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Heildstæð GPU hröðun á útreikningistaðværra lýsinga með CUDAKristleifur Daðason, Herwig Lejsek, Björn Þór Jónsson, Laurent AmsalegTækniskýrsla RUTR-CS09003, Júlí 2009Útdráttur: Greining myndbanda með staðværum lýsingum (e. loal desriptors) krefstmikilla afkasta við gerð lýsinganna. Skilvirkasta leiðin að þessu marki er að nota GPUmyndvinnslugjörvann sem fylgir öllum nýrri tölvum. Í þessari skýrslu lögum við útreikningaE�2 lýsinganna, sem eru tilbrigði við SIFT lýsinga, að GPU. Við berum GPU-E�2 lýsinganasaman við SiftGPU og sýnum að þótt bæði GPU-byggðu tilvikin ge� svipaðar niðurstöður,þá þur� GPU-E�2 lýsingarnir mun minni vinnslutíma.Lykilorð: Staðværir myndlýsingar, GPU, E�2, SIFT, CUDA.
(Abstrat: previous page)
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Full GPU Aeleration of Loal Desriptors using CUDA 1
1 IntrodutionVideo analysis is a entral omponent in many appliations, suh as video surveillane, newsanalysis, and video opyright protetion. Reent methods for suh analysis are typiallybased on omputing many loal desriptors per frame; these frame-based desriptions arethen merged to form the video desription. As many appliations require real-time per-formane, high demands are made on the e�ient omputation of the loal desriptors,partiularly on high throughput.The traditional method for ahieving high throughput is using a luster of multi-oreomputers. The advantage is that the same desription ode an be used, but there are twomajor disadvantages. First, merging the loal desriptors in the orret order may requiremajor oding e�orts for synhronization. Seond, omputing lusters are very expensive andit is di�ult in pratie to deliver luster-based software produts to end users.An alternative method, solving both problems, is to use powerful graphis proessingunits (GPU). The advent of highly salable and parallel, yet inexpensive, GPUs has onsti-tuted a minor revolution in the omputer industry; many projets have therefore investigatedthe use of GPUs for a variety of tasks, suh as image proessing [1℄, feature traking [6℄ andloal desriptor omputation [7℄.The disadvantage of GPUs, however, is that the desription ode does not work un-hanged. In fat, adapting omputations to GPU has been onsidered a omplex and time-onsuming task. Data and omputations had to be adapted to meet severe onstraints on theaess patterns and operations available on-GPU. As a result, some omputational proessesould not be ompletely adapted, foring data loadbak to the host CPU for ompletion (e.g.,see [7℄). Fortunately, however, GPUs have now beome muh easier to utilize due to thereently released CUDA programming environment from NVIDIA [2℄. The CUDA modelallows a larger set of aess patterns to data, and supports a large set of omputing primi-tives. While the learning urve is still signi�ant, adaptation to GPU has beome easier andmore omplex omputations made tratable.In this paper, we adapt the omputation of the E�2 desriptors, a variant of SIFT,to the GPU through the CUDA environment. We ompare the GPU-E�2 desriptors toSiftGPU [7℄, another GPU-based variant of SIFT, and show that while both GPU-basedvariants yield similar results (better than SIFT, and omparable to E�2), the GPU-E�2desriptors require signi�antly less proessing time.2 BakgroundIn this setion, we review the state of the art in loal desriptor proessing, as well asprevious e�orts to reate GPU-based loal desriptors. We end with a brief disussionof the new CUDA programming environment from NVIDIA, whih we have used for ourimplementation.
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2 Daðason, Lejsek, Jónsson & Amsaleg2.1 SIFT and E�2 DesriptorsThe SIFT loal desriptors (Sale Invariant Feature Transform), developed by Lowe [5℄, havebeen onsidered the state of the art in image desription for roboti vision and various otheromputer vision and image proessing appliations. The reation proess onsists of twosteps, and an be roughly outlined as follows.In the �rst step, keypoint detetion, small regions of interest are deteted where desrip-tors may potentially be reated. This is done by reating a sequene of gaussian blurs atdi�erent sales, taking their di�erenes, and then deteting loal minima and maxima in thedi�erenes aross the sales. The keypoint is then loalized preisely to a sub-pixel au-ray. In the seond step, the desriptor itself is reated. First, the dominant gradient angle(diretion of egreatest ontrast) around the keypoint is found. Then a 4× 4 grid is reatedaround the keypoint, aligned to the dominant gradient angle, and a gradient histogram of 8bins reated in eah ell of the grid, obtaining a 4 × 4 × 8 = 128 dimensional histogram ofgradient strengths, �nally normalizing it.In this paper, we fous on the E�2 desriptors, proposed by Lejsek et al. [3℄, whih are amore salable variant of SIFT. There are three key di�erenes to SIFT. First, relatively moredesriptors are reated at higher sales, as more sales are onsidered and gamma orretionis applied to the inreasingly oarse blurs. Seond, a 3 × 3 grid is used around the point,resulting in 3×3×8 = 72 dimensions in total. Third, advaned �lters remove desriptors forlines and bright spots, that appear in very many images and have little information ontent(similar to ommon words in information retrieval). Several other minor hanges were made,inluding parameter tuning, to improve the reognition of various image transformations.The E�2 desriptors have been shown to perform signi�antly better than SIFT for mostimage transformations [3℄.2.2 GPU-based SIFT DesriptorsSiftGPU is an implementation of SIFT for GPU [7℄. SiftGPU uses the parallel apabilitiesof the GPU to build the gaussian blur pyramids and detet keypoints. SiftGPU then uses amixed GPU/CPU method to build ompat keypoint lists. Finally keypoints are proessedin parallel to ompute the dominant gradient angle and the desriptor.The SiftGPU ode runs on GLSL, CG and CUDA; it is thus not optimized partiularlyfor CUDA and despite our best e�orts we were unable to run the ode on our Linux-basedsystem. As will be demonstrated in the experimental setion below, the SiftGPU desriptorsare orders of magnitude faster than the CPU based SIFT desriptors, and also yield betterresults.2.3 The CUDA Programming EnvironmentAGPU supporting CUDA has multiple idential general-purpose single-instrution-multiple-threads (SIMT) parallel proessors [2℄. Eah proessor is apable of most regular CPU
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Full GPU Aeleration of Loal Desriptors using CUDA 3operations. Some are performed very quikly (e.g., most �oating point math and bit opera-tions), while other operations are slower (e.g., integer modulus). The SIMT-proessors areorganized into several multiproessors. Eah multiproessor must run the same instrutionsequene on eah of its sub-proessors, and proessing is thus arranged into groups of oneor more multi-proessors. Eah of these groups is alled a blok, onsisting of individualthreads. Typially, eah blok proesses a ertain sub-segment of memory, and eah threadis responsible for proessing an atomi part of the problem based in that sub-segment. Thearrangement of bloks is alled a grid.The CUDA GPU has its own on-devie memory hierarhy with several types of memoryeah having di�erent harateristis. The point of the di�erent memory types is to keep themultiproessors fed with data, in the manner most appropriate to eah data aess problem.At the bottom of the hierarhy is the global devie memory, whih is typially 512MB�1GB. This memory has high lateny but also high throughput. For faster aess, but tosmaller quantities of data, there is fast but volatile random-aess shared memory. Thismemory is typially 16KB, whih are divided among live thread bloks. Then there is a setof very fast, low-lateny, per-thread registers for small data that is loal to eah thread. Forertain operations, CUDA also provides a spatial-loality ahe on top of global memory,alled �texture� memory. Finally, there is a small single-address broadast-ahed onstantmemory, whih is essentially read-only, and is used when all simultaneously live threads ina blok need to read the same small piee of data at the same time.In summary, we have found that programming with CUDA onsists of making �eduatedguesses� about the number of threads and type of memory to assign to eah part of the prob-lem. With more experiene those guesses improve, resulting in better performane. CUDAprovides a pro�ler whih an be used to determine the worst bottleneks. By addressingthose bottleneks in sequene, a reasonable solution is typially found in a reasonable time.3 ImplementationIn this setion we desribe our implementation of the E�2 desriptors within CUDA. We�rst present the keypoint extration proess and then our major ontribution, whih is theparallelization of the desriptor extration proess to fully use the apabilities of the GPU.This parallelization involves some hanges to the desriptor extration part whih retain fulldesriptors quality while yielding signi�ant speed improvements.3.1 Keypoint ExtrationThe sale spae reation proess is relatively easily parallelized, as the proess of repeatedgaussian blurring of otaves and the subtration of adjaent blurrings is a prime example ofwhere eah thread an be applied to produe pixels independent of other threads.One the rough keypoint loation is determined, it must be loalized as preisely aspossible. In the CPU based implementation, this is done by shifting the points by frationalamounts in the two spatial dimensions, and sometimes by moving between sales in the sale
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4 Daðason, Lejsek, Jónsson & Amsaleg

Figure 1: Details of the Desriptor Extrationspae. In the CUDA implementation, however, the two-dimensional shift is implemented,but not the sale-spae jumps.The reason for this hange is as follows. On GPUs it is e�ient to assign a ertainsegment of problem spae to eah thread. In our implementation, one thread's proessess-ing is done in one sale, in one otave. Allowing jumps out of the sale being proessedrequires either a synhronisation step or signi�antly more omplex interest point detetionproessing. We determined, through experimentation, that sale jumps inreased exeutiontime signi�antly with no measurable auray bene�ts.3.2 Desriptor ExtrationWhile building up a sale-spae of an image has been disussed in several papers before,desriptor extration on the GPU has been too omplex for the previously available inter-faes. The �rst of two proessing steps in desriptor extration is determinnig the dominantgradient angle around the interest point. Next, the desriptor histogram is omputed usingthat angle. The following desription of the proess is aided by Figure 1.3.2.1 Dominant Angle DeterminationTo identify the dominant gradient angle around the interest point, we must ompute agradient orientation histogram within a irular window around the point (Figure 1(a)).Note that histogram omputation is onsidered di�ult to parallelize, as writes to histogrambukets must be o-ordinated to avoid write on�its, limiting e�etiveness on the GPU. Inorder to make e�etive use of the parallelization apabilities of the GPU, we have 1) reateda proess that works in thread-shared ahe as muh as possible, and 2) tweaked the gradienthistogram itself to allow more e�ient proessing.The histogram omputation proeeds as follows. First, we take the smallest boundingbox that �ts the irle and proess every pixel row in parallel. The gradient orientationof eah pixel is weighted based on its distane to the enter point (using weights stored in
Reykjavík University, Shool of Computer Siene



Full GPU Aeleration of Loal Desriptors using CUDA 5the onstant devie memory) and the gradient strength of eah pixel is split up among twoadjaent orientation bukets. For eah pixel in the row the two buket identi�ers, and theirorresponding gradient strenghts, are stored in a shared memory blok on the GPU. Thenthe threads are synhronized after eah row and two single threads sum up the proessedvalues into the histogram. Note that using two threads does not result in write on�its, asby design, writes our to two independent bukets of the histogram, while using additionalthreads would give rise to write on�its. One all the bounding box' rows have beenompleted, a single thread alulates the strongest angle from the histogram.The gradient orientation histogram was tweaked slightly, by reduing the number oforientation bins from the SIFT standard of 36 bukets to 32 bukets. While this hangegrows the buket radius from 10 to 11.25 degrees, the already-present interpolation betweenbukets means that the in�uene on detetion auray is less than 2%. The e�ienybene�ts due to this small implementation tweak are signi�ant, however. On the GPU,integer modulus is a very expensive operation (140 lok yles on our urrent GPU) whilebitwise AND, whih an be used in plae of modulus with 32 bins, is muh heaper (only16 lok yles). The e�ieny bene�ts of this minor hange, whih is also used in thedesriptor histogram reation, are thus around 10% of the dominant angle determination.3.2.2 Desriptor Histogram ComputationOne the strongest gradient diretion has been found, the shape signal must be enodedinto a 72-dimensional desriptor, whih is reated by omputing a gradient histogram of 8bukets for eah blok of the 3 × 3 grid - shown in Figure 1(b). As eah subhistogram isalulated from a spei� area around the point, all 9 areas an be proessed in parallel bya separate set of threads.For eah blok, we must �rst alulate the border verties of those areas with respetto strongest gradient diretion omputed above. Eah of the 9 threads rotates the fourbounding verties and determines the smallest pixel-aligned bounding box of the rotatedsquare; this area is highlighted in Figure 1(b) and shown in detail in Figure 1(). Withinthis bounding box, seven independent parallel threads proess the gradient strength withrespet to the distane to the atual interest point and the enter of the atual ell. Theomputation of the gradient histogram then proeeds as in this histogram omputationdesribed above for the determination of the strongest gradient. The pixels are thus read inthe order shown in Figure 1().The reason that seven threads are applied to eah histogram, is that there are nineareas proessed in parallel, and 7 × 9 = 63, whih is almost a full set of 64 threads. Weexperimented with assigning 14 threads to eah histogram (for a total of 14 × 9 = 126threads) but the proess was slower due to less e�ient register usage, as eah thread muststore some loal information. This trade-o�, of ourse, may hange as the hardware develops.Finally, after all 9 × 8 = 72 orientation bukets have been alulated, a single threadnormalizes the desriptor.
RUTR-CS09003



6 Daðason, Lejsek, Jónsson & AmsalegSIFT E�2desriptors time [ms℄ desriptors time [ms℄CPU 1,212 1,200 698 360GPU 486 37 686 27Table 1: Desriptor reation statistis per image.4 Experimental EvaluationIn this setion we present the results of our experimental evaluation of the four desriptorvariants: SIFT, SiftGPU, E�2, and GPU-E�2. All experiments have been performed on adesktop omputer equipped with an Intel Q6600 proessor and a NVIDIA GTX 280 GPU.First, we ompare and analyze the time spent on desriptor extration, and then we studythe result quality with eah of the four variants.4.1 Extration TimeIn this experiment, we applied eah of the variants to a olletion of 29,277 high-qualitynews images [3℄, where eah image's longer edge is resaled to 512 pixels. Table 1 showsthe number of desriptors reated and the running time. The desriptors of eah image areomputed three times, and the average time of the seond two runs is used, in order to avoidmeasuring initialization e�ets that are ommon between the GPU-based variants.As Table 1 shows, desriptor reation on the GPU is almost an order of magnitude fasterthan E�2 on the CPU and nearly another order of magnitude faster than SIFT. Furthermore,GPU-E�2 performs desriptor reation signi�antly faster than SiftGPU.Table 2 shows a more detailed break-down of the exeution time for eah of the GPU-based variants. The �rst two lines indiate the time required to reate the entire sale-spaeand to loalize the keypoints. As the table shows, this is signi�antly faster for SiftGPU. Theprimary reason is that SiftGPU uses fewer otaves (4 or 5 for our experimental olletion,as opposed to 7 for GPU-E�2) and sales (3 vs. 7 for GPU-E�2), resulting in signi�antlyless proessing (at the expense of lower reognition for some image modi�ations, as shownbelow). Another reason is that this part is the earliest ode of GPU-E�2, and SiftGPU isusing some well-known optimizations that we have yet to apply.The third line indiates the time required to gather the keypoints into a list for desriptorextration. This part is partially implemented using the CPU with SiftGPU and is thereforeslower. The �nal three lines indiate the ost of reating the desriptors themselves. Thetime required for feature orientation is with 0.7 ms very low as gradient alulation has beenperformed within the �Build pyramid� step. As mentioned above, the GPU-E�2 desriptorsonly extrat a single desriptor per keypoint, and hene the multi-orientation is not needed.Finally, the desriptor reation itself also bene�ts from our e�ient histogram alulation,and is signi�antly faster for GPU-E�2.
Reykjavík University, Shool of Computer Siene



Full GPU Aeleration of Loal Desriptors using CUDA 7Phase SIFT E�2Build pyramid 5.4 (14 %) 12.6 (47 %)Detet keypoints 4.6 (12 %) 7.6 (28 %)Gather keypoints 11.9 (32 %) 3.7 (14 %)Feature orientation 5.8 (16 %) 0.7 ( 3 %)Multi-orientation 2.5 ( 7 %) - ( - )Desriptor reation 7.1 (19 %) 2.3 ( 8 %)Table 2: Desriptor reation time breakdown [ms℄.
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Figure 2: Detetion rate for seleted modi�ations.4.2 Detetion CapabilityIn order to study the detetion apability of the desriptors, we loaded eah desriptorolletion into an NV-tree index [4℄. We then used the same 108 original query imagesand 26 StirMark modi�ations used in [3℄ to evaluate the detetion apabilities of the fourdi�erent desriptor variants. As reported in [3℄, we found that about 41.2% of the SIFTquery desriptors �nd a math from the original image in the top 30 neighbors, while about57.1% of the E�2 query desriptors �nd a math. Both SiftGPU and GPU-E�2, however,perform similarly to E�2, �nding 57.6% and 58.1% respetively. For individual modi�ations,however, the tradeo�s are slightly di�erent and Figure 2 presents a representative set of sixmodi�ations that we now disuss.The �rst two modi�ations, AFFINE 3 (a�ne transformation on both axes) and RESC75 (resaling to 75%) represent the majority of the modi�ations (18 in total). For thesemodi�ations SiftGPU, E�2 and GPU-E�2 desriptors yield very similar rates, while theSIFT desriptors yield a lower sore. Most of these modi�ations are easy to detet; thelower ratio for SIFT is due to the abundane of desriptors.
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8 Daðason, Lejsek, Jónsson & AmsalegThe next two modi�ations in Figure 2, CONV 1 (low brightness) and CROP 75 (75%entral rop), show a better detetion rate with the SIFT variants than with the E�2 vari-ants. This phenomenon was already desribed in [3℄ and is a result of the emphasis ofthe SIFT variants on low-sale, low-otave desriptors. Note that these were the only twomodi�ations where the SIFT variants performed better.The last two modi�ations, JPEG 15 (ompression) and SS 1 (onversion to HSV olorformat), show an advantage for the E�2 variants ompared to the SIFT variants. Thereason is that these modi�ations remove some of the �ner detail in the images, showing theadvantage of theE�2 variants' emphasis on higher-level desriptors. This e�et is seen in atotal of six modi�ations.5 ConlusionThis paper has given an overview on the porting of the E�2 desriptors onto a GPU usingthe CUDA programming model. The experimental evaluation shows a signi�ant speedadvantage, not only over CPU implementations, but also beating SiftGPU. We have alsoshown, however, that GPU-E�2 still has room for improvement in sale-spae omputationand keypoint detetion e�ieny, whih we aim to address in our future work.Referenes[1℄ Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan. GpuCV: An opensoureGPU-aelerated framework for image proessing and omputer vision. In Proeedingsof ACM Multimedia, Vanouver, BC, Canada, 2008.[2℄ NVIDIA CUDA Programming Guide, Ver. 2.0, 2008.[3℄ H. Lejsek, F. H. Ásmundsson, B. T. Jónsson, and L. Amsaleg. Salability of loal imagedesriptors: a omparative study. In Proeedings of ACM Multimedia, Santa Barbara,CA, USA, 2006.[4℄ H. Lejsek, F. H. Ásmundsson, B. T. Jónsson, and L. Amsaleg. NV-tree: An e�ientdisk-based index for approximate searh in very large high-dimensional olletions. IEEETransations on Pattern Analysis and Mahine Intelligene, 2009.[5℄ D. G. Lowe. Distintive image features from sale-invariant keypoints. InternationalJournal of Computer Vision, 60(2):91�110, 2004.[6℄ S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Gen. GPU-based video feature trakingand mathing. Tehnial report, UNC Chapel Hill, 2006.[7℄ Ch. Wu. SiftGPU: A GPU implementation of sale invariant feature transform (SIFT).http://www.s.un.edu/�wu/siftgpu/.
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