
Technical Report
I S S N 1 6 7 0 - 5 7 7 7

Reykjavík University - School of Computer Science

RUTR-CS09003� July 2009

Kristleifur Daðason, Herwig Lejsek, Björn Þór Jónsson, Laurent Amsaleg

Full GPU Acceleration of
Local Descriptors using CUDA

Full GPU A

eleration ofLo
al Des
riptors using CUDAKristleifur Daðason∗, Herwig Lejsek∗, Björn Þór Jónsson†, Laurent Amsaleg‡Te
hni
al Report RUTR-CS09003, July 2009Abstra
t: Video analysis using lo
al des
riptors demands a high-throughput des
riptor
reation pro
ess. The most pra
ti
al method to this goal is to use GPUs that
ome withmost re
ent
omputers. In this report, we adapt the
omputation of the E�2 des
riptors, avariant of SIFT, to the GPU. We
ompare our GPU-E�2 des
riptors to SiftGPU and showthat while both GPU-based variants yield similar results, the GPU-E�2 des
riptors requiresigni�
antly less pro
essing time.Keywords: Lo
al image des
riptors, GPU, E�2, SIFT, CUDA.
(Útdráttur: næsta síða)

∗ E�2 Te
hnologies ehf., Kringlan 1, IS-103 Reykjavík, I
eland. kristleifur/herwig�e�2.net
† S
hool of Computer S
ien
e, Reykjavík University, Kringlan 1, IS-103 Reykjavík, I
eland. bjorn�ru.is
‡ IRISA�CNRS, Campus de Beaulieu, 35042 Rennes, Fran
e. laurent.amsaleg�irisa.fr

Heildstæð GPU hröðun á útreikningistaðværra lýsinga með CUDAKristleifur Daðason, Herwig Lejsek, Björn Þór Jónsson, Laurent AmsalegTækniskýrsla RUTR-CS09003, Júlí 2009Útdráttur: Greining myndbanda með staðværum lýsingum (e. lo
al des
riptors) krefstmikilla afkasta við gerð lýsinganna. Skilvirkasta leiðin að þessu marki er að nota GPUmyndvinnslugjörvann sem fylgir öllum nýrri tölvum. Í þessari skýrslu lögum við útreikningaE�2 lýsinganna, sem eru tilbrigði við SIFT lýsinga, að GPU. Við berum GPU-E�2 lýsinganasaman við SiftGPU og sýnum að þótt bæði GPU-byggðu tilvikin ge� svipaðar niðurstöður,þá þur� GPU-E�2 lýsingarnir mun minni vinnslutíma.Lykilorð: Staðværir myndlýsingar, GPU, E�2, SIFT, CUDA.
(Abstra
t: previous page)

Full GPU A

eleration of Lo
al Des
riptors using CUDA iiiContents1 Introdu
tion 12 Ba
kground 12.1 SIFT and E�2 Des
riptors . 22.2 GPU-based SIFT Des
riptors . 22.3 The CUDA Programming Environment . 23 Implementation 33.1 Keypoint Extra
tion . 33.2 Des
riptor Extra
tion . 43.2.1 Dominant Angle Determination . 43.2.2 Des
riptor Histogram Computation . 54 Experimental Evaluation 64.1 Extra
tion Time . 64.2 Dete
tion Capability . 75 Con
lusion 8

RUTR-CS09003

iv Daðason, Lejsek, Jónsson & Amsaleg

Reykjavík University, S
hool of Computer S
ien
e

Full GPU A

eleration of Lo
al Des
riptors using CUDA 1
1 Introdu
tionVideo analysis is a
entral
omponent in many appli
ations, su
h as video surveillan
e, newsanalysis, and video
opyright prote
tion. Re
ent methods for su
h analysis are typi
allybased on
omputing many lo
al des
riptors per frame; these frame-based des
riptions arethen merged to form the video des
ription. As many appli
ations require real-time per-forman
e, high demands are made on the e�
ient
omputation of the lo
al des
riptors,parti
ularly on high throughput.The traditional method for a
hieving high throughput is using a
luster of multi-
ore
omputers. The advantage is that the same des
ription
ode
an be used, but there are twomajor disadvantages. First, merging the lo
al des
riptors in the
orre
t order may requiremajor
oding e�orts for syn
hronization. Se
ond,
omputing
lusters are very expensive andit is di�
ult in pra
ti
e to deliver
luster-based software produ
ts to end users.An alternative method, solving both problems, is to use powerful graphi
s pro
essingunits (GPU). The advent of highly s
alable and parallel, yet inexpensive, GPUs has
onsti-tuted a minor revolution in the
omputer industry; many proje
ts have therefore investigatedthe use of GPUs for a variety of tasks, su
h as image pro
essing [1℄, feature tra
king [6℄ andlo
al des
riptor
omputation [7℄.The disadvantage of GPUs, however, is that the des
ription
ode does not work un-
hanged. In fa
t, adapting
omputations to GPU has been
onsidered a
omplex and time-
onsuming task. Data and
omputations had to be adapted to meet severe
onstraints on thea

ess patterns and operations available on-GPU. As a result, some
omputational pro
esses
ould not be
ompletely adapted, for
ing data loadba
k to the host CPU for
ompletion (e.g.,see [7℄). Fortunately, however, GPUs have now be
ome mu
h easier to utilize due to there
ently released CUDA programming environment from NVIDIA [2℄. The CUDA modelallows a larger set of a

ess patterns to data, and supports a large set of
omputing primi-tives. While the learning
urve is still signi�
ant, adaptation to GPU has be
ome easier andmore
omplex
omputations made tra
table.In this paper, we adapt the
omputation of the E�2 des
riptors, a variant of SIFT,to the GPU through the CUDA environment. We
ompare the GPU-E�2 des
riptors toSiftGPU [7℄, another GPU-based variant of SIFT, and show that while both GPU-basedvariants yield similar results (better than SIFT, and
omparable to E�2), the GPU-E�2des
riptors require signi�
antly less pro
essing time.2 Ba
kgroundIn this se
tion, we review the state of the art in lo
al des
riptor pro
essing, as well asprevious e�orts to
reate GPU-based lo
al des
riptors. We end with a brief dis
ussionof the new CUDA programming environment from NVIDIA, whi
h we have used for ourimplementation.
RUTR-CS09003

2 Daðason, Lejsek, Jónsson & Amsaleg2.1 SIFT and E�2 Des
riptorsThe SIFT lo
al des
riptors (S
ale Invariant Feature Transform), developed by Lowe [5℄, havebeen
onsidered the state of the art in image des
ription for roboti
 vision and various other
omputer vision and image pro
essing appli
ations. The
reation pro
ess
onsists of twosteps, and
an be roughly outlined as follows.In the �rst step, keypoint dete
tion, small regions of interest are dete
ted where des
rip-tors may potentially be
reated. This is done by
reating a sequen
e of gaussian blurs atdi�erent s
ales, taking their di�eren
es, and then dete
ting lo
al minima and maxima in thedi�eren
es a
ross the s
ales. The keypoint is then lo
alized pre
isely to a sub-pixel a

u-ra
y. In the se
ond step, the des
riptor itself is
reated. First, the dominant gradient angle(dire
tion of
egreatest
ontrast) around the keypoint is found. Then a 4× 4 grid is
reatedaround the keypoint, aligned to the dominant gradient angle, and a gradient histogram of 8bins
reated in ea
h
ell of the grid, obtaining a 4 × 4 × 8 = 128 dimensional histogram ofgradient strengths, �nally normalizing it.In this paper, we fo
us on the E�2 des
riptors, proposed by Lejsek et al. [3℄, whi
h are amore s
alable variant of SIFT. There are three key di�eren
es to SIFT. First, relatively moredes
riptors are
reated at higher s
ales, as more s
ales are
onsidered and gamma
orre
tionis applied to the in
reasingly
oarse blurs. Se
ond, a 3 × 3 grid is used around the point,resulting in 3×3×8 = 72 dimensions in total. Third, advan
ed �lters remove des
riptors forlines and bright spots, that appear in very many images and have little information
ontent(similar to
ommon words in information retrieval). Several other minor
hanges were made,in
luding parameter tuning, to improve the re
ognition of various image transformations.The E�2 des
riptors have been shown to perform signi�
antly better than SIFT for mostimage transformations [3℄.2.2 GPU-based SIFT Des
riptorsSiftGPU is an implementation of SIFT for GPU [7℄. SiftGPU uses the parallel
apabilitiesof the GPU to build the gaussian blur pyramids and dete
t keypoints. SiftGPU then uses amixed GPU/CPU method to build
ompa
t keypoint lists. Finally keypoints are pro
essedin parallel to
ompute the dominant gradient angle and the des
riptor.The SiftGPU
ode runs on GLSL, CG and CUDA; it is thus not optimized parti
ularlyfor CUDA and despite our best e�orts we were unable to run the
ode on our Linux-basedsystem. As will be demonstrated in the experimental se
tion below, the SiftGPU des
riptorsare orders of magnitude faster than the CPU based SIFT des
riptors, and also yield betterresults.2.3 The CUDA Programming EnvironmentAGPU supporting CUDA has multiple identi
al general-purpose single-instru
tion-multiple-threads (SIMT) parallel pro
essors [2℄. Ea
h pro
essor is
apable of most regular CPU
Reykjavík University, S
hool of Computer S
ien
e

Full GPU A

eleration of Lo
al Des
riptors using CUDA 3operations. Some are performed very qui
kly (e.g., most �oating point math and bit opera-tions), while other operations are slower (e.g., integer modulus). The SIMT-pro
essors areorganized into several multipro
essors. Ea
h multipro
essor must run the same instru
tionsequen
e on ea
h of its sub-pro
essors, and pro
essing is thus arranged into groups of oneor more multi-pro
essors. Ea
h of these groups is
alled a blo
k,
onsisting of individualthreads. Typi
ally, ea
h blo
k pro
esses a
ertain sub-segment of memory, and ea
h threadis responsible for pro
essing an atomi
 part of the problem based in that sub-segment. Thearrangement of blo
ks is
alled a grid.The CUDA GPU has its own on-devi
e memory hierar
hy with several types of memoryea
h having di�erent
hara
teristi
s. The point of the di�erent memory types is to keep themultipro
essors fed with data, in the manner most appropriate to ea
h data a

ess problem.At the bottom of the hierar
hy is the global devi
e memory, whi
h is typi
ally 512MB�1GB. This memory has high laten
y but also high throughput. For faster a

ess, but tosmaller quantities of data, there is fast but volatile random-a

ess shared memory. Thismemory is typi
ally 16KB, whi
h are divided among live thread blo
ks. Then there is a setof very fast, low-laten
y, per-thread registers for small data that is lo
al to ea
h thread. For
ertain operations, CUDA also provides a spatial-lo
ality
a
he on top of global memory,
alled �texture� memory. Finally, there is a small single-address broad
ast-
a
hed
onstantmemory, whi
h is essentially read-only, and is used when all simultaneously live threads ina blo
k need to read the same small pie
e of data at the same time.In summary, we have found that programming with CUDA
onsists of making �edu
atedguesses� about the number of threads and type of memory to assign to ea
h part of the prob-lem. With more experien
e those guesses improve, resulting in better performan
e. CUDAprovides a pro�ler whi
h
an be used to determine the worst bottlene
ks. By addressingthose bottlene
ks in sequen
e, a reasonable solution is typi
ally found in a reasonable time.3 ImplementationIn this se
tion we des
ribe our implementation of the E�2 des
riptors within CUDA. We�rst present the keypoint extra
tion pro
ess and then our major
ontribution, whi
h is theparallelization of the des
riptor extra
tion pro
ess to fully use the
apabilities of the GPU.This parallelization involves some
hanges to the des
riptor extra
tion part whi
h retain fulldes
riptors quality while yielding signi�
ant speed improvements.3.1 Keypoint Extra
tionThe s
ale spa
e
reation pro
ess is relatively easily parallelized, as the pro
ess of repeatedgaussian blurring of o
taves and the subtra
tion of adja
ent blurrings is a prime example ofwhere ea
h thread
an be applied to produ
e pixels independent of other threads.On
e the rough keypoint lo
ation is determined, it must be lo
alized as pre
isely aspossible. In the CPU based implementation, this is done by shifting the points by fra
tionalamounts in the two spatial dimensions, and sometimes by moving between s
ales in the s
ale
RUTR-CS09003

4 Daðason, Lejsek, Jónsson & Amsaleg

Figure 1: Details of the Des
riptor Extra
tionspa
e. In the CUDA implementation, however, the two-dimensional shift is implemented,but not the s
ale-spa
e jumps.The reason for this
hange is as follows. On GPUs it is e�
ient to assign a
ertainsegment of problem spa
e to ea
h thread. In our implementation, one thread's pro
essess-ing is done in one s
ale, in one o
tave. Allowing jumps out of the s
ale being pro
essedrequires either a syn
hronisation step or signi�
antly more
omplex interest point dete
tionpro
essing. We determined, through experimentation, that s
ale jumps in
reased exe
utiontime signi�
antly with no measurable a

ura
y bene�ts.3.2 Des
riptor Extra
tionWhile building up a s
ale-spa
e of an image has been dis
ussed in several papers before,des
riptor extra
tion on the GPU has been too
omplex for the previously available inter-fa
es. The �rst of two pro
essing steps in des
riptor extra
tion is determinnig the dominantgradient angle around the interest point. Next, the des
riptor histogram is
omputed usingthat angle. The following des
ription of the pro
ess is aided by Figure 1.3.2.1 Dominant Angle DeterminationTo identify the dominant gradient angle around the interest point, we must
ompute agradient orientation histogram within a
ir
ular window around the point (Figure 1(a)).Note that histogram
omputation is
onsidered di�
ult to parallelize, as writes to histogrambu
kets must be
o-ordinated to avoid write
on�i
ts, limiting e�e
tiveness on the GPU. Inorder to make e�e
tive use of the parallelization
apabilities of the GPU, we have 1)
reateda pro
ess that works in thread-shared
a
he as mu
h as possible, and 2) tweaked the gradienthistogram itself to allow more e�
ient pro
essing.The histogram
omputation pro
eeds as follows. First, we take the smallest boundingbox that �ts the
ir
le and pro
ess every pixel row in parallel. The gradient orientationof ea
h pixel is weighted based on its distan
e to the
enter point (using weights stored in
Reykjavík University, S
hool of Computer S
ien
e

Full GPU A

eleration of Lo
al Des
riptors using CUDA 5the
onstant devi
e memory) and the gradient strength of ea
h pixel is split up among twoadja
ent orientation bu
kets. For ea
h pixel in the row the two bu
ket identi�ers, and their
orresponding gradient strenghts, are stored in a shared memory blo
k on the GPU. Thenthe threads are syn
hronized after ea
h row and two single threads sum up the pro
essedvalues into the histogram. Note that using two threads does not result in write
on�i
ts, asby design, writes o

ur to two independent bu
kets of the histogram, while using additionalthreads would give rise to write
on�i
ts. On
e all the bounding box' rows have been
ompleted, a single thread
al
ulates the strongest angle from the histogram.The gradient orientation histogram was tweaked slightly, by redu
ing the number oforientation bins from the SIFT standard of 36 bu
kets to 32 bu
kets. While this
hangegrows the bu
ket radius from 10 to 11.25 degrees, the already-present interpolation betweenbu
kets means that the in�uen
e on dete
tion a

ura
y is less than 2%. The e�
ien
ybene�ts due to this small implementation tweak are signi�
ant, however. On the GPU,integer modulus is a very expensive operation (140
lo
k
y
les on our
urrent GPU) whilebitwise AND, whi
h
an be used in pla
e of modulus with 32 bins, is mu
h
heaper (only16
lo
k
y
les). The e�
ien
y bene�ts of this minor
hange, whi
h is also used in thedes
riptor histogram
reation, are thus around 10% of the dominant angle determination.3.2.2 Des
riptor Histogram ComputationOn
e the strongest gradient dire
tion has been found, the shape signal must be en
odedinto a 72-dimensional des
riptor, whi
h is
reated by
omputing a gradient histogram of 8bu
kets for ea
h blo
k of the 3 × 3 grid - shown in Figure 1(b). As ea
h subhistogram is
al
ulated from a spe
i�
 area around the point, all 9 areas
an be pro
essed in parallel bya separate set of threads.For ea
h blo
k, we must �rst
al
ulate the border verti
es of those areas with respe
tto strongest gradient dire
tion
omputed above. Ea
h of the 9 threads rotates the fourbounding verti
es and determines the smallest pixel-aligned bounding box of the rotatedsquare; this area is highlighted in Figure 1(b) and shown in detail in Figure 1(
). Withinthis bounding box, seven independent parallel threads pro
ess the gradient strength withrespe
t to the distan
e to the a
tual interest point and the
enter of the a
tual
ell. The
omputation of the gradient histogram then pro
eeds as in this histogram
omputationdes
ribed above for the determination of the strongest gradient. The pixels are thus read inthe order shown in Figure 1(
).The reason that seven threads are applied to ea
h histogram, is that there are nineareas pro
essed in parallel, and 7 × 9 = 63, whi
h is almost a full set of 64 threads. Weexperimented with assigning 14 threads to ea
h histogram (for a total of 14 × 9 = 126threads) but the pro
ess was slower due to less e�
ient register usage, as ea
h thread muststore some lo
al information. This trade-o�, of
ourse, may
hange as the hardware develops.Finally, after all 9 × 8 = 72 orientation bu
kets have been
al
ulated, a single threadnormalizes the des
riptor.
RUTR-CS09003

6 Daðason, Lejsek, Jónsson & AmsalegSIFT E�2des
riptors time [ms℄ des
riptors time [ms℄CPU 1,212 1,200 698 360GPU 486 37 686 27Table 1: Des
riptor
reation statisti
s per image.4 Experimental EvaluationIn this se
tion we present the results of our experimental evaluation of the four des
riptorvariants: SIFT, SiftGPU, E�2, and GPU-E�2. All experiments have been performed on adesktop
omputer equipped with an Intel Q6600 pro
essor and a NVIDIA GTX 280 GPU.First, we
ompare and analyze the time spent on des
riptor extra
tion, and then we studythe result quality with ea
h of the four variants.4.1 Extra
tion TimeIn this experiment, we applied ea
h of the variants to a
olle
tion of 29,277 high-qualitynews images [3℄, where ea
h image's longer edge is res
aled to 512 pixels. Table 1 showsthe number of des
riptors
reated and the running time. The des
riptors of ea
h image are
omputed three times, and the average time of the se
ond two runs is used, in order to avoidmeasuring initialization e�e
ts that are
ommon between the GPU-based variants.As Table 1 shows, des
riptor
reation on the GPU is almost an order of magnitude fasterthan E�2 on the CPU and nearly another order of magnitude faster than SIFT. Furthermore,GPU-E�2 performs des
riptor
reation signi�
antly faster than SiftGPU.Table 2 shows a more detailed break-down of the exe
ution time for ea
h of the GPU-based variants. The �rst two lines indi
ate the time required to
reate the entire s
ale-spa
eand to lo
alize the keypoints. As the table shows, this is signi�
antly faster for SiftGPU. Theprimary reason is that SiftGPU uses fewer o
taves (4 or 5 for our experimental
olle
tion,as opposed to 7 for GPU-E�2) and s
ales (3 vs. 7 for GPU-E�2), resulting in signi�
antlyless pro
essing (at the expense of lower re
ognition for some image modi�
ations, as shownbelow). Another reason is that this part is the earliest
ode of GPU-E�2, and SiftGPU isusing some well-known optimizations that we have yet to apply.The third line indi
ates the time required to gather the keypoints into a list for des
riptorextra
tion. This part is partially implemented using the CPU with SiftGPU and is thereforeslower. The �nal three lines indi
ate the
ost of
reating the des
riptors themselves. Thetime required for feature orientation is with 0.7 ms very low as gradient
al
ulation has beenperformed within the �Build pyramid� step. As mentioned above, the GPU-E�2 des
riptorsonly extra
t a single des
riptor per keypoint, and hen
e the multi-orientation is not needed.Finally, the des
riptor
reation itself also bene�ts from our e�
ient histogram
al
ulation,and is signi�
antly faster for GPU-E�2.
Reykjavík University, S
hool of Computer S
ien
e

Full GPU A

eleration of Lo
al Des
riptors using CUDA 7Phase SIFT E�2Build pyramid 5.4 (14 %) 12.6 (47 %)Dete
t keypoints 4.6 (12 %) 7.6 (28 %)Gather keypoints 11.9 (32 %) 3.7 (14 %)Feature orientation 5.8 (16 %) 0.7 (3 %)Multi-orientation 2.5 (7 %) - (-)Des
riptor
reation 7.1 (19 %) 2.3 (8 %)Table 2: Des
riptor
reation time breakdown [ms℄.
0

20

40

60

80

100

D
es

cr
ip

to
r

R
at

io
 (

in
 %

)

AFFINE 3

RESC 75

CONV 1

CROP 75

JPEG 15

SS 1

SIFT
SIFT-GPU

EFF2
EFF2-GPU

Figure 2: Dete
tion rate for sele
ted modi�
ations.4.2 Dete
tion CapabilityIn order to study the dete
tion
apability of the des
riptors, we loaded ea
h des
riptor
olle
tion into an NV-tree index [4℄. We then used the same 108 original query imagesand 26 StirMark modi�
ations used in [3℄ to evaluate the dete
tion
apabilities of the fourdi�erent des
riptor variants. As reported in [3℄, we found that about 41.2% of the SIFTquery des
riptors �nd a mat
h from the original image in the top 30 neighbors, while about57.1% of the E�2 query des
riptors �nd a mat
h. Both SiftGPU and GPU-E�2, however,perform similarly to E�2, �nding 57.6% and 58.1% respe
tively. For individual modi�
ations,however, the tradeo�s are slightly di�erent and Figure 2 presents a representative set of sixmodi�
ations that we now dis
uss.The �rst two modi�
ations, AFFINE 3 (a�ne transformation on both axes) and RESC75 (res
aling to 75%) represent the majority of the modi�
ations (18 in total). For thesemodi�
ations SiftGPU, E�2 and GPU-E�2 des
riptors yield very similar rates, while theSIFT des
riptors yield a lower s
ore. Most of these modi�
ations are easy to dete
t; thelower ratio for SIFT is due to the abundan
e of des
riptors.
RUTR-CS09003

8 Daðason, Lejsek, Jónsson & AmsalegThe next two modi�
ations in Figure 2, CONV 1 (low brightness) and CROP 75 (75%
entral
rop), show a better dete
tion rate with the SIFT variants than with the E�2 vari-ants. This phenomenon was already des
ribed in [3℄ and is a result of the emphasis ofthe SIFT variants on low-s
ale, low-o
tave des
riptors. Note that these were the only twomodi�
ations where the SIFT variants performed better.The last two modi�
ations, JPEG 15 (
ompression) and SS 1 (
onversion to HSV
olorformat), show an advantage for the E�2 variants
ompared to the SIFT variants. Thereason is that these modi�
ations remove some of the �ner detail in the images, showing theadvantage of theE�2 variants' emphasis on higher-level des
riptors. This e�e
t is seen in atotal of six modi�
ations.5 Con
lusionThis paper has given an overview on the porting of the E�2 des
riptors onto a GPU usingthe CUDA programming model. The experimental evaluation shows a signi�
ant speedadvantage, not only over CPU implementations, but also beating SiftGPU. We have alsoshown, however, that GPU-E�2 still has room for improvement in s
ale-spa
e
omputationand keypoint dete
tion e�
ien
y, whi
h we aim to address in our future work.Referen
es[1℄ Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan. GpuCV: An opensour
eGPU-a

elerated framework for image pro
essing and
omputer vision. In Pro
eedingsof ACM Multimedia, Van
ouver, BC, Canada, 2008.[2℄ NVIDIA CUDA Programming Guide, Ver. 2.0, 2008.[3℄ H. Lejsek, F. H. Ásmundsson, B. T. Jónsson, and L. Amsaleg. S
alability of lo
al imagedes
riptors: a
omparative study. In Pro
eedings of ACM Multimedia, Santa Barbara,CA, USA, 2006.[4℄ H. Lejsek, F. H. Ásmundsson, B. T. Jónsson, and L. Amsaleg. NV-tree: An e�
ientdisk-based index for approximate sear
h in very large high-dimensional
olle
tions. IEEETransa
tions on Pattern Analysis and Ma
hine Intelligen
e, 2009.[5℄ D. G. Lowe. Distin
tive image features from s
ale-invariant keypoints. InternationalJournal of Computer Vision, 60(2):91�110, 2004.[6℄ S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Gen
. GPU-based video feature tra
kingand mat
hing. Te
hni
al report, UNC Chapel Hill, 2006.[7℄ Ch. Wu. SiftGPU: A GPU implementation of s
ale invariant feature transform (SIFT).http://www.
s.un
.edu/�

wu/siftgpu/.
Reykjavík University, S
hool of Computer S
ien
e

School of Computer Science

Reykjavík University

Kringlan 1, IS-103 Reykjavík, Iceland

Tel: +354 599 6200

Fax: +354 599 6301

http://www.ru.is

