviour of 
an entity in the world, the evaluation would be very similar to the one described above, except 
that the sparing partner would the model of the system itself, and the evaluated (sub-)system 
would be the model of the entity. 
Confidence values are adjusted as for the case of evaluating the performance of forward 
models. 

The revision activity is controlled by the same progress monitoring process that decides 
whether or not the current ability to achieve a goal is in need for better models – as discussed 
in section 4.3.1 above. 
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5.4 Reaction 
The purpose of a Reaction activity in the system is to decide what course of action to take in 
order to achieve its goals. Put briefly, this activity merely exploits knowledge that has been 
either learned or provided beforehand in the Masterplan. Said knowledge is a set of schema 
assemblies, and the Reaction activity consists in executing these assemblies. The efficacy of 
the resulting behavior therefore depends directly on the performance of the schemas 
composing these assemblies, and on their relevance. No advanced planning abilities are 
expected from such a decision process which can be classified as a “reactive planning” system 
based on experience. its performance relies essentially on the performance of the Learning 
activity. 

The models composing a schema are themselves possibly composed of several models forming 
alternate reduction graphs, not all of them equally performing with regards to prediction (forward 
models) or action (inverse models). Given our requirements, it is obviously out of question to try 
out all these possibilities and some pruning of the computation is needed before execution. To 
control a data-driven system, one has to control the data, i.e. the model inputs: this is performed 
by several processes. 

Any reactive activity is supported by a process called Attention Control which filters the inputs to 

be processed according to the system’s expectations within a short time horizon. This process 
is dedicated to controlling continuously the saliency of the inputs of the reactive activity it 
supports. Since models only reduce inputs that become salient, the outcome of the Attention 
Control is that fewer reductions are actually performed. 

The Attention Control focuses the computation on what the system expects to come next. There 
is the need for a similar process accounting this time for what other entities than the system are 
likely to do next – in the context of human communication, one could think of “mind reading”. 
This is performed by executing the model of these entities of interest. As discussed earlier, 
these models are also learned and maintained by the system’s other main activities (Model 
Acquisition, Model Revision, Compaction) and consist of other sets of schema assemblies. 
These assemblies can be considered implementing Reaction activities, similar to the system’s 
own and as such, are also supported by their own instance of Attention Control. As for the 
Attention Control, the outcome of executing models of foreign entities is a control of the saliency 
of the inputs. 

Notice that both the Attention Control and the execution of models of foreign entities are 
performed continuously and independently from the main Reaction activity. 

Technically, the control of input saliency results in saliency spreading across the graph of 
objects stored in memory. We have seen in section 4.1 above that the trace of reduction graphs 
can be encoded using markers, a Replicode low-level construct. These markers actually 
represent relations between objects, thus defining an object graph (objects are of any class, and 
in particular they can be models). Replicode provides a way to propagate changes of an object’s 
saliency to its markers and to the objects said markers hold a reference to: this instruments the 
spreading of saliencies across object graphs

11
 in an additive way - the changes are 

accumulated and averaged. For example, if the system focuses on motion, the Attention Control 
will compute an increase of saliency for the category “position” (an entity assumed to be part of 
the system’s ontology) and propagate this increase to any input related to a marker encoding a 
position in space-time and in turn, to any moving object perceived by the I/O devices. If 
simultaneously, the execution of an assembly modeling one of these moving entities happens to 
predict some noticeable outcome (an outcome deemed significantly favorable or unfavorable 
with regards to the system’s current goals) say, for small, yellow round objects, then the 
combination of these saliency changes would drive the system to pay attention primarily to 
moving tennis balls and to discard other moving objects. 

The Attention Control is aware of the goals of the system including its constraints (since they are 
implemented as goals). Saliency spreading applies to any object and therefore to goals and 
execution traces. In particular saliency spreading can be directed by goals that is, be controlled 
to flow from goals to related reduction traces and to the inputs having triggered the reductions 
and so on. When resources are critical (i.e. they would be typically guarded by a semaphore in a 
multi-threaded application), the system shall attempt to avoid conflicts before executing any 
action, as early as possible – although here again, no guarantee on conflict avoidance is 
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 N.B.: the breadth and depth of the propagation are controllable programmatically. 
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expected. To do so, the Attention Control allocates a high saliency to the constraints (goals) 
expressing said scarcity and direct a positive flow of saliency from these constraints to the 
objects not taxing the resources, negative otherwise. Conflict prevention results from conflict 
prediction and this requires representing the system resources in an executable form, as are 
regular entities: each of these resources is also modeled as a set of schema assemblies 
provided by the Masterplan since they are unlikely to change over time – no learning is 
necessary for the models of these resources. 

The assemblies modeling foreign entities are learned and this shall also apply to the Attention 
Control: it is designed as a reaction activity, implemented by a set of assemblies, but unlike the 
assemblies modeling entities it cannot be learned by observation and relies solely on induction-
based learning. 

 

5.5 Generalization 
Generalization is an independent process that runs continuously, in parallel with all other 
processes. Its purpose is to produce compact models from the available ones. This is intended 
to reduce the consumption of computational resources: general models encompass a breadth of 
cases that would otherwise need to be captured by more models which would in turn lead to 
costlier performance. 

Generalization is performed primarily by making analogies between objects either at the low-
level of organization (states and models) or at the high-level (schemas and assemblies). 

Low-Level – Analogy is defined as the confluence of reduction chains – thereafter M(s) denotes 

the reduction of a state s by a model M: 

 two states s0 and s1 are analogous in a context C with respect to a model M when there 
exist two set of models {M0
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(s1)) …). The context C is defined as the state of 

activation of the models of both sets
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. 

 two models M0 and M1 are analogous in a context C with respect to a model M and the 
specification of a state, S, when there exist two sets of models {M0
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 two sets of models {M0
0
, …, Mn

0
} and {M0
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} are analogous in a context C with 

respect to the specification of a state, S, when Mn
0
=Mm

1
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0
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(Mm-1

1
(… M0

1
(s)) …). C is defined as above. 

Given these definitions, low-level analogy detection is performed by analyzing the reduction 
traces within groups of interest (an instance of Attention Control is needed). In more details, this 
is either done by a “post-mortem” analysis or performed on the fly  - executing probes

13
 in 

parallel to the computation being investigated. 

High-Level – There is no discontinuity between the levels of organization and analogies 

between schemas derive directly from analogies between models, as a combination of thereof: 
two schemas are analogous when (a) their internal models are and, (b) their goals are also 
analogous. Along the same line, sub-assemblies have the structure of and perform like schemas 
and thus, are deemed analogous when their respective goals and parts (schemas or sub-
assemblies) are analogous. 

The Generalization activity does not need to be performed online, but is instead performed 
offline, as are for example, the integration and revision processes. 

 

5.6 Resource Allocation 
To keep the performance of the Reaction activity within the envelope prescribed by the 
requirements, a resource allocation strategy needs to be implemented. 

The following processes are executed while the system is not busy interacting in its environment, 
and have thus no impact on system performance: 

                                                 
12

 This includes their activation level in all the groups they are members of, the groups’ activation thresholds, 

the group’s update periods, the models’ resilience, etc. 
13

 models coded to detect confluence. 
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 induction; 

 model acquisition, 

 revision; 

 integration; 

 generalization; 

 Masterplan integration. 

The remaining processes have to share the available computing power - they all are processes 
supporting the system’s main Reaction activity: 

 execution of the system’s own model; 

 execution of the models of foreign entities: these are reactive activities themselves and are 
each also supported by a specific Attention Control, 

 episode construction; 

 Attention Control. 

Accordingly, the principal resource allocation policy consists in driving the activity of the many 
instances of Attention Control, by implementing a trade-off between broad and narrow attention. 
The span and depth of attention refer to ways of feeding with inputs the hierarchies it controls. 
Broad attention means spending computation time on the execution of the many alternatives 
models in a schema can be composed of, whereas narrow attention means spending time on 
the execution of the successive levels of implementation found in the hierarchies. In other words, 
resource allocation control is implemented as a trade-off between breadth-first and depth-first 
execution of models in a given Reaction activity. 

Narrow and broad attention have an impact on the system’s behavior: broad attention supports 
the handling of unexpected events and novelty whereas narrow attention helps the system 
achieve better reactive performance (speed and accuracy). 

Resource Allocation is a sub-process of an Attention Control process and is implemented by 
subsets of assemblies among the assemblies defining the Attention Control. 

 

5.7 Masterplan 
The Masterplan is the set of models, schemas and assemblies that represent knowledge given 
beforehand to the system by its programmers. This is a convenient way to bypass the 
intractability of teaching a machine from first principles. However, as the repository of past 
experience, the Masterplan has to be expanded with knowledge acquired and consolidated after 
the system is put in service. Consolidated knowledge is knowledge that has been consistently 
evaluated (by the revision process) as being consistently accurate - in the main, models with 
consistent good performance. In that sense, the Masterplan can be regarded as a long-term 
memory, and the models it contains are revised relatively rarely (also by the revision process). 
as these have already proven their robustness to incremental changes. In this respect, the 
revision process shall ideally contain policies to detect changes able to invalidate knowledge 
stored in the Masterplan – this has not been designed yet. 

Integrating knowledge in the Masterplan is the duty of another independent activity, also 
performed offline. 
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Figure 9 – Masterplan 

Each process is the execution of a set of hierarchical goal-driven schema 
assemblies. Each set is potentially controlled by other processes (on the right). 

Ideally a model shall be one assembly assuming that the programmers would 
design it from first principles: this is rarely the case - even when it is possible - 
and upper layers have to be left non unified (black regions). The Masterplan does 
not necessarily provide models covering the whole breadth of the entity it controls 
(dents at the bottom of the assemblies). For example, it may not cover the whole 
spectrum of surface phenomena observed in the environment. Candidates for 
these missing parts are produced as a result of learning, and the ones 
consolidated over time are integrated in the Masterplan by some other process 
(bottom). 

Besides domain-dependent models and goals, the Masterplan contains learning and 
programming skills (implemented as schema assemblies if they are deemed to be expanded, 
modified and/or generalized, or coded “free-style” otherwise); as mentioned earlier these are 
essentially: 

 induction of piece-wise linear transfer functions; 

 induction of patterns from values; 

 model acquisition; 

 episode construction; 

 model revision; 

 model integration; 

 compaction: generalization and Masterplan integration. 

When implemented as assemblies, each of these skills are defined along with their own 
Attention Control (implemented as another set of assemblies if identified as having to change 
dynamically). 

The bootstrap code is part of the Masterplan: it is the initial version of the system, i.e. the 
primitive version of its model. 
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6 System Architecture 
The architecture results from applying the principles to a domain. In this section we give an 
overview of how the processes are to be designed, and we also present a summary of the 
respective contributions of each part of the architecture to the compliance to the general 
requirements. Finally, we propose guidelines to design the content of Masterplan that depends 
on to the domain. 

 

6.1 Overview 
As a general design rule, any process in the system can be implemented as the system itself – 
but that does not mean that they have to. In this section we present our design choices 
regarding the implementation of each of the processes. 

 

 

Figure 10 – Architectural Template 

The architectural template taken from Figure 1, section 3. Not all components are 
mandatory when applied to the control of a given entity. The Model Acquisition 
(MA) and Model Revision (MR) parts take some of their inputs from the controlled 
entity itself – not only from the assembly they steer (in bold outline). 
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Figure 11 - Architecture 

In gray, code that is not learned. In bold, reactive parts. In light grey, assemblies 
other than the one identified in rectangles (e.g. models of entities, etc.). 
C: compaction - G: generalization - AC: attention control - MA: model acquisition 
I: induction - O. observation – EB: episode building - MR: model revision 

We give thereafter a summary of the top-level assemblies and their main constituents. 

Self – The main reactive process. The main sub-component is an instance of the Attention 

Control, to be learned. the whole process is also learned. 

Compaction – it is composed by two processes, an instance of the generalization process and 

an instance of the model revision process - the latter is dedicated to integrate consolidated 
knowledge in the Masterplan. The generalization part is learned and is driven by an instance of 
attention control. 

Model Acquisition – Its two sub-components are the induction and observation processes. 

Both are learned. The whole process is also learned. Both of its sub-components are driven by 
an instance of attention control. 

Model Revision – This process is not learned. It is controlled by an instance of the progress 

monitoring process (not shown in Figure 10). 

 

6.2 Checklist 
This section summarizes the contribution of each of the general principles and/or specific 
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processes discussed above to the fulfillment of the general requirements. 

Achieving Multiple Goals – The main contributor is the Reaction activity. Our parallel data-

driven execution model allows the pursuit of multiple goals concurrently. 

Resource Limitation – Over short time horizons, the Attention Control is the essential part of 

the architecture meant to allocate computation time. In a similar fashion, the execution of 
assemblies modeling entities of interest also contributes significantly to the allocation of 
resources. Over longer time horizons, the Compaction activity (generalization of models and 
integration of knowledge in the Masterplan) contributes to reducing the workload. 

Knowledge Limitation – Learning models, schemas and assemblies is the principal way to 

acquire missing knowledge. Knowledge is revised in permanence, this maintaining its accuracy 
and relevance. 

Knowledge Extraction – Imitation learning is the main contributor. Induction-based learning 

also contributes to this capability although to a minor extent. 

Dynamic Open-Ended Environment – Models, schemas and assemblies are all designed for 

modification at runtime. Modification results from integration, which results itself from 
observation and/or induction. Response times vary depending on the depth of the reaction loops 
involved (their span across goal-directed hierarchies). These loops result from schema 
integration and are thus fully controlled by other schema assemblies, which are eventually 
controlled by the system’s attention. the latter is initially coded so that urgent situations get a 
high saliency, thus steering the system toward handling them with low latencies (short loops). 

Cross-Modality – Models, states and goals are defined using patterns that specify complex 

temporal sequences of events. Correlations and time constraints on these sequences are part of 
the definition of patterns. These are exploited concurrently by many models. High-level 
synchronization is one among many capabilities implemented in these models. 

Preemptibility – At low-level, models are state-less. At higher levels, states are knowledge 

distributed in the system; as such they are subjected to Attention Control: resuming a process is 
performed by resuming the system’s attention on some of the states produced before the 
preemption point. In particular, this applies to states that encode execution traces. 

Robustness – Several candidates for a given model co-exist and this population is constantly 

trimmed down by the revision process: model evaluation is performed in isolation and no 
interference can actually happen. 

Scalability – Compaction is the essential part addressing scalability issues. 

Generality – We restrict our target to the class of sub-optimal soft real time systems. The 

architectural principles do not make any assumption on the target domain. 

 

6.3 Plunging the Architecture in the Domain 
The architecture remains to be plunged in the domain. This means coding in the Masterplan the 
models that are relevant to the experimental setup chosen for this project. The entities for which 
an initial model is to be provided are the following: 

 a generic human: this means defining the goals and constraints that apply to a (caricature 
of a) human. These are for example models like “to convey information, look for feedback” 
or “during a conversation, humans have an attention limited to 5s”. Notice that roles (for 
example, interviewer or interviewee) are mere sub-assemblies of the model of a human. 
They simply define goals and schemas for achieving them and thus are integrated in the 
main model. A model for each surface capability ascribed to humans in this project shall 
also be defined (as the counter-parts of the models of the system’s own I/O devices, see 
below). For example, the model of a human shall include models for grasping, moving 
arms, etc. 

 I/O devices: this means modeling the actions that they can perform in the environment 
(including sensing). Such models shall implement sensory feedback loops to convey 
immediate causality, i.e. immediate reactions of the environment to an action performed 
by the device; 

 objects to be manipulated in the environment: these objects are always supposed to be 
driven by some control be it internal (e.g. a dog) or external (e.g. a cup a-priori subjected 



 

30/80 

only to the laws of physics), and thus have a goal (even if it is to “fall”, i.e. to follow the 
rules of gravity). In short, as counter-intuitive as it may seem, external laws are always 
represented as goals and schemas shared by the models of the entities subjected to 
these laws. 

 concepts not reified in the environment (e.g. natural language constructs, abstract 
concepts, etc.): grounding knowledge associates action schemes and experience records 
to symbols. Since the machine will not have experienced some concepts involved in 
natural communication – nor will it ever be in position to do so – we have to fill this gap 
and make up some sort of “fake memories”. We would proceed by hand-crafting models 
for each of the needed non-reified entities; 

 the machine: more accurately, the machine-in-the-domain. This means defining for the 
system all the prior knowledge that is domain-dependent, goals in particular (for example, 
extracting information from the interviewee). 

The domain features “natural language” communication and this is to be understood as 
communication in “simplified English”.  Our approach toward addressing this issue is to treat 
such communication the exact same way as any other complex sequence of events. 
Knowledge is grounded and we consider words as mere tags on models. Basic grammatical 
skills have to be encoded in assemblies as any other part of a decision making process, i.e. as 
the specification of (sequential) chains of state reduction. 
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7 Prototype 
A functional prototype has been implemented to check the validity of the architectural design 
presented so far. This prototype does not constitute the demonstrator planned for release 
toward the end of the project. It is rather a technical demonstrator that includes some selected 
key processes of the proposed architecture and was used to test the desired inter-operation of 
said processes against a concrete experimental setup. 

 

7.1 Objectives 
The development of the prototype was driven by a few specific technical objectives, given 
below. 

 

To validate the Model Acquisition/Revision processes. More specifically, this objective can 

be broken down in the following sub-objectives: 

 To acquire models from as few observations as possible. This criteria was selected as a 
key requirement for tractability. Mainstream machine learning techniques usually demand 
large data sets to be able to operate and this raises the following two important issues: (a) 
the experiments need to be considerably slowed down as we would need to present the 
system with many cases of what has to be learned and, (b) as though it is in principle 
possible to do so, the computation time required to process these large data sets would 
prevent the evaluation and testing of one fundamental challenge: to have the system 
learn while it is acting, i.e. while it uses previously acquired models. It turns out in fact that 
requiring too many examples not only makes the experiments unduly complex and nearly 
intractable in an interactive setup such as ours, but also masks the inter-wining of learning 
and acting. 

 To produce models as quickly as possible. This requirement follows the same rationale as 
mentioned above: it preserves the response times of the system, which is needed to 
evaluate the interplay of learning and acting. This objective means technically that, 
regardless of the number of observations needed, the system shall output models with 
response times commensurate to the response time of the decision making. In our case, 
we expect response times to be less than one second. 

 To acquire models of particular cases - as opposed to models encoding general cases – 
and integrate them with the aforementioned general ones. We operate in this prototype 
under the assumption that the environment is more often regular than not, and thus, that 
more cases will be handled appropriately by general models rather than particular ones. 
However, particularities do still exist and the system needs to determine at runtime that 
particular models, when appropriate, shall rule over the general ones. 

 To limit the proliferation of learned models. The system needs to detect the production of 
new models that are equivalent to existing ones – and discard the former - in order to 
limit the time needed to execute said models. Syntactic analysis is unlikely to suffice for 
solving the issue (as most of the models are context-dependent), therefore model 
equivalence has to be defined as a dynamic property: basically, the productions of two 
models operating on the same inputs under the same contexts shall be the same. 

 

To validate the responsiveness of the resulting system. This objectives consists of two sub-

objectives: 

 To keep the system's response time in the appropriate envelope (five seconds for the 
domain of socio-communicative skills), regardless of the computation load. 

 To ensure that the system can handle multi-modality in the aforementioned envelope, i.e. 
that the system keeps its commands on multiple channels (for example speech and 
deictic gestures) in synchronization. 

 

To set the stage for further detailed socio-communicative interaction, namely: 

 To design a way to handle spoken inputs. 

 To design a way to produce spoken outputs. 



 

32/80 

 To design a way to handle speech contexts. This means handling spoken acts that 
spread over several cycles of interaction (for example, identifying an object, then, 
referring to it in another sentence). 

N.B.: the system is not expected to learn words nor grammar. 

 

To keep the size of the Masterplan as small as possible. For tractability reasons, we need to 

keep the ratio of innate vs learned models to a low value. The higher this ratio is, the less likely 
is our approach - as it stands - to be appropriate for real-world engineering purposes. 

 

Limitations. Both the expected functionalities of the system and the complexity of the domain it 

operates in are limited in the following ways: 

 The domain chosen for testing the prototype is the domain of socio-communicative skills 
limited to a low breadth (only a few words can be understood, and only a few actions 
performed) and to a low level of detail (the actuators for example are general and do not 
handle fine-grained physics). However, the real-time constraints have been kept to 
realistic values. 

 The Attention Control is not meant to evolve and no meta-learning requirements have 
been established. 

 The Model Acquisition and the Model Revision processes are not meant to be learned 
either. In short, the Meta system is fixed, and the Domain System evolves. The rationale 
behind this decision is that in this first implementation we need to validate the principles 
for operating in a domain first. The lessons learned will be applied later on, to expand 
the capabilities of the Meta System to control a system that is already proven. In short 
we did not want to evolve both systems at the same time. 

 For similar reasons, we have also left the Compaction mechanism for future work, and 
this mechanism has not been implemented in the prototype. 

 

All the objectives mentioned here are addressed in detail in the sections 6.4.3 and 6.6 below. 

 

7.2 Requirements 
This sub-section describes the experimental setup chosen for the prototype and the  
requirements for the system. 

 

The experimental setup consists of two avatars facing each other across a table where some 
objects are displayed. An avatar can be controlled indifferently by either a human or the 
machine. The system is able to manipulate objects (grab, move, release), to gesture (pointing 
at some location on the table), to observe the scene (look at a location), to parse spoken 
commands (for example: “put  a blue cube there”), and to speak (i.e. issue similar commands to 
any actor in the environment). 

The experimental platform is the one developed for the project, and has been distributed initially 
on three machines (two of them hosting two standard cores – the I/O machines – the last one 
hosting at least four high-performance cores – this machine runs the Replicode executive). 

The first requirement is to have the system learn the outcome of its low-level effectors (move, 
grab, etc.). This is akin to “motor babbling” and is triggered by hand-coded programs that inject 
random goals in the system. These goals are removed from the system after the system can 
consistently satisfy them. 

The second requirement is to have the machine observe a basic interview between two 
humans, one – the interviewer – issuing commands to the other – the interviewee. The 
objective of this session is to test the ability of the system to learn the goal of the interviewee, 
namely, to comply with the goal expressed by the interviewer. 

The third requirement is to have the machine take the role of the interviewee and act 
accordingly to what it has learned (i.e. to comply to the goal of the interviewer). 

The fourth and last requirement is to have the machine take the role of the interviewer and ask 
the interviewee to manipulate objects, as observed previously. 
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7.3 Implementation Principles 
Before going any further, we need to consider the technical principles on which the 
implementation of the prototype is based. These principles are derived from the operation of the 
Replicode executive and constructs. This section maps the general design presented in 
sections 5 and before to actual technical structures and operations. 

 

7.3.1 Structure 
This section presents the structure of the system at the (low) level of the basic building blocks 
of the architecture, that is, programs, models and groups. 

 

A model operates in two ways: (a) it takes input objects (for example, samples of the 
environment) and produces predictions – this way of executing models is called forward 
chaining - and, (b) it takes goals as inputs and produces sub-goals – we refer to this execution 
mode as backward chaining. Notice that, with respect to the two modes of execution, a model 
can be viewed as either a forward model or an inverse model. It is also worth mentioning that 
these modes of execution are in general simultaneous (see section 6.3.2 below). 
The encoding of a model specifies a set of output groups (where to inject the productions); a 
model takes its inputs from any group where it has been projected in an active state – see the 
figure below. 

 

 

Figure 12 – A model in the architecture. 

The model is represented as a black box; dashed lines represent 
injection of results (predictions/goals) in output groups. Plain lines 
denote projections of the model onto input groups (each of them is 
actually a view in Replicode terms, in an active state, as defined for 
programs). All groups (rounded boxes) are standard Replicode 
constructs. Computation flows from bottom (input groups) to top (output 
groups). 

 

The architecture is composed of several components that execute online and concurrently, all 
patterned after the same template. This template is itself composed of several components 
(see figure below): 

 

 One input group where samples of the entities to be controlled are injected; for 
example, samples of the environment are injected there by I/O devices. The code 
that implements the Attention Control takes its inputs from the input group and 
inject their results in the attention group (see below). 

 One attention group in which the models and programs that realize the function of 
the Attention Control inject filtered input data – data of interest at a certain point in 
time. These data are inputs for the models that realize the functioning of the 
Reactive System (decision making). 

 One model group that gathers all the models that constitute the reactive system 
and have been – possibly – dynamically produced (except the code for the 
Attention Control, which is not produced dynamically). This is a convenience to 
allow the Meta System to inspect the internal production of the Domain System. 
For consistency, models given in the Masterplan are also members of this group. 

 Several output groups – groups where models inject their productions (goals and 
predictions), and where the executive injects notifications of the models' execution. 
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Three of these output groups are designed as the input groups of similar reactive 
systems that realize the functions of Model Acquisition, Model Revision and 
Compaction (the three of them forming the Meta System). Models shall at least 
inject their productions that are relevant to the domain (goals and predictions) in 
the input group of the system. 

 
 

 

Figure 13 – Mapping of the Architectural Template for a Reactive System 
to Implemented Form. 

Top: the general pattern for a reactive system (as given in section 5.1 above). 
The controlled entity is sampled in the input group. The Domain system 
samples the environment via I/O devices that feed its input group. The three 
processes forming the Meta system sample the Domain system via the latter's 
output groups, projected (in a visible state) onto their own input group. These 
components can also read the filtered inputs of the Domain System (not 
represented). 
Bottom: the programs and models that constitute the Attention Control are 
depicted in gray. Models that implement the decision making are represented 
in black. They take their inputs from the filtered raw data (located in the 
attention group). The “models” group is a convenience to gather all models in 
one place. Output groups are represented on the bottom left side. Output 
groups contain the result of the models' computation (goals and predictions) 
and also the notification thereof (reduction, success and failure). Notice that 
all models at least output in the input group. 

 

Output groups serve as input groups for any other sub-system in the architecture. Following the 
Integrated Cognitive Control pattern, the components that constitute the Meta System (for 
example the Model Revision component) admit as their inputs the notifications of the execution 
of the Domain System – these are for example, the notification of success or failure of a model, 
or the notifications of the reductions performed by models. 

 

7.3.2 Operation 
This section presents the operation of models and describes how schemas result from the  
operation of dynamically coupled models. 
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The Model Acquisition process produces not only models but also what we call composite 
states. A composite state is an object representing the conjunction of several objects (including, 
recursively, other composite states). For example, a composite state can define patterns like 
“an object that is a hand, belonging to an actor” - in Replicode terms, this pattern is encoded as 
a set of objects (some of which are variables, like in this case, “an object” or “an actor”) and 
markers (encoding the relations between objects). By definition, composite states form 
hierarchies of objects or patterns. 
 

Models encode causal relations between objects (including composite states and models): 
some of these objects are the notification of the execution of other models (in Replicode terms, 
instantiated models: imdl), or the instantiation of composite states (in Replicode, instantiated 
composite states: icst). As mentioned in the previous section, these are injected in the output 
groups specified by the models, at least one of these groups being one of the input group 
(following the architectural template presented earlier). In other words, the notification of the 
execution of the system becomes an input for the system itself (and for other sub-systems, 
following the ICC pattern). It follows that correlations between a context of operation and the 
result of the execution of some models are available for processing by the Model 
Acquisition/Revision processes. The outputs in such cases are models that predict the 
instantiation of other models or composite states when matching one object (for example, a 
composite state) that forms a context. Such models are - by construction  - one level of 
abstraction higher than the objects that compose them. The Model Acquisition process is driven 
by goals: one of these is to model the achievement or failure of models and the instantiation of 
composite states. That is to say that the Model Acquisition process is the primary source of 
organization of models in hierarchies, these stemming from the compositionability of 
models/composite states. 
A model is essentially a directed pair of objects A and B containing variables x, y, etc.: A(x,y,...) 
→ B(x,y,...). A and B are encoded in Replicode, as facts (fact) or negation of facts (|fact), each 
pointing to one object: for example (fact a t1 0.4) reads “the object a holds at time t1 with a 
confidence of 40%”, and (|fact a t2 0.9) reads “the object a does not hold at time t2 with a 
confidence of 90%”. A model whose right-side term is an instantiated composite state outputs 
predictions about the composite state (forward chaining), but also produces sub-goals upon 
receiving a goal that matched the composite state (backward chaining). If a model M0 built like: 
|A(x,y,...) → |B(x,y,...) - where the character “|”  stands for the negation – admits an instantiated 
model as its right-side term (i.e. B, referring to a model M1), then such a model constitutes a 
strong requirement on the model pointed by B (in other words, the model reads “without A, 
there will be no instantiation of M1”). If two models are coded as: A(x,y,...) → B(x,y,...) and 
C(x,y,...) → B(x,y,...), then A and C are two possible solutions to obtain B (weak requirements). 
A given model can produce predictions (from forward chaining) and sub-goals (from backward 
chaining) simultaneously: the two flows  - of predictions and goals – are inter-wined in the 
whole architecture. 
There is no explicit structure to encode a schema in our architecture. A schema results actually 
from the operation of two models that realize its function at a certain point in time, where the 
first model encodes a requirement on the second one. More precisely, the inverse and forward 
operation of the schema are both implemented by the coupled execution of both models – 
under the condition that the output of the second model matches the input of the first one – see 
the figure below. 

Models: 

M0[X,Y,...]: (|fact A[X,Y,...]) → (|fact iM1[X,Y,...]) 

M1[X,Y,...]: (fact (C[X,Y,...]) → (fact D[X,Y,...]) 

Backward chaining: 

 

 

Input goal G0: (fact D[xd,yd,...]) produces (from M1) a sub-goal G1:(fact 

iM1[xd,yd,...]). 
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G1 (from M0) produces G2:(fact A[xd,yd,...]) 
 

If G2 is achieved, i.e. there exist an object a that matches A[xd,yd,...], 
then M0 produces an instantiation im1 of M1 and in turn, M1 produces 
G3:(fact C[xd,yd,...]): this implements the inverse model part of a schema. 

Forward chaining: 

 
 

Input state S0: (fact A[xa,ya,...]) produces (from M0) an instantiation of M1, 
im1: (fact iM1[xa,ya,...]) 
 

Input state S1: (fact C[xa,ya,...]) produces (from M1) a prediction S2: (fact 

D[xa,ya,...]): this implements the forward model part of the  schema. 
Schema operation: 

When the pattern D in M1 matches the pattern A in M0, S2 constitutes an 
input for M0: this implements the forward model of a schema; the 
efferent copy is S1, produced as a result of the goal G3. For example, if 
C in M1 is a command, then G3 instantiates said command, which 
matches directly C in M1 (i.e. with no intermediary models). If C is not a 
command, then G3 will be matched by other models – these are said to 
be lower in the hierarchy as they operate (the process G3) as a 
consequence of the operation of a higher level (the level of M0 and M1). 

 

Figure 14 – Schema as the result of the operation of dynamically 
coupled models. 

Key: Models are denoted M[set-of-formal-arguments]: left-side term → right-

side term; Variables are written in uppercase; instantiated models are 
noted iM[set-of-actual-arguments].Bound variables are written in lowercase. 
N.B.: instantiating a model does not mean predicting its success: it 
merely allows the model to execute. Timings are not represented for 
clarity. 

Schema hierarchies are implemented as hierarchies of models paired at run-time according to 
the patterns they match – as our architecture relies exclusively on dynamic coupling, as 
opposed to static coupling (there are no explicit “wires” linking output streams to input streams). 
In Replicode terms, a goal admits a member called “actor”. It denotes the actor pursuing the 
goal. This means practically that since models react to any goal, they are in fact executed 
regardless of the actor pursuing the goal. In other words, if models can actually be adequate 
(pattern-matching-wise) to predict or (generate sub-goals) for another actor than the self (i.e. 
the system itself), then these models will be executed indifferently amongst any other with no 
need for specific additional control procedures. This characteristic of the executive allows the 
actual sharing of models between actors. Notice that nothing prevents additional models to be 
learned as specific requirements (with respect to the actor) to the shared models: this is the 
technical ground leveraged by the system to achieve differentiation between (the models of) 
actors (see section 6.4.3 below). 

 

7.4 Implemented Architecture 
 

7.4.1 Overview 
The architecture of the prototype is a minimal instantiation of the general architecture presented 
in section 5. It is minimal in the sense that the Meta System is not evolvable, i.e. it does not 
learn. However, the Domain System does learn and expand – as we will see in section 6.6 
below. 

As mentioned earlier, the main goal of this implementation is to check the validity not only of 



 

37/80 

key components but also of their inter-play. As it should be clear by now from the sections 5 
and before, the capabilities of the architecture result from such an interplay. For example, the 
Correlator itself does not suffice for learning: learning is the result of the Model Acquisition, the 
Model Revision, the Attention Control and more indirectly, the Decision making processes. The 
sub-sections below will attempt to highlight the benefits of such a mutually-dependent 
organization of processes (i.e. dynamic coupling). 

 

7.4.2 Domain System 
The system has been implemented accordingly to the architectural template described in Figure 
10 (exception: the Attention Control is not learned). 

 

Interface with the environment. A set of programs have been developed to ensure the 

interfacing with I/O devices: these programs convert goals on commands into actual commands 
and re-inject the commands themselves in the main input group (efferent copies, required for 
the operation of schemas, as discussed in section 6.3). 
The environment is sampled by the I/O devices at 5 Hz for the sub-domain of “physics”, i.e. 
information about geometry (resulting generally from the manipulation of objects by the avatars), 
and on-demand for the sub-domain of spoken/gestural interaction (that is, events belonging to 
this sub-domain are injected as they occur in the environment). Samples come in the form of 
generic markers - (mk.val entity attribute value) in Replicode terms. The “attribute” part is 
predefined and belongs to the ontology. 

 

Attention Control. The Attention Control sub-system is composed of two distinct sets of code 

(a) a set of programs that propagate changes of saliency values across the graph of objects 
centered around a central object of interest and, (b) a set of programs that decide the centers of 
interest. These models have been built manually and are fixed – the Attention Control is not 
learned in this prototype. The function of these programs is to lower the saliency of objects 
which are not: 

 simulations younger than an arbitrary time horizon (5s in our case) with regards to the 
injection time of the oldest hypothesis that triggered the simulation run; 

 goals; 

 predictions; 

 notification of reductions; 

 notifications of success or failure for goals and predictions. 

Each of these objects (goals, predictions, etc.) constitute targets of attention – collectively they 
form the Area of Interest of the system. For each target, the Attention Control selects as 
potential sources of interest objects that are related to the target (by means of references, or 
pointers to or from the target at an arbitrary depth – 2 for the prototype). Then each of these 
sources of interest is abstracted, that is, any structure or object used or referenced by these 
sources of interest is replaced by variables – possibly shared by the targets and the related 
objects (other sources of interest). Objects sharing no common parts (either variables or direct 
references to entities in the ontology) with others are discarded – notice that time is one of the 
possible common parts: even if two objects do not share anything but are synchronous, they 
will be said to share their time variable and thus be retained as sources of interest. 

 

Reaction. Multiple solutions may result from the injection of one goal: we have seen in section 

6.3.2 that several models can feature as their right-side object similar instantiations of states or 
models (in other terms the branching out in the graph of models and states is equivalent to an 
OR operation in the case of weak requirements - or to an AND operation in the case of strong 
requirements). The system has thus to evaluate these multiple choices, some of these possibly 
conflicting with some others. 

In a general manner, the system proceeds by simulating the outcome of a goal – technically, 
this means performing backward chaining on models and states and attaching simulation 
markers to the results. The depth of the simulation is restricted to an arbitrary time horizon (5s 
in our case) – this control is an operation performed by the Attention Control sub-system (as 
mentioned above). Goals are ranked by their intensity (technically, their saliency values) and 
their outcomes (sub-goals and achieved states) are traced back to goals using the reduction 
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notification (telling basically, which model produced which outputs from which inputs). A conflict 
occurs when the simulated reductions produce (a) two states that negate each other or, (b) 
recursively along the path of the reduction notifications, when the goals that have triggered the 
reductions point to facts that negate each other, until the top-level goals are reached. In case of 
a conflict, the most salient goal among the conflicting goals is selected and injected (simulation 
ends and the actual operation begins). In the case of non-conflicting solutions for one goal, the 
system selects the solution that has been reached the quickest. In the case of non-conflicting 
solutions for multiple goals, the system selects the set of all the best (quickest) solutions for 
each goal. For each goal that has not been selected, the system lowers their saliency (so as to 
“deactivate” these goals) until either the selected goals succeeds or the simulation time 
allowance expires (5s timeout). 

The activation values of the models are linked to their confidence values (see section 6.4.3 
below): this results in selecting for execution the most reliable models, and delays the execution 
of the least. This is particularly of importance while running models in simulation mode, as this  
trims down the number of model candidates for achieving a simulated goal. Notice that the 
Replicode executive has been tuned so that it now presents salient inputs to active code 
(programs and models) in order of decreasing saliency, and in order of the code's decreasing 
activation. In other terms, the system has now the ability to process inputs by models in order of 
confidence (linked to activation, applies to models) and saliency (applies to inputs). 

This constitutes rudimentary planning: it was not in the requirements for this prototype to 
investigate more sophisticated versions of planning, as the main goal was to validate the loop 
acquisition/reuse of skills. Programs for initiating simulations and controlling said simulations 
have been built manually. 

 

7.4.3 Meta System 
The purpose of the Meta System in the prototype is to control the expansion of the Domain 
System – i.e. to control the learning of models and states that augment the Domain System. 
The Meta System consists of an Attention Control (the Meta system is also a Reactive system 
and as such follows the same general architectural template as the Domain System), the Model 
Acquisition and the Model revision sub-systems. 

 

Attention Control. This sub-system performs exactly like its counter-part in the Domain 

System: actually they are the same sub-system (they are shared) and can be so as the 
Attention Control described earlier is actually domain-independent. 

 

Model Acquisition. The acquisition of models is a process that runs continuously: it is 

implemented as an instance of the Correlator. The latter takes its input sequences from the 
attention group of the Domain System and outputs models, ready to use. The Correlator in its 
first incarnation has been described elsewhere (Deliverable D11). 

The Correlator is fed at run-time with target objects and their respective related objects - 
determined by the Attention Control (as discussed section 6.4.2). The Correlator spawns a 
thread for finding correlations between the target object and some of its related objects. This 
thread is actually a Replicode thread, which means that learning is completely inter-wined with 
all other activities of the system - like for example, making decisions, and eventually acting in 
the environment - and is thus performed concurrently and continuously. In other words, the 
system does not suspend its interactions with the environment while learning, nor does it 
postpone learning after acting. The Correlator proceeds by goal regression with a limited time 
horizon: for a given episode, when a model is found for satisfying the goal, its premises (or left-
side term) is used as a sub-goal (i.e. a new target, and thus a new thread) and the same 
episode is used for finding models satisfying the sub-goal. Consequently, the “fusion” of 
learning and acting means that the system can make immediate use of the full episodes 

encountered during acting (or observation) for learning and does not have to observe again 
similar episodes when the time would come for learning how to reach sub-goals of models 
produced offline. Fusing action and learning actually constitutes a performance improvement 
and in turn, makes said fusion sustainable in term of computing time. This “virtuous circle” can 
actually be achieved if the Correlator (a) can learn from few episodes and, (b) can produce 
models quickly: these two characteristics have been identified as strong requirements for the  
design of the Correlator. 
Apart from building states and models from observed events, the Model Acquisition process 
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also eliminates equivalent states and equivalent models. This activity answers the need for 
limiting the proliferation of learned models and states – and thus also contributes to the 
realization of the “virtuous circle” discussed above. As mentioned earlier, pure syntactic code 
analysis is not enough to assert the equivalence of models, as these are context dependent, 
and also constitute contexts (requirements) for other models. This lead to the definition of 
equivalence as a dynamic property. Two models are equivalent if (a) their right-side object 
match each other (basically, they achieve similar goals, or, looking the other way around, they 
predict similar things) and, (b) their respective productions from matching inputs under the 
same contexts match each other. Notice that the aforementioned contexts designate both the 
requirements of the models and the models they are a requirement for. In other terms, it does 
not suffice that the models produce matching outputs from matching inputs: these outputs shall 
also trigger the (matching) instantiation of the models they are a requirement for. This definition 
is actually a variation on the definition of model analogy (given in section 4.5) in that it relies on 
the analysis of reduction chains. In a similar way, two states are equivalent if (a) they count the 
same number of objects and, (b) their respective instantiations match each other and what 
triggered said instantiations also match each other – recall that states are instantiated in three 
cases: (a) inputs match all their objects (straightforward pattern-matching), (b) some of their 
variables are bound during forward chaining (they constitute predictions) or, (c) some of their 
variables are bound during backward chaining (they constitute goals). The definition of 
equivalence comes with a syntactic prerequisite (noted (a) above) which is used to pair models 
(or states) that could, according to this prerequisite, constitute candidates for equivalence. The 
Model Acquisition process records all inputs that triggered the instantiation of models or states 
(including the notifications of the reductions) and re-enacts the reductions for the candidates in 
order to compare their outcome, accordingly to the dynamic part of the definition of equivalence 
(noted (b) and (c) above). This analysis is performed on the fly – i.e. as the system learns – and 
before releasing a new model (or state) in the system. The corresponding computational load 
incurred by the system is significantly lowered due to the following reasons: (a) inputs are 
heavily filtered by the Attention Control, (b) only inputs within a predefined time horizon are 
used, and (c) the Correlator learns quickly from few observations which means that targets are 
relatively short-lived. Notice also that equivalence detection is highly parallel and thus will 
benefit greatly from extra CPU cores. 
As amply discussed, the Model Acquisition process produces models in an additive way, that is, 
models may constitute requirements for others. Weak requirements are options allowing the 
execution of models situated above in the hierarchy, whereas strong requirements must be 
avoided to allow the execution of the models above. The  Model Acquisition process proceeds 
on objects abstracted by the Attention Control and by strictly complying to this rule could never 
identify particular cases, i.e. contexts where some general models acquired previously do not 
apply. This is the reason why the Model Acquisition process follows one extra rule: it is to detect 
the breaking of predictions (this is performed by making said prediction a target) and 
consequently add one strong requirement to the general model, while still performing as usual, 
that is in this case, to detect, possibly, a new outcome for the observed state which differs from 
the one predicted by the general model. The general case and the particular ones are kept in 
the system equally. During backward chaining, strong requirements are translated into states to 
be avoided and weak requirement as desired states. It turns out that if the system targets the 
outcome of a model more particular than another, then it will generate the sub-goal of reaching 
a state that will be more specific than the state that otherwise a more general model would 
have produce as the sub-goal. 

 

Model Revision. The preliminary version of the Model Revision sub-system operates by 

evaluating (a) the performance of individual models and, (b) the performance of the system as 
a whole. 

The performance of a model is defined as the success rate of the model. The success rate is 
the number of errors from the model's target state to the actual state divided by the life time of 
the model. A model's target state is to be understood relatively to the type of chaining that 
produced the target state (prediction – forward chaining - or goal – backward chaining). In 
principle, these errors are to be computed by progress monitoring models, using domain-
dependent metrics. In the prototype, these metrics come in their simplest form, that is, pattern-
matching (if the actual state matches the target state, no error is asserted, and vice versa). 
Confidence values and activation values for the models are changed accordingly to the success  
rate. Models are selected for scrutiny – i.e. their productions and instantiations become targets 
for the Model Acquisition sub-system - when (a) they are active and, (b) their confidence value 
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is above an arbitrary fixed threshold. We have defined a scale for evaluating the performance of 
models along with a threshold of acceptability. Above the threshold, models are removed from 
the target list of the Model Acquisition sub-system. These models are added back when their 
performance crosses the threshold downward. Notice that a model presenting a high error rate 
is not necessarily a bad model. It just means that it must be executed in contexts (encoded as 
requirements) that have not been discovered yet. In a similar way, a model presenting a low 
error rate means that, so far, appropriate contexts for its execution have been found, but this 
does not entail the “goodness” of the model forever. 

The performance of the system as a whole is determined by the measurement of the 
progression of the success rate of the targets managed by the Model Acquisition sub-system. A 
measurement falling under a predetermined threshold means that no improvement on the 
success rate of the target can be expected in the near future, and the target is removed from 
the Model Acquisition sub-system (and its corresponding thread is aborted). 

The aforementioned measurements of performance (for both individual models and for the 
system itself) are performed by the Replicode executive. 

 

7.5 Masterplan 
This section gives the content of the Masterplan, organized in sub-sections for clarity: “physics” 
stands for the sub-domain of object manipulation, “speech” stands for the sub-domain  of verbal 
and gestural communication, “goals” stands for the initial goals of the system and “control” 
gathers the programs and models to allow the experimenter to control the system. The content 
of the Master plan is given below in pseudo-code - the formal (compilable) Masterplan is given 
in Annex 1. 

 

7.5.1 Physics 
 

Ontology. It consists of the following class and entities: 

 vec3: a class to encode three-dimensional quantities. 

 essence: used to encode ontological properties (for example, (mk.val x essence “cube) 
means “x is a cube”). 

 part_of: used to encode sub-part relationships (for example a hand is a sub-part of an 
actor). 

 position: the location of an object in space. 

 color. the color of an object. 

 attachment: the fact that an object seems attached to another (this is used as a visual 
feedback for grasping). 

 

Commands. These are: 

 grab_hand. Parameters: the hand, a deadline. 

 release_hand. Parameters: the hand, a deadline. 

 move_hand. Parameters: the hand, a target position, a deadline. 

 

States. These are: 

 hand_pos[H P T]:[(H position P)T,(H essence hand)T]: position of a hand. 

 same_hand_pos[H X P T]:[(icst hand_pos_cst X P)T,(X position P)T]: an object has the same 
position as a hand. 

 

Models. None have been needed in this section of the Masterplan (see section 6.6 below). 

 

7.5.2 Speech 
 

Ontology. It consists of the following class and entities: 

 speech context: a class to encode that an actor (speaker) speaks to an other actor 
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(listener). Instances of speech contexts are refined by markers that encode, respectively, 
that what is said maps to an action, that the action of a speech (verb) context has a 
target (object). The properties “action” and “action_target” are entities that belong to this 
part of the ontology. Qualifiers on action targets are picked from the ontology for “physics” 
presented above (for example, color, essence, position). 

 speaking: used to encode the fact that an actor speaks a word. 

 listening: used to encode the fact that an actor is a listener in a speech context. 

 pointing: used to encode that an actor points to a location in space. 

 knowing. Used to encode that an actor knows a fact. 

 

Commands. These are: 

 speak. Parameters: a word, a deadline. 

 point_to. Parameters: a target position, a deadline. 

 look_at. Parameters: a target position, a deadline. 

 

States. The following are states needed for mapping incoming speech to goals on instantiated 

states and vice versa. They are: 

 stand_col_ess_pos[X P E C T]:[(X color C)T,(X essence E)T,(X position P)T]: an object stands 
in a position, has some color and is of some class of object. 

 stand_col_ess_pos_sln[X P E C T]:[(X color C)T,(X essence E)T,(X position P)T,(X most_salient 

nil)T]: an object stands at a position, has some color and is of some class of object; it is also the 
most salient object featuring these attributes. 

 stand_pos_sln[X P T]:[(X position P)T,(X most_salient nil)T]: the most salient object stands in 
a position. 

 taken_col_ess[H X P E C T]:[(X color C)T,(X essence E)T,(icst same_hand_pos H X P T)T]: an 
object with a color and of some class has been grabbed. 

 taken_col_ess_sln[H X P E C T]:[(X color C)T,(X essence E)T,(X most_salient nil)T,(icst 

same_hand_pos H X P T)T]: an object with a color and of some class has been grabbed; it is also 
the most salient object featuring these attributes. 

 taken_sln[H X P T]:[(X most_salient nil)T,(icst same_hand_pos H X P T)T]: the most salient 
object has been grabbed. 

 

Models. None have been needed in this section of the Masterplan (see section 6.6 below). 

 

Programs. Language parsing is implemented as a set of programs – each targeting one part of 

a sentence – that collectively assemble a speech context (as defined earlier). In the present 
state of the system, words are encoded in the programs that build the speech context: this 
information had to be given manually, as the system is as of today, incapable of learning words. 
A speech context translates eventually into a goal targeting the instantiation of a model or a 
state. For example the sentence “put a blue cube there” translates into “the speaker has the 
goal that the listener has the goal to have a blue cube happen at the specified location” - 
actually, a goal about a goal about an instance of the state stand_col_ess_pos (mentioned in the 
list above). 

Language synthesis is performed by another set of programs that basically work in reverse 
when compared to the parsing programs: they translate a goal on an instance of a model or a 
state into a stream of speech commands, each speaking one word. 

These two sets of programs are given in Annex 1. 

 

7.5.3 Goals 
 

Ontology. It consists of the following entities: 

 role: used to encode the role of an actor. 

 interviewee: this denotes a particular value assigned to the role of an actor. 

 interviewer: this denotes a particular value assigned to the role of an actor. 
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 top_level: the top-level goal of the system. This abstract goal is referred to by a model 
generating the actual top-level goal of the system (see models below). 

 

States. These are: 

 interviewer_thanks_interviewee[IR IE T]:[(speech_context IR IE) (IR speaking "thanks you")T,(IR 

role interviewer)T,(IE role interviewee)T]: the interviewer thanks the interviewee. 

 

Models. These are: 

 self_speak[S T1 T0]:[(cmd speak S T1)T0-> (self speaking S)T1]: the outcome of the system 
speaking. 

 top_level_model[A T]:[(icst interviewer_thanks_interviewee A T)T -> (top_level)T]: maps the 
abstract top-level goal to an actual goal (the interviewer – whoever it is – thanks). The 
system pursues the goal of having the interviewer thanking the interviewee (regardless 
of who is actually the interviewer). 

 

Programs. This section of the Masterplan contains programs. They are: 

 a program for killing the top level goal when satisfied (to avoid the system pursuing its 
goal ad infinitum: this is needed since the top-level goal is not produced by any model 
and thus, is not monitored). 

 a program that assumes that if a speaker has the goal that a listener has a goal about 
some state, then the listener actually has the goal in question. 

 a program that confirms the reality of the production of the program above. Precisely, this 
program asserts that the actor had a goal about a fact f when f actually happens. 

The actual code of these programs is given in Annex 1. 

 

7.5.4 Control 
 

Ontology. It consists of one entity: 

 programmer: this denotes the programmer in control of the experiments. The 
programmer issues commands to the system using speech. This entity is used to 
differentiate commands issued by an actor in the scene from direct orders coming from 
the programmer (for example: “switch to interviewer”). 

 

States. None are required. 

 

Models. None are required. 

 

Programs. This section of the Masterplan makes use of the following programs: 

 a program for switching roles between the interviewee and the interviewer. 

 a program for setting the system with no role at all (used for passive observation). 

 two programs for setting the content of the task list to the machine-interviewer. 

The actual code of these programs is given in Annex 1. 

 

7.6 Preliminary Results 
This section presents the results of the experiments conducted with the prototype, organized in 
sessions, following the list of requirements defined in section 6.2. 

All the learned models and states are given in pseudo-code, with human-readable names 
instead of the machine-generated code and names. The compilable form for these states and 
models is given in Annex 1. 

 

7.6.1 Session 1 – Motor Babbling 
Setup. In the “motor babbling” session the system was acting alone, issuing randomly goals on 
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its own effectors to learn the outcome of the commands that resulted. The incentives for doing 
so were hand-crafted programs that have been purged from the memory after the session was 
over. 

 

Learned Models. These models are either the direct outcome of the execution of a command, 

or requirements on the former models, or temporal consequences between szazes (like the 
model called “link”): 

 grab[H X T1 T0]:[(grab_hand H T1)T0 -> (H attachment X)T1] 

 req_grab[H X P T T0 T1]:[(icst same_hand_pos H X P T0)T -> (imdl grab H X T1 T)T] 

 release[H X T1 T0]:[(release_hand H T1)T0 -> |(H attachment X)T1] 

 req_release[H X T1 T]:[(H attachment X)T -> (imdl release H X T1 T)T] 

 move[H P T1 T0]:[(move_hand H P T1)T0 -> (icst hand_pos H P T1)T1] 

 link[H X P T1 T]:[(H attachment X)T -> (icst same_hand_pos H X P T1)T1] 

In addition to these models two states have been learned during this session: these are the 
states mentioned in the “physics” section of Masterplan. This begs the question: why are these 
states listed in the initial Masterplan, in other words, why are they considered innate states? 
The reason is as follows. These states have been learned and named by the system but the 
same states are needed (indirectly) by the programs parsing speech, and these programs are 
hand-coded. We had no choice but re-coding these learned models in order to give them a 
name that can be referenced by the programs in question. See section 6.6.2. 

 

7.6.2 Session 2 – Observation of an Interview 
Setup. The system is set with no assigned role but still pursues the goal of the interviewer 

thanking the interviewee. This is the main drive for learning during this session. Recall that 
models and states can be actor-agnostic (the “actor” member of a goal can be abstracted). 

 

Learned Models. These models are: 

 interviewee_complies[IR IE X T1 T0]:[(goal X IE)T0 -> (icst interviewer_thanks_interviewee IR IE 

T1)T1]: when the interviewee pursues a goal X, the interviewer thanks him; this model 
has a requirement (below). 

 generic_task[IR IE X T1 T0]:[(goal (goal X IE) IR)T0 -> (icst interviewee_complies IR IE X T1 T0)T1]: 
this is a requirement on the model above. It states that the model above will be 
instantiated when the interviewer has the goal of having the interviewee having the goal 
X. 

The learning of the two models above demonstrate the “imitation” of the goal of the interviewee. 
Actually, this vocabulary is misleading: “imitation” conveys the false impression of “mimicking”. 
This is not the case at all: the system observes that pursuing the same goal as the interviewee 
does will bring success to his own goal (being thanked by the interviewer). We would rather talk 
of “goal-driven learning by observation”. 

In addition to these models the system has also learned all the states listed in the section 
“speech” of the Masterplan. These models had to be re-coded by hand to allow the manual 
construction of speech parsing programs as discussed in the previous section). It is these 
states that actually need the states from the section “physics” of the Masterplan. 

Learning words and grammar has not been listed as an objective of this project. However, it 
turns out that the impossibility to learn these is – in the case of speech - hampering the capacity 
of the system to learn without the programmer's intervention. In that respect we have started to 
investigate ways to alleviate this drawback ([10]). 

 

7.6.3 Session 3 – System as the Interviewee 
Setup. The system is assigned the role of the interviewee. It has previously learned to comply 

to the commands issued by the interviewer, and actually did so. 

 

Learned Models. No new models or states have been learned during this session, as no new 

events were occurring that did not already in the previous session. 
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7.6.4 Session 4 – system as the Interviewer 
Setup. The system is assigned the role of the interviewer. The system is instructed to have the 

interviewee perform tasks from a hand-coded list. This task list had to be hand-coded since no 
event during any of the sessions have indicated any reason for the list being what it was. In 
other therm, the system, being goal-driven, lacked a goal and means to assemble such a task 
list. This can find a simple remedy in the form of another model in the Masterplan that instructs 
the system to mimic the doings of the interviewer in lack of any good reason. 

 

Learned Models. No new models or states have been learned during this session, as no new 

events were occurring that did not already in the previous three sessions. 

 

7.7 Summary 
What is the ratio between the models (and states) that have been learned and the total number 
of models (and states)? It depends on how one counts. If we ignore the re-coding of some 
learned models (see sections 6.6.2 and 6.6.1) then we have 5 innate constructs (states and 
models) and 16 learned constructs – roughly 76%. If however we take the re-coding into 
account we have: 13 innate for 8 learned constructs – roughly 38%. So, it appears that – when 
parsing human speech is required – the benefits we expected for the engineering of such 
systems are greatly diminished, at least commensurately to the number of the constructs 
referred to by spoken interactions. Otherwise – the linguistic sub-domain being ignored – our 
approach seems to meet our expectations with regards to the learning and integration 
capabilities. 

On other less contingent fronts, the development of the prototype has been beneficial for 
addressing satisfactorily all of the key objectives listed in section 6.1. In a nutshell, the 
prototype has demonstrated the feasibility and tractability of an architecture that generates and 
revises dynamically a significant part of its own code from observation, while displaying good 
response times. Scalability has not been measured yet, but given the minimal computing 
resources actually needed by the prototype, we have gained more confidence that the system 
is likely to scale reasonably well. 

This work constitutes a major milestone of the project as this prototype can be considered a 
successful proof of concept of the architecture design – within the envelope defined by its 
inherent limitations. The demonstrators planned for the end of the project will be built – by and 
large – on the firm ground that this prototype has established. 

 

 

8 Final Architecture 
Stemming from both our architectural principles and the implementation of the prototype, the 
architecture has reached its final incarnation (with regards to the time-frame of the project): 
essentially, what distinguishes the final architecture from the prototype is its implementation, 
which underwent significant expansion, optimization and generalization. This section presents 
the final architecture - called AERA - at two levels of description: functional and structural. 

As mentioned earlier, the architecture is entirely domain independent: its plunging in the domain 
of socio-communication is presented in the WP6 deliverable D16. D16 also offers a detailed 
presentation of the methodological aspect of our approach – bootstrapping from a Masterplan 
followed by further expansion based on experience - both in principle and in the target domain. 
The results of the evaluation of the final system are also presented in D16. 

The description of how imitation learning (imitation of goals) stems from the low-level processes 
described thereafter is given in the WP5 deliverable D21. 

 

8.1 Overview 
8.1.1 Improvements over the Prototype 
The prototype has been used as a scaffold for both the design and the implementation of the 
system. The main differences between the prototype and the final architecture are: 

 the Replicode syntax has been reworked to unify the encoding of models and 
programs; 
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 the high-level reasoning engine in the Replicode executive has been re-implemented 
almost entirely to increase its performance; 

 the Replicode logic has been improved to allow the definition of time values as 
intervals (see design principle 5, section 7.1.3); 

 backward chaining has been augmented to produce assumptions. An assumption 
results from abduction and is encoded as a fact with a confidence value computed exactly as 
for goals (goals are produced by the same abduction process); 

 drives have been introduced (see section 7.2.8); 

 the Replicode executive now produces periodic measures of its performance (see 
section 7.2.9); 

 simulation was partially implemented at the level of Replicode constructs. This is not 
the case anymore: simulation is now completely integrated in the Replicode executive (for 
performance reasons); 

 the process for model acquisition has been reworked. The episodes models are built 
from (see section 7.2.3) are now analyzed in a more sophisticated way: data produced by 
existing models are removed from the episodes, which prevents – by design – the production of 
equivalent models, and thus, eliminates the need to check for duplicates; this results in a 
significant improvement of the system's performance; 

 compaction has been added; 

 

8.1.2 AERA 
AERA stands for Auto-catalytic Endogenous Reflective Architecture. In [3] we have adopted a 
stringent definition for autonomy, i.e. an autonomous system is operationally and semantically 
closed. In our context, auto-catalysis refers directly to the operational closure, that is the ability 
for a system to expand and modify its own internal agency by means of the operation of said 
agency (its structure). Reflectivity refers to the semantic closure, i.e. the ability for a system to 
control the reorganization of its agency. An AREA-based system is also endogenous in the 
sense that it is (a) self-maintained and, (b) originates from itself – the processes implementing 
the two aforementioned closures are internal and cannot be modified by anyone else but the 
system itself. 

 

8.1.3 Summary of the AERA Design Principles 
Design Principle 1: “Holistic Design”. The desired operation of the system results indirectly 

from the inter-operation of a multitude of general-purpose underlying processes. In other words, 
there is no component called “learning” or “planner” and so on. Instead, learning and planning 
are emergent processes that result from the same set of system-wide functions. More over, 
high-level processes (like planning and learning) influence each other (positively and also 
negatively): they are dynamically coupled, as they both result from the execution of the same 
knowledge - the very core of the system, its models. 
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Figure 15 – Holistic Design 

Three main cognitive processes – attention. learning and planning – are 
(partially) implemented and controlled by models which constitute the evolvable 
part of the system (the fixed part being the Replicode executive). These 
processes are indirectly and dynamically coupled through the memory of the 
system as models are added, deleted, activated or phased out, depending on 
the context and the goals pursued by the system. 

In addition to observed states, assumptions, goals and predictions, the memory 
contains executable code (models) and as such, constitutes an active part of 
the system: it is actually the very core of a model-based and model-driven 
system. The memory is responsible for most of the computation occurring in 
the system. 

 

Design Principle 2: Reflectivity.  A system must know what it is doing, when and at what cost. 

By enforcing explicit traces of the system's operation allows the building of models of said 
operation, which is needed for self-control (also called meta-control). In that respect, the 
architecture shall be applicable to itself, i.e. a control system for the system shall be 
implementable the same way the system is in the domain. In other words, this principle must be 
followed if one wants to implement an Integrated Cognitive Control ([8]). 

 

Design Principle 3: Have all operations controllable in a uniform way using mechanisms 

as simple as possible. More elaborate control schemes shall be learned by a control system, 

according to the second principle. To keep things simple eases the learning of early basic 
control models that in turn constitute the base for more complex ones. In other words, too 
complex innate control mechanisms impose too steep a learning curve for the system. 

 

Design Principle 4: Keep things short and uniform. This means that (a) the granularity of 

the encoding of knowledge shall be low and, (b) all primitive operations of the system shall 
focus on one task and take as little time as possible, keeping in mind that higher-level 
operations result from the coupling of a multitude of said primitive operations. This principle 
aims at preserving plasticity – the capability of implementing small, incremental changes in the 
system: this is one of the key requirements for the architecture as it underpins our entire 
research avenue. 

 

Design Principle 5: Account for time at all stages of computation and at all scales - from 

the scale of an individual operation (e.g. performing a reduction) to the scale of a collective 
operation (e.g. achieving a goal). This is an essential requirement for a system that (a) has to 
perform in the real world and, (b) has to model its own operation with regards to its expenditure 
of resources. Additionally, time values shall be considered as intervals to encode the variable 
precisions and accuracies to be expected in the real world: for example, sensors are not always 
performing at fixed frame rates and therefore the ability to model their operation is critical to 
ensure the reliable operation of their controllers and the models that depends on their input. 
Also, the precision for goals and predictions may vary considerably depending on both their 
time horizons and semantics. 

 

8.2 Functional Description 
 

8.2.1 Overview 
The architecture is composed of low-level, system-wide functions that interoperate to 
implement the higher-level cognitive processes mentioned earlier, in a bottom-up fashion. 

All the processes described below are entirely domain-dependent. 
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Figure 16 – Low-Level Processes 

 

See text for details. 

N.B.: control signals (i.e. data and emitting processes that control the activation 
of models and saliency of data) are not depicted for clarity. 

 

8.2.2 Auto Focus 
The process called “auto-focus” is responsible for directing the system's attention with regards 
to its internal inputs. These inputs are goals, predictions, goal successes, prediction failures 
and reflective inputs, i.e. traces of the execution of models and performance reports (see 
section 7.2.9) 

The auto-focus acts on the system in the following ways: 

 it filters the raw inputs: inputs that are irrelevant to goals and predictions are discarded. 
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Relevancy is defined as sharing at least one value with at least one goal or one prediction. 

 for each new goal or prediction, it generates a pattern extractor whose task is to find 
explanations for the success of a goal or the failure of a prediction (see section 7.2.3). 

 

8.2.3 Pattern Extraction 
A pattern extractor is a process that is generated dynamically upon the creation of a goal or a 
prediction. Its main activity is to produce models, i.e. explanations for the success of a goal or 
the failure of a prediction: these are signals that trigger the building of models.  

 
One Targeted Pattern Extractor is responsible for attempting to explain either the success of 
one given goal, or the failure of one given prediction. Said goal or prediction is called the TPX's 
target. Under our assumption of insufficient knowledge, explaining is more akin to guessing 
rather than to proving, and guesses are based on the heuristic “time precedence indicates 
causality”. 

A TPX processes a buffer of inputs (see figure 7 below) that share at least one value with its 
target. This buffer is time-bound, i.e. inputs are discarded after a time limit called the time-
horizon, which is domain-dependent and represented as a system-wide parameter (for example, 
in the domain of socio-communication we set this value to 5s which roughly matches the 
attention of a human). When the target goal succeeds or when the target prediction fails, the 
TPX is signaled resulting in an attempt to produce a model from the most relevant input in the 
buffer. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17 – Targeted Pattern Extractor 

The filtered inputs are produced by the Attention Control process (called 
Auto-Focus in AERA). Signaling results from the catching of reflective inputs 
produced by the executive. 

In order to find the relevant input, a TPX proceeds as follows (we assume the target is a goal, 
knowing that the procedure is similar for predictions): 

1 if one input is a trace of the execution of one model that solved the goal, abort – a 
trace of model execution is called a reduction marker and contains (a) a reference to 
the executed model, (b) a reference to its input and (c) a reference to its production. 
This step ensures that no two identical models can be produced; 

2 remove any inputs that triggered any model execution; 

3 remove any inputs that were assembled in composite states; 

4 from what remains, choose the younger input as the left-hand term of a new model 
(the right-hand term being the target itself). 

Shall the target be a prediction, step 1 would become: 

1 if one input is the trace of the execution of one model that predicted the failure, 
abort; 

 

The construction of new models is performed as follows (assuming the target is a goal): 

TPX 

input buffer 

target signal:  
goal success or 
prediction failure 

filtered inputs 
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1 if the input chosen as the left-hand term of the new model is synchronized with other 
inputs, then all these inputs are assembled into one new composite state: this new 
state is chosen as the left-hand term of the model; Notice that new states are 
identified when they are parts needed for the models being built – instead of 
resulting from blind temporal correlation; 

2 the chosen left-hand term is abstracted and so is the target: the two terms of the 
model (let's call it M0) now share some variables; 

3 if some variables in the right-hand term are not present in the left-hand term, then 
the next input is chosen as the left-hand term of a new model M1 whose right-hand 
term is an instance of M0: the variable missing in M0 is passed from M1 to M0 as a 
parameter; when executed, M1 allows the execution of M0; 

4 repeat 3 as long as necessary; if the buffer is exhausted, delete all models found so 
far and abort. 

If the target was a prediction, then the signaling event would be a failure. Technically this 
means that M1 mentioned above would have its right-hand term being the failure of the 
execution of M0. In other words, the execution of M1 would inhibit the execution of M0. 

 

In models, pattern-matching is guarded by pre-conditions (called guards): these are 
arithmetical/logical operations to be executed on the values held by an input and, mapped to 
the variables in the model. We need to induce these guards from the inputs – we limit ourselves 
to the induction of invertible linear functions of the form y=a*x+b where a, b, x and y are 
variables in the model. Such induction relies on a heuristic that ascribes some semantics to 
some of the variables found in models. The algorithm proceeds as follows: 

1 induction is attempted only in the case of a model explaining the change of a transient, 
continuous value (for example, the position of an object in space); transient values are 
identified as such when found among a stream of regular samples of the same quantity 
(for example, the successive values of the aforementioned object position, stored in the 
TPX's buffer); 

2 right-side time variables are then assumed to follow their right-side counterpart by a 
constant sampling period estimated as the difference between the timestamps of two 
successive samples of the same quantity; 

3 then for each left-side numerical variable x1 (occurring at t1), try to find a counterpart x0 
(i.e. a prior having occurred at t0) in the right-side term and in the model's parameters; 

4 if successful, find a match for the variable c - as in the expression x1=x0+(t1-t0)*c – in 
the right-side and parameters of the model; otherwise abort and delete the model; 

5 if successful, build two guards (one is the expression above, the other its inverted form) 
and insert them in the model; otherwise abort and delete the model. 

The method used to dynamically generate new models may give the reader the impression that 
these models are completely abstracted and that, having been built on the ground of one 
evidence – say, e0 -, they will be used by the system to process any evidence matching the 
structure of e0. It is not so and this deserves furthermore an explanation. 

We define the level of abstraction of a model by the precision of the constraints it applies on the 
values matching one of its terms (right- or left-side). Let's consider for example one term of a 
model, expressed as a structure S containing variables xi. When an input I matches S, the 
relevant values vi contained in a are mapped to the xi if and only if the vi are within a certain 
range: the wider the range the more abstract the model. 

Each model maintains a range for each dimension of the observables – a dimension is encoded 
a s a class of relation between values (an object of the class ont in Replicode) – examples of 
such dimensions are position, essence, belonging_to. Depending on the semantics of a 
dimension, the associated range is either discrete (in {0,1}) or continuous (in [0,1]). 

At construction time, a model initializes its ranges with the values observed in the input its right-
side term has been derived from. Each time an input matches the structure of the right-side 
term and is within the known ranges, the model issues a prediction, and at due time, an 
assessment of the prediction outcome is performed and the model rated accordingly. Now, 
when an input matches the structure of the right-side term but is out of the ranges, then the 
model will produce a prediction silently, that is without publishing it: if the prediction fails, the 
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model is not rated negatively as the prediction was a mere trial. If on the contrary the prediction 
succeeds, then (a) the model is rated positively and, (b) the ranges are enlarged to 
accommodate the values held by the input in question. 
In other words, the more the model performs well on new evidences, the more abstract it gets. 
Conversely, if no further evidences produce good predictions, then the model remains 
constrained by its initial input, i.e. encodes a particular case instead of more a general one. 

 
TPX can only generate models if the terms on both sides share at least one variable. It follows 
that TPX cannot generate models encoding procedures such as “alarm sound at t0 -> flashing 
light at t1” since the two terms share no variable. We developed another kind of Pattern 
Extractor called Cross Pattern Extractor (XPX). An XPX works exactly as a TPX except that the 
inputs in its buffer are not constrained by the requirement of sharing values with the target. 
Instead, the XPX buffer is defined as the intersection of all TPX buffers (see figure below). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18 – Cross Pattern Extractor 

The input buffer of an XPX results from the time-ordered shuffling of common 
inputs found in the TPX' buffers. A dedicated time-horizon is defined system-
wide for constraining the XPX's buffers. 

The rationale for the XPX design is as follows: 

 value-sharing is too constraining to allow capturing causality between structurally 
unrelated events, but 

 removing constraints on inputs makes the Pattern Extractor blind, i.e. calls for more 
trials and errors which are time consuming (affects negatively the learning speed) and 
resource consuming (the computational power needed to produce these trials and to 
evaluate them), therefore 

 we need to relax the constraints on the buffers but reasonably so, and, in fine 

 we define the admissible inputs for an XPX as having to be relevant to the global 
current activity of the system, i.e. to the set of targets it currently pursues, which 

translates technically into the intersection of the TPX buffers. 
 

8.2.4 Rating Models 
To rate models is to keep track of their performance. A model's performance is the number of 
times its predictions came true, divided by the number of times the model produced a prediction. 
In other words, the performance of a model is its success rate with regards to predictions. 

The success rate of a model is interpreted by the executive as its activation value, which means 
that models with low success rates are likely to fall under the activation threshold of the group 
the models live in, and thus, be deactivated. 

We distinguish two states for a model: weak and strong: 

 a model is weak when the number of time it produced predictions is below a system-
wide threshold. When the success rate of a model gets below the activation threshold 
mentioned above, the model is deactivated but still receives inputs silently: this is meant to give 

XPX 
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target signal:  
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prediction failure 

intersection 
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the model a chance of improving. If the success rate continues to decrease, after crossing a 
threshold, the model is deleted. 

 a model is said to be strong when its success rate is high enough (i.e. above a 
system-wide threshold) while a significant number of evidences (i.e. an evidence count above 
another system-wide threshold). The success rate of a strong model getting under the 
activation threshold is interpreted as a context switch: the system knows the model is usually a 
good performer and assumes that the failures of said models are due to the inadequacy of the 
model in the current context of the domain. The model is deactivated but not rated negatively; 
instead it still receives inputs silently. In case the model starts to perform well again, the system 
will assume the domain has switched back to a context the model is attuned to, and will re-
activate the model. 

 

8.2.5 Rating Abstract Goals and Predictions 
Besides evaluating the performance of its individual components (rating models), the system 
has to evaluate its own global performance. Here, by evaluating the system's global 
performance we mean evaluating how good the system is at achieving a class of goals and 
how reliable the system is with regards to a class of predictions. Classes of goals and 
predictions are actually abstractions of goals and predictions, that is, goals and predictions 
where values have been replaced by variables – in other words, patterns of goals and 
predictions. 

The assessment of the system's global performance proceeds as follows: 

 the system maintains a dictionary of abstract goals and predictions: each time a new 
goal / prediction is generated, it is abstracted and added to the dictionary if not already present; 

 each time a goal or prediction outcome (that is success or failure) is received, the 
success rate of its corresponding abstraction is updated: the success rate is the number of 
successes divided by the number of times an instance of the abstract goal / prediction has been 
produced; 

 if the success rate of an abstract goal / prediction gets above a certain threshold, any 
pattern extractor targeting an instance of said goal / prediction will be removed from the system. 
More accurately, this control is exerted upon the success rate being high enough and derivative 
of the success rate being under another threshold: this indicates that the system makes no 
significant progress in learning how to achieve a goal or to make reliable predictions. 

 

8.2.6 Simulation and Commitment 
The system has to make meaningful decisions in the following cases: 

 several goals defeat each other, 

 several possibilities are available for achieving one goal. 

Simulation is a global process that, for each goal currently pursued by the system, evaluates its 
consequences with regards to other goals. Simulation is akin to a breadth-first parallel search in 
model- and state-space. 

When a goal is committed to, the system, via backward chaining, produces all possible sub-
goals, which in turn triggers the production of sub-sub-goals and so on. Simulation is a process 
that performs as follows: 

 at some point in time (a system-wide parameter called simulation time horizon) the 
generation of sub-goals is frozen and simulated predictions of the success of the sub-goals 
generated so far are injected in the system; 

 the simulated predictions trigger other simulated predictions (forward chaining), some 
of which indicating the possible success or failure of other goals; 

 for each committed goal, the system gathers the potential outcomes for all other goals; 

 for each committed goal, the system eliminates the sub-goals that triggered the failure 
of more important goals, and from what remains, selects the best sub-goals and commits. Goal 
importance is defined as the product of its saliency (i.e. its chances of success) and its urgency 
(i.e. its deadline). 

The simulation process is described in full details in [1]. 
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8.2.7 Compaction 
The purpose of compaction is to increase the performance of the system by replacing some of 
its models by C++ code generated on the fly, i.e. to compile part of the system's memory, at the 
cost of reducing the system's plasticity. Compaction results form learning patterns of coupling 
between models, and as such, results from the identification of internal patterns of activity. 
Compaction belongs naturally to WP2 and the full details of its operation are given in D17. 

Compaction targets two patterns of internal activity: 

 goal production: the system identifies predictable sequences of goals producing sub-
goals involving a fixed set of underlying models. In other words, the system identifies stable 
abduction paths. The models involved are removed from the system and replaced by one 
compiled plan generator – a plan being defined as a timely sequence of goal production. 

 prediction production: the system identifies predictable sequences of predictions 
entailing other predictions involving a fixed set of models. In other words, the system identifies 
stable deduction paths. The models involved are removed from the system and replaced by 
one compiled prediction generator – a component that generates a timely sequence of 
predictions. 

By stable path we mean a set of strong models, constant over time, that produces the same 
outputs given the same inputs. Such paths are learned by the system, offline – intuitively, during 
“sleep”. The system builds models of the inputs/outputs of each model, based on the reflective 
data generated by the system itself while acting in the domain. 

In both cases, shall a model be shared between several paths (deductive or abductive), said 
model is left in place to avoid breaking paths that are not compiled. More over, models removed 
following compaction are not destroyed: since paths are context dependent, shall said context 
switch to another one where the compiled paths are not stable anymore, then the initial models 
are re-injected and the compiled code removed. This is meant to avoid for the system to have 
to learn again individual models that it already knows. 

 

8.2.8 Drive Re-Generation 
A drive is a goal targeting a state that is not observable. For example, such a non-observable 

state could be “stay in good condition to ensure a normal operation”: no input like “self is in 
good shape” will ever be received from the environment. It constitutes a top-level goal for which 
initial hand-crafted models are given to the system (in the Masterplan). Each of these models 
states a possible way to satisfy (or dis-satisfy) the drive. In our example, such a possible way 
could be expressed as “maintain a  sufficient level of energy”, which is actually an observable 
state. 

Once a drive is satisfied, the system re-generates it within a time-frame: this time-frame is 
domain dependent as it depends on the semantics of the drive, which depends on the domain. 
The purpose of the drive re-generation is two-fold: 

 it ensures a perpetual and periodic “pressure” on the system backward chaining 
activity. In other words, when sub-goals fail, their super-goals will be injected again, as a result 
of the renewed injection of drives, thus giving the system another chance to achieve the sub-
goals in question – assuming the context in the domain allows for it; 

 its ensure that the continuous “needs” of the system are given attention to. For 
example and as mentioned earlier, such a “need” can be “maintain a  sufficient level of energy”, 
in the context of a continuous depletion of said “energy”. 

Technically, the system contains a set of (Replicode) programs whose responsibility is to re-
generate the drives upon success, failure or absence thereof at arbitrary time-horizons. These 
programs belongs to the Masterplan. 

 

8.2.9 Self-Monitoring 
Self-monitoring is the production by the system of data describing the computation of the 
system. These data are generated automatically by the executive; they are: 

 notifications of the productions of models, 

 notifications of the data used for assembling composite states, 

 periodic samples of the average time consumed by reduction tasks (the lower the 
better), 
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 periodic samples of the average time ahead of time-bound tasks (the higher the better). 

Such data constitute internal inputs for the system itself but also external inputs for meta-
systems, i.e. systems in charge of controlling the former one. For example, compaction is a 
process carried out by such a meta-system, and makes use of the notifications mentioned in 
the list above. 

Periodic samples of computation times and time ahead possibly indicate congestion, i.e. 
insufficient resources with regards to the tasks at hand. It is the responsibility of a meta-system 
to take contingency measures. These are: 

 increase the thresholds for model activation: fewer models will be executed, as the 
standards for model performance are higher; 

 increase the saliency threshold in the groups the models live in. Goals, predictions and 
assumptions will be more likely to fall under said threshold, and this limits the depth of the 
chaining; 

 reduce the simulation time horizon: the system will spend less resource evaluating the 
consequences of its actions since the search is less deep; 

 deactivate drives of low priority: this is achieved by deactivating the programs that re-
generate them. It is up to the developers to define priorities for the drives (as they are domain-
dependent). Priorities are defined as the activation values of the re-generating programs; 

 increase the threshold that controls the rating of abstract goals and predictions 
(section 7.2.5): this lowers the expectations on the system's capabilities to achieve goals and 
predict correctly. As a result, fewer models will be learned – since the system's performance will 
be deemed “good enough” - at the cost of having less reliable models. 

 

8.2.10 Mapping of the Architectural Template to  
Functions 
The Architectural Template (introduced section 5.1) is an abstraction of the functional view of 
the system. This section describes how the functions detailed above reify the four processes of 
the template. 

 

Model Acquisition – Model acquisition is performed by the pattern extraction processes. 

Model acquisition is controlled by the rating of abstract goal and predictions. 

 

Model Revision – Model revision stems from the rating of models. This rating is triggered by 

the injection of the outcomes of the predictions produced by models. 

 

Attention Control – The control of the system's attention is two-fold. First, the attention of the 

system in the domain is driven by models, as these control the sensors – one may think of the 
visual attention for example, which controls the visual sensors. Second, the selection of 
relevant inputs from all the inputs provided by the sensors is performed by the auto-focus 
process and is driven by the system's current activities – the goals it pursues and the 
predictions it produced. 

 

Compaction -Compaction results from learning of patterns of model coupling. Compaction is 

actually implemented by models that are learned from reflective data produced by the system 
while interacting in the domain. Compaction is implemented by a separate system, according to 
the principle of Integrated Cognitive Control. 

 

8.2.11 Cognition 
This section describes how the four main cognitive activities (Memory, Attention, Learning and 
Planning) result from the inter-operation of the processes described in the functional view of the 
system. 

 

Memory – The memory of the system holds several kinds of data: facts (filtered inputs), goals, 

predictions, assumptions, notifications (reflective data), simulations and models – the latter 
constitute a procedural memory. Episodes (from which models are built) are stored in the 
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buffers of each pattern extractor. Facts, goals, etc. are stored as long as they hold – this is 
determined by the upper bound of the time interval specified for each fact. Models are stored 
until their success rate drops under  a threshold, at which point they are deleted. The system is 
data-driven and thus there is no “recalling” activity. Instead, data that hold are presented by the 
executive to models either once (transient data) or repeatedly (persistent data) until either their 
lifetime (resilience) expires or they are disproved by new data observed in the environment. 

 

 

Figure 19 – Memory 

 

Attention – As mentioned in the previous section, attention is two-fold: it is implemented by 

models (attention in the domain) and by the auto-focus (attention with regards to the system's 
current activity). 
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Figure 20 – Attention 

 

Learning – Learning stems from the acquisition of models and the revision thereof. It is 

controlled on the basis of the evaluation of the system's global performance, i.e. its ability to 
achieve goals and to predict correctly. Both the acquisition and the revision of models are fixed 
processes. 

Figure 21 – Learning 

 

Planning – Planning is the generation (by models) of sequences of goals to reach a target 

state in the domain. It results from the commitment to one or several sub-goals, given a super-
goal. This commitment is performed by the analysis of simulated impacts on both the 
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environment and the system itself. This analysis is a fixed process. 

 

Figure 22 – Planning 

 

8.3 Structural Description 
This section maps the functional description of the architecture to an implementation based on 
the Replicode executive. The structure described here is an extension of the structure 
presented in section 6.3.1. 

 

8.3.1 Overview 
The system is composed of (a) a multitude of models, (b) one instance of auto-focus and, (c) a 
collection of pattern extractors (see figure 22 below). 

The auto-focus is a component that implements the auto-focus process described in section 
7.2.2. For performance reasons, this component is also responsible for rating the abstract goals 
and predictions, a process described in section 7.2.5. 

There is a one-to-one correspondence between a pattern extraction process (section 7.2.3) and 
a pattern extractor (a component). 

Models are projected onto two groups called the primary and secondary groups. Models active 
in the primary group receive the filtered inputs and produce predictions and goals. Models that 
are not active in the primary group are models whose success rate is not high enough. These 
models are kept active in the secondary group only: they receive inputs and produce – silently – 
predictions (they are not injected in the system).  This is meant to allow weak models to 
improve, and to detect context switches as mentioned in section  7.2.4,. 

Drive re-generation programs live in a separate group: this allows to deactivate some drives by 
increasing the activation threshold of the group: (see section 7.2.8). 

The monitoring of the system's performance is performed by the executive and does not appear 
in the apparent structure of the system. 

Model rating, simulation and commitment are performed by “reasoning units”, described in 
section 7.4.2 below. 
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Figure 23 – Structure 

 

The output groups are either input groups (stdin) of other systems (arranged accordingly to the 
principle of Integrated Cognitive Control), or other groups of the same system if one needs to 
partition the memory, i.e. isolate some models from others. 

Compaction is performed by a control system (following ICC) and as such has no counterpart in 
terms of components. 

 

8.3.2 Reasoning Units 
In the main, reasoning is performed by primitive units (see figure 23 below). A reasoning unit is 
composed of a model, one or several views and a controller (one per view). 

The controller is a lightweight thread that performs forward and backward chaining, i.e. 
deduction and abduction. The controller also manages a collection of monitors, which are also 
lightweight threads and are responsible for: 

 prediction monitors: detect the occurrence of a predicted fact within the time interval 
specified for the prediction; at the deadline of the prediction (upper bound of the interval), the 
outcome (success or failure) is assessed and the model is rated accordingly. 

 goal monitors: detect the occurrence of the target fact and asses the outcome of the 
goal; collect simulation results and commit to appropriate sub-goals. 

 

Figure 24 – Reasoning Unit 
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Each time a model is produced, a computation unit is instantiated and parametrized by the 
model. The implementation of the system consist essentially in a huge collection of computation 
units, supported by an instance of the auto-focus and a collection of pattern extractors. 

 

8.4 Open Issues and Future Work 
This section describe our approach towards selected short-term developments. 

In its current state, the architecture does not have any meta-learning abilities: learning is a fixed 
process, and planning is also a fixed process. This does not constitute however a significant  
limitation with regards to the objectives of the project. To develop furthermore the meta-learning 
abilities is left for the long-term, as we give  precedence to industrial applications (which require 
improved dependability, accuracy and robustness) over high-level cognitive feats that we feel 
will not be required until significant impact in the industry has been achieved. 

Learning is triggered by the production of goals and predictions and relies entirely on 
observation: this limits the acquisition of knowledge to apparent phenomena. In other words, 
the system lacks curiosity and is not able to produce hypotheses and to experiment. For 
example, we have experimented “motor babbling” to bootstrap learning in the prototype. 
However this relied entirely on ad-hoc hand-crafted goals injected in the system  and said code 
has been removed from the final system. The question of how to generate such goals in a 
principle way is still open. 

The system strives to achieve multiple goals stemming from its internal (user-defined) drives. 
However there is no guarantee that it will actually achieve these goals. This “best effort” policy 
is deemed good enough for the project but constitutes a severe limitation in the context of 
mission-critical applications: in such cases we need to guarantee that the system (a) does 
actually performs as intended and (b) does not violate constraints imposed by the designers. In 
other words, significant work remains to be done to bound the operation of the system in a 
dependable, deterministic way by imposing top-down (allonomic) constraints to control the 
bottom-up (autonomic) development of the system. 
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10 Annex 1: Masterplan of the 
Prototype 
This Annex gives the compilable code of the Masterplan. In addition to their code, each model 
and state is also summarized in pseudo-code for readability. This annex also includes the  
learned models and states that have been integrated into the Masterplan – for such 
models/states, an explicit mention is made to differentiate them from the innate models/states. 

 

11 Ontology 
; domain-dependent classes. 

 

!class (vec3 x:nb y:nb z:nb) 

!class (speech_context (_obj {speaker:ent listener:ent})) 

 

 

; device functions. 

 

!dfn (grab_hand); arg0: a hand, arg1: deadline. 

!dfn (release_hand); arg0: a hand, arg1: deadline. 

!dfn (move_hand :); arg0: a hand, arg1: target position, arg2: deadline. 

!dfn (speak :); arg0: a word, arg1: deadline. 

!dfn (look_at :); arg0: a vec3, arg1: deadline. 

!dfn (point_at :); arg0: a hand, arg1: target position, arg2: deadline. 

 

; application ontology. 

 

; attributes. 

 

essence:(ont 1) [[SYNC_FRONT now 1 forever root nil]]; usage: (mk.val x essence "sphere" 1) 

part_of:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

position:(ont 1) [[SYNC_FRONT now 1 forever root nil]]; usage: (mk.val x position (vec3 0 0 0) 1) 

color:(ont 1) [[SYNC_FRONT now 1 forever root nil]]; usage: (mk.val x color "green" 1) 

attachment:(ont 1) [[SYNC_FRONT now 1 forever root nil]]; usage: (mk.val self_right_hand attachment 
a_thing 1) 

role:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

 

speaking:(ont 1) [[SYNC_FRONT now 1 forever root nil]]; usage: (mk.val an_actor speaking "a_word" 1) 

listening:(ont 1) [[SYNC_FRONT now 1 forever root nil]]; usage: (mk.val an_actor listening "a_word" 1) 

pointing:(ont 1) [[SYNC_FRONT now 1 forever root nil]]; usage: (mk.val an_actor pointing (vec3 0 0 0) 1) 

knowing:(ont 1) [[SYNC_FRONT now 1 forever root nil]]; usage: (mk.val an_actor knowing something 1) 

 

action:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

action_target:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

most_salient:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

 

; values. 

 

actor:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 
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interviewer:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

interviewee:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

hand:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

head:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

 

 

; initial application objects. 

 

self:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val self essence actor 1) [[SYNC_FRONT now 1 forever root nil]] 

self_right_hand:(ent 1) [[SYNC_FRONT now 1 forever root nil]] 

self_right_hand_is_a_hand:(mk.val self_right_hand essence hand 1) [[SYNC_FRONT now 1 forever root 
nil]] 

self_right_hand_belongs_to_self:(mk.val self_right_hand part_of self 1) [[SYNC_FRONT now 1 forever root 
nil]] 

self_head:(ent 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val self_head essence head 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val self_head part_of self 1) [[SYNC_FRONT now 1 forever root nil]] 

 

programmer:(ont 1) [[SYNC_FRONT now 1 forever root nil]] 

 

human1:(ent 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val human1 essence actor 1) [[SYNC_FRONT now 1 forever root nil]] 

human1_right_hand:(ent 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val human1_right_hand essence hand 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val human1_right_hand part_of human1 1) [[SYNC_FRONT now 1 forever root nil]] 

human1_head:(ent 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val human1_head essence head 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val human1_head part_of human1 1) [[SYNC_FRONT now 1 forever root nil]] 

 

human2:(ent 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val human2 essence actor 1) [[SYNC_FRONT now 1 forever root nil]] 

human2_right_hand:(ent 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val human2_right_hand essence hand 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val human2_right_hand part_of human2 1) [[SYNC_FRONT now 1 forever root nil]] 

human2_head:(ent 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val human2_head essence head 1) [[SYNC_FRONT now 1 forever root nil]] 

(mk.val human2_head part_of human2 1) [[SYNC_FRONT now 1 forever root nil]] 

 

top_level:(ont 1) [[SYNC_FRONT now 1 forever root nil]]; to be targeted by a goal (top-level goal). 

 

12 Physics 
; initial high-level patterns (HLP) for manipulating objects. 

; all models/states are learned during "motor" babbling". 

; the models/states are given here in a compilable form. 

; 

; abstraction is fully automatic: HLPs are built from examples. 

; the provided examples will die at the first update period (upr). 

 

 

; hand_pos[H P T]:[(H position P)T,(H essence hand)T] - LEARNED. 
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some_object_0:(ent 1) |[] 

 

some_object_pos_0:(mk.val some_object_0 position (vec3 0 0 0) 1) |[] 

f_some_object_pos_0:(fact some_object_pos_0 0us 1 1) |[] 

 

some_object_is_a_hand_0:(mk.val some_object_0 essence hand 1) |[] 

f_some_object_is_a_hand_0:(fact some_object_is_a_hand_0 0us 1 1) |[] 

 

hand_pos:(cst [f_some_object_pos_0 f_some_object_is_a_hand_0] [attention] 0us 1) [[SYNC_FRONT now 
0 forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

; same_hand_pos[H X P T]:[(icst hand_pos_cst X P)T,(X position P)T] - LEARNED. 

 

some_hand_1:(ent 1) |[] 

some_object_1:(ent 1) |[] 

 

i_hand_pos_1:(icst hand_pos [some_hand_1 (vec3 0 0 0) 0us] 1) |[] 

f_i_hand_pos_1:(fact i_hand_pos_1 0us 1 1) |[] 

 

some_object_pos_1:(mk.val some_object_1 position (vec3 0 0 0) 1) |[] 

f_some_object_pos_1:(fact some_object_pos_1 0us 1 1) |[] 

 

same_hand_pos:(cst [f_i_hand_pos_1 f_some_object_pos_1] [attention] 0us 1) [[SYNC_FRONT now 0 
forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

; grab[H X T1 T0]:[(grab_hand H T1)T0 -> (H attachment X)T1] - LEARNED. 

  

some_hand_2:(ent 1) |[] 

some_object_2:(ent 1) |[] 

 

cmd_grab_2:(cmd grab_hand [some_hand_2 100000us] 1) |[] 

f_cmd_grab_2:(fact cmd_grab_2 0us 1 1) |[] 

 

attached_2:(mk.val some_hand_2 attachment some_object_2 1) |[] 

f_attached_2:(fact attached_2 100000us 1 1) |[] 

 

grab:(mdl [f_cmd_grab_2 f_attached_2] [attention] 0us 1) [[SYNC_FRONT now 0 forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

; req_grab[H X P T T0 T1]:[(icst same_hand_pos H X P T0)T -> (imdl grab H X T1 T)T] - LEARNED. 

 

some_hand_3:(ent 1) |[] 

some_object_3:(ent 1) |[] 

 

i_same_hand_pos_3:(icst same_hand_pos [some_hand_3 some_object_3 (vec3 0 0 0) 0us] 1) |[] 

f_i_same_hand_pos_3:(fact i_same_hand_pos_3 0us 1 1) |[] 

 



 

62/80 

i_grab_3:(imdl grab [some_hand_2 some_object_2 100000us 0us] 1) |[] 

f_i_grab_3:(fact i_grab_3 0us 1 1) |[] 

 

req_grab:(mdl [f_i_same_hand_pos_3 f_i_grab_3] [attention] 0us 1) [[SYNC_FRONT now 0 forever stdin nil 
1]] 

 

; ---------------------------------------------------------------------- 

 

; release[H X T1 T0]:[(release_hand H T1)T0 -> |(H attachment X)T1] - LEARNED. 

 

some_hand_4:(ent 1) |[] 

some_object_4:(ent 1) |[] 

 

cmd_release_4:(cmd release_hand [some_hand_4 100000us] 1) |[] 

f_cmd_release_4:(fact cmd_release_4 0us 1 1) |[] 

 

attached_4:(mk.val some_hand_4 attachment some_object_4 1) |[] 

not_f_attached_4:(|fact attached_4 100000us 1 1) |[] 

 

release:(mdl [f_cmd_release_4 not_f_attached_4] [attention] 0us 1) [[SYNC_FRONT now 0 forever stdin nil 
1]] 

 

; ---------------------------------------------------------------------- 

 

; req_release[H X T1 T]:[(H attachment X)T -> (imdl release H X T1 T)T] - LEARNED. 

 

some_hand_5:(ent 1) |[] 

some_object_5:(ent 1) |[] 

 

attached_5:(mk.val some_hand_5 attachment some_object_5 1) |[] 

f_attached_5:(fact attached_5 0us 1 1) |[] 

 

i_release_5:(imdl release [some_hand_5 some_object_5 1000000us 0us] 1) |[] 

f_i_release_5:(fact i_release_5 0us 1 1) |[] 

 

req_release:(mdl [f_attached_5 f_i_release_5] [attention] 0us 1) [[SYNC_FRONT now 0 forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

; move[H P T1 T0]:[(move_hand H P T1)T0 -> (icst hand_pos H P T1)T1] - LEARNED. 

 

some_hand_6:(ent 1) |[] 

 

cmd_move_6:(cmd move_hand [some_hand_6 (vec3 0 0 0) 100000us] 1) |[] 

f_cmd_move_6:(fact cmd_move_6 0us 1 1) |[] 

 

i_hand_pos_6:(icst hand_pos [some_hand_6 (vec3 0 0 0) 100000us] 1) |[] 

f_i_hand_pos_6:(fact i_hand_pos_6 100000us 1 1) |[] 

 

move:(mdl [f_cmd_move_6 f_i_hand_pos_6] [attention] 0us 1)  [[SYNC_FRONT now 0 forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 
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; link[H X P T1 T]:[(H attachment X)T -> (icst same_hand_pos H X P T1)T1] - LEARNED. 

 

some_hand_7:(ent 1) |[] 

some_object_7:(ent 1) |[] 

 

attached_7:(mk.val some_hand_7 attachment some_object_7 1) |[] 

f_attached_7:(fact attached_7 0us 1 1) |[] 

 

i_same_hand_pos_7:(icst same_hand_pos [some_hand_7 some_object_7 (vec3 0 0 0) 100000us] 1) |[] 

f_i_same_hand_pos_7:(fact i_same_hand_pos_7 100000us 1 1) |[] 

 

link:(mdl [f_attached_7 f_i_same_hand_pos_7] [attention] 0us 1)  [[SYNC_FRONT now 0 forever stdin nil 1]] 

 

13 Speech 
; states referred to by speech in/out porgrams - HAND-CODED. 

 

; all of these models/composite states have actually been learned while observing demonstrations of the 
interview. 

; nevertheless, we need to name them in order to reference them in the speech in/out programs. 

; thus, these learned states have been purged from memory and hand-coded - which gave the opportunity 
to assign labels to them. 

; be aware that the same overhead would also be incurred shall the requirements for dialogue include 
things like "move your hand", "grab something", etc. 

 

 

; ---------------------------------------------------------------------- 

 

; stand_col_ess_pos[X P E C T]:[(X color C)T,(X essence E)T,(X position P)T] 

 

a_thing_0:(ent 1) |[] 

 

col_0:(mk.val a_thing_0 color "black" 1) |[] 

f_col_0:(fact col_0 0us 1 1) |[] 

 

ess_0:(mk.val a_thing_0 essence "cube" 1) |[] 

f_ess_0:(fact ess_0 0us 1 1) |[] 

 

pos_0:(mk.val a_thing_0 position (vec3 0 0 0) 1) |[] 

f_pos_0:(fact pos_0 0us 1 1) |[] 

 

stand_col_ess_pos:(cst [f_col_0 f_ess_0 f_pos_0] [attention] 0us 1) [[SYNC_FRONT now 0 forever stdin nil 
1]] 

 

; ---------------------------------------------------------------------- 

 

; stand_col_ess_pos_sln[X P E C T]:[(X color C)T,(X essence E)T,(X position P)T,(X most_salient nil)T] 

 

a_thing_1:(ent 1) |[] 

 

col_1:(mk.val a_thing_1 color "black" 1) |[] 

f_col_1:(fact col_1 0us 1 1) |[] 
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ess_1:(mk.val a_thing_1 essence "cube" 1) |[] 

f_ess_1:(fact ess_1 0us 1 1) |[] 

 

pos_1:(mk.val a_thing_1 position (vec3 0 0 0) 1) |[] 

f_pos_1:(fact pos_1 0us 1 1) |[] 

 

sln_1:(mk.val a_thing_1 most_salient nil 1) |[] 

f_sln_1:(fact sln_1 0us 1 1) |[] 

 

stand_col_ess_pos_sln:(cst [f_col_1 f_ess_1 f_pos_1 f_sln_1] [attention] 0us 1) [[SYNC_FRONT now 0 
forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

; stand_pos_sln[X P T]:[(X position P)T,(X most_salient nil)T] 

 

a_thing_2:(ent 1) |[] 

 

pos_2:(mk.val a_thing_2 position (vec3 0 0 0) 1) |[] 

f_pos_2:(fact pos_2 0us 1 1) |[] 

 

sln_2:(mk.val a_thing_2 most_salient nil 1) |[] 

f_sln_2:(fact sln_2 0us 1 1) |[] 

 

stand_pos_sln:(cst [f_pos_2 f_sln_2] [attention] 0us 1) [[SYNC_FRONT now 0 forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

; taken_col_ess[H X P E C T]:[(X color C)T,(X essence E)T,(icst same_hand_pos H X P T)T] 

 

a_thing_3:(ent 1) |[] 

cube_3:(ent 1) |[] 

a_hand_3:(ent 1) |[] 

 

col_3:(mk.val a_thing_3 color "black" 1) |[] 

f_col_3:(fact col_3 0us 1 1) |[] 

 

ess_3:(mk.val a_thing_3 essence cube_3 1) |[] 

f_ess_3:(fact ess_3 0us 1 1) |[] 

 

i_same_hand_pos_3:(icst same_hand_pos [a_hand_3 a_thing_3 (vec3 0 0 0) 0us] 1) |[] 

f_i_same_hand_pos_3:(fact i_same_hand_pos_3 0us 1 1) |[] 

 

taken_col_ess:(cst [f_col_3 f_ess_3 f_i_same_hand_pos_3] [attention] 0us 1) [[SYNC_FRONT now 0 
forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

; taken_col_ess_sln[H X P E C T]:[(X color C)T,(X essence E)T,(X most_salient nil)T,(icst same_hand_pos 
H X P T)T] 
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a_thing_4:(ent 1) |[] 

cube_4:(ent 1) |[] 

a_hand_4:(ent 1) |[] 

 

col_4:(mk.val a_thing_4 color "black" 1) |[] 

f_col_4:(fact col_4 0us 1 1) |[] 

 

ess_4:(mk.val a_thing_4 essence cube_4 1) |[] 

f_ess_4:(fact ess_4 0us 1 1) |[] 

 

sln_4:(mk.val a_thing_4 most_salient nil 1) |[] 

f_sln_4:(fact sln_4 0us 1 1) |[] 

 

i_same_hand_pos_4:(icst same_hand_pos [a_hand_4 a_thing_4 (vec3 0 0 0) 0us] 1) |[] 

f_i_same_hand_pos_4:(fact i_same_hand_pos_4 0us 1 1) |[] 

 

taken_col_ess_sln:(cst [f_col_4 f_ess_4 f_sln_4 f_i_same_hand_pos_4] [attention] 0us 1) [[SYNC_FRONT 
now 0 forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

; taken_sln[H X P T]:[(X most_salient nil)T,(icst same_hand_pos H X P T)T] 

 

a_thing_5:(ent 1) |[] 

a_hand_5:(ent 1) |[] 

 

sln_5:(mk.val a_thing_5 most_salient nil 1) |[] 

f_sln_5:(fact sln_5 0us 1 1) |[] 

 

i_same_hand_pos_5:(icst same_hand_pos [a_hand_5 a_thing_5 (vec3 0 0 0) 0us] 1) |[] 

f_i_same_hand_pos_5:(fact i_same_hand_pos_5 0us 1 1) |[] 

 

taken_sln:(cst [f_sln_5 f_i_same_hand_pos_5] [attention] 0us 1) [[SYNC_FRONT now 0 forever stdin nil 1]] 

 

 

; speech-in grammar - HAND-CODED. 

 

 

; parsing programs. 

 

speech_in1:(pgm |[] [] 

   [] 

      (ptn (mk.val speaker: speaking verb: ::) |[]) 

      (ptn (mk.val listener: listening sp: ::) |[]) 

   [] 

      (= listener sp) 

   |[] 

[] 

   (inj [] 

      sc:(speech_context speaker listener 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 
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   (inj [] 

      (mk.val sc action verb 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in1:(ipgm speech_in1 |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin nil 
1]] 

 

 

speech_in2:(pgm |[] [] 

   [] 

      (ptn sc:(speech_context speaker: ::) |[]) 

      (ptn (mk.val actor: speaking "a" ::) |[]) 

   |[] 

   [] 

      (= speaker actor) 

[] 

   (inj [] 

      (mk.val sc action_target nil 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in2:(ipgm speech_in2 |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin nil 
1]] 

 

 

speech_in2a:(pgm |[]  [] 

   [] 

      (ptn sc:(speech_context speaker: ::) |[]) 

      (ptn (mk.val actor: speaking "the" ::) |[]) 

   |[] 

   [] 

      (= speaker actor) 

[] 

   (inj [] 

      (mk.val sc action_target most_salient 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in2a:(ipgm speech_in2a |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin 
nil 1]] 

 

 

speech_in2b:(pgm |[] [] 

   [] 

      (ptn sc:(speech_context speaker: ::) |[]) 

      (ptn (mk.val actor: speaking "it" ::) |[]) 

   |[] 

   [] 

      (= speaker actor) 
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[] 

   (inj [] 

      (mk.val sc action_target most_salient 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in2b:(ipgm speech_in2b |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin 
nil 1]] 

 

 

speech_in3:(pgm |[] [] 

   [] 

      (ptn sc:(speech_context speaker: ::) |[]) 

      (ptn (mk.val actor: speaking col: ::) |[]) 

      oc:(ptn (mk.val _sc: action_target ::) |[]) 

   |[] 

   [] 

      (= speaker actor) 

      (= sc _sc) 

[] 

   (inj [] 

      (mk.val oc color col 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in3:(ipgm speech_in3 |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin nil 
1]] 

 

 

speech_in4:(pgm |[] [] 

   [] 

      (ptn sc:(speech_context speaker: ::) |[]) 

      (ptn (mk.val actor: speaking ess: ::) |[]) 

      oc:(ptn (mk.val _sc: action_target ::) |[]) 

   |[] 

   [] 

      (= speaker actor) 

      (= sc _sc) 

[] 

   (inj [] 

      (mk.val oc essence ess 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in4:(ipgm speech_in4 |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin nil 
1]] 

 

 

speech_in5:(pgm |[] [] 

   [] 
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      (ptn sc:(speech_context speaker: ::) |[]) 

      (ptn (mk.val actor1: speaking "there" ::) |[]) 

      (ptn (mk.val actor2: pointing pos: ::) |[]) 

      oc:(ptn (mk.val _sc: action_target nil ::) |[]) 

   |[] 

   [] 

      (= speaker actor1) 

      (= speaker actor2) 

      (= sc _sc) 

[] 

   (inj [] 

      (mk.val oc position pos 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in5:(ipgm speech_in5 |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin nil 
1]] 

 

 

speech_in6:(pgm |[] [] 

   [] 

      (ptn sc:(speech_context speaker: listener: ::) |[]) 

      (ptn (mk.val sc1: action "put" ::) |[]) 

      (ptn oc:(mk.val sc2: action_target nil ::) |[]) 

      (ptn (mk.val oc1: color col: ::) |[]) 

      (ptn (mk.val oc2: essence ess: ::) |[]) 

      (ptn (mk.val oc3: position pos: ::) |[]) 

   |[] 

   [] 

      (= sc sc1) 

      (= sc sc2) 

      (= oc oc1) 

      (= oc oc2) 

      (= oc oc3) 

[] 

   (inj [] 

      v:(var 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      i_cst:(icst stand_col_ess_pos [v col ess pos] 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_i_cst:(fact i_cst now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      listener_goal:(mk.goal f_i_cst listener 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_listener_goal:(fact listener_goal now 1 1) 
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      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      speaker_goal:(mk.goal f_listener_goal speaker 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      (fact speaker_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in6:(ipgm speech_in6 |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin nil 
1]] 

 

 

speech_in6a:(pgm |[] [] 

   [] 

      (ptn sc:(speech_context speaker: listener: ::) |[]) 

      (ptn (mk.val sc1: action "put" ::) |[]) 

      (ptn oc:(mk.val sc2: action_target most_salient ::) |[]) 

      (ptn (mk.val oc1: color col: ::) |[]) 

      (ptn (mk.val oc2: essence ess: ::) |[]) 

      (ptn (mk.val oc3: position pos: ::) |[]) 

   |[] 

   [] 

      (= sc sc1) 

      (= sc sc2) 

      (= oc oc1) 

      (= oc oc2) 

      (= oc oc3) 

[] 

   (inj [] 

      v:(var 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      i_cst:(icst stand_col_ess_pos_sln [v col ess pos] 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_i_cst:(fact i_cst now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      listener_goal:(mk.goal f_i_cst listener 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_listener_goal:(fact listener_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      speaker_goal:(mk.goal f_listener_goal speaker 1) 
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      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      (fact speaker_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in6a:(ipgm speech_in6a |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin 
nil 1]] 

 

 

speech_in6b:(pgm |[] [] 

   [] 

      (ptn sc:(speech_context speaker: listener: ::) |[]) 

      (ptn (mk.val sc1: action "put" ::) |[]) 

      (ptn oc:(mk.val sc2: action_target most_salient ::) |[]) 

      (ptn (mk.val oc1: position pos: ::) |[]) 

   |[] 

   [] 

      (= sc sc1) 

      (= sc sc2) 

      (= oc oc1) 

[] 

   (inj [] 

      v:(var 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      i_cst:(icst stand_pos_sln [v pos] 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_i_cst:(fact i_cst now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      listener_goal:(mk.goal f_i_cst listener 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_listener_goal:(fact listener_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      speaker_goal:(mk.goal f_listener_goal speaker 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      (fact speaker_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 
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i_speech_in6b:(ipgm speech_in6b |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin 
nil 1]] 

 

 

speech_in7:(pgm |[] [] 

   [] 

      (ptn sc:(speech_context speaker: listener: ::) |[]) 

      (ptn (mk.val sc1: action "take" ::) |[]) 

      (ptn oc:(mk.val sc2: action_target nil ::) |[]) 

      (ptn (mk.val oc1: color col: ::) |[]) 

      (ptn (mk.val oc2: essence ess: ::) |[]) 

   |[] 

   [] 

      (= sc sc1) 

      (= sc sc2) 

      (= oc oc1) 

      (= oc oc2) 

[] 

   (inj [] 

      v:(var 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      i_cst:(icst taken_col_ess [v col ess] 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_i_cst:(fact i_cst now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      listener_goal:(mk.goal f_i_cst listener 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_listener_goal:(fact listener_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      speaker_goal:(mk.goal f_listener_goal speaker 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      (fact speaker_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in7:(ipgm speech_in7 |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin nil 
1]] 
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speech_in7a:(pgm |[] [] 

   [] 

      (ptn sc:(speech_context speaker: listener: ::) |[]) 

      (ptn (mk.val sc1: action "take" ::) |[]) 

      (ptn oc:(mk.val sc2: action_target most_salient ::) |[]) 

      (ptn (mk.val oc1: color col: ::) |[]) 

      (ptn (mk.val oc2: essence ess: ::) |[]) 

   |[] 

   [] 

      (= sc sc1) 

      (= sc sc2) 

      (= oc oc1) 

      (= oc oc2) 

[] 

   (inj [] 

      v:(var 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      i_cst:(icst taken_col_ess_sln [v col ess] 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_i_cst:(fact i_cst now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      listener_goal:(mk.goal f_i_cst listener 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_listener_goal:(fact listener_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      speaker_goal:(mk.goal f_listener_goal speaker 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      (fact speaker_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in7a:(ipgm speech_in7a |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin 
nil 1]] 

 

 

speech_in7b:(pgm |[] [] 

   [] 

      (ptn sc:(speech_context speaker: listener: ::) |[]) 

      (ptn (mk.val sc1: action "take" ::) |[]) 

      (ptn oc:(mk.val sc2: action_target most_salient ::) |[]) 

   |[] 
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   [] 

      (= sc sc1) 

      (= sc sc2) 

[] 

   (inj [] 

      v:(var 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      i_cst:(icst taken_sln [v] 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_i_cst:(fact i_cst now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      listener_goal:(mk.goal f_i_cst listener 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      f_listener_goal:(fact listener_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      speaker_goal:(mk.goal f_listener_goal speaker 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      (fact speaker_goal now 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_speech_in7b:(ipgm speech_in7b |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin 
nil 1]] 

 

; speech-out grammar - HAND-CODED. 

 

 

; goal translation programs. 

 

 

speech_out1:(pgm |[] [] 

   [] 

      (ptn (mk.goal (fact (mk.goal (fact (icst stand_col_ess_pos [(var ::) col: ess: pos:] ::) ::) listener: ::) ::) 
self ::) |[]) 

      (ptn (mk.val h1: part_of l: ::) |[]) 

      (ptn (mk.val h2: essence head ::) |[]) 

      (ptn (mk.val h3: position l_pos: ::) |[]) 

   |[] 

   [] 

      (= listener l) 
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      (= h1 h2) 

      (= h1 h3) 

[] 

   (cmd look_at [l_pos now] 1) 

   (cmd speak ["Put a" now] 1) 

   (cmd speak [col (+ now 500000us) ] 1) 

   (cmd speak [ess (+ now 1000000us) now] 1) 

   (cmd look_at [l_pos (+ now 1500000us)] 1) 

   (cmd point_at [pos (+ now 2000000us)] 1) 

   (cmd speak ["there" (+ now 2000000us)] 1) 

1) |[] 

 

i_speech_out1:(ipgm speech_out1 |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever 
attention nil 1]] 

 

 

speech_out2:(pgm |[] [] 

   [] 

      (ptn (mk.goal (fact (mk.goal (fact (icst taken_col_ess [(var ::) col: ess:] ::) ::) listener: ::) ::) self ::) |[]) 

      (ptn (mk.val h1: part_of l: ::) |[]) 

      (ptn (mk.val h2: essence head ::) |[]) 

      (ptn (mk.val h3: position l_pos: ::) |[]) 

   |[] 

   [] 

      (= listener l) 

      (= h1 h2) 

      (= h1 h3) 

[] 

   (cmd look_at [l_pos now] 1) 

   (cmd speak ["Take a" now] 1) 

   (cmd speak [col (+ now 500000us) ] 1) 

   (cmd speak [ess (+ now 1500000us) now] 1) 

1) |[] 

 

i_speech_out2:(ipgm speech_out2 |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever 
attention nil 1]] 

 

 

speech_out3:(pgm |[] [] 

   [] 

      (ptn (mk.goal (fact (mk.goal (fact (icst stand_pos_sln [: pos:] ::) ::) listener: ::) ::) self ::) |[]) 

      (ptn (mk.val h1: part_of l: ::) |[]) 

      (ptn (mk.val h2: essence head ::) |[]) 

      (ptn (mk.val h3: position l_pos: ::) |[]) 

   |[] 

   [] 

      (= listener l) 

      (= h1 h2) 

      (= h1 h3) 

[] 

   (cmd look_at [l_pos now] 1) 

   (cmd speak ["Put it" now] 1) 

   (cmd look_at [l_pos (+ now 500000us)] 1) 
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   (cmd point_at [pos (+ now 500000us)] 1) 

   (cmd speak ["there" (+ now 1000000us)] 1) 

1) |[] 

 

i_speech_out3:(ipgm speech_out3 |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 forever 
attention nil 1]] 

 

14 Goals 
; models/states for motivating the agent. 

; 

; abstraction is fully automatic: HLPs are built from examples. 

; the provided examples will die at the first upr. 

 

 

; utilities. 

 

; self_speak[S T1 T0]:[(cmd speak S T1)T0-> (self speaking S)T1] - HAND CODED (could be learned: yet 
another case of babling). 

 

cmd_speak_0:(cmd speak ["something" 100000us] 1) |[] 

f_cmd_speak_0:(fact cmd_speak_0 0us 1 1) |[] 

 

speaking_0:(mk.val self speaking "something" 1) |[] 

f_speaking_0:(fact speaking_0 100000us 1 1) |[] 

 

self_speak:(mdl [f_cmd_speak_0 f_speaking_0] [stdin] 0us 1) [[SYNC_FRONT now 1 forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

assume_goal:(pgm |[] [] 

   [] 

      (ptn (fact (mk.goal (fact g:(mk.goal target: actor: ::) ::) ::) ::) |[]) 

   |[] 

   |[] 

[] 

   (inj [] 

      (mk.asmp g nil 1 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

1) |[] 

 

i_assume_goal(ipgm assume_goal |[] RUN_ALWAYS 0us SILENT 1) [[SYNC_FRONT now 0 forever 
attention nil 1]] 

 

confirm_goal:(pgm |[] [] 

   [] 

      (ptn a:(mk.asmp (mk.goal target: actor: ::) ::) |[]) 

      (ptn f:(fact ::) |[]) 

   [] 

      (= target f) 

   |[] 

[] 

   (set [a.vw.res 0]) 
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1) |[] 

 

i_confirm_goal:(ipgm confirm_goal |[] RUN_ALWAYS 0us SILENT 1) [[SYNC_FRONT now 0 forever 
attention nil 1]] 

 

 

; ---------------------------------------------------------------------- 

 

; interviewer_thanks_interviewee[IR IE T]:[(speech_context IR IE) (IR speaking "thanks you")T,(IR role 
interviewer)T,(IE role interviewee)T] - HAND_CODED. 

 

some_interviewer_1:(ent 1) |[] 

some_interviewee_1:(ent 1) |[] 

 

speech_context_1:(speech_context some_interviewer_1 some_interviewee_1 1) |[] 

f_speech_context_1:(fact speech_context_1 0us 1 1) |[] 

 

actor_thanks_1:(mk.val some_interviewer_1 speaking "tank you" 1) |[] 

f_actor_thanks_1:(fact actor_thanks_1 0us 1 1) |[] 

 

actor_is_interviewer_1:(mk.val some_interviewer_1 role interviewer 1) |[] 

f_actor_is_interviewer_1:(fact actor_is_interviewer_1 0us 1 1) |[] 

 

actor_is_interviewee_1:(mk.val some_interviewee_1 role interviewer 1) |[] 

f_actor_is_interviewee_1:(fact actor_is_interviewee_1 0us 1 1) |[] 

 

interviewer_thanks_interviewee:(cst [f_speech_context_1 f_actor_thanks_1 f_actor_is_interviewer_1 
f_actor_is_interviewee_1] [stdin] 0us 1) [[SYNC_FRONT now 0 forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

 

; as an interviewee, the system has learned to comply to the interviewer's requests: the goal is to have the 
interviewer thnak the interviewee. 

; as an interviewer: same goal as above (in that case, interviewer=self). 

; for both roles: model to trigger the pursuit of the goal "interviewer thanks interviewee"; also used for 
automatic monitoring of the success of the top-level goal. 

 

; top_level_model[A T]:[(icst interviewer_thanks A T)T -> (top_level)T]- HAND-CODED. 

 

some_interviewer_2:(ent 1) |[] 

some_interviewee_2:(ent 1) |[] 

 

interviewer_thanks_interviewee_2:(icst interviewer_thanks_interviewee [some_interviewer_2 
some_interviewee_2 0us] 1) |[] 

f_interviewer_thanks_interviewee_2:(fact interviewer_thanks_interviewee_2 0us 1 1) |[] 

 

f_top_level_2:(fact top_level 0us 1 1) |[] 

 

top_level_model:(mdl [f_interviewer_thanks_interviewee_2 f_top_level_2] [stdin] 0us 1) [[SYNC_FRONT 
now 1 forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 
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; program for killing the top level goal when satisfied. 

 

top_level_control:(pgm |[] [] 

   [] 

      (ptn (fact (mk.pred top_level ::) ::) |[]) 

      (ptn self_goal:(fact (mk.goal top_level self ::) ::) |[]) 

   |[] 

   |[] 

[] 

   (set [self_goal.vw.res 0]) 

1) |[] 

 

i_top_level_control:(ipgm top_level_control |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 
forever attention nil 1]] 

 

; ---------------------------------------------------------------------- 

 

; (goal (goal (icst stand_col_ess_pos something "red" "cube" (100 100 0)) IE) self) 

 

some_thing_2:(ent 1) |[] 

 

red_cube_100_100_0:(icst stand_col_ess_pos [some_thing_2 "red" "cube" (vec3 100 100 0) 2000000us] 1) 
|[] 

f_red_cube_100_100_0:(fact red_cube_100_100_0 2000000us 1 1) |[] 

 

one_step_manipulation_task:(mk.goal f_red_cube_100_100_0 human2 1) |[] 

f_one_step_manipulation_task:(fact one_step_manipulation_task 0us 1 1) |[] 

 

g_self_f_one_step_manipulation_task:(mk.goal f_one_step_manipulation_task self 1) |[] 

f_g_self_f_one_step_manipulation_task:(fact g_self_f_one_step_manipulation_task 2000000us 1 1) 
[[SYNC_FRONT now 0 forever stdin nil]] 

 

; ---------------------------------------------------------------------- 

 

; 2_steps_object_manipulation[X H IE P1 P0 T3 C E T2 T1 T0]:[(goal (icst taken_col_ess H X P0 E C T1)T1 
IE)T0 -> (goal (icst stand_pos_sln X P1 T3)T3 IE)T2] - HAND-CODED. 

 

some_thing_3:(ent 1) |[] 

some_hand_3:(ent 1) |[] 

some_actor_3:(ent 1) |[] 

 

i_taken_col_ess_3:(icst taken_col_ess [some_hand_3 some_thing_3 (vec3 0 0 0) "cube" "red" 100000us] 1) 
|[] 

f_i_taken_col_ess_3:(fact i_taken_col_ess_3 100000us 1 1) |[] 

 

g_interviewee_f_i_taken_col_ess_3:(mk.goal f_i_taken_col_ess_3 some_actor_3 1) |[] 

f_g_interviewee_f_i_taken_col_ess_3:(fact g_interviewee_f_i_taken_col_ess_3 0us 1 1) |[] 

 

i_stand_pos_sln_3:(icst stand_pos_sln [some_thing_3 2000000us] 1) |[] 

f_i_stand_pos_sln_3:(fact i_stand_pos_sln_3 2000000us 1 1) |[] 

 

g_interviewee_f_i_stand_pos_sln_3:(mk.goal f_i_stand_pos_sln_3 some_actor_3 1) |[] 
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f_g_interviewee_f_i_stand_pos_sln_3:(fact g_interviewee_f_i_stand_pos_sln_3 500000us 1 1) |[] 

 

two_steps_object_manipulation:(mdl [f_g_interviewee_f_i_taken_col_ess_3 
f_g_interviewee_f_i_stand_pos_sln_3] [stdin] 0us 1) [[SYNC_FRONT now 1 forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

; (goal (goal (icst stand_pos_sln X T1) IE)T1 self) 

 

some_thing_4:(ent 1) |[] 

 

i_stand_pos_sln:(icst stand_pos_sln [some_thing_4 2000000us] 1) |[] 

f_i_stand_pos_sln:(fact i_stand_pos_sln 2000000us 1 1) |[] 

 

g_interviewee_put_sln_object_somewhere:(mk.goal f_i_stand_pos_sln human2 1) |[] 

f_g_interviewee_put_sln_object_somewhere:(fact g_interviewee_put_sln_object_somewhere 0us 1 1) |[] 

 

g_self_has_interviewee_put_sln_object_somewhere:(mk.goal f_g_interviewee_put_sln_object_somewhere 
self 1) |[] 

f_g_self_has_interviewee_put_sln_object_somewhere:(fact 
g_self_has_interviewee_put_sln_object_somewhere 0us 1 1) [[SYNC_FRONT now 0 forever stdin nil]] 

 

15 Control 
; initial code for controlling the agent (programmer's side). 

 

; command parser for role switching. 

 

switch_role:(pgm [] 

   (ptn r:(ont ::) |[]) 

   (ptn s:(val ::) |[]) 

[] 

   [] 

      (ptn (mk.val programmer speaking "switch" ::) |[]) 

      (ptn (mk.val programmer speaking "to" ::) |[]) 

      (ptn (mk.val programmer speaking s ::) |[]) 

      (ptn old_role:(fact (mk.val self role ::) ::) |[]) 

      (ptn h1_role:(fact (mk.val human1 role ::) ::) |[]) 

      (ptn h2_role:(fact (mk.val human2 role ::) ::) |[]) 

   |[] 

   |[] 

[] 

   (inj [] 

      new_role:(mk.val self role r 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      (fact new_role now 1 1) 

      [SYNC_FRONT now 1 forever stdin nil] 

   ) 

   (inj [] 

      top_level_goal:(mk.goal top_level self 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 
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   (inj [] 

      (fact top_level_goal now 1 1) 

      [SYNC_STATE now 1 forever stdin nil] 

   ) 

   (set [old_role.vw.res 0]) 

   (set [h1_role.vw.res 0]) 

   (set [h2_role.vw.res 0]) 

1) |[] 

 

s_interviewee:(val "interviewee" 1) |[] 

s_interviewer:(val "interviewer" 1) |[] 

 

i_switch_to_interviewee:(ipgm switch_role [interviewee s_interviewee] RUN_ALWAYS 0us NOTIFY 1) 
[[SYNC_FRONT now 0 forever stdin nil 1]] 

i_switch_to_interviewer:(ipgm switch_role [interviewer s_interviewer] RUN_ALWAYS 0us NOTIFY 1) 
[[SYNC_FRONT now 0 forever stdin nil 1]] 

 

 

switch_to_no_role:(pgm |[] [] 

   [] 

      (ptn (mk.val programmer speaking "switch" ::) |[]) 

      (ptn (mk.val programmer speaking "to" ::) |[]) 

      (ptn (mk.val programmer speaking "observer" ::) |[]) 

      (ptn self_role:(fact (mk.val self role ::) ::) |[]) 

      (ptn self_goal:(fact (mk.goal top_level self ::) ::) |[]) 

   |[] 

   |[] 

[] 

   (set [self_role.vw.res 0]) 

   (set [self_goal.vw.res 0]) 

   (inj [] 

      h1_interviewer:(mk.val human1 role interviewer 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      (fact h1_interviewer 0us 1 1) 

      [SYNC_STATE now 1 forever stdin nil] 

   ) 

   (inj [] 

      h2_interviewee:(mk.val human2 role interviewee 1) 

      [SYNC_FRONT now 1 1 stdin nil] 

   ) 

   (inj [] 

      (fact h2_interviewee 0us 1 1) 

      [SYNC_STATE now 1 forever stdin nil] 

   ) 

1) |[] 

 

i_switch_to_no_role:(ipgm switch_to_no_role |[] RUN_ALWAYS 0us NOTIFY 1) [[SYNC_FRONT now 0 
forever stdin nil 1]] 

 

; ---------------------------------------------------------------------- 

 

second_goal:(pgm |[] [] 



 

80/80 

   [] 

      (ptn (mk.success g_self_f_one_step_manipulation_task ::) |[]) 

   |[] 

   |[] 

[] 

   (inj [] 

      f_g_self_has_interviewee_put_sln_object_somewhere 

      [SYNC_STATE now 1 1 stdin nil] 

   ) 

1) |[] 

 

first_goal:(pgm |[] [] 

   [] 

      (ptn (mk.val self role interviewer ::) |[]) 

   |[] 

   |[] 

[] 

   (inj [] 

      f_g_self_f_one_step_manipulation_task 

      [SYNC_STATE now 1 1 stdin nil] 

   ) 

   (inj [] 

      (ins second_goal |[] RUN_ONCE 0us NOTIFY) 

      [SYNC_FRONT now 0 forever stdin nil 1] 

   ) 

1) |[] 

 

i_first_goal:(ipgm first_goal |[] RUN_ONCE 0us NOTIFY 1) [[SYNC_FRONT now 0 forever stdin nil 1]] 

 

 

 

 

 


