
��������� 	
���
�
� � � � 	 � � � � � � � � �

���������	
����
����	�	����
�����	��	�������
	�������

RUTR-CS05003 — November 2005

Sigurður H. Einarsson, Ragnheiður Ýr Grétarsdóttir,
Björn Þór Jónsson, Laurent Amsaleg

The Eff 2 Image Retrieval System Prototype

The Eff 2 Image Retrieval System Prototype

Sigurður H. Einarsson∗, Ragnheiður Ýr Grétarsdóttir∗,
Björn Þór Jónsson∗, Laurent Amsaleg†

Technical Report RUTR-CS05003, November 2005

Abstract: Content-based image retrieval has become increasingly important in recent
years. In the Eff 2 project we have been working with one of the most advanced image
description schemes available, namely a fine-grained image recognition scheme based on
local descriptors. While this description scheme has been used successfully in the demanding
application of content-based image copyright protection, query processing in this approach is
very slow. This report describes the Eff 2 image retrieval system prototype, which is designed
to facilitate user interaction with the local descriptor search process. We demonstrate,
through experimental results, that the time to obtain a good answer may be reduced by
over 85% by allowing the user to examine intermediate results.

Keywords: Image retrieval; Local descriptors; User interface; Approximate searches;
Result quality.

(Útdráttur: næsta síða)

This technical report is an extended version of a paper that appeared in the IASTED DBA 2005
conference [EGJA05].

This project is part of the Eff2 project on Efficient and Effective Image Retrieval (see
http://datalab.ru.is/eff2). The Eff 2 project is a cooperation between researchers at the IRISA labora-
tory in Rennes, France and Reykjavík University, Iceland, and is partially supported by Rannís Technical
Research Grant 030290004 and EGIDE Jules Verne Travel Grant 4-2003.

∗ Reykjavík University, Ofanleiti 2, IS-103 Reykjavík, Iceland. sigurdure/ragnheidur/bjorn@ru.is
† IRISA–CNRS, Campus de Beaulieu, 35042 Rennes, France. laurent.amsaleg@irisa.fr

Frumgerð Eff 2 Myndleitarkerfisins

Sigurður H. Einarsson, Ragnheiður Ýr Grétarsdóttir,
Björn Þór Jónsson, Laurent Amsaleg

Tækniskýrsla RUTR-CS05003, Nóvember 2005

Útdráttur: Mikilvægi innihaldsháðrar myndleitar hefur aukist mjög undafarin ár. Í
Eff 2 verkefninu höfum við unnið með eina af bestu myndlýsingaraðferðum sem þekktar
eru, fíngerða myndlýsingaraðferð byggða á staðværum lýsingum, sem hefur verið notuð með
góðum árangri við höfundarréttarvörn á myndum. Úrvinnsla fyrirspurna með þessari aðferð
er hins vegar mjög hægvirk. Þessi skýrsla lýsir viðmóti Eff 2 myndleitarkerfisins, sem er
hannað til að gefa notendum innsýn í leitarferlið. Sýnt er með tilraunaniðurstöðum að
stytta má tímann sem líður þar til góðar niðurstöður fást um meira en 85% með því að leyfa
notendum að skoða milliniðurstöður.

Lykilorð: Myndaleit; Staðværir lýsingar; Notendaviðmót; Nálgunarleit; Gæði svara.

(Abstract: previous page)

The Eff 2 Image Retrieval System Prototype iii

Contents
1 Introduction 1

1.1 The Eff 2 Project . 1
1.2 Contributions of this Report . 2
1.3 Overview of the Report . 2

2 Local Descriptor Search 2
2.1 Local Descriptors . 3
2.2 Similarity Search . 3

2.2.1 Descriptor Database . 3
2.2.2 Search Data Structures . 4
2.2.3 Search Algorithm . 5

3 Facilitating User Interaction 6
3.1 Client API . 7
3.2 Image Server . 9
3.3 Client Prototype . 9
3.4 Upcoming Features . 11

4 Experiments 11
4.1 Quality of Intermediate Results . 12
4.2 Server Overhead . 13

5 Related work 15

6 Conclusions 15

RUTR-CS05003

iv Einarsson et al.

Reykjavík University, Department of Computer Science

The Eff 2 Image Retrieval System Prototype 1

1 Introduction
In recent years, content-based image retrieval has become more and more important in many
fields, such as medicine, geography, weather forecasting and security. Content-based image
retrieval is typically implemented by mapping the images to multi-dimensional descriptors,
which are then used in similarity searches to determine which images in the collection are
most similar to a query image. Many different descriptors have been proposed, ranging from
traditional “global” descriptors offering a rough description of the overall composition of the
image (e.g., see [FBF+94, SS94, HKM+97, MPE]), to advanced “local” descriptors, where
each descriptor describes a small portion of the image and the overall picture is described
by many such descriptors (e.g., see [FRKV94, Low99, AG01]).

1.1 The Eff 2 Project
In the Eff 2 project we have been working with one of the most advanced image description
schemes available, namely a fine-grained image recognition scheme based on the local descrip-
tors proposed in [FRKV94] for gray-scale images and extended to color images in [AG01].
With this description scheme, each image of the collection yields many descriptors (several
hundreds for high-quality images), each descriptor describing a small area of the image. To
retrieve the images of the collection that are similar to a query image, a k-nearest neighbor
query is run for each local descriptor computed on the query image. Each nearest neighbor
yields one vote for some image in the collection, and the most similar images are found by
aggregating the votes and ranking the images based on the number of similar descriptors.

This description scheme has been used successfully in the demanding application of
content-based image copyright protection [BAG03a, BAG03b]. Experiments with the Stir-
Mark benchmark [PSR+01] for simulating image pirate activities have shown these descrip-
tors to be very effective, finding well over 90% of the pirated copies and losing only those that
have been modified so much as to change the visual content significantly. Query processing
in this approach is very slow, however, for two primary reasons.

First, the query processing is very time consuming. In fact, in [AG01] it was shown that
a sequential scan of the descriptor collection is as fast as using the most advanced indexing
methods of the time. The key observation to be made is that since each query image yields
tens or hundreds of descriptors, tens or hundreds of nearest neighbor queries are performed
over the descriptor index. For an indexing approach to be profitable, it must therefore
require reading and processing only a small portion of a percent of the collection. We are
currently investigating several approaches to solving this problem, but they are outside the
scope of the current report.

Second, the approach of running the query to completion and then presenting the results
does not utilize the capacity of the user. Human perception of images is very accurate, and
thus presenting intermediate results to the user of the system may be very beneficial. The

RUTR-CS05003

2 Einarsson et al.

user may, for example, determine that a matching image has indeed been found after only
a small portion of the processing time, and at that time choose to stop the search. Alter-
natively, the user may decide that the intermediate results indicate that further processing
is unlikely to yield a good match, and choose to abort the query at that point. In both of
these cases, the system would act as a filter, only presenting the most likely candidates to
the user, instead of the whole collection. This report describes the Eff 2 retrieval system
prototype, which is defined precisely to allow the user such intervention into the search.

1.2 Contributions of this Report
This report, which is an extended version of [EGJA05], presents our approach to facilitating
user interaction with the local descriptor search process. It makes the following three primary
contributions:

1. The local descriptor search process was encapsulated into a prototype server architec-
ture. At each time, the intermediate results of the search are accessible to the user
through a client API.

2. A prototype user interface was implemented that connects periodically (or upon re-
quest) to the server, obtains the current status of the search and displays to the user.
The user can decide when to stop the search, based on the intermediate results pre-
sented.

3. Finally, we conducted experiments that show that intermediate results can indeed
have significant value to the users. We also measured the overhead of the search due
to client interactions and found that compared to the gains of presenting intermediate
results, the overhead is small.

1.3 Overview of the Report
The remainder of the report is organized as follows. Section 2 reviews the local descriptors
used in our work and the algorithm used to search the collection. Section 3 presents our
approach to facilitating user interaction, including our server implementation, the client API
used to control the search, and the client prototype. Section 4 then describes our experiments
to validate the assumption that presenting intermediate results is indeed beneficial to the
user. Finally, Section 5 presents related work and Section 6 gives our conclusions.

2 Local Descriptor Search
The local descriptors and search process used in our project were presented in [AG01] and
are reviewed here. The section first presents briefly the local descriptors, their properties
and how they are used to estimate image similarity. Then the query processing algorithm
is described in detail.

Reykjavík University, Department of Computer Science

The Eff 2 Image Retrieval System Prototype 3

2.1 Local Descriptors
The creation of the local descriptors of [AG01] proceeds in three steps. First, specific points
in the image, called interest points, are selected based on the shape of the image signal at
these points. Second, the signal around each interest point is characterized by its convolution
with a Gaussian function and its derivates up to the third order. Finally, these derivatives
are mixed to enforce invariance properties and to make the descriptors robust to several
changes to the images. For details, please see [AG01].

This scheme has been shown to be robust to many different types of image modifica-
tions [AG01, BAG03b]. It is largely insensitive to resizing, color variation, cropping, rotation,
jpeg-compression, mirroring, etc. For example, since the local descriptors are distributed
throughout the image, cropping is handled implicitly. Of course, it is possible to crop the
image to the extent that only very few descriptors prevail in the cropped image, but in
this case the visual content of the image has severely been altered, often resulting in an
uninteresting image.

The current version of the descriptor creation results in 24-dimensional descriptors. The
number of descriptors per image can vary significantly, depending on the size, resolution,
quality and contents of the images. For typical images, several hundreds of descriptors
may be created; for large, high quality images, even more than a thousand descriptors.
Computing descriptors over all the images is done off-line. To know which image a descriptor
has been computed from, image identifiers are stored together with the descriptors.

The similarity retrieval proceeds as follows. Interest points are first identified in the
query image and the corresponding local query descriptors computed. The query descrip-
tors are then used to query the descriptor database. For each descriptor of the query image,
the system returns the 30 most similar descriptors found in the database (using Euclidean
distance for the measure of similarity; for further details of the query processing, see below).
The image identifiers of these descriptors indicate the associated image from the collection,
and it is straight-forward to count the number of occurrences of each image identifier during
the whole retrieval process. Once all the query descriptors have been used to probe the
database, the occurrence counters allow the system to rank the candidate images by de-
creasing similarity, with the image with the most votes considered most similar, the image
with the second most votes the second most similar, and so on.

In general, the number of images receiving at least one vote is very large. If the database
does not contain any image that is similar to the query image, then the votes of all the
images returned are roughly similar and of small values. In contrast, if one or more images
are indeed similar, then they have many more votes.

2.2 Similarity Search
2.2.1 Descriptor Database

The system uses two binary data files, the image catalog and the descriptor database. Fig-
ure 1 shows the structure of these files.

RUTR-CS05003

4 Einarsson et al.

Image Catalog Descriptor Database
int imageid int imageid
char[100] location float[24] descriptor

Figure 1: Structure of database entries

Query Descriptor
float[24] descriptor
int[30] identifiers
float[30] distances
int neighbors
int farthest

Figure 2: Query descriptor data structures

The image catalog contains, for each image, the identifier of the image and its location.
This information is only used when submitting (intermediate or complete) results to the
user. The image location is in URL format, so that images can be located on different
servers. This feature offloads image delivery from the image retrieval server.

The descriptor database has one entry for each descriptor. Each descriptor entry contains
the identifier of the image, followed by 24 real numbers which constitute the descriptor itself.
Many descriptors, of course, share the same image identifier.

2.2.2 Search Data Structures

In order to implement a 30-nearest neighbor search for each query descriptor, the data
structure shown in Figure 2 is used. Aside from the descriptor itself, there are two arrays
with 30 entries, one entry for each nearest neighbor seen so far. The first array contains
the image identifiers of the 30 nearest image descriptors seen so far in the search, while the
second array contains their distances from that query descriptor.

The neighbors variable indicates how many neighbors are stored at each time. It is
initialized to 0, and then increased each time a new neighbor is inserted, until it reaches
30 and both arrays are full. From that time on, an index into these arrays is maintained,
that points to the farthest (or 30th) neighbor. When processing a new image descriptor
from the collection, its distance to that query descriptor is compared to the distance of this
farthest neighbor. If it is further away, it is simply discarded. If it is nearer, the identifier of
the descriptor and its distance are inserted into the arrays instead of the previous farthest
neighbor. The distance array is then scanned to find a new farthest neighbor; the pseudo-
code for finding a new farthest neighbor is shown in Figure 3.

Reykjavík University, Department of Computer Science

The Eff 2 Image Retrieval System Prototype 5

Procedure FindFarthest(q)

Input:
Query descriptor (see Figure 2), q

dist = 0
for i = 1 . . . 30 do

if q.distances[i] > dist then
dist = q.distances[i]
q.farthest = i

Figure 3: Finding Farthest Neighbor.

2.2.3 Search Algorithm

The most efficient search process described in [AG01] is based on a sequential scan of the
collection, and proceeds as follows. After reading (part of) the descriptor database from
disk, the first image descriptor is compared to all query descriptors. As it is the current
nearest neighbor to all of them, it is inserted into the nearest neighbor arrays (identifiers
and distances) for all the query descriptors. The same happens for the next 29 descriptors.
After that, each database descriptor is compared to each query descriptor. If it is found
to be nearer than the farthest descriptor, it replaces that descriptor. Then the database
descriptor is compared to the next query descriptor. Figure 4 shows pseudo-code for the
search (simplified by assuming 30 neighbors are already in place).

Once all database descriptors have been compared to all query descriptors, processing
of the database is complete, and the identifier arrays of all the query descriptors contain all
the votes given to individual database images. These votes are then simply summarized and
the resulting image list ranked based on the number of votes. This list is then combined
with information from the image catalog to return a list of images to the user.

The inverted approach of comparing the database descriptors to the query descriptors is
very similar to a nested loops join, where the smaller relation (query descriptors) is the inner
relation to optimize the disk processing of the search. In order to optimize disk processing
even further, large chunks of disk pages are read into memory at each time (the default
setting is 80 pages of 4 KB each).

The CPU processing, however, is the bottleneck of the search, as each database descrip-
tor must be compared against many query descriptors. For each distance calculation, the
value of each dimension of the query descriptor must be subtracted from the value of that
dimension of the database descriptor, and the result squared. Two simple tricks are used
to optimize CPU processing. First, the square root is omitted from the Euclidean distance
function, as omitting it does not change the relative ranking of the descriptors. Second,
during the calculation of the distance, if at any point the distance becomes greater than the
distance to the farthest neighbor, the distance calculation is aborted, and a very large num-

RUTR-CS05003

6 Einarsson et al.

Procedure Search(d, q)

Input:
A set of database descriptors, d[i]
A set of query descriptors, q[j]

for each d[i] do
for each q[j] do

dist = Distance(d[i], q[j])
if dist < q[j].distances[q[j].farthest] then

q[j].identifiers[q[j].farthest] = d[i].imageid
q[j].distances[q[j].farthest] = dist
FindFarthest(q[j])

Figure 4: Searching for Neighbors.

ber is returned instead of the actual distance. Figure 5 shows pseudo-code for the distance
calculation using these two tricks.

Note that in the discussion above no assumptions were made about the order of the
descriptors within the file. If all the descriptors belonging to the same image are stored
together, then all the votes of that image will be found at about the same time. If the
descriptors are randomly ordered, however, the votes of individual images will slowly ac-
cumulate, leading to better intermediate results. Therefore, we have chosen to order our
descriptor database randomly.

3 Facilitating User Interaction
From the description of the search process above, we can observe that at any point in time
some of the votes of any given query descriptor may be votes of eventual nearest neighbors,
while other votes will at some point be replaced. By recalling that very similar images have
many votes, while random images have very few votes, it is likely that the intermediate
results will soon give a good idea of the final results. The goal of our work is to allow the
user to tap into these intermediate results. Of course, the “user” may in many cases be
an automated system, rather than a person. We are primarily interested in supporting the
following actions by the user in our prototype:

• Once the user finds that one of the top images is indeed a matching image, the search
is ended and that image is chosen for further processing.

• Once the user determines that no image is likely to separate itself from the random
images, the search can also be ended, with no similar image found.

Reykjavík University, Department of Computer Science

The Eff 2 Image Retrieval System Prototype 7

Function Distance(d, q)

Input:
A database descriptor, d
A query descriptor, q

Output:
Distance between d and q

dist= 0
for i = 1 . . . 24 do

dist+= (d.descriptor[i] − q.descriptor[i])2
if dist > q.distances[q.farthest] then

return MAXDIST
return dist

Figure 5: Distance Calculation.

• Once the user determines that a particular image is not a match, this image can be
removed from further consideration by the user.

The Eff 2 prototype has three main components: client API, image server, and client inter-
face, which were defined to support precisely these interactions. Figure 6 gives an overview
of these aspects of our prototype, which are described in the following.

3.1 Client API
The image retrieval client communicates with the image server via the client API. The API
is defined and implemented in Java and invoked via RMI. As the server is implemented in
C++, the API uses JNI to gain access to C++ functions that implement the functionality
of the API. The operations of the client API are explained below:

int Start(char *image) In the current version, the data structure submitted to the server
is an array of query descriptors; in future versions, an image may be supplied instead.∗
The data structures for the search are initialized and a new search process is spawned.
An identifier for the search is returned, which is used in subsequent calls to identify
the search.

char *Status(int searchid) This function returns the status of the given search. In order
to get the intermediate results, the vote arrays must be summarized and ranked.

∗ Note that the char * data type is generally used to pass complex information, as it is easier to pass
through the layers of the API than a complex data structure.

RUTR-CS05003

8 Einarsson et al.

Figure 6: Architecture of the Eff 2 Prototype.

Reykjavík University, Department of Computer Science

The Eff 2 Image Retrieval System Prototype 9

Observe that although the search process may be modifying the results at the same
time as the status is taken, there is no need for mutual exclusion, as at most one vote
might be corrupted at any time.

void End(int searchid) This function ends the given search, by instructing the search
process to stop, regardless of whether the search found a match or not.

void OmitIds(int searchid, char *idlist) This method is used to notify the search pro-
cess that the user does not want to see these images in the result anymore.

3.2 Image Server
The server uses shared memory to communicate the intermediate results from the search
process to the client API. When the server is initialized, a large chunk of shared memory
is allocated and subsequently managed via a simple memory manager. All data structures
of the search (described in Section 2.2.2) are stored in the shared memory, and pointed to
(indirectly) via the search identifier shared by the API calls. A special control mechanism
is implemented to stop the search from exploring the database when the user has requested
to abort the current search.

3.3 Client Prototype
Most of the functionality of the client prototype is available through the main screen, which
is shown in Figure 7. The selected query image is shown on the right, and the six images
that are ranked highest in the intermediate result at each time are shown on the left (the
screen is refreshed every five seconds).

The identifier of the image and its score are shown beneath each result image. The user
can utilize the score to assess the relative merits of images in the result. Additionally, there
are three buttons associated with each image.

The check-mark is used by the user to indicate that this image is indeed the image sought
after. Pressing such a button ends the search.

The question-mark is intended to initiate a closer comparison of the images. Currently,
the query image and the result image are simply shown side by side, but it is easy to foresee
all kinds of actions to identify a match, such as stretching the images, rotating and overlaying
them—essentially, undoing the potential actions of an image pirate.

The minus button indicates that that particular image is definitely not a match, and
should not be shown again. Pressing this button results in a call to the OmitIds() function
of the client API.

Additionally, there are several buttons on the right side of the interface. Pressing the
Pause-button instructs the interface to stop polling the server for updates to the (inter-
mediate) results (when pressed, the Pause-button is replaced by a Play-button). The
Update-button can then be used to manually retrieve updated results. The Stop-button
indicates that no image is found and that query processing should be halted. The Skip

RUTR-CS05003

10 Einarsson et al.

Figure 7: The user interface.

Reykjavík University, Department of Computer Science

The Eff 2 Image Retrieval System Prototype 11

all-button instructs the server to never show any of the current top images again. Finally,
the Quit-button exits the prototype.

3.4 Upcoming Features
The Eff 2 prototype is still quite raw. We expect future versions to be implemented in
CORBA, with multiple threads implementing the server (eliminating the need for shared
memory and the memory manager). Additionally, we expect to make multiple changes to
the client prototype, such as:

• Increasing the number of images shown in the intermediate result, and adding a slider
to examine lower ranked images.

• Allowing the user to view the “history” of the search, for instance by showing a graph
of the changes in the scores (or ranks) of the images.

• Allowing a precise comparison of the query image and the result images.

• Allowing configuration of the update time.

• Allowing additional query modes, such as selecting a random picture, cropping the
query picture, and allowing for query refinement.

• Making adjustments to the interface, such as adding tooltips and a ’New search’ button.

Of course, new search algorithms developed through our research efforts will also be inte-
grated with the prototype.

4 Experiments
We performed two experiments to examine the benefits of allowing user interaction with
the search. First, we measured the dynamic quality of the results, to quantify the potential
benefits of presenting intermediate results. Second, we studied the overhead of the search
due to the presentation of intermediate results.

The image collection consisted of 52,273 images taken from video sequences of various
television shows. These images were described by a total of 5,017,298 descriptors, which
were stored in a random order; as each descriptor needs 100 bytes of storage, the size of
the descriptor database on disk was about 500MB. The experiments were run on a Dell
workstation with a 1.6GHz Pentium 4 CPU, 512MB of main memory, and an 18GB ATA
disk.

We ran queries using 30 randomly chosen images from the collection, with a very varying
number of descriptors. As the overall behavior of all 30 images was very similar, we have
chosen two of those images to present in detail, while also showing results for all 30 images.
These two images are equal in size but the system creates more descriptors for one of them.
The small image contained 52 descriptors and the large image 562 descriptors. They were
chosen as fairly extreme candidates in terms of number of query descriptors.

RUTR-CS05003

12 Einarsson et al.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

In
te

rm
ed

ia
te

 R
es

ul
t Q

ua
lit

y

Elapsed Time (sec)

Top Image Found

Average Precision
Precision

Figure 8: Intermediate result quality for large image

4.1 Quality of Intermediate Results
The dynamic quality of the answers was measured relative to the final outcome of the search
algorithm. Two metrics were used. Precision determines how many of the eventual top
six images are present in the current top six images at any time, independent of the order
of images. Average precision over the top six images, on the other hand, applies more
importance to correctly ranking the top image(s):

average precision =
∑6

i=1 precisioni

6

The precision and average precision were calculated once every second. The search was
performed 30 times for each image and the results averaged.

Figure 8 shows the changes in the quality of the intermediate results for the large image,
as time elapses during the search. The complete execution of the search takes about 475
seconds (or almost 8 minutes). As expected, the initial results contain only random images
and the final result contains the correct six images. The figure shows that the quality of
the result rises very rapidly early in the search, and after only about 60 seconds (or roughly
15% of the search time) five out of the top six images are already being presented to the
user.†

Figure 8 also shows the time point at which the eventual top image is first shown as the
intermediate top image. This occurs after only 27 seconds, or 6% of the search time. This
is a promising result, as it indicates that a search process that quickly retrieves 6% of the
correct votes, will have a good chance of presenting meaningful results to the user. Since

† The “flickering” of the result quality seen in the range from 70 seconds to 250 seconds—and even later—
happens because a few images receive a similar number of votes, and thus a single new vote can change their
relative position.

Reykjavík University, Department of Computer Science

The Eff 2 Image Retrieval System Prototype 13

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

In
te

rm
ed

ia
te

 R
es

ul
t Q

ua
lit

y

Elapsed Time (sec)

Top Image Found

Average Precision
Precision

Figure 9: Intermediate result quality for small image

there are, with the large image, 562× 30 = 16, 860 votes to be shared, it may be possible to
get a good result by reading as few as 1,000 descriptors in the best case!

Figure 9 shows the changes in the quality of the intermediate results for the small image,
as time passes during the search. As the figure shows, the response time is much shorter,
due to fewer query descriptors. Overall, the observations above still hold, although now the
search process must search about 15% and 50% of the collection to find the first image and
top five images, respectively. In this case, 15% of 52 × 30 = 1, 560 votes is about 250 votes,
or even fewer than before.

Additionally, more “flickering” of the results is seen in Figure 9. The higher proportions
and the flickering here are due to the fact that with fewer query descriptors, individual votes
have proportionately more effect on the outcome of the search. For high-quality images with
many descriptors, such as the large image, this is not an issue.

Figure 10 outlines the quality of the intermediate results for all 30 query images. Two
lines are shown in the figure, the time required to run the query until completion and the
time that passes until the top image is first shown in the top position. Figure 10 indicates
that the time required to find the top image is generally quite low and relatively independent
of the number of descriptors in the image.

4.2 Server Overhead
In our architecture, the search process may be interrupted while the user retrieves the status
of the search. Although mutual exclusion is not required, the two processes can interfere
with each other. We have therefore made measurements to determine the additional time
required to conclude the search due to interference from the client.

Figure 11 shows the response time of the system for the two selected images, as the
polling interval is increased (the dashed lines show the response time without polling).

RUTR-CS05003

14 Einarsson et al.

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600

E
la

ps
ed

 T
im

e
(s

ec
)

Query Image Size (descriptors)

Final Result
Top Image Found

Figure 10: Intermediate result quality for 30 images

0
50

100
150
200
250
300
350
400
450
500

0 2 4 6 8 10 12 14

Q
ue

ry
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Polling interval (seconds)

Large Image (562 desc.)
Small Image (52 desc.)

Figure 11: Server overhead

On one extreme, a single second passes from the receipt of one intermediate result to the
request for another. On the other extreme, the results are obtained once query processing
is completely finished. As no significant changes were seen beyond a polling interval of 10
seconds, the x-axis is truncated. Again, each data point is the average of 30 runs.

As the figure shows, there is some overhead associated with frequent polling, but never
more than 12%. Given the large gains in response time, due to presentation of intermediate
results, this overhead is clearly acceptable.

Reykjavík University, Department of Computer Science

The Eff 2 Image Retrieval System Prototype 15

5 Related work
Much work has been done on content-based image retrieval (e.g., see [RHC99, VT01]) and on
user interaction with image retrieval systems in particular (e.g., see [BCP04, ACP04]). Most
of these works, however, have focused on global description schemes, which are known to
suffer problems of “disappearance of discriminability” as the image collection grows. While
our approach may be applied to such global descriptors, it is the first work we are aware of
that addresses user interaction with such an advanced image description scheme.

The work most related to ours from the database area is online aggregation [HHW97].
Online aggregation is a query processing scheme aimed at interactive processing of expensive
aggregate queries, such as calculating the average salaries across departments. In online
aggregation the dynamic interface quickly lists approximate averages, along with indicators
of the quality of the estimates and progress bars. The user can halt processing of the query,
once the desired accuracy is reached.

6 Conclusions
This report has described the Eff 2 image retrieval system prototype, which is designed
to facilitate user interaction with a search process using a very advanced local description
scheme [AG01]. The prototype is based on three main components: a client API, an image
server and a client interface. We have demonstrated, through experimental results, that
intermediate results can indeed have significant value to the users and that compared to the
gains of presenting intermediate results, the overhead is small.

References
[ACP04] M. Albanese, C. Cesarano, and A. Picariello. A multimedia data base browsing

system. In Proceedings of the First International Workshop on Computer Vision
meets Databases (CVDB), Paris, France, 2004.

[AG01] L. Amsaleg and P. Gros. Content-based retrieval using local descriptors: Prob-
lems and issues from a database perspective. Pattern Analysis and Applications,
4, 2001.

[BAG03a] S.-A. Berrani, L. Amsaleg, and P. Gros. Approximate searches: k-neighbors +
precision. In International Conference on Information and Knowledge Manage-
ment (CIKM), New Orleans, LA, 2003.

[BAG03b] S.-A. Berrani, L. Amsaleg, and P. Gros. Robust content-based image searches for
copyright protection. In Proceedings of the First ACM International Workshop
on Multimedia Databases (MMDB), New Orleans, LA, 2003.

RUTR-CS05003

16 Einarsson et al.

[BCP04] I. Bartolini, P. Ciaccia, and M. Patella. The PIBE personalizable image browsing
engine. In Proceedings of the First International Workshop on Computer Vision
meets Databases (CVDB), Paris, France, 2004.

[EGJA05] S.H. Einarsson, R.Ý. Grétarsdóttir, B.Þ. Jónsson, and L. Amsaleg. The Eff 2

image retrieval system prototype. In Proceedings of the IASTED Conference on
Databases and Applications (DBA), Innsbruck, Austria, 2005.

[FBF+94] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and
W. Equitz. Efficient and effective querying by image content. Journal of Intel-
ligent Information Systems, 3, 1994.

[FRKV94] L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever.
General intensity transformations and differential invariants. Journal of Math-
ematical Imaging and Vision, 4(2), 1994.

[HHW97] J.M. Hellerstein, P.J. Haas, and H.J. Wang. Online aggregation. In Proceedings
of the ACM SIGMOD Conference on Management of Data, Tuczon, AZ, 1997.

[HKM+97] J. Huang, R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih. Image indexing using
color correlograms. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, 1997.

[Low99] D.G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of International Conference on Computer Vision (ICCV), Corfu, Greece, 1999.

[MPE] Moving Picture Experts Group. MPEG home page.
http://www.chiariglione.org/mpeg/.

[PSR+01] F.A.P. Petitcolas, M. Steinebach, F. Raynal, J. Dittmann, C. Fontaine, and
N. Fatès. A public automated web-based evaluation service for watermarking
schemes: Stirmark benchmark. In Proceedings of electronic imaging, security
and watermarking of multimedia contents III, San Jose, CA, 2001.

[RHC99] Y. Rui, T.S. Huang, and S.-F. Chang. Image retrieval: current techniques,
promising directions and open issues. Journal of Visual Communication and
Image Representation, 10(4), 1999.

[SS94] M.A. Stricker and M.J. Swain. The capacity of color histogram indexing. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, CA, 1994.

[VT01] R.C. Veltkamp and M. Tanase. Content-based image retrieval systems: A survey.
http://www.aa-lab.cs.uu.nl/cbirsurvey/, 2001.

Reykjavík University, Department of Computer Science

����������	
�	�
��
���	�������
���������	����������

���������	��	���� !	����������	������"
#��$	%!&'	&(()�
*�+$	%!&'	&(()� �
,���$--.../�
/��
���0	�)1 �&111

