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ObjectCube: Nytt gagnalikan fyrir margvida skodun
margmidlunargagna

Grimur Témasson, Hlynur Sigurpérsson,
Bjorn Por Jonsson, Laurent Amsaleg

Tekniskyrsla RUTR-CS12002, Jandar 2012

Utdrittur: Magn af margmidlunargeegnum { eigu einstaklinga hefur vaxid stoedugt ad undanfeernu
ad pvi marki ad notendur missa yfirsyn yfir scefnin sin. Vid litum til vidskiptagreindar, par sem
margvid greining gagna hefur rutt sér til rims, og setjum fram nytt margvitt gagnalikan fyrir skodun
4 margmidlunargeegnum, sem vid keellum ObjectCube. Vid Iysum gagnalikaninu itarlega, synum ad
haegt er ad utfera pad 4 hradvirkan hatt med mealingum 4 frumgerd ad margmidlunarpjéni sem vid
beitum 4 stér gagnascefn, og synum ad ObjectCube gagnalikanid gerir meerg dhugaverd og gagnlegt
skodunartilvik meeguleg.

Lykilord: Margmidlunargdgn; Margvid greining; Afkastamalingar; ObjectCube.
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1 Introduction

Since the introduction of personal computers, and digital recording devices in particular, personal
collections of digital media have been growing ever larger. A typical personal computer now contains
a multitude of files containing various documents, photos, videos, and music. Keeping track of the
location and contents of all these files is turning into a major headache for most people and users
find it increasingly difficult to organize and retrieve the contents of their computer. It is therefore
increasingly important to provide effective tools for browsing personal media collections.

1.1 Current Media Browsers

The current set of browsers that are shipped with computers, and in fact most media browsers, are
geared towards helping users organize their documents in hierarchies of folders. These browsers
essentially provide a GUI for the physical layout of files and documents on disks. While this is both
simple and familiar, these browsers can be of limited use as soon as we forget where our documents
are located.

Assigning a unique location for a particular file can be very counter-intuitive. Where, for example,
should one store a particular photo? The choices may include: in a folder associated with the time the
image was taken; in a folder associated with the event captured by the image; or in a folder associated
with a key person in the image. In essence, there is no logical reason to prevent files being found
in multiple locations. Instead, however, the alignment of current browsers with the underlying file
system structure has many practical reasons—with simplicity perhaps the key reason.

The search capabilities of file browsers, based on file names and/or file contents, can help in some
limited cases. Furthermore, tags can be attached to documents and used to find documents. Unfortu-
nately, however, tags are treated very poorly as there are no means for structuring sets of tags in any
meaningful way, e.g., by grouping tags into different concepts or by defining relationships between
tags. Today, users are therefore unable to see the forest for the trees.

1.2 An Analogy from Business Intelligence

Helping users overwhelmed with data has long been studied in the database community. Tradition-
ally, database vendors provided users with tools to get back specific data via SQL-queries. Typically,
users knew what data they were looking for and simply retrieved the actual values. For users wishing
to understand the data, however, by discovering trends and patterns, or simply via an overview of key
figures in the ever expanding databases, using this model was particularly painful; specifying SQL
queries was very difficult, sometimes even impossible, and the execution cost enormous.
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It therefore became crucial to invent an adequate framework to facilitate such on-line analytical
processing (OLAP), enabling decision support and business intelligence applications. In order to
help users turn their data into information, a formal data model was created, namely the multi-
dimensional analysis (MDA) model, along with the appropriate set of server and client tools.

The MDA model introduced two key concepts that revolutionized users’ perception of data. These
two concepts are dimensions, including hierarchies, used for specifying interesting sets of data and
facts, or numerical attributes, which are aggregated for an easy-to-understand view of the data of
interest. The MDA model has proven to work extremely well in practice and has largely been
accepted as the means for understanding huge (terabyte-sized) data sets [CM99].

1.3 Multi-Dimensional Media Browsing

The MDA model was instrumental in helping users make sense of vast amounts of numerical data.
The model is implemented through browsers that help users discover their data collections without
bothering them with location. These browsers are of great practical interest because they focus on
the value of data items as well as on the relationships that exist between data, abstracting physical
considerations.

Our goal is to apply the concepts of the MDA model to media browsing. This allows us to define
in a very clear manner the concepts according to which media items can be grouped, the way tags
attached to media files are organized, typically in well-defined hierarchies, or the way users switch
from one set of documents to the other when navigating between concepts, hierarchies, or levels
of detail. While the MDA model is not immediately suited to media browsing, we believe that the
similarity of the problems is significant enough to use the concepts of that model as the foundation
of a powerful and flexible solution to media browsing.

1.4 Contributions

In this paper we therefore define a new multi-dimensional model for media browsing, called Ob-
jectCube, based on the MDA model used in OLAP applications. In Section 2 we describe the
ObjectCube model and how it manages complex and interesting media browsing scenarios.

A key consideration for any data model is whether it can be implemented efficiently—whether
queries accessing large amounts of data are fast enough for practical use. In Section 3 we there-
fore describe a prototype media server implementing the model and evaluate its performance in a
realistic context, using three different underlying data-stores and image collections containing up to
one million photos.

Of course, the key strength of a data model lies in the browsing scenarios it enables. In Section 4 we
consider a detailed browsing scenario and its realization in the ObjectCube model. We also describe
related projects and models and discuss why they fail with the proposed scenario.

Reykjavik University, School of Computer Science
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ObjectCube MDA Correspondence
Object Fact Approximate
Tag Member High
Tag-set Dimension High
Hierarchy Hierarchy High
Hypercube Hypercube High

Cell Cell Approximate
Filter Selection Approximate
State Subcube Approximate

Table 1: Comparison of ObjectCube and MDA concepts.

In parallel, we have been working on a graphical browsing interface suitable for the extensive user
studies that will be necessary for this project; the initial user satisfaction results are presented else-
where (citation removed for double-blind reviewing). In this paper, however, the focus is squarely
on the underlying data model and its efficiency, which are worthy research contributions in their own
right.

2 The ObjectCube Model

In this section, we define the ObjectCube model, which is a generic multi-dimensional analysis
model for media files. The model is based on the MDA concepts which have been successfully
used in OLAP applications to view and analyze data. The remainder of this section develops the
ObjectCube concepts, contrasting them with corresponding MDA concepts; the correspondence is
summarized in Table 1.

2.1 Core Concepts

In this section we describe the two core concepts of objects and tags, which apply to the media items
themselves.

Object: An object is any entity that a user is interested in storing information about, typically a
media file of some sort. Objects correspond to facts in MDA, as both represent information users
are interested in analysing and both have associated meta-data that describe them further. Unlike
facts, however, objects are typically quite complex, making operations such as aggregation diffi-
cult.

Tag: A tag is any meta-data that can be associated with objects. There is no limitation on how many
objects a tag can be associated with, nor are there limitations on how many tags can be associated

RUTR-CS12002
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with a single object. Tags correspond closely to members in MDA. Both are associated with the
objects/facts, providing additional information about them.

2.2 Multi-Dimensional Concepts

In this section we define four concepts that concern categorization and grouping of data, and are at
the heart of the multi-dimensional nature of our model.

Tag-set: A tag-set is a set of tags that the user perceives to be related; we can think of the tag-
set as a category of tags representing a concept. In a tag-set instance named ‘People’ the tags
can, e.g., be names of people or names of subcategories, say, ‘Children’ or ‘Class Mates’. Tag-
sets are mathematical sets, since the elements (tags) are distinct and the order of the elements is
irrelevant.

Tag-set are very similar to dimensions in MDA. In both cases the user perceives the members/tags
as being strongly related to each other, and in both cases hierarchies can be built to organize their
contents.

Note that the tag-sets may differ significantly in the method used for their generation. Some tag-
sets may be entirely user generated, e.g., an ‘Event’ tag-set. Others may be based purely on the
meta-data associated with each object, e.g., a ‘Creation Date’ tag-set. Yet others may partially use
automated content analysis, e.g., face generation for the ‘People’ tag-set. Any implementation of the
ObjectCube model must therefore support automated media analysis methods.

Hierarchy: A hierarchy is a tree structure that adds structure and order to a subset of the tags of
a tag-set. More informally, it serves to categorize some of the tags of a tag-set. A hierarchy is
derived from a single tag-set and only contains tags from that tag-set. Each tag-set, however, may
have zero, one, or more associated hierarchies. The ‘People’ tag-set, e.g., could have one hierarchy
called ‘Friends’ and another called ‘Family’, which would typically be largely disjoint but might
share some tags.

While tag-sets are not ordered, the vertices of a hierarchy are explicitly ordered. Hierarchies can
therefore be used to enforce the order of tags and create a tag sequence, e.g., listing the months of
the year in their natural order.

The hierarchy concept is highly similar to the corresponding concept from MDA. Both can represent
either level or value based hierarchies and in both cases a vertex is the aggregation of its children.
In MDA aggregation is typically based on mathematical functions, such as sum or average, while in
ObjectCube aggregation takes some form of grouping.

A node in a hierarchy may optionally have a title that applies to its children, called a child category
title; the children are then instances of the category that the title names. To use the example above,
‘Month’ could be a child category title, while the months themselves are the children. A minor
difference between the two models is thus that in MDA a column name supplies a level name in a
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hierarchy, but in ObjectCube the child category name is applied to a hierarchy node and only applies
to the children of that node.

Hypercube: A hypercube is created by selecting and storing information about one or more tag-sets,
or hierarchies, which the user wishes to browse her objects by.

In MDA implementations, the hypercube is typically stored in a specialized data structure for effi-
ciency. This data structure stores both base facts and pre-calculated aggregations of facts for higher
levels of the hierarchies. Due to the differences between objects and facts, however, it is possible
that only base data can be stored for the ObjectCube model, and that the hypercube will therefore
only be conceptual.

Cell: A cell in the hypercube is the intersection of a single tag from each of the dimensions (tag-sets
or hierarchies) in a hypercube. A cell can contain zero or more images, unlike the MDA model
which simply aggregates all the facts corresponding to each cell.

2.3 Retrieval Concepts

So far, we have defined concepts that describe and organize media objects, but now we turn to the
retrieval of the objects. Unlike typical search applications, the retrieval is based on browsing, where
the retrieved object sets are defined incrementally, based on the user’s interest. In the ObjectCube
model, different filters can be applied to the various tag-sets or hierarchies, resulting in a browsing
state. We now define these concepts in more detail.

Filter: A filter is a constraint describing a sub-set of objects that the user wished to retrieve. Each
filter applies to a single tag-set, but many filters may be applied to the same tag-set. All objects that
are associated with tags that satisfy the constraint of a filter, are said to pass through the filter.

Note that a filter can be applied to any dimension, regardless of whether that dimension is visible in
the user interface or not. Furthermore, a filter continues to restrict the retrieval until it is explicitly
revoked by the user. A browsing session thus consists of applying filters and retrieving the objects
that pass through all the applied filters.

The filter concept corresponds to two MDA concepts. First, it serves the same purpose as selection,
as both can be used to define a filter to restrict the data retrieved. Second, the filter also corresponds
to the page dimension concept, as both can be used to restrict the data being retrieved in a dimension
not in the cube.

There are three different filter variants:

Tag Filter: The tag filter is a filter that selects a single tag, which must exist in the tag-set being
filtered. It is used to retrieve only objects associated with that particular tag.

Range Filter: A range filter defines a value range by two boundary values, where both boundary
values are included in the range. The boundary values themselves need not exist as tags in the tag-
set the filter is applied to. Since a filter only applies to a single tag-set, only tags from that tag-set
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can be considered to be within the range. A range filter is used to retrieve objects that are associated
with one or more tags that fall within the range of the filter.

Hierarchical Filter: A hierarchical filter selects a single node in a hierarchy. The entire sub-hierarchy
of that node is said to pass through the hierarchy filter. A hierarchical filter on the root of a hierarchy
thus returns the entire hierarchy.

Browsing State: As mentioned above, a browsing session consists of applying filters and retrieving
the objects that pass through all the applied filters. The browsing state therefore contains information
about filters, tags or sub-hierarchies that pass through the filters, and objects that are associated with
these.

Note that tags and sub-hierarchies are included even when there are no corresponding objects, as
their existence is highly useful information for the user. Objects are only returned, however, if they
pass through all the applied filters. It is sufficient that one tag that the object is associated with passes
through each filter, and it is possible that different tags may pass through different filters.

Informally, we can think of each filter as selecting a sub-set of the objects. The objects in the
browsing state are then selected by the intersection of the sets passing through the filters. Tag-sets
with no filters, however, are excluded from the intersection. If no filters are in effect, the browsing
state therefore includes all objects in the system.

The browsing state corresponds loosely to a sub-cube of the hypercube in the MDA model, as the
browsing state contains enough data to build such a sub-cube. Since the hypercube cannot be pre-
computed, as in the MDA model, it is necessary to submit all this information to the user inter-
face.

2.4 Summary

In this section we have defined the ObjectCube model and contrasted it with the well-known MDA
model. All their differences stem from the fact that the MDA model is applied to simple facts,
which are typically numerical data items, while the ObjectCube model is applied to complex media
objects which cannot be as easily manipulated or aggregated. In the following, we first evaluate the
efficiency of the model (Section 3) and then compare its effectiveness to the state of the art in media
browsing (Section 4) .

3 Experimental Evaluation

We have developed a prototype media server implementing the ObjectCube model, for the purpose
of demonstrating the efficiency of the model as well as for the future development of browsing
interfaces based on the model; the server will be made publically available. In this section we first
describe the overall architecture of the prototype and then describe the experimental setup which

Reykjavik University, School of Computer Science
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Figure 1: Architecture of the ObjectCube prototype.

applies to all the experiments reported here. We then analyze the results of three experiments, one
for each filter type. These experiments were designed as a “stress-test”, i.e., they are designed to
showcase any scalability weaknesses of the prototype and/or data-stores. It is also of interest to see
how the prototype performs using different data-stores as they have different underlying architectures
(row-store vs. column-store), especially since the workload is analytical in nature. We conclude the
section by analyzing the performance overhead of the prototype and summarizing the performance
results.

3.1 Prototype Architecture

Figure 1 shows the architecture of the ObjectCube prototype. The prototype consists of a central
logic module implementing the data model, as well as APIs for data storage, user interface de-
velopment, and automated media analysis using a plug-in architecture (based on Markus Ewald’s
concepts, see http://www.nuclex.org/articles/5-cxx/). Plug-ins are software com-
ponents which are called upon to analyze media objects during insertion and generate new tags or
attach objects to existing tags. Currently, three plug-ins are implemented that: extract the EXIF
meta-data associated with media files; extract faces from photos; and analyze the color composition
of photos.

The ObjectCube prototype is written in C++ and makes extensive use of its standard library, as well
as the TR1 C++ library extensions. The current implementation, without plugins, consists of ap-
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Data Set photos Tags Per Photo
1K 1,000 3,252 13.90
10K 10,000 20,819 13.68
100K 100,000 113,185 13.50
M 1,000,000 201,277 13.62

Table 2: Statistics for the experimental data sets.

proximately fourty thousand lines, and runs on Mac OS X 10.6 and Ubuntu Linux 10.04. Data-store
implementations exist for three different relational database systems: SQLite, a widely deployed
public domain row-store; MonetDB, an open-source column-store from CWI, that is known for its
focus on performance; and “System X,” a widely used commercial row-store. Currently, filters and
tags are cached for performance, while objects are retrieved upon request by the user.

3.2 Experimental Setup

In the following we describe our experimental setup, which applies to all the experiments reported
in this paper.

Data Sets: In order to examine the scalability we used four data sets of photos downloaded from
Flick’r, each one an order of magnitude larger than the other. The bulk of the tags and taggings in this
set are automatically generated by the EXIF plug-in; of the individual tags in the collection, about
85% are different time tags. Additionally, we created randomly assigned tags and hierarchies with
specific selectivities, for use in the individual experiments. The properties of the photo collections
are shown in table 2.

Experimental Platform: The experiments were run on a Dell Precision T5400 Workstation, which
was equipped with two Intel ES430 quad core CPU’s running at 2.66GHz, a 12MB L2 Cache for
each CPU, 4GB of memory, and a S00GB ATA hard drive, 7200 RPM. The operating system was a
standard 32bit Ubuntu 10.04,allowing to use only 3.2GB of memory.

Our experiments were performed using a virtual machine, facilitating deployment regardless of the
underlying hardware. Although the virtual machine used has been shown to lose approximately 15%
of CPU performance and 30% of I/O performance [DAS09], this does not affect our conclusions
significantly, as our goal is the comparison of different data-stores and an analysis of the overhead
of the prototype.

In all cases, default settings for the three supported data-stores were used and no tuning performed,
but all tables were heavily indexed. Recall that MonetDB is a column-store, which has been shown
to perform well in analytical workloads, while the other two are traditional row-stores.

Methodology: In our experiments, we focus on the time required to retrieve the browsing state,
both tags and objects (the photo location). We have chosen to ignore the time to retrieve the photos
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themselves, as that time is independent of the method used to retrieve the state. We are interested in
all aspects of scalability, i.e., in terms of the data set size, the selectivity of the browsing state, and
the complexity of the queries required to retrieve the browsing state. As we observe, different data
stores react differently to different scalability aspects.

Each experiment was run for all the data sets, from the smallest to the largest, using a single data-
store. To avoid interference and, we restarted the workstation (hence the VM) before each experi-
ment, loaded the relevant tables in memory, ran the experiment once, before running the actual mea-
surement a minute later. This simulates well the long-term operation of the system, where buffers
are fully loaded. The experimental workstation did not run any other tasks, and was not connected
to a network to avoid interference.

Measures: We focus on the time, measured at a granularity of milliseconds, to retrieve each brows-
ing state. In all cases, we consider retrieval time below one second to be satisfactory; runs taking
more than 90 seconds were aborted.

When considering scalability with respect to data set size, we compare the scaling of individual
data-stores to linear scaling. For each data store, we assign a value of 100% to the time required for
the 1K data set. Then we scale the retrieval time for each of the other data sets with the time for
the 1K data set and the relative size of the data set. If the system scales linearly, this will result in a
straight and horizontal line, while sub-linear scaling results in a downward slope.

3.3 Experiment I: Tag Filtering

In this experiment, a single tag filter is used to retrieve all photos that have a particular tag associated
with them. We created five different tags with selectivities equal to 0.01%, 0.1%, 1% 5% and 10%,
and tagged photos randomly in order to create a worst case scenario without any groups of tagged
photos. The underlying query to the data store, however, is independent of the selectivity.

Impact of Selectivity: Figure 2 shows the time required to retrieve the browsing state for the 10K
data set. The x-axis shows the selectivity (percentage of objects retrieved), while the y-axis shows
the retrieval time of the browsing state in milliseconds. Note the logarithmic scale of both axes.
Generally, the performance is satisfactory, as the retrieval time is in most cases well under our
limit of one second. We observe that System X suffers most from the increased selectivity, while
MonetDB is the stand-out performer, in all cases requiring less than 60% of the time required by
SQLite.

Figure 3 shows the corresponding results for the 1M data set. As expected, all data-stores perform
worse for this data set, which is 100 times larger than the 10K data set. In particular, SQLite appears
incapable of handling such a large collection, as it requires 8.6 seconds even for the 0.1% selectivity.
As before, MonetDB performs the best, but at 1% selectivity, even MonetDB requires 2.3 seconds to
retrieve the browsing state. It should be noted, however, that at this point the browsing state contains
10K objects, which represents far more photos than any user can digest on screen; they would also
require much longer time to load from disk.
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Figure 2: Performance of state retrieval.
(tag filter; 10K set; varying selectivity.)
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Figure 3: Performance of state retrieval.
(tag filter; 1M set; varying selectivity.)

Impact of Scale: Figure 4 shows the scalability of the data-stores with respect to the size of the data
set, for a selectivity of 1%. The x-axis shows the data set, while the y-axis shows the performance
relative to the 1K data set, scaled by the size of the data set. Note that linear scaling would result in

a horizontal line.

The figure shows that while all three data-stores scale quite well with data set size for this low
selectivity, MonetDB scales best in this experiment. Recall that the underlying query to retrieve the
browsing state is simple, so this experiment focuses on the impact of the data set size.

Reykjavik University, School of Computer Science



ObjectCube: A Novel Data Model for Multi-Dimensional Media Browsing 11

200 T T
MonetDB —&—

160 |- System X —e— .
140 | .

120 T
100
80
60
40
20
0 1 1
1K 10K 100K 1000K
Data set size in 1000s

Scaling %

1]

Figure 4: Scalability of state retrieval.
(tag filter; 10% sel.; varying data set size.)

For the 1M collection (not shown), MonetDB continues to show sub-linear scaling due to its column-
store architecture.

3.4 Experiment II: Range Filtering

In this experiment we evaluate the performance of our prototype using a single range filter. We use
contiguous time ranges in the tag-set representing the creation time of photos, so no data was added
or edited for this experiment.

Impact of Selectivity: Figure 5 shows the results for the 10K data set. On the one hand, both Mon-
etDB and System X perform relatively well across the range, although System X requires about two
seconds for 10% selectivity. The difference between System X and MonetDB is considerable, how-
ever, as MonetDB only needs about 20% of the time used by System X for the largest selectivities.
SQLite, on the other hand, performs significantly worse than before.

Figure 6 shows the results for the 1M data set. For this very large set, only MonetDB comes close to
matching our definition of usability, and only for small selectivities. As before, System X performs
significantly worse for range filters, and SQLite is extremely slow, even for 0.01% selectivity.

Impact of Scale: Figure 7 shows the scalability of the data-stores with respect to the size of the data
set, for a selectivity of 1%. The x-axis shows the data set, while the y-axis shows the performance
relative to the 1K data set, scaled by the size of the data set. Recall that, with this methodology,
linear scaling would result in a horizontal line.

Given the poor performance of SQLite in this experiment, its superlinear scaling is not surprising.
The other two data-stores show similar or even better relative scalability than in the tag filter experi-

RUTR-CS12002



12

Tomasson, Jonsson, Amsaleg.

— T 9
1000 3
. .]
—_ 1 ]
» 100¢ E
£ i ]
(]
E -
Ttk 3
b SQLite —=—
MonetDB —&—
1 Systelm X —e— ]
0.01 0.1 1 10
Selectivity (%)
Figure 5: Performance of state retrieval.
(range filter; 10K set; varying selectivity.)
100000 §— 7 i 3
L n
10000 J
£ 1000 ]
o L
= 100 a E
10 :_ SQLite —=— ]
F MonetDB —&—
1 Systerr|1 X —o—
0.01 0.1 1 10
Selectivity (%)

Figure 6: Performance of state retrieval.
(range filter; 1M set; varying selectivity.)

ment, and both are significantly sublinear. For large collections and selectivities, however, this is not

sufficient for good performance, as we have seen.

3.5 Experiment III: Hierarchical Filtering

We now evaluate the performance of our prototype using a single hierarchical filter. We have con-
structed a hierarchy specifically for this purpose, described in the following.
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Figure 7: Scalability of state retrieval.
(range filter; 10% sel.; varying data set size.)

Hierarchy Setup: We created a worst case scenario for hierarchical filtering, where all the objects
in the system are associated with one or more tags included in the hierarchy. This is quite relevant,
since it is reasonable, e.g., that all photos reside in a date hierarchy. We created a new tag-set,
populated it with 400 different tags, and then created a four level hierarchy where the root and each
child, aside from the leaves, has seven children. This leads to a hierarchy with 400 nodes, where
each node encapsulates a single tag from the tag-set. We then associated every photo in each data
set with a random node in this hierarchy, so the selectivity percentages vary slightly between the test
sets; the detailed selectivities can be seen in Table 3. Note that, unlike previous experiments, the
selectivity goes to 100%.

Impact of Selectivity: Figure 8 shows the performance of state retrievals when using hierarchi-
cal filtering. For comparison, it also shows the time needed when applying tag and range filtering,
which have been discussed earlier. Note that this figure focuses on the performance of the MonetDB
datastore, ignoring the two other datastores, as we already demonstrated that MonetDB clearly out-
performs both. Overall, the figure shows that the performance of state retrieval is very much related
to the selectivity of the filters, and that hierarchical filtering has a rather similar performance to tag
and range filtering. We observed that the performance of all the filter types is highly dependent on
the number of images in the state retrieved, much more than it depends on the size of the data-set.
Fetching a browsing state containing meta-data for 1,374 photos from the 10K dataset takes 328ms
while it takes 399ms to fetch the browsing state containing meta-data for 2,023 photos from the
100K dataset (almost 50% more elements increase the time by 20% while the dataset is 10 times
larger).
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Hier. Data Set Rough
Level 1K 10K 100K IM  Select.
1 2 23 302 2,878  0.25%
2 22 184 2,023 20,225 2%
3 143 1,374 14,283 142,903 14%
4 1,000 10,000 100,000 1,000,000  100%

Table 3: Objects in browsing state for each data set in the hierarchical filtering experiment, varying
selectivity.
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Figure 8: Performance comparison of the different filters.
(MonetDB; 10K and 100K sets; varying selectivity.)

3.6 ObjectCube Overhead

The overriding factor in the performance of ObjectCube is the performance of the data-store queries.
We ran extensive experiments, however, to determine the overhead of the ObjectCube prototype and
briefly summarize the results here. For a state of 1,000 objects the overhead for layer conversion and
adding tags is around 3 ms. The overhead for each browsing state hierarchy is 15-30 ms; we expect
to see 1-3 state hierarchies in a typical browsing state. Finally, the overhead of the Python interface
is 67 ms for every 1,000 objects. The total overhead is thus less than 100 ms for a state of 1,000
objects with three state hierarchies. This overhead is quite acceptable.

3.7 Key Lessons
We note first that MonetDB outperforms the other systems significantly, due to its column-oriented

architecture, and can handle quite large data sets. The first key lesson is therefore to select the
appropriate data-store; the remaining lessons refer solely to the MonetDB results.
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The second key lesson is that the performance of all filter types (tag, range, and hierarchical filters)
is primarily dependent on the number of images in the state retrieved, rather than the size of the
data-set, and that performance is quite acceptable for moderate to large selectivity ranges.

Returning extremely large browsing states, however, is quite slow. We believe such large browsing
states make little sense, however, as they will drown users with so much data that it becomes impos-
sible to properly visualize that many pictures. Therefore, the third key lesson is that it is imperative
to develop methods helping users to reduce beforehand the number of objects retrieved in a manner
that is perceived as intuitive, seamless, and non-intrusive.

Finally, we must account for the additional time to load and present on screen the selected pictures
(or other media objects) from the retrieved browsing state. One potential solution is to pre-calculate
aggregates of hypercube cells in some fashion, for example using collages or slide-shows. This is a
key subject of our future work.

4 Data Model Expressiveness

In this section we consider a detailed browsing scenario to demonstrate the expressiveness of the
ObjectCube model. We have chosen a photo browsing scenario in Section 4.1, for two reasons.
First, as mentioned before, we have in parallel been working on a graphical user interface for photo
browsing and can therefore support the scenario with an illustration from the interface. Second, most
of the advanced browsing work so far has focused on photos, as photos are more amenable to visual
presentation than other media forms; in Section 4.2 we discuss alternative approaches in some detail
and describe why they fail with this scenario.

4.1 A Photo Browsing Scenario

Assume that a user has tagged the people in her photo collection, partially using the automated face
recognition plug-in, and created a hierarchy for her family, with children, parents, and grandparents
in different subhierarchies. She has also tagged animals and objects, as well as the location where
the photos were taken. Furthermore, all the Exif data has been automatically extracted, as well as
color information. The user is sitting down with her children, to show them photos from recent
trips.

The user first selects the year 2008 from the ‘creation date’ hierarchy as this was the time of the trip
abroad that started the discussion. She wishes to discover all the photos containing the children and
the parents and therefore selects the ‘children’ node of the ‘family’ hierarchy on one display axis
and the ‘parents’ node of the ‘family’ hierarchy on another. The user is also interested in where the
pictures were taken and decides to add the ‘location’ hierarchy as the third display axis. Note that in
the ObjectCube model, all these actions require the application of a hierarchical filter; currently four
such filters are in effect.
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Figure 9: An example three-dimensional browsing state.

The resulting browsing state is shown in Figure 9. On the horizontal axis, photos containing the son
are found in the left hand stacks, the daughter in the right hand stacks. On the vertical axis, photos
of the mother are found in the bottom stacks, the father in the top stacks. On the ‘in’ axis, photos
from their home country are found in the front stacks, photos from their last trip abroad in the back
stacks. Note that the filter on the ‘creation date’ is not immediately apparent in the figure, but is
shown elsewhere.

From the figure, we can observe that photos containing all four will show up in four stacks (no
picture, however, can be taken simultaneously in two countries); this is an important feature of the
model as the photos belong logically in all these stacks. We can also observe that the father does not
appear in any photos abroad, and neither does the daughter; hence there is only one stack abroad. As
it turns out, the daughter wasn’t born at this time, but since the father was in fact on the trip, the user
decides to focus on pictures of parents regardless of the children to see whether there are any photos
of the father (who, as it turns out, shot most of the photos). She therefore removes the hierarchical
filter on children. Then the user decides to look at more recent photos also and replaces the front
axis with the timeline, focusing on the granularity of years. This results in several stacks of photos,
one stack per parent, year, and country. The user might then go on to consider animals or objects,
rotate the cube for better viewpoints, and so on.

This scenario demonstrates several common operations in the ObjectCube model, namely filtering,
drilling down into hierarchies, and pivoting (replacing browsing dimensions). It also shows how well
the model uses the screen to indicate why each photo is shown in the result. Of course, it is more
difficult to present more than three browsing dimensions at once, but one can imagine color coding,
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photo size, and photo transparency as additional presentation dimensions. Finally, the scenario
illustrates that the model is very well suited to storytelling and discovery, something that we have
experienced very vividly in our demonstrations.

4.2 Related Work

It does not take much thought to understand why the simple file and media browsers of today fail
completely at handling this scenario that is so natural in the ObjectCube model. These browsers
are missing the separation of tags into tag-sets, the relationships between tags in a particular tag-set,
and the ability to use these relationships for browsing.1 Furthermore, when using the limited search
capabilities of these browsers, they display the photos in a single-dimensional view, thus completely
losing the reason why each photo is present in the result. This is a dimensionality reduction of sorts
and hampers the discovery of the media collection.

Some research projects have considered media browsing, typically focusing on one media type at a
time, and have proposed many interesting methods for browsing. While the literature is far too vast to
be all cited here, we describe some interesting techniques. PhotoMesa [Bed01] provides a zoomable
interface to multiple directories of images at once, grouping the images from the folders into clusters
for maximal use of the screen. With PhotoMesa, however, the browsing scenarios is impossible, as
the browser operates solely on the folder structure and only allows filtering by people tags. Harada et
al. [HNST04] proposed a browser focusing on automatically generated event assignments of photos;
this method could well be implemented as a plug-in for our prototype. Several researchers have
considered photo spreadsheets; in one of the most recent works, Kandel et al. focus on a biological
application [KPT+08]. Turning to other media, Knees et al. [KSPWO07] propose a visual presentation
of music that uses clustering to create ‘islands of music’ which the user can then navigate in 3D, and
a survey of video techniques is found in [HaLZM11].

A related approach is that of logical information systems (LIS). The Camelis photo browser uses
co-occurrences of tags in images to deduce relationships and uses those relationships to facilitate
browsing [Fer07]. Camelis may potentially be set up to return the required set of images, but con-
structing the query would be very complex. Furthermore, images are presented linearly without
categorization, thus losing information about why they are present in the result.

The approach most similar to our approach, however, is that of faceted search which has been applied
to many domains, including photos [YSLHO03, BC09] and audio [DMRS10]. Faceted search uses
a single tag-set, but proposes to build multiple hierarchies (or even DAGs) over that tag-set, one
for each aspect that could be browsed. These hierarchies are then traversed to interactively narrow
the result set, until the user is happy. Item counts or sample queries are typically used to present
the result while it is very large; when it is sufficiently small it is presented in a linear fashion. The
faceted approach suffers from two main problems. First, the single tag-set is a limitation; although
the hierarchies do help users somewhat to disambiguate the different uses of an ambiguous tag, it is

! An industrious user can try to get around some of the limitations of current tagging approaches by encoding the hierarchy
of friends within the textual tags. Such attempts, however, are labor-intensive and rarely sustainable.
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more logical to place distinct tags in different tag-sets. Second, the linear presentation results in the
same dimensionality reduction as the simple browser suffer.

Scenique [BC09] is a faceted photo browser that breaks from tradition; it is conceptually the browser
most similar to our proposal. Scenique allows image browsing in 3D browsing rooms, where each
dimension corresponds to a facet.2 Scenique can not, however, show different parts of the same
hierarchy of different browsing dimensions and in fact it is not clear how it handles the case when
constraints are given for 1-2 or 4+ dimensions. We believe that the underlying concepts of the
ObjectCube model, in particular the cell and the hypercube, are the key differentiating factor.

5 Conclusion

Personal collections of digital media are growing ever larger, leaving users overwhelmed with data.
We have therefore proposed a new multi-dimensional data model for media browsing, based on the
highly successful multi-dimensional analysis model from the business intelligence community. We
have described the ObjectCube data model in detail, demonstrated its performance using a pro-
totype media server applied to large collections of media, and shown that the ObjectCube data
model enables interesting and useful browsing scenarios that are not possible with current media
browsers.

There are many interesting avenues for future work. The data model allows for content-based dimen-
sions, but that support is missing from the prototype. We plan to add support for dynamic browsing
dimensions, e.g., based on key-word search or content-based similarity, thus integrating browsing
and searching into a single framework. Much of the interesting work then lies in applications of
the ObjectCube model. We have already implemented a photo browsing application with a face
recognition plug-in, but other applications of interest, which may require specialized plug-ins, are in
music browsing and multi-dimensional file-system browsing. We believe that the ObjectCube model
proposed in this paper can radically change the media browsing experience.
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