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Abstract

There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular
diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events.
We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We
analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members
of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four
independent Caucasian cohorts (n = 6,652). All participants had retinal photography and retinal arteriolar and venular caliber
measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five
loci were significantly associated (p,5.061028) with retinal venular caliber, but none showed association with arteriolar
caliber. Collectively, these five loci explain 1.0%–3.2% of the variation in retinal venular caliber. Four out of these five loci
were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921
(19q13; p = 1.61610225, within the RASIP1 locus), rs225717 (6q24; p = 1.25610216, adjacent to the VTA1 and NMBR loci),
rs10774625 (12q24; p = 2.15610213, in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p = 7.32610216,
adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and
hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal
venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data
provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie
cardiovascular disease.
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Introduction

Although both macrovascular and microvascular pathology are

associated with cardiovascular disease, including coronary artery

disease and stroke [1,2], most studies on the genetic determinants

of cardiovascular disease have primarily focused on macrovascular

disease traits, and genetic analyses of microvascular disease

phenotypes are rare [2,3]. This paucity of data is due to difficulties

in non-invasively assessing the microcirculation. However, retinal

arterioles and venules, which range between 50 to 300 mm in

diameter, can be directly imaged, and provide an ideal

opportunity to study the microcirculation in vivo [4].

Quantitative measurement of retinal blood vessel caliber from

photographs allows a non-invasive direct assessment of the human

microcirculation [4]. Studies using this technique have shown that

changes in retinal vascular caliber (e.g., narrower arteriolar and

wider venular caliber) are associated with a range of cardiovascular

diseases and their risk factors [5,6], including hypertension [7],

diabetes mellitus [8,9], stroke [10], coronary heart disease [11], and

cerebral small vessel disease [12,13]. Retinal vascular caliber is also
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an early marker of major eye diseases such as diabetic retinopathy

and age-related macular degeneration [14–16].

Recent studies suggest that genetic factors may play a role in

influencing retinal vascular caliber [17–20], so understanding

specific genetic factors underlying retinal vascular caliber could

therefore demonstrate novel insights into the mechanisms that

contribute to the microvascular pathways of cardiovascular and

eye diseases. To identify the underlying genetic determinants of

retinal arteriolar and venular caliber, we meta-analyzed results of

genome-wide association studies (GWAS) of 15,358 white

participants from four large, prospective population-based cohorts

included in the Cohorts for Heart and Aging Research in

Genomic Epidemiology (CHARGE) consortium [21]: the Age

Gene/Environment Susceptibility – Reykjavik Study (AGES) [22],

the Atherosclerosis Risk in Communities Study (ARIC) [23], the

Cardiovascular Health Study (CHS) [24] and the Rotterdam

Study [25]. We replicated our findings in four independent cohorts

of Caucasian ethnicity [the Australian Twins Study [26], the UK

Twins Study [27], the Beaver Dam Eye Study (BDES) [11], and

the Blue Mountains Eye Study (BMES)] [11]. Finally, in order to

examine the association between the replicated hits and cardio-

vascular diseases, we used data on coronary artery disease from the

Wellcome Trust Case Control Consortium (WTCCC) [3], on

stroke and myocardial infarction from the Heart and Vascular

Health (HVH) Study [28,29], on hypertension from the Global

Blood Pressure Genetics (Global BPgen) Consortium [30], and on

diabetes mellitus from the Diabetes Genetics Replication and

Meta-analysis + (DIAGRAM+) Consortium [31].

Results

Study samples
The total study sample for the discovery analyses was 15,358

and for the replication analyses 6,652. Characteristics of both the

discovery and replication samples are presented in Table 1.

Author Summary

The microcirculation plays an important role in the
development of cardiovascular diseases. Retinal vascular
caliber changes reflect early microvascular disease and
predict incident cardiovascular events. In order to identify
genetic variants associated with retinal vascular caliber, we
performed a genome-wide association study and analyzed
data from four population-based discovery cohorts with
15,358 unrelated Caucasian individuals, who are members
of the Cohort for Heart and Aging Research in Genomic
Epidemiology (CHARGE) consortium, and replicated find-
ings in four independent Caucasian cohorts (n = 6,652). We
found evidence for association of four loci with retinal
venular caliber: on chromosomes 19q13 within the RASIP1
locus, 6q24 adjacent to the VTA1 and NMBR loci, 12q24 in
the region of ATXN2,SH2B3 and PTPN11 loci, and 5q14
adjacent to the MEF2C locus. In two independent samples,
locus 12q24 was also associated with coronary heart
disease and hypertension. In the present study, we
demonstrate that four novel loci were associated with
retinal venular caliber, an endophenotype of the microcir-
culation associated with clinical cardiovascular disease. Our
findings will help focus research on novel genes and
pathways involving the microcirculation and its role in the
development of cardiovascular disease.

Table 1. Baseline characteristics of both the discovery and replication cohorts.

Discovery cohorts Replication cohorts

AGES ARIC CHS RS
Australian
Twins UK Twins BDES BMES

Original cohort 5,764 15,792 5,888 7,983 2,235 8,810 2,579 3,508

Non-Hispanic whites in original cohort 11,478 4,925 7,983 2,190 8,810 2,579 3,487

Total number included in analyses 2,949 6,317 1,272 4,820 1,709 1,132 2,522 1,310

Mean age (years) (SD) [range] 76.2 (5.4)
[66–94]

60.3 (5.6)
[50–72]

78.4 (4.1)
[72–95]

68.0 (8.2)
[55–99]

22.5 (12.4)
[5–90]

58.1 (10.1)
[16–81]

60.6 (10.8)
[43–86]

66.0 (8.6)
[49–93]

Proportion female (%) 57.5 52.9 62.9 59.0 57.0 97.7 55.8 58.4

Mean CRAE (mm) (SD) [range] 139.7(13.4)
[74.0–221.4]

136.1 (14.3)
[72.6–203.8]

140.4 (15.7)
[77.6–197.4]

150.0 (14.4)
[98.5–235.4]

164.2 (13.6)
[83.6–205.2]

163.8 (18.1)
[91.0–219.6]

149.5 (13.7)
[100.3–196.6]

160.0 (20.2)
[93.4–213.4]

Mean CRVE (mm) (SD) [range] 202.0(19.5)
[123.8–273.0]

199.4 (19.2)
[129.3–304.1]

196.5 (19.2)
[142.5–271.7]

226.0 (20.1)
[162.5–324.3]

248.0 (19.0)
[130.5–325.7]

253.0 (28.6)
[147.0–338.0]

230.3 (21.7)
[165.9–335.1]

238.4 (24.0)
[167.6–331.1]

Systolic blood pressure (mm Hg) (SD)
[range]

142.5(20.2)
[92–253]

122.9 (18.1)
[75–226]

134.4 (20.4)
[82–241]

138.5 (22.1)
[74–250]

N/A 130.5 (19.7)
[85–210]

130.5 (20.0)
[71–248]

146.0 (20.5)
[95–240]

Diastolic blood pressure (mm Hg) (SD)
[range]

74.1 (20.2)
[92–253]

70.8 (10.0)
[32–114]

67.9 (10.8)
[15–110]

73.7 (11.4)
[24–139]

N/A 79.5 (11.9)
[50–124]

77.4 (10.8)
[44–123]

83.6 (9.8)
[50–125]

Hypertension (%) 80.6 35.3 48.7 42.3 3.2 41.7 35.1 46.1

Diabetes mellitus (%) 11.4 12.4 12.2 10.0 1.0 1.5 10.3 7.9

Current smokers (%) 12.5 17.3 6.2 23.6 11.0 13.8 21.6 12.4

Body mass index (kg/m2) (SD) [range] 27.1 (4.4)
[14.8–48.5]

28.0 (5.2)
[14.2–59.1]

26.8 (4.3)
[15.6–46.7]

26.3 (3.7)
[14.2–50.7]

N/A 25.6 (4.3)
[15.0–48.2]

28.3 (5.2)
[15–55]

26.3 (4.4)
15.2–49.2

AGES: Age Gene/Environment Susceptibility – Reykjavik Study; ARIC: Atherosclerosis Risk in Communities Study; CHS: Cardiovascular Health Study; RS: Rotterdam Study;
BDES: Beaver Dam Eye Study; BMES: Blue Mountains Eye Study; CRAE: central retinal arteriolar equivalent; CRVE: central retinal venular equivalent; SD: standard
deviation; N/A Not available.
doi:10.1371/journal.pgen.1001184.t001
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Meta-analysis of CHARGE cohort results
A total of 179 single nucleotide polymorphisms (SNPs) at five loci

surpassed our preset threshold (p,5.061028) for genome-wide

significance for retinal venular caliber. Collectively, these five

independent loci explain 1.0–3.2% of the variation in retinal

venular caliber within our discovery cohorts. The QQ-plots (Figure

S1A) show departure from the line of identity at approximately

p,1.061023. Figure 1A displays the minus log-transformed p-

values for the individual SNPs against their genomic position.

Table 2 summarizes both the meta-analyzed results and results from

each discovery cohort individually for the most significant SNPs at

each locus that were associated with retinal venular caliber.

No genome-wide significant locus was identified for retinal

arteriolar caliber and only one SNP was associated with retinal

arteriolar caliber at a significance threshold between 5.061028

and 1.061026. The QQ-plot (Figure S1B) showed a departure

from the line of identity at approximately p,1.061024. Figure 1B

displays the minus log-transformed p-values for the individual

SNPs against their genomic position. The most significant signal

was on chromosome 13q12 (rs2281827, per minor allele (T) copy

1.0 mm (SE: 0.21) increase in arteriolar caliber; minor allele

frequency (MAF): 0.23; p = 3.5361027). This signal on chromo-

some 13q12 was located in FLT1, also known as vascular

endothelial growth factor receptor.

Replication in independent cohorts
Table 3 shows the results within each replication cohort for the

five loci that were genome-wide significant in the discovery phase.

Minor allele frequencies in the replication cohorts were very

similar to that in the discovery cohorts. Four out of the five loci

showed consistent effects in the combined analyses of the

replication cohorts at a Bonferroni-corrected significance thresh-

old of p,0.01 (0.05/5, as five loci were tested in the replication

phase), the exception was rs7824557 (8p23). The combined

analyses of the discovery and replication cohorts yielded an

overall p-value of 1.61610225 for rs2287921 (19q13). The

corresponding values for the other loci were p = 1.25610216 for

rs225717 (6q24), p = 2.15610213 for rs10774625 (12q24) and

p = 7.32610216 for rs17421627 (5q14). Finally, for rs7824557

(8p23) the overall p-value did not reach genome-wide significance

(p = 3.8061027).

The regional association plots for these four loci are presented in

Figure 2A–2D. After additional adjustments for hypertension and

diabetes mellitus, the associations between the four replicated loci

and retinal venular caliber remained the same (Table S1).

Associations with cardiovascular diseases
Table 4 presents the results with clinical cardiovascular diseases

for the four loci that were successfully replicated in the replication

cohorts. These association results provided evidence for 12q24 as a

risk locus for coronary artery disease and hypertension. The allelic

odds ratios of rs10774625 were 1.13 (95% confidence interval (CI):

1.03–1.24; p = 0.008) for coronary artery disease and 1.06 (95%

CI: 1.01–1.12; p = 0.019) for hypertension. As we found the most

convincing evidence for rs10774625 to be associated with

coronary artery disease, we examined the association with

coronary artery disease for all 10 SNPs on locus 12q24 that were

genome-wide significant in the current analysis with retinal

venular caliber. Figure 3 shows a plot in which the p-values for

these 10 SNPs from the current analysis are combined with those

for coronary artery disease from WTCCC. We found that all 10

SNPs were significantly associated with coronary artery disease at

a nominal p-value of 0.05 suggesting a strong overlap between the

association signals of retinal venular caliber and coronary artery

disease.

Discussion

In this meta-analysis of GWAS data from four populations on

retinal microcirculation and subsequent replication in four

independent cohorts, we identified four novel loci on chromo-

somes 19q13, 6q24, 12q24 and 5q14 that were consistently

associated with retinal venular caliber in persons of Caucasian

descent at genome-wide significance of ,5.061028. The most

significant SNPs at each of the four loci were associated with an

approximate 2.0mm change in retinal venular caliber for each copy

of the minor allele. Locus 12q24 was also associated with coronary

heart disease and hypertension. We did not find any loci that

reached genome-wide significance for retinal arteriolar caliber,

and only one SNP reached highly suggestive levels.

Our study is the first large study to evaluate common genetic

variants of the microcirculation, increasingly thought to play a

substantial role in the pathogenesis and development of clinical

cardiovascular diseases, including coronary heart disease and

stroke. The retinal vasculature provides a non-invasive direct view

of the human microcirculation. Retinal venular caliber has been

shown to predict a range of subclinical [5] and clinical

cardiovascular disease [6]. In a recent meta-analysis, wider retinal

venules were associated with a hazard ratio of 1.16 (95% CI: 1.06–

1.26) for coronary artery disease in women while controlling for

other known cardiovascular risk factors [11]. Furthermore, wider

venular caliber predicted risk of stroke and is associated with

progression of cerebral white matter lesions [10,12]. Both systemic

and environmental factors likely induce variation in retinal venular

caliber along with individual genetic differences [5,6,17–20].

Wider retinal venular caliber has been hypothesized to reflect the

effects of hypoxia [32], and an increased nitric oxide production

and release of cytokines resulting from activated endothelial cells

Figure 1. P-values (minus log-transformed) are shown in a signal intensity (Manhattan) plot relative to their genomic position. For
(a) retinal venular caliber and (b) retinal arteriolar caliber.
doi:10.1371/journal.pgen.1001184.g001
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[33]. This is supported by clinical and epidemiological studies

showing larger venular caliber to be associated with systemic

biomarkers of inflammation, including C-reactive protein and

interleukin-6, and with impaired fasting glucose metabolism,

dyslipidemia, obesity and cigarette smoking [5,34].

The most significant SNP associated with retinal venular caliber

was in the RASIP1 gene (rs2287921, p = 1.61610225) on

chromosome 19q13. RASIP1 belongs to the family of RAS

molecules, which have recently been implicated in animal models

to be involved in vascular development, endothelial cell migration,

capillary tube assembly, blood vessel homeostasis and vascular

permeability [35]. Specifically, RASIP1 is expressed in the

endothelium of the developing blood vessels and is essential for

proper endothelial cell angiogenic assembly and migration [35].

On chromosome 6q24, the top SNPs were located in or

adjacent to VTA1 and NMBR genes. VTA1 encodes a protein

involved in trafficking of the multivesicular body, an endosomal

compartment involved in sorting membrane proteins for degra-

dation in lysosomes [36]. Neuromedin B (NMB) is a peptide that

acts by binding to a specific receptor protein (NMBR) and is

involved in a number of physiological processes including immune

defense, thyroid, adrenocortical function and cognition. NMB is

also aberrantly expressed by a variety of cancers and is involved in

tumor cell proliferation [37].

The signals for association on chromosome 12q24 were spread

across a large 1 Mb LD block, including genes such as SH2B3,

ATXN2 and PTPN11. The most significant SNP was located in

ATXN2. Defects in the ATXN2 are the cause of spinocerebellar

ataxia type 2 (SCA 2), which belongs to the autosomal cerebellar

ataxias characterized by cerebellar ataxia, optic atrophy, ophthal-

moplegia and dementia. SCA 2 is caused by extension of a CAG

repeat in the coding region of this gene. Another gene in this

region is SH2B3, which is expressed by vascular endothelial cells

and regulates growth factor and cytokine receptor-mediated

pathways implicated in lymphoid, myeloid and platelet homeo-

stasis [38]. Our study showed that the most significant SNP in the

SH2B3 region was rs3184504 (p = 4.88610211). Interestingly, this

variant is associated with type 1 diabetes mellitus, a disease in

which the risk of developing complications was found to be

associated with wider retinal venular caliber [38]. Recent GWAS

studies have shown that several SNPs at the locus 12q24 (e.g.

rs11065987 in ATXN2 and rs11066301 in PTPN11) are associated

with platelet count, hemoglobin concentration, hematocrit, and

blood pressure [39–41]. Furthermore, replication in independent

case-control series including 9,479 cases and 10,527 controls have

shown odds ratios of 1.14 (95% CI: 1.10–1.20; p = 2.5261029)

and 1.15 (95% CI: 1.10–1.20; p = 7.05610211) per minor allele

copy for the association of these two SNPs with coronary artery

disease [39]. The corresponding allelic odds ratios for myocardial

infarction were 1.17 (95% CI: 1.11–1.22; p = 3.43610210) and

1.18 (95% CI: 1.12–1.23; p = 2.42610212) [39]. In our discovery

cohort, apart from rs10774625 we found nine additional SNPs in

the region that were genome-wide significant, including both

rs11065987 and rs11066301 (1.5 increase in venular caliber per

minor allele for both) that have also been shown to be associated

with coronary heart disease and myocardial infarction. Finally, in

the present study the association results from WTCCC and Global

BPgen confirmed locus 12q24 to be a risk locus for both coronary

artery disease and hypertension. Specifically, we found a strong

overlap between the association signals of retinal venular caliber

and coronay artery disease.

The most significant SNPs at the 5q14 locus were located in an

intergenic region. The closest gene in this region is MEF2C, which

is located about 200 kb downstream. Myocyte enhancer factor 2
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(MEF2) family proteins are key transcription factors, consisting of

four members MEF2A, MEF2B, MEF2C and MEF2D, controlling

gene expression in myocytes, lymphocytes, and neurons. MEF2

also plays an important role in cardiogenesis, epithelial cell

survival and maintenance of blood vessel integrity. Knockout of

MEF2C gene in mice is embryologically lethal due to failure in

cardiac development [42].

We did not find any loci that reached genome-wide significance

for retinal arteriolar caliber. It is possible that genetic factors play a

smaller role in arteriolar caliber, which is strongly associated with

increasing age and blood pressure [5–8]. It is also possible that

multiple genetic loci determine retinal arteriolar caliber and each

locus exerts only a very weak association that is not detectable

using our current study sample size. Thus, in order to examine

Figure 2. Regional association plots for the four novel loci. (a) Chromosome 19q13, (b) chromosome 6q24, (c) chromosome 12q24, and (d)
chromosome 5q14. The blue diamonds show stage 1 p-values (discovery phase) for the top SNP at each locus, whereas the grey diamonds show the
p-values following stage 2 meta-analysis including the replication cohorts for that top SNP. P-values from stage 1 for additional SNPs at each locus are
colour-coded according to their linkage disequilibrium with the top SNP as follows: r2,0.2 white, 0.2,r2,0.5 yellow, 0.5,r2,orange-red, r2.0.8 red.
doi:10.1371/journal.pgen.1001184.g002

Table 4. The association between the four novel loci and cardiovascular diseases.

CHARGE
(CRVE)

WTCCC
(CAD)

HVH
(stroke)

HVH
(MI)

Global BPgen
(HTN)

DIAGRAM+
(DM)

12q24
(rs10774625)
M.A.: A

Beta: 1.6
(SE 0.23)
P = 1.16610211

OR: 1.13
(1.03; 1.24)
P = 0.008

OR: 1.03
(0.89; 1.20)
P = 0.66

OR: 1.05
(0.94; 1.18)
P = 0.39

OR: 1.06
(1.01; 1.12)
P = 0.019

OR: 1.02
(0.98; 1.06)
P = 0.36

19q13 (rs2287921)
M.A.: T

Beta: 22.0
(SE 0.23)
P = 3.30610218

OR: 0.95
(0.87; 1.05)
P = 0.303

OR: 0.90
(0.77; 1.06)
P = 0.20

OR: 0.91
(0.81; 1.03)
P = 0.13

OR: 1.01
(0.96; 1.07)
P = 0.67

OR: 1.01
(0.97; 1.05)
P = 0.72

6q24
(rs225717)
M.A.: C

Beta: 21.8
(SE 0.27)
P = 5.99610212

OR: 0.98
(0.89; 1.08)
P = 0.65

OR: 1.11
(0.93; 1.32)
P = 0.24

OR: 1.12
(0.98; 1.27)
P = 0.11

OR: 0.98
(0.93; 1.04)
P = 0.55

OR: 0.98
(0.93; 1.02)
P = 0.33

5q14
(rs17421627)
M.A.: G

Beta: 2.5
(SE 0.43)
P = 5.0561029

OR: 1.02
(0.88; 1.18)
P = 0.81

OR: 1.15
(0.83; 1.59)
P = 0.39

OR: 1.02
(0.79; 1.31)
P = 0.89

OR: 1.07
(0.98; 1.17)
P = 0.14

OR: 0.98
(0.91; 1.05)
P = 0.60

CHARGE: Cohort for Heart and Aging Research in Genomic Epidemiology Consortium CRVE: central retinal venular equivalent (CRVE), SE: standard error; WTCCC:
Wellcome Trust Case Control Consortium; CAD: coronary artery disease; HVH: Heart and Vascular Health Study; MI: myocardial infarction; Global BPgen: Global Blood
Pressure Genetics Consortium; HTN: hypertension; DIAGRAM+: Diabetes Genetics Replication and Meta-analysis+; DM: diabetes mellitus; M.A.: Minor allele within
CHARGE; OR: odds ratio (with corresponding 95% confidence interval) per copy of the minor allele.
doi:10.1371/journal.pgen.1001184.t004
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genetic associations with retinal arteriolar caliber more fully, we

are currently in the process of building collaborations with several

other studies to increase the sample size of the discovery cohort.

While we have identified four loci associated with retinal

venular caliber, the identified SNPs may not represent the causal

variants but could be in high linkage disequilibrium (LD) with the

causal variants, which remain to be discovered. Further fine

mapping of this genomic region will be required to facilitate

expression and translational studies. Our study suggests that the

effect of common genetic variants on retinal vascular caliber is

small, and explain only a small proportion of the heritability of

these traits [43]. It remains possible that low frequency variants

might be important, but GWAS provides poor coverage of rare

variants. With the study populations of predominantly Caucasian

descent and stringent checks for latent population substructure, the

associations are unlikely to be due to population stratification.

To conclude, our population-based GWAS demonstrate four

novel loci on chromosomes 19q13 (within the RASIP1 locus), 6q24

(adjacent to the VTA1 and NMBR loci), 12q24 (in the region of the

SH2B3, ATXN2 and PTPN11 loci) and 5q14 (adjacent to the MEF2C

locus) associated with retinal venular caliber, an endophenotype of

the microcirculation associated with clinical cardiovascular disease.

Furthermore, locus 12q24 was also associated with coronary heart

disease and hypertension. While further studies are needed to

determine the causal genetic variants that underlie the heritability of

this endophenotype, our findings will help focus research on novel

genes and pathways involving the microvasculature and its role in the

pathogenesis and development of cardiovascular disease.

Materials and Methods

Ethics statement
Each cohort secured approval from their respective institutional

review boards, and all participants provided written informed

consent in accordance with the Declaration of Helsinki.

Consortium organization
The CHARGE consortium included large prospective commu-

nity-based cohort studies that have genome-wide marker data and

extensive data on multiple phenotypes [21]. All participating

Figure 3. A combined regional association plot showing p-values from CHARGE for the 10 SNPs on 12q24 for retinal venular caliber
and from WTCCC for coronary artery disease.
doi:10.1371/journal.pgen.1001184.g003
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studies approved guidelines for collaboration, and a working group

arrived at a consensus on phenotype harmonization, covariate

selection and analytic plans for within-study analyses and meta-

analyses of results.

Setting
Details of cohort selection, risk factor assessment and retinal

vascular caliber measurements in the four studies have been

described in Text S1, section 1 [11,22–25]. The AGES is a

prospective study with subject recruitment from 2002–2006 of

5,764 surviving members, aged 66 years and older, of the

established Reykjavik Study, a cohort of 19,381 participants

assembled in 1967 to study cardiovascular disease and its risk

factors among those born between 1907 and 1935 [22]. The ARIC

study enrolled 15,792 men and women (including 11,478 non-

Hispanic whites) from four U.S. communities to investigate the

etiology and sequelae of atherosclerosis and cardiovascular risk

factors [23]. Participants were between age 45 and 64 years at their

baseline examination in 1987–1989. The CHS enrolled 5,888

adults 65 years and older from four field centers to study coronary

artery disease and stroke. The baseline examination took place

either in 1989–90 or 1992–93 [24]. The Rotterdam Study enrolled

7,983 inhabitants from a district of Rotterdam aged 55 years and

older to study cardiovascular, neurological, ophthalmic and

endocrine diseases. The baseline examination was in 1990–93 [25].

Study population
The AGES and Rotterdam cohorts consisted predominantly of

Caucasian whites. Only non-Hispanic white participants were

included from the ARIC and CHS. Retinal photographs were

obtained from participants at the third examination in ARIC and

the tenth in CHS. Participants were excluded if their photographs

could not be graded (due to cataract, corneal opacities or poor

focus) or if genotyping data were unavailable (Table 1).

Retinal vascular caliber measurements
Retinal vascular caliber was measured using standardized

protocols and software that were developed initially at the

University of Wisconsin and used in the ARIC study and the

CHS, and following slight modifications, also in the Rotterdam

and AGES studies (Text S1, section 2) [4,5,9,11,13]. In brief,

participants underwent retinal photography and optic disc-

centered images were used to measure vascular caliber. Pharma-

cological mydriasis was used in the AGES and Rotterdam studies.

For ARIC, CHS and Rotterdam the photographs of one eye were

digitized using a high-resolution scanner and for the AGES study,

photographs of both eyes were captured digitally. All digital retinal

images were analyzed with a semi-automated retinal vessel

measurement system and the calibers of all retinal arterioles and

venules were measured in an area between half and one disc-

diameter from the optic disc margin. The Parr-Hubbard-

Knudtson formulae were used to compute summary measures

for retinal arteriolar and venular calibers in micrometers (mm) and

referred to as the ‘‘central retinal arteriolar and venular

equivalents’’ [44]. Quality control (QC) measures for intergrader

and intragrader intraclass correlation coefficients for retinal

vascular calibers for each of the cohorts ranged from 0.76–0.99

in AGES, 0.69–0.89 in ARIC, 0.67–0.91 in CHS to 0.67–0.95 in

the Rotterdam Study [4,5,9,13].

Genotyping
The consortium was formed after the individual studies had

finalized their GWAS platform selection. The four studies

included used different platforms: the Affymetrix GeneChip SNP

Array 6.0 for the ARIC study, Illumina HumanCNV370-Duo for

the AGES study and the CHS and the Illumina Infinium

HumanHap550-chip v3.0 for the Rotterdam Study. All studies

used their genotype data to impute to the 2.2 million non-

monomorphic, autosomal, SNPs identified in HapMap (CEU

population). Extensive QC analyses were performed in each

cohort (Text S1, sections 3 and 4) [21].

Statistical analyses within discovery cohorts
Based on an a priori analysis plan, each study fitted an additive

genetic model with a 1-degree of freedom trend test relating the

retinal arteriolar or venular caliber to genotype dosage (0–2 copies

of the minor allele) for each SNP, adjusting for age and sex. For

the CHS and ARIC studies, the analyses were additionally

adjusted for study site. We used linear regression models to

calculate regression coefficients (beta) and their standard errors

(SE) using the ProbABEL program (http://mga.bionet.nsc.ru/

,yurii/ABEL/) in AGES, ARIC and Rotterdam study and the R

software in CHS (http://www.r-project.org). Genomic control

correction was applied in each study prior to the meta-analysis. To

implement genomic control, the lgc value was used to correct the

SE as follows: SE_corrected = SE6!lgc. All four cohorts showed

low dispersion with inflation factors in the range of 1.030–1.071.

Meta-analysis
We conducted a meta-analysis of the beta estimates obtained

from the linear regression models from the four cohorts using an

inverse-variance weighting using the R software (MetABEL) (Text

S1, section 5) [45]. Strand information was available from all

cohorts, facilitating the meta-analysis. After QC, filtering, and

imputation within each study, we restricted our meta-analysis to

the 2,194,468 autosomal SNPs that were common to all cohorts.

We decided a priori on a genome-wide significance threshold of

p,5.061028 which corresponds to a p-value of 0.05 with

Bonferroni correction for one million independent tests. For 2.2

million tests, it corresponds to an expectation of only 0.11 false

positives, regardless of test-dependence [46]. Use of this threshold

is also supported by LD patterns observed in deep sequencing

work within European populations [47].

Replication analyses
The genome-wide significant SNPs for each locus from the

discovery phase were examined in four replication cohorts. The

four replication sample sets included 1,709 participants from the

Australian Twins Study, 1,132 from the UK Twins Study, 2,501

from the BDES and 1,310 from the BMES. Retinal vascular

caliber measurements used the same methodology and formulas as

in the CHARGE cohorts. Details of this and the procedures for

genotyping are described in the Text S1, sections 1 and 2. In brief,

in the Australian Twins Study, genotyping was performed on the

Illumina Human Hap610W Quad array. In the UK Twins Study,

56% of the participants were genotyped using the Illumina 317k

HumanHap duo array, whereas the remaining 44% using the

Illumina HumanHap610Quad array. In the BDES, SNPs were

genotyped using TaqMan SNP genotyping assays (Applied

Biosystems, CA). Finally, in the BMES genotyping was performed

using the Illumina 610K array.

Analyses with cardiovascular diseases
In order to examine the association between SNPs that were

successfully replicated in the current study and cardiovascular

diseases, we obtained association statistics for each of these SNPs
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PLoS Genetics | www.plosgenetics.org 9 October 2010 | Volume 6 | Issue 10 | e1001184



from several GWA studies. We obtained these data from the

WTCCC on 2000 cases with coronary artery disease and 3000

controls [3], from HVH Study on 501 cases with stroke [28], 1,172

cases with myocardial infarction and 1,314 controls [29], from

Global BPgen on 8,871 cases with hypertension and 9,027 controls

[30], and from DIAGRAM+ on 8,130 cases with diabetes mellitus

and 38,987 controls [31]. Details of each these studies have been

described in the Text S1, section 6.

Supporting Information

Figure S1 Quantile-quantile (QQ)-plot showing the minus log-

transformed observed versus the expected p-values after meta-

analysis for (A) retinal venular and (B) arteriolar caliber.

Found at: doi:10.1371/journal.pgen.1001184.s001 (0.26 MB TIF)

Table S1 The association between the top SNPs per genome-

wide significant locus and retinal vascular caliber additionally

adjusted for diabetes mellitus and hypertension.

Found at: doi:10.1371/journal.pgen.1001184.s002 (0.05 MB

DOC)

Text S1 Sample selection, retinal vascular caliber measure-

ments, genotyping quality control filters and imputation, screening

for latent population substructure, meta-analysis techniques,

analyses with cardiovascular diseases, reference list.

Found at: doi:10.1371/journal.pgen.1001184.s003 (0.09 MB

DOC)
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45. Department of Genetics, Biology and Biochemistry, University of

Torino, Torino, 10126, Italy

46. Department of Clinical and Experimental Medicine, Federico II

University, Naples, 80100, Italy

47. Unit of Cancer Epidemiology, University of Turin and Centre for

Cancer Epidemiology and Prevention (CPO Piemonte), Turin, 10126,

Italy

48. National Institute for Welfare and Health P.O. Box 30, FI-00271

Helsinki, Finland

49. Institute for Molecular Medicine Finland FIMM, University of

Helsinki and National Public Health Institute

50. Genome Technology Branch, National Human Genome Research

Institute, Bethesda, MD 20892, USA

51. Department of Genetics, University of North Carolina, Chapel Hill,

NC 27599, USA

52. Diabetes Unit, Department of Epidemiology and Health Promotion,

National Public Health Institute, 00300 Helsinki, Finland

53. Physiology and Biophysics USC School of Medicine 1333 San Pablo

Street, MMR 626 Los Angeles, California 90033

54. Institute of Human Genetics, Helmholtz Zentrum München,

German Research Centre for Environmental Health, 85764 Neuherberg,

Germany

55. Institute of Human Genetics, Technische Universität München,

81675 Munich, Germany

56. Institute of Molecular and Cell Biology, University of Tartu, 51010

Tartu, Estonia

57. Ludwig Maximilians University, IBE, Chair of Epidemiology,

Munich

58. Cardiovascular Research Center and Cardiology Division, Massa-

chusetts General Hospital, Boston, Massachusetts 02114, USA

59. Framingham Heart Study and National, Heart, Lung, and Blood

Institute, Framingham, Massachusetts 01702, USA

60. Cardiovascular Health Research Unit, Departments of Medicine

and Epidemiology, University of Washington, Seattle, Washington, 98101

USA

61. Department of Epidemiology, University of Washington, Seattle,

Washington, 98195 USA

62. CIBER Epidemiologı́a y Salud Pública, Barcelona, Spain

63. Center for Neurobehavioral Genetics, Gonda Center, Room 3506,

695 Charles E Young Drive South, Box 951761, UCLA, Los Angeles, CA

90095.

64. Department of Clinical Sciences/Obstetrics and Gynecology, P.O.

Box 5000 Fin-90014, University of Oulu, Finland

65. Oxford Centre for Diabetes, Endocrinology and Metabolism,

University of Oxford, Churchill Hospital, Old Road, Headington, Oxford

OX3 7LJ, UK

66. Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old

Road, Headington, Oxford, UK OX3 7LJ

67. Department of Child and Adolescent Health, National Public Health

Institute (KTL), Aapistie 1, P.O. Box 310, FIN-90101 Oulu, Finland

68. Division of Nephrology, Department of Medicine University

Medical Center Groningen, University of Groningen, Hanzeplein 1,

9700 RB Groningen, The Netherlands

69. Unit of Genetic Epidemiology and Bioinformatics, Department of

Epidemiology University Medical Center Groningen, University of

Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands

70. Clinical Trial Service Unit and Epidemiological Studies Unit

(CTSU), University of Oxford, Richard Doll Building, Roosevelt Drive,

Oxford, OX3 7LF, UK

71. Atherosclerosis Research Unit, Department of Medicine Solna,

Karolinska Institutet, Karolinska University Hospital Solna, Building

L8:03, S-17176 Stockholm, Sweden

72. Leibniz-Institut für Arterioskleroseforschung an der Universität

Münster, Domagkstr. 3, D-48149, Münster, Germany

73. Molecular Medicine, Department of Medical Sciences, Uppsala

University, SE-751 85 Uppsala, Sweden

74. Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria

Imbaro (Chieti), Italy

75. Istituto di Neurogenetica e Neurofarmacologia, CNR, Monserrato,

09042 Cagliari, Italy

76. Department of Epidemiology, Univ. of Texas M. D. Anderson

Cancer Center, Houston, TX 77030

77. Laboratory of Genetics, Intramural Research Program, National

Institute on Aging, National Institutes of Health, Baltimore, Maryland,

USA 21224
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