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Abstract Although response times (RTs) are the dependent
measure of choice in the majority of studies of visual attention,
changes in RTs can be hard to interpret. First, they are inher-
ently ambiguous, since they may reflect a change in the central
tendency or skew (or both) of a distribution. Second, RT
measures may lack sensitivity, since meaningful changes in
RT patterns may not be picked up if they reflect two or more
processes having opposing influences on mean RTs. Here we
describe RT distributions for repetition priming in visual
search, fitting ex-Gaussian functions to RT distributions. We
focus here on feature and conjunction search tasks, since
priming effects in these tasks are often thought to reflect
similar mechanisms. As expected, both tasks resulted in strong
priming effects when target and distractor identities repeated,
but a large difference between feature and conjunction search
was also seen, in that the o parameter (reflecting the standard
deviation of the Gaussian component) was far more affected
by search repetition in conjunction than in feature search.
Although caution should clearly be used when particular
parameter estimates are matched to specific functions or pro-
cesses, our results suggest that analyses of RT distributions
can inform theoretical accounts of priming in visual search
tasks, in this case showing quite different repetition effects for
the two differing search types, suggesting that priming in the
two paradigms partly reflects different mechanisms.
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A popular model of the function of visual attention is encap-
sulated in visual search tasks (Cavanagh & Chase, 1971;
Neisser, 1964; Smith, 1962; Treisman, 1977). A key depen-
dent variable used to assess the attentional requirements of a
particular search task is how quickly and accurately observers
find a predesignated target. The difficulty of search is typically
assessed with mean response time (RT) and accuracy (Wolfe,
1998). But often, measures of central tendency and dispersion
provide only limited information about the dynamics of the
search process (Balota & Yap, 2011; Heathcote, Popiel, &
Mewhort, 1991; Wolfe, Palmer, & Horowitz, 2010). For one
thing, RT distributions are typically heavily skewed (Luce,
1986; McGill, 1963). This raises a potentially serious prob-
lem, since reporting only means and measures of dispersion
carries the implicit assumption of a normal distribution. Such
analyses are therefore ambiguous, since an increase in mean
RT may reflect increased skew, a “lateral” shift in the distri-
bution, or both. Additionally, meaningful changes in mean RT
might even be obscured by opposing effects upon RT of two
independent sources of variation (Balota & Yap, 2011).

Analyses of RT distributions have been performed for a
number of tasks (see, e.g., Luce, 1986, as well as Antoniades
et al., 2013, and Balota & Yap, 2011, for recent discussions).
Such analyses have not often been used on visual search data,
however. But Wolfe et al. (2010) and Palmer, Horowitz,
Torralba, and Wolfe (2011) showed how analyses of RT
distributions might constrain theories of attentional selection
in visual search arrays. Their results indicated, in fact, that
many leading theories of visual search and attention cannot
account for RT distributions from search tasks.

Repetition priming in visual search

Repetition priming in visual search has a dominating influence
on attentional orienting (Becker, 2008; Kristjansson, Wang, &
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Fig. 1 Sample experimental
displays. Panel A shows the
experimental display in the
feature search, and panel B the
experimental display in the
conjunction search. Stimuli
similar to the ones in panel B were
used in Kristjansson and Driver
(2008)

Nakayama, 2002; Lamy, Bar-Anan, Egeth, & Carmel, 2006;
Maljkovic & Nakayama, 1994), releasing visual stimuli from
crowding (Kristjansson, Heimisson, Rébertsson, & Whitney,
2013) and strongly determining attentional choice (Brascamp,
Blake, & Kristjansson, 2011; Chetverikov & Kristjansson,
2014) and the affective evaluation of stimuli (Chetverikov &
Kristjansson, 2014). Priming may even account for large
portions of effects that are often attributed to top-down guid-
ance (Belopolsky, Schreij, & Theeuwes, 2010; Kristjansson
et al., 2002; Wang, Kristjansson, & Nakayama, 2005; Wolfe,
Butcher, Lee, & Hyle, 2003). Given the strength and preva-
lence of these priming effects, understanding them theoretically
is vital for a thorough understanding of attentional selection.

Many accounts of priming have been proposed, ranging
from feature facilitation views (Asgeirsson, Kristjansson, &
Bundesen, 2014; Maljkovic & Nakayama, 1994), through
episodic memory accounts (Huang, Holcombe, & Pashler,
2004; Thomson & Milliken, 2011) and accounts focused on
the weighting of feature dimensions (Found & Miiller, 1996),
to response-priming accounts (Hillstrom, 2000). In a recent
review, Kristjansson and Campana (2010) concluded that
priming is not a single, unitary phenomenon, but that it reflects
modulations at various stages of processing, often depending
on task demands. A number of recent findings have supported
this view (Asgeirsson & Kristjansson, 2011; Kristjansson,
Saevarsson, & Driver, 2013; Rangelov, Miiller, &
Zehetleitner, 2013; Thomson & Milliken, 2011). Priming also
varies by stimulus type (Campana, Pavan, & Casco, 2008) and
is affected by interactions of stimulus features and position
(Campana & Casco, 2009; Pratt & Castel, 2001).

The dependent measures most often used for between-trial
priming in visual search are RTs and accuracy in search tasks
presented until observers respond (Geyer, Miiller, &
Krummenacher, 2006; Kristjansson, Ingvarsdottir, &
Teitsdottir, 2008; Lamy et al., 2006; Maljkovic &
Nakayama, 1994; Olivers & Humphreys, 2003). In other
studies, accuracy in brief displays (Asgeirsson et al., 2014;
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Lamy, Yashar, & Ruderman, 2010; Sigurdardéttir,
Kristjansson, & Driver, 2008) or the latency of the first sac-
cade to a target (Becker, 2008; see also McPeek, Maljkovic, &
Nakayama, 1999) are measured (see Lamy & Kristjansson,
2013, for a review). This raises the possibility that crucial
pieces of evidence may be ignored, since no distributional
analyses of RTs exist for priming of visual search. Since
distributions constrain attentional theories, they might also
constrain theorizing about the effects of priming upon atten-
tional selection.

The present goals

Our aim here is to attempt to inform the literature on atten-
tional priming by investigating RT distributions as they
change with repetition priming. A key question that we ad-
dress here is whether repetition effects are created equal in all
visual searches. Priming is often assumed to reflect similar
mechanisms, even when the tasks are very different
(Hillstrom, 2000; Huang et al., 2004; see, e.g., Kristjansson,
2008, for a review). We focus here on the priming of feature
and conjunction search.

Priming might decrease the standard deviation,
reflecting that priming decreases the number of extra-
long RTs, and therefore the skew and variance of RT
distributions. Priming might also induce a lateral shift
simply affecting the mean of the distribution. Priming
may also affect all estimated parameters. In fact, if
Kristjansson and Campana (2010) are indeed right that
priming of visual search exerts its effects at various
levels of perceptual processing, effects on all parame-
ters might be expected, but we cannot assume that
these effects would be comparable for both tasks. We
address all of these points in what follows.

We tested two different visual search tasks: (1) A
simple feature search, in which observers search for the
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Fig. 2 Response times (RTs) by experimental conditions in the feature
search. Panel A shows the means of individual observers’ RTs by repe-
tition conditions. Panel B shows RTs by how often in a series of adjacent
trials a particular target was repeated. Panel C shows performance as a
function of how often in a series the distractor identity was repeated. The
error bars represent 2x within-subjects SEMs. All ¢ values >2 are consid-
ered to represent significant differences (see the text)

odd-diamond-out among two distractor diamonds. This
task involves a secondary discrimination task to assess
focal attentional priming. We used the singleton-
diamond task introduced by Bravo and Nakayama
(1992) and used later by Maljkovic and Nakayama
(1994) to introduce the priming of pop-out effect. (2)
A conjunction odd-one-out task involving search for a
singleton target that shares one feature with each of the
two distractor sets, so that simple saliency through
feature contrast cannot designate the target (Treisman
& Gelade, 1980; Wolfe, 1998). The task was based on
the one used by Wang, Kristjansson, and Nakayama
(2005) and Kristjansson and Driver (2008). Priming
of visual search has been observed for both of these
paradigms. Finally, we analyzed a preexisting data set
(Kristjansson & Driver, 2008) in which conjunction
and feature searches were contrasted within blocks in
the same task, for a more direct comparison of the two
searches than the preceding searches allowed.

Fitting procedure

We fitted an ex-Gaussian distribution to the RTs. Palm-
er et al. (2011) fitted visual search RT data to four
different functions, with the ex-Gaussian showing mar-
ginally the best fits. The ex-Gaussian is a convolution
of a Gaussian and an exponential distribution (Burbeck
& Luce, 1982; Dawson, 1988; Hockley, 1984; Ratcliff,
1979). The u parameter represents the mean of the
Gaussian, and o its standard deviation. The 7 parame-
ter corresponds to the mean and variance of the expo-
nential distribution. The mean of the ex-Gaussian can
therefore be defined as p+7, and its variance by o”+7°
(Burnham, 2013; Luce, 1986; Yap, Balota, Cortese, &
Watson, 2006).

The ex-Gaussian has a longer tail on the right than the
left, therefore fitting RT distributions well (Dawson,
1988; Hockley, 1984; Hohle, 1965; Ratcliff, 1979;
Ratcliff & Murdock 1976). Heathcote et al. (1991) argued
that ex-Gaussian fits are essentially theory-neutral but can
provide very useful three-parameter summaries of RT
data. Nevertheless, attempts have been made to relate
the particular parameters to specific cognitive mechanisms
(Burnham, 2013; Dawson, 1988; Hohle, 1965; McGill,
1963; McGill & Gibbon, 1965). For example, Hockley
(1984) argued that 7 reflected motor or neural delays,
whereas Palmer et al. (2011) suggested that 7 may reflect
set-size effects in conjunction search. Attempts at such
characterizations have not yielded consistent results, how-
ever. Spieler, Balota, and Faust (2000) cautioned against
precise matching of parameters and cognitive processes,
concluding that “fitting functions . . . provides important
insights by revealing regularities in the structure of the
empirical data that in turn can guide and constrain theo-
ries of underlying cognitive processes” (p. 508). Matzke
and Wagenmakers (2009) similarly cautioned against re-
lating changes in particular parameter values to changes in
specific cognitive components, while at the same highly
encouraging the use of the functions for describing RT
data and constraining theoretical accounts. The main use-
fulness of the ex-Gaussian function in terms of analyses
may therefore be its summarizing virtues for tasks in
which decisions must be made between two response
alternatives, as is the case here (Heathcote et al., 1991;
Matzke & Wagenmakers, 2009).

Our hope was that fitting the ex-Gaussian might pro-
vide a way of describing how particular experimental
manipulations, such as the repetition of different visual
search types, influence RT distributions. We agree with
Spieler et al. (2000) and Matzke and Wagenmakers (2009)
that this method has provided valuable information re-
garding selective-attention tasks. But it is important to
note that fitting an ex-Gaussian does not entail any
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Fig. 3 Response time (RT)
density plots and histograms for
repetition conditions in the feature 800
search, averaged over condition, 700}
(A) when neither target nor
distractors repeated, (B) when the
target repeated, (C) when the
distractors repeated, and (D) 400}
when both target and distractors 300}
repeated. The curves are ex-
Gaussian fitted curves, and the
bars are histograms of the RTs.
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assumption on our part that RT distributions do, in fact,
have a Gaussian and an exponential component.

We are aware that others might argue that other methods
are more appropriate, such as the diffusion model (Ratcliff,
1978) or the ex-Wald distribution (a convolution of an
exponential and a Wald, 1947, distribution). Some have ar-
gued that these two methods have clearer interpretations of
parameters in terms of cognitive processes, but there is no
consensus on this (Matzke & Wagenmakers, 2009), and it is
beyond the scope of the present study to make strong claims in
this regard. We will make the data set that we use here
available to those who may wish to test other models of RT
distributions as a function of priming.

Method
Participants

Seven volunteers from the University of Iceland (26-37 years of
age; four male, three female) participated. Since optimal curve
fitting requires a large number of trials, all but one observer
participated in 3,200 trials (that one took part in 1,900 trials) in
the feature search task, whereas four of the observers (26-37
years old; two male, two female) participated in 4,800 trials' each

! For one observer, the target was present on 79 % of trials. This did not
affect the pattern in his data relative to the other observers (see, e.g., Fig. 9
below).
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in the conjunction search. Their visual acuity was normal or
corrected to normal.

Equipment

The experimental displays were programmed in C using the
VisionShell software library and presented on a 75-Hz CRT
controlled by a 400-MHz G4 Apple computer.

Stimuli and procedure

Each trial in both tasks started with the presentation of a
central white (56.6 cd m ?) fixation cross. Following a vari-
able interval (1,000-1,500 ms, randomly determined for each
trial), the experimental stimuli appeared. Auditory feedback
was provided on whether the answer was correct or incorrect.
The viewing distance was 60 cm.

Feature search task

The task was to locate the oddly colored diamond among two
distractor diamonds (so the target was, e.g., the red diamond
among yellow distractors; all diamonds were of the same size:
2.4° by 2.4°; see Fig. 1A), judging by keypress whether there
was a small notch at the top or the bottom of the target (all
stimuli had such notches). On different blocks, the target color
varied between red (22.7 cd m %) and green (27.6 cd m ?), and
the distractor color varied independently between yellow
(37.4 ¢cd m ) and blue (24.6 cd m 2). Therefore, no intertrial
role reversals between target and distractors were possible. On
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C: Distractor streak-length
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Fig. 4 Average ex-Gaussian parameter values for different repetition types, streaks of repeated targets, and streaks of repeated distractors. Error bars

represent 1x between-subjects SEMs

the other half of the blocks, the color scheme of the target and
distractors was reversed. The diamonds were equally spaced
(120° between then) on an imaginary circle with a radius of
4.8° and appeared on a dark gray (5.6 cd m?) background.

Conjunction search task

The task was to determine by keypress whether an odd-one-
out target was present or absent. There were six possible
search types, with four types of target-present trials: black
(0.8 cdm™?) square target among white (56.6 cd m %) squares
and black disks, white square target among black squares and
white disks, white disk target among black disks and white

squares, and black disk target among white disks and black
squares (see Fig. 1B). Since our aim was, at this point, not to
investigate priming effects between adjacent target-absent
trials, the target was present on 70 % of trials. Two possible
types of no-target trials were created: white disks and black
squares and black disks and white squares. The disks had a
diameter of 1.1°, whereas the side length of the squares was
0.9°. Set size was either 14 or 28, determined randomly for
each trial. The items were equally distributed on an invisible
8x8 grid (cell size=2.2°) with a slight random position jitter
(£0.4°) within each cell to introduce irregularity. The search
items in the conjunction search appeared on an approximately
mid-gray background (33 cd m™2).
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Fig. 5 Ex-Gaussian fits for each
observer as a function of search
type and repetition (A), target
streak length (B), and distractor
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Data analysis

We followed the example of Wolfe et al. (2010) and
Palmer et al. (2011) by excluding trials with RTs
longer than 4,000 ms in the feature search and longer
than 8,000 ms in the conjunction search, and RTs
shorter than 200 ms in both tasks (39 trials removed).
We used the lmer (linear mixed model; Bates, 2010)
function in R to test for significant effects of the
experimental conditions on RTs in the unfitted data.
The lmer function, however, does not provide p values,
and we therefore report the ¢ values, where ¢ values >2
are considered to represent significant differences (see,
e.g., Baayen, Davidson, & Bates, 2008). We used the
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plotegfit.m® function to plot the density and histograms
plots (Figs. 3 and 7), and the egfit.m function
(Lacouture & Cousineau, 2008) in MATLAB to esti-
mate the three ex-Gaussian parameters: the p and o
parameters denoting the mean and standard deviation
of the Gaussian, and 7 the mean of the exponential part
(Matzke & Wagenmakers, 2009; Ratcliff, 1993). To
check for significant effects of condition on the ex-
Gaussian parameters, we used repeated measures anal-
yses of variance (ANOVAs). Error bars denote twice
the within-subjects standard error, following the

2 The number of bins was always 75, and the range of the bin widths is
reported in each figure.
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Results
Feature search task

Overall performance was assessed with linear mixed
modeling using sliding contrasts (Kliegl et al., 2010) to
compare adjacent levels of whether the target,
distractors, or both were repeated, and how often the

Fig. 7 Response time (RT)
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target and distractors repeated. We always present the
absolute ¢ values. The RTs were longest when neither
the target nor distractors repeated, with a smaller speed
benefit of distractor than of target repetition, and the
shortest RTs when both the target and distractors were
repeated (Fig. 2A). When the target was repeated one to
five or more times, RTs decreased steadily (Fig. 2B), and
the pattern for distractors was the same (Fig. 2C). Com-
parisons between the conditions and test results are
shown in Fig. 2. The different panels contrast the repe-
tition effects by (A) repetition type, (B) target streak
length (how often in a row the same target was present-
ed), and (C) distractor streak length (how often in a row
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Fig. 8 Average ex-Gaussian parameter values for conjunction search, as a function of whether or not search was repeated. Error bars represent 1x

between-subjects SEMs

the same distractors were presented). The basic RT anal-
yses show that our feature task generates strong priming
patterns, reminiscent of what has been seen before in the
literature, indicating that this task lends itself well to the
analyses that we undertook here. Error rates ranged from
2.2 % to 7.1 % for the different observers.

Ex-Gaussian fit Figure 3 shows the RT histograms for the
four different repetition conditions (target, distractor, both, or
neither repeated), along with the ex-Gaussian fits and the
means, medians, and standard deviations. The average ex-
Gaussian parameters are shown in Fig. 4. A repeated measures
ANOVA was used to compare the effects of the experimental
conditions on the ex-Gaussian parameters. The main effect of
repetition condition (Fig. 4A) on p was significant [F(3, 18)=
77.7, p<.001]. The effect of repetition condition on 7was also
significant [F(3, 18)=33.1, p<.001], as was its effect on the
combination of p+7 [F(3, 18)=113.1, p<.001]. The effect of
repetition condition on o, on the other hand, was far from
significant (F<1).

We next turn to the cumulative effects of target repetition,
on the one hand, and distractor repetition, on the other
(Fig. 4B). The main effect of target streak length on p was
significant [F(4, 24)=5.4, p=.003] but not the effect on o (F<
1), and the effect on 7 was only marginal [F(4, 24)=2.3,
p=.09], although there was an undeniable trend in the data
in the second case. Finally, the main effect of target streak
length on p+7 was significant [F(4, 24)=16.2, p<.001]. The
main effects of distractor streak length (Fig. 4C) on o and p+7
were significant [F(4, 24)=2.8, p=.049, and F(4, 24)=13.7,
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p<.001, respectively], but not on either o [F(4, 24)<1, p=.43]
or 7 [F(4,24)=1.3, p=.3]. Figure 5 shows the ex-Gaussian fits
for the seven individual observers, as a function of repetition
condition in column A, of target streak length in column B,
and of distractor streak length in column C.

Discussion: Feature search task Repetition of targets or
distractors in the feature search task mainly influenced the p
and 7 parameters of the fitted ex-Gaussian distributions, but
not the o parameter. As we discussed before, the mean of the
Gaussian distribution is represented by p, whereas 7 repre-
sents the mean of the exponential part, so in feature search the
repetition conditions appear to have their largest effect on the
means, whereas the variance appears not to be affected. This
may indicate that repetition induces an overall speeding effect
upon feature search, rather than a decrease in the number of
trials with very long RTs.

It is also of interest that target and distractor repetition seem
to have their own independent effects, which appear to be
additive (consistent with the claims of Geyer et al. 2006;
Kristjansson & Driver 2005, 2008; Lamy, Antebi, Aviani, &
Carmel, 2008; Saevarsson, Joelsdottir, Hjaltason, &
Kristjansson, 2008). Note, however, that the effects on the
parameters of distractor repetition were smaller, in line with
the smaller overall effect of distractor repetition in this
paradigm.

We reiterate that caution should be used when indi-
vidual parameters are interpreted, but the lack of any
effect on o, which represents the standard deviation of
the Gaussian component, is quite notable, suggesting
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that target repetition in feature search does not modu-
late the variance in responses.

Conjunction search task

Figure 6 shows summaries of the results for the con-
junction search. In a linear mixed model with both Set
Size and Repetition as factors, both main effects were
significant (r=8.1 and 8.0, respectively), but their inter-
action was not (#=0.7). Again, the RT patterns indicate
that this conjunction search task yields strong priming
effects, as we expected from previous results
(Kristjansson & Driver, 2008; Kristjansson, Oladottir,
& Most, 2013; Wang et al., 2005). In addition, the task
shows an increase in RTs as a function of set size, as is
expected for conjunction search results. The slope of set

2000 0 500 1000 1500 2000
Response time (ms)

1000 1500

size against RT was 5.5 ms/item,” indicating that this
was an easy conjunction search task, despite consider-
able uncertainty about the target identity (interfering
with explicit top-down guidance) and little bottom-up
saliency through feature contrasts (see Wang et al.,
2005, for a discussion). The error rates ranged from
1.6 % to 1.9 % for different observers.

Ex-Gaussian fits Figure 7 shows RT density plots and histo-
grams for the conjunction search, and descriptive statistics for
each condition. The only significant main effect of set size was
on 7 (p=.011), in agreement with Palmer et al. (2011), but set
size affected neither u, o (both ps>.6), nor u+7 (p=.296). A

® (RTos — RT14) / (Nserzs — Niet14)— (965 — 888) / 14=5.5.
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Fig. 10 Ex-Gaussian parameter estimates contrasting repetitions versus nonrepetitions of feature versus conjunction search for the two observers in the
data set from Kristjansson and Driver (2005, 2008). Error bars represent 1x between-subjects SEMs

thorough analysis of set-size effects on the parameters of fitted
functions can be found in Palmer et al. (2011).

The main effect of repetition condition was signifi-
cant for all factors, with p values ranging from p<.001
to p=.025. The analyses above were conducted sepa-
rately for both set size and repetition. When both
factors were put into the same model, their interaction
was never significant (all ps>.13). The main effect of
set size was only significant for 7 (p=.001; all other
p values>.16). The main effect of repetition condition
was always significant (with p values ranging from
<.001 to .016), except that the effect of repetition
was not significant for 7 (p=.144). Figure 8§ summa-
rizes the effects of set size and between-trial target
switches versus repetitions in the conjunction condi-
tion, whereas Fig. 9 shows the ex-Gaussian fits for
individual observers.

Discussion: Conjunction search results To summarize, repe-
tition of conjunction search has a strong effect on all of the
parameters of the ex-Gaussian distribution, although the effect
on 7 was only marginally significant for the set size of 14.
These repetition effects were seen not only for the p and 7
parameters of the ex-Gaussian distribution, but also for the o
parameter, in strong contrast to the feature search results. This
notable difference between the repetition effects in conjunction
and feature search indicates that caution must be used when
priming effects from different tasks (such as conjunction and
feature searches) are compared at face value, and it suggests that
different mechanisms may, at least partly, underlie the repetition
effects for the two different search types.

@ Springer

Addressing an alternative explanation of differences in o
with reanalyses of data from Kristjansson and Driver
(2005, 2008)

Although the results for the different searches suggest that the
o parameter is differentially affected by repetition in the two
search types, a potential alternative account is that other
differences between the two tasks may account for the differ-
ence in ¢ estimates. The conjunction search task that we tested
may have required either one or two guided searches on each
trial: one if observers guessed correctly, and two if they started
by looking for the wrong target initially. Priming has been
shown to influence free target choice (Brascamp et al., 2011),
and priming may simply bias observers to bet on the target
from the last trial. If they choose the wrong target, they have to
go back and search for the other possible target. This would
not be the case in the feature search that we tested.

To address this question, we reanalyzed an already pub-
lished data set from Kristjansson and Driver (2005, 2008) that
can address this question, since in that task feature and
conjunction searches involving similar stimuli were
contrasted within the same task. This last point is critical,
since the uncertainty about target identity was comparable
across searches. The only difference between the two
conditions was therefore whether the target in each case
could be distinguished from the distractors by a single feature.

In Kristjansson and Driver (2008), observers searched on
each trial for an odd-one-out target (see Fig. 1B). Here we
contrast target-present trials only in which the exact same
distractor sets were repeated between trials, but only the
identity of the target changed. Thus, an example nonrepeat
trial in the feature search would involve a black disk target
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among white disks and white rings that followed a trial with a
black ring target among white disks and white rings. A repeat
trial would involve the exact same search.

An example nonrepeat conjunction search trial would in-
volve a black disk target among black rings and white disks,
preceded by a search in which the target was a white ring
among black rings and white disks. In this way, we tested
comparable conditions within the same task, with the only
difference being whether the task involved a target that dif-
fered from the distractors on a single feature or shared a
feature with each distractor set.

Results

Figure 10 shows the results of the reanalysis fitting
feature search repetitions versus conjunction search rep-
etitions to the ex-Gaussian functions. The critical issue
was whether we would find a difference in the effects of
repetition between feature and conjunction searches in
the effects upon o. For the feature condition, o is
unaffected by search repetition. On the other hand, there
is a large decrease in o with repetition for conjunction
search. The other results mirror those we saw in the
preceding experiment: The p parameter is also more
strongly affected by conjunction than by feature search
repetition, as is p+7.

The results of this reanalysis of the results from
Kristjansson and Driver (2005, 2008) support our conclusions
from the results of the feature and conjunction search tasks.
The effects of repetition upon o were minimal or absent for the
feature search, but were large for the conjunction search.

General discussion

Repetition priming of visual search strongly affects attention
deployments. Understanding these effects theoretically is
therefore important for a thorough understanding of how
visual attention is allocated across the visual field. Measures
of mean RT and variation can be ambiguous and may miss
critical aspects of the effects, as was explained in the intro-
duction. For the present purposes, our results clearly suggest
that analyses of RT distributions can be informative for un-
derstanding the priming of visual search.

In particular, we found differences between feature
and conjunction searches, in which the o parameter
was strongly affected by repetition in the conjunction
but not in the feature search. Conversely, in both
feature and conjunction searches, both p and 7 were
strongly affected. One possible interpretation of this
pattern is that priming during conjunction search is
more likely to result in reductions in overly long RTs

than is repetition in the feature condition, thereby de-
creasing the variance. A straightforward interpretation
of this is that priming in conjunction search decreases
the number of long RTs, which in turn is likely to
reflect that observers are strongly biased to the target
on the last trial, decreasing the number of searches for
the “wrong” target and thereby reducing the number of
very long RTs.

Our investigation is by no means an exhaustive analysis of
RT distributions as a function of repetition priming. Other
paradigms in which attentional priming has been found should
clearly also be tested.

Do the present results have any direct implications for
theoretical accounts of repetition priming in visual search?
This can be debated, but as many have argued before, ex-
Gaussian fits can provide a three-parameter summary that is
more nuanced than more traditional summary statistics. One
example is the dramatic difference observed between feature
and conjunction search for o, clearly indicating that care must
be taken when priming effects between different tasks are
measured and compared. Most importantly, conjunction and
feature searches cannot be compared at face value when it
comes to priming effects from search repetition. On the other
hand, ;o and 7 are influenced in both feature and conjunction
searches. There is disagreement over how these parameters
should be interpreted. We will exercise the caution
recommended by Matzke and Wagenmakers (2009) and
Spieler et al. (2000) in interpreting parameter values, simply
noting that this suggests that repetition influences mean per-
formance in both feature and conjunction search.

A broader message is that our results suggest that
focusing too heavily on mean RTs on their own is a
mistake. This has, nevertheless, been the practice in a
large majority of studies of priming in visual search.
There are many examples of how parameter analyses
from curve fitting can inform cognitive theory, such as
in Burnham (2013), who studied top-down influences
on attentional capture; Heathcote et al. (1991), who
studied the Stroop task; and Yap et al. (2006), who
investigated RT distributions in visual word form
recognition and lexical decision performance. Balota
and Yap (2011) discussed how parameter fitting might
influence theory—a conclusion with which we agree—
and our contribution here illustrates how it can inform
us on repetition effects in visual search.

We conclude that repetition priming in attentional
allocation is unlikely to be explained by one single
concept (as Kristjansson & Campana, 2010, argued),
nor will any single methodology answer all of the
relevant questions. At the same time, parameter fits
with ex-Gaussian functions can constrain theories, and
matching parameters to labeled mental processes is not
a prerequisite for that.

@ Springer
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