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Heildstæð GPU hröðun á útreikningistaðværra lýsinga með CUDAKristleifur Daðason, Herwig Lejsek, Björn Þór Jónsson, Laurent AmsalegTækniskýrsla RUTR-CS09003, Júlí 2009Útdráttur: Greining myndbanda með staðværum lýsingum (e. lo
al des
riptors) krefstmikilla afkasta við gerð lýsinganna. Skilvirkasta leiðin að þessu marki er að nota GPUmyndvinnslugjörvann sem fylgir öllum nýrri tölvum. Í þessari skýrslu lögum við útreikningaE�2 lýsinganna, sem eru tilbrigði við SIFT lýsinga, að GPU. Við berum GPU-E�2 lýsinganasaman við SiftGPU og sýnum að þótt bæði GPU-byggðu tilvikin ge� svipaðar niðurstöður,þá þur� GPU-E�2 lýsingarnir mun minni vinnslutíma.Lykilorð: Staðværir myndlýsingar, GPU, E�2, SIFT, CUDA.
(Abstra
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1 Introdu
tionVideo analysis is a 
entral 
omponent in many appli
ations, su
h as video surveillan
e, newsanalysis, and video 
opyright prote
tion. Re
ent methods for su
h analysis are typi
allybased on 
omputing many lo
al des
riptors per frame; these frame-based des
riptions arethen merged to form the video des
ription. As many appli
ations require real-time per-forman
e, high demands are made on the e�
ient 
omputation of the lo
al des
riptors,parti
ularly on high throughput.The traditional method for a
hieving high throughput is using a 
luster of multi-
ore
omputers. The advantage is that the same des
ription 
ode 
an be used, but there are twomajor disadvantages. First, merging the lo
al des
riptors in the 
orre
t order may requiremajor 
oding e�orts for syn
hronization. Se
ond, 
omputing 
lusters are very expensive andit is di�
ult in pra
ti
e to deliver 
luster-based software produ
ts to end users.An alternative method, solving both problems, is to use powerful graphi
s pro
essingunits (GPU). The advent of highly s
alable and parallel, yet inexpensive, GPUs has 
onsti-tuted a minor revolution in the 
omputer industry; many proje
ts have therefore investigatedthe use of GPUs for a variety of tasks, su
h as image pro
essing [1℄, feature tra
king [6℄ andlo
al des
riptor 
omputation [7℄.The disadvantage of GPUs, however, is that the des
ription 
ode does not work un-
hanged. In fa
t, adapting 
omputations to GPU has been 
onsidered a 
omplex and time-
onsuming task. Data and 
omputations had to be adapted to meet severe 
onstraints on thea

ess patterns and operations available on-GPU. As a result, some 
omputational pro
esses
ould not be 
ompletely adapted, for
ing data loadba
k to the host CPU for 
ompletion (e.g.,see [7℄). Fortunately, however, GPUs have now be
ome mu
h easier to utilize due to there
ently released CUDA programming environment from NVIDIA [2℄. The CUDA modelallows a larger set of a

ess patterns to data, and supports a large set of 
omputing primi-tives. While the learning 
urve is still signi�
ant, adaptation to GPU has be
ome easier andmore 
omplex 
omputations made tra
table.In this paper, we adapt the 
omputation of the E�2 des
riptors, a variant of SIFT,to the GPU through the CUDA environment. We 
ompare the GPU-E�2 des
riptors toSiftGPU [7℄, another GPU-based variant of SIFT, and show that while both GPU-basedvariants yield similar results (better than SIFT, and 
omparable to E�2), the GPU-E�2des
riptors require signi�
antly less pro
essing time.2 Ba
kgroundIn this se
tion, we review the state of the art in lo
al des
riptor pro
essing, as well asprevious e�orts to 
reate GPU-based lo
al des
riptors. We end with a brief dis
ussionof the new CUDA programming environment from NVIDIA, whi
h we have used for ourimplementation.
RUTR-CS09003



2 Daðason, Lejsek, Jónsson & Amsaleg2.1 SIFT and E�2 Des
riptorsThe SIFT lo
al des
riptors (S
ale Invariant Feature Transform), developed by Lowe [5℄, havebeen 
onsidered the state of the art in image des
ription for roboti
 vision and various other
omputer vision and image pro
essing appli
ations. The 
reation pro
ess 
onsists of twosteps, and 
an be roughly outlined as follows.In the �rst step, keypoint dete
tion, small regions of interest are dete
ted where des
rip-tors may potentially be 
reated. This is done by 
reating a sequen
e of gaussian blurs atdi�erent s
ales, taking their di�eren
es, and then dete
ting lo
al minima and maxima in thedi�eren
es a
ross the s
ales. The keypoint is then lo
alized pre
isely to a sub-pixel a

u-ra
y. In the se
ond step, the des
riptor itself is 
reated. First, the dominant gradient angle(dire
tion of 
egreatest 
ontrast) around the keypoint is found. Then a 4× 4 grid is 
reatedaround the keypoint, aligned to the dominant gradient angle, and a gradient histogram of 8bins 
reated in ea
h 
ell of the grid, obtaining a 4 × 4 × 8 = 128 dimensional histogram ofgradient strengths, �nally normalizing it.In this paper, we fo
us on the E�2 des
riptors, proposed by Lejsek et al. [3℄, whi
h are amore s
alable variant of SIFT. There are three key di�eren
es to SIFT. First, relatively moredes
riptors are 
reated at higher s
ales, as more s
ales are 
onsidered and gamma 
orre
tionis applied to the in
reasingly 
oarse blurs. Se
ond, a 3 × 3 grid is used around the point,resulting in 3×3×8 = 72 dimensions in total. Third, advan
ed �lters remove des
riptors forlines and bright spots, that appear in very many images and have little information 
ontent(similar to 
ommon words in information retrieval). Several other minor 
hanges were made,in
luding parameter tuning, to improve the re
ognition of various image transformations.The E�2 des
riptors have been shown to perform signi�
antly better than SIFT for mostimage transformations [3℄.2.2 GPU-based SIFT Des
riptorsSiftGPU is an implementation of SIFT for GPU [7℄. SiftGPU uses the parallel 
apabilitiesof the GPU to build the gaussian blur pyramids and dete
t keypoints. SiftGPU then uses amixed GPU/CPU method to build 
ompa
t keypoint lists. Finally keypoints are pro
essedin parallel to 
ompute the dominant gradient angle and the des
riptor.The SiftGPU 
ode runs on GLSL, CG and CUDA; it is thus not optimized parti
ularlyfor CUDA and despite our best e�orts we were unable to run the 
ode on our Linux-basedsystem. As will be demonstrated in the experimental se
tion below, the SiftGPU des
riptorsare orders of magnitude faster than the CPU based SIFT des
riptors, and also yield betterresults.2.3 The CUDA Programming EnvironmentAGPU supporting CUDA has multiple identi
al general-purpose single-instru
tion-multiple-threads (SIMT) parallel pro
essors [2℄. Ea
h pro
essor is 
apable of most regular CPU
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riptors using CUDA 3operations. Some are performed very qui
kly (e.g., most �oating point math and bit opera-tions), while other operations are slower (e.g., integer modulus). The SIMT-pro
essors areorganized into several multipro
essors. Ea
h multipro
essor must run the same instru
tionsequen
e on ea
h of its sub-pro
essors, and pro
essing is thus arranged into groups of oneor more multi-pro
essors. Ea
h of these groups is 
alled a blo
k, 
onsisting of individualthreads. Typi
ally, ea
h blo
k pro
esses a 
ertain sub-segment of memory, and ea
h threadis responsible for pro
essing an atomi
 part of the problem based in that sub-segment. Thearrangement of blo
ks is 
alled a grid.The CUDA GPU has its own on-devi
e memory hierar
hy with several types of memoryea
h having di�erent 
hara
teristi
s. The point of the di�erent memory types is to keep themultipro
essors fed with data, in the manner most appropriate to ea
h data a

ess problem.At the bottom of the hierar
hy is the global devi
e memory, whi
h is typi
ally 512MB�1GB. This memory has high laten
y but also high throughput. For faster a

ess, but tosmaller quantities of data, there is fast but volatile random-a

ess shared memory. Thismemory is typi
ally 16KB, whi
h are divided among live thread blo
ks. Then there is a setof very fast, low-laten
y, per-thread registers for small data that is lo
al to ea
h thread. For
ertain operations, CUDA also provides a spatial-lo
ality 
a
he on top of global memory,
alled �texture� memory. Finally, there is a small single-address broad
ast-
a
hed 
onstantmemory, whi
h is essentially read-only, and is used when all simultaneously live threads ina blo
k need to read the same small pie
e of data at the same time.In summary, we have found that programming with CUDA 
onsists of making �edu
atedguesses� about the number of threads and type of memory to assign to ea
h part of the prob-lem. With more experien
e those guesses improve, resulting in better performan
e. CUDAprovides a pro�ler whi
h 
an be used to determine the worst bottlene
ks. By addressingthose bottlene
ks in sequen
e, a reasonable solution is typi
ally found in a reasonable time.3 ImplementationIn this se
tion we des
ribe our implementation of the E�2 des
riptors within CUDA. We�rst present the keypoint extra
tion pro
ess and then our major 
ontribution, whi
h is theparallelization of the des
riptor extra
tion pro
ess to fully use the 
apabilities of the GPU.This parallelization involves some 
hanges to the des
riptor extra
tion part whi
h retain fulldes
riptors quality while yielding signi�
ant speed improvements.3.1 Keypoint Extra
tionThe s
ale spa
e 
reation pro
ess is relatively easily parallelized, as the pro
ess of repeatedgaussian blurring of o
taves and the subtra
tion of adja
ent blurrings is a prime example ofwhere ea
h thread 
an be applied to produ
e pixels independent of other threads.On
e the rough keypoint lo
ation is determined, it must be lo
alized as pre
isely aspossible. In the CPU based implementation, this is done by shifting the points by fra
tionalamounts in the two spatial dimensions, and sometimes by moving between s
ales in the s
ale
RUTR-CS09003



4 Daðason, Lejsek, Jónsson & Amsaleg

Figure 1: Details of the Des
riptor Extra
tionspa
e. In the CUDA implementation, however, the two-dimensional shift is implemented,but not the s
ale-spa
e jumps.The reason for this 
hange is as follows. On GPUs it is e�
ient to assign a 
ertainsegment of problem spa
e to ea
h thread. In our implementation, one thread's pro
essess-ing is done in one s
ale, in one o
tave. Allowing jumps out of the s
ale being pro
essedrequires either a syn
hronisation step or signi�
antly more 
omplex interest point dete
tionpro
essing. We determined, through experimentation, that s
ale jumps in
reased exe
utiontime signi�
antly with no measurable a

ura
y bene�ts.3.2 Des
riptor Extra
tionWhile building up a s
ale-spa
e of an image has been dis
ussed in several papers before,des
riptor extra
tion on the GPU has been too 
omplex for the previously available inter-fa
es. The �rst of two pro
essing steps in des
riptor extra
tion is determinnig the dominantgradient angle around the interest point. Next, the des
riptor histogram is 
omputed usingthat angle. The following des
ription of the pro
ess is aided by Figure 1.3.2.1 Dominant Angle DeterminationTo identify the dominant gradient angle around the interest point, we must 
ompute agradient orientation histogram within a 
ir
ular window around the point (Figure 1(a)).Note that histogram 
omputation is 
onsidered di�
ult to parallelize, as writes to histogrambu
kets must be 
o-ordinated to avoid write 
on�i
ts, limiting e�e
tiveness on the GPU. Inorder to make e�e
tive use of the parallelization 
apabilities of the GPU, we have 1) 
reateda pro
ess that works in thread-shared 
a
he as mu
h as possible, and 2) tweaked the gradienthistogram itself to allow more e�
ient pro
essing.The histogram 
omputation pro
eeds as follows. First, we take the smallest boundingbox that �ts the 
ir
le and pro
ess every pixel row in parallel. The gradient orientationof ea
h pixel is weighted based on its distan
e to the 
enter point (using weights stored in
Reykjavík University, S
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Full GPU A

eleration of Lo
al Des
riptors using CUDA 5the 
onstant devi
e memory) and the gradient strength of ea
h pixel is split up among twoadja
ent orientation bu
kets. For ea
h pixel in the row the two bu
ket identi�ers, and their
orresponding gradient strenghts, are stored in a shared memory blo
k on the GPU. Thenthe threads are syn
hronized after ea
h row and two single threads sum up the pro
essedvalues into the histogram. Note that using two threads does not result in write 
on�i
ts, asby design, writes o

ur to two independent bu
kets of the histogram, while using additionalthreads would give rise to write 
on�i
ts. On
e all the bounding box' rows have been
ompleted, a single thread 
al
ulates the strongest angle from the histogram.The gradient orientation histogram was tweaked slightly, by redu
ing the number oforientation bins from the SIFT standard of 36 bu
kets to 32 bu
kets. While this 
hangegrows the bu
ket radius from 10 to 11.25 degrees, the already-present interpolation betweenbu
kets means that the in�uen
e on dete
tion a

ura
y is less than 2%. The e�
ien
ybene�ts due to this small implementation tweak are signi�
ant, however. On the GPU,integer modulus is a very expensive operation (140 
lo
k 
y
les on our 
urrent GPU) whilebitwise AND, whi
h 
an be used in pla
e of modulus with 32 bins, is mu
h 
heaper (only16 
lo
k 
y
les). The e�
ien
y bene�ts of this minor 
hange, whi
h is also used in thedes
riptor histogram 
reation, are thus around 10% of the dominant angle determination.3.2.2 Des
riptor Histogram ComputationOn
e the strongest gradient dire
tion has been found, the shape signal must be en
odedinto a 72-dimensional des
riptor, whi
h is 
reated by 
omputing a gradient histogram of 8bu
kets for ea
h blo
k of the 3 × 3 grid - shown in Figure 1(b). As ea
h subhistogram is
al
ulated from a spe
i�
 area around the point, all 9 areas 
an be pro
essed in parallel bya separate set of threads.For ea
h blo
k, we must �rst 
al
ulate the border verti
es of those areas with respe
tto strongest gradient dire
tion 
omputed above. Ea
h of the 9 threads rotates the fourbounding verti
es and determines the smallest pixel-aligned bounding box of the rotatedsquare; this area is highlighted in Figure 1(b) and shown in detail in Figure 1(
). Withinthis bounding box, seven independent parallel threads pro
ess the gradient strength withrespe
t to the distan
e to the a
tual interest point and the 
enter of the a
tual 
ell. The
omputation of the gradient histogram then pro
eeds as in this histogram 
omputationdes
ribed above for the determination of the strongest gradient. The pixels are thus read inthe order shown in Figure 1(
).The reason that seven threads are applied to ea
h histogram, is that there are nineareas pro
essed in parallel, and 7 × 9 = 63, whi
h is almost a full set of 64 threads. Weexperimented with assigning 14 threads to ea
h histogram (for a total of 14 × 9 = 126threads) but the pro
ess was slower due to less e�
ient register usage, as ea
h thread muststore some lo
al information. This trade-o�, of 
ourse, may 
hange as the hardware develops.Finally, after all 9 × 8 = 72 orientation bu
kets have been 
al
ulated, a single threadnormalizes the des
riptor.
RUTR-CS09003



6 Daðason, Lejsek, Jónsson & AmsalegSIFT E�2des
riptors time [ms℄ des
riptors time [ms℄CPU 1,212 1,200 698 360GPU 486 37 686 27Table 1: Des
riptor 
reation statisti
s per image.4 Experimental EvaluationIn this se
tion we present the results of our experimental evaluation of the four des
riptorvariants: SIFT, SiftGPU, E�2, and GPU-E�2. All experiments have been performed on adesktop 
omputer equipped with an Intel Q6600 pro
essor and a NVIDIA GTX 280 GPU.First, we 
ompare and analyze the time spent on des
riptor extra
tion, and then we studythe result quality with ea
h of the four variants.4.1 Extra
tion TimeIn this experiment, we applied ea
h of the variants to a 
olle
tion of 29,277 high-qualitynews images [3℄, where ea
h image's longer edge is res
aled to 512 pixels. Table 1 showsthe number of des
riptors 
reated and the running time. The des
riptors of ea
h image are
omputed three times, and the average time of the se
ond two runs is used, in order to avoidmeasuring initialization e�e
ts that are 
ommon between the GPU-based variants.As Table 1 shows, des
riptor 
reation on the GPU is almost an order of magnitude fasterthan E�2 on the CPU and nearly another order of magnitude faster than SIFT. Furthermore,GPU-E�2 performs des
riptor 
reation signi�
antly faster than SiftGPU.Table 2 shows a more detailed break-down of the exe
ution time for ea
h of the GPU-based variants. The �rst two lines indi
ate the time required to 
reate the entire s
ale-spa
eand to lo
alize the keypoints. As the table shows, this is signi�
antly faster for SiftGPU. Theprimary reason is that SiftGPU uses fewer o
taves (4 or 5 for our experimental 
olle
tion,as opposed to 7 for GPU-E�2) and s
ales (3 vs. 7 for GPU-E�2), resulting in signi�
antlyless pro
essing (at the expense of lower re
ognition for some image modi�
ations, as shownbelow). Another reason is that this part is the earliest 
ode of GPU-E�2, and SiftGPU isusing some well-known optimizations that we have yet to apply.The third line indi
ates the time required to gather the keypoints into a list for des
riptorextra
tion. This part is partially implemented using the CPU with SiftGPU and is thereforeslower. The �nal three lines indi
ate the 
ost of 
reating the des
riptors themselves. Thetime required for feature orientation is with 0.7 ms very low as gradient 
al
ulation has beenperformed within the �Build pyramid� step. As mentioned above, the GPU-E�2 des
riptorsonly extra
t a single des
riptor per keypoint, and hen
e the multi-orientation is not needed.Finally, the des
riptor 
reation itself also bene�ts from our e�
ient histogram 
al
ulation,and is signi�
antly faster for GPU-E�2.
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Full GPU A

eleration of Lo
al Des
riptors using CUDA 7Phase SIFT E�2Build pyramid 5.4 (14 %) 12.6 (47 %)Dete
t keypoints 4.6 (12 %) 7.6 (28 %)Gather keypoints 11.9 (32 %) 3.7 (14 %)Feature orientation 5.8 (16 %) 0.7 ( 3 %)Multi-orientation 2.5 ( 7 %) - ( - )Des
riptor 
reation 7.1 (19 %) 2.3 ( 8 %)Table 2: Des
riptor 
reation time breakdown [ms℄.
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Figure 2: Dete
tion rate for sele
ted modi�
ations.4.2 Dete
tion CapabilityIn order to study the dete
tion 
apability of the des
riptors, we loaded ea
h des
riptor
olle
tion into an NV-tree index [4℄. We then used the same 108 original query imagesand 26 StirMark modi�
ations used in [3℄ to evaluate the dete
tion 
apabilities of the fourdi�erent des
riptor variants. As reported in [3℄, we found that about 41.2% of the SIFTquery des
riptors �nd a mat
h from the original image in the top 30 neighbors, while about57.1% of the E�2 query des
riptors �nd a mat
h. Both SiftGPU and GPU-E�2, however,perform similarly to E�2, �nding 57.6% and 58.1% respe
tively. For individual modi�
ations,however, the tradeo�s are slightly di�erent and Figure 2 presents a representative set of sixmodi�
ations that we now dis
uss.The �rst two modi�
ations, AFFINE 3 (a�ne transformation on both axes) and RESC75 (res
aling to 75%) represent the majority of the modi�
ations (18 in total). For thesemodi�
ations SiftGPU, E�2 and GPU-E�2 des
riptors yield very similar rates, while theSIFT des
riptors yield a lower s
ore. Most of these modi�
ations are easy to dete
t; thelower ratio for SIFT is due to the abundan
e of des
riptors.
RUTR-CS09003



8 Daðason, Lejsek, Jónsson & AmsalegThe next two modi�
ations in Figure 2, CONV 1 (low brightness) and CROP 75 (75%
entral 
rop), show a better dete
tion rate with the SIFT variants than with the E�2 vari-ants. This phenomenon was already des
ribed in [3℄ and is a result of the emphasis ofthe SIFT variants on low-s
ale, low-o
tave des
riptors. Note that these were the only twomodi�
ations where the SIFT variants performed better.The last two modi�
ations, JPEG 15 (
ompression) and SS 1 (
onversion to HSV 
olorformat), show an advantage for the E�2 variants 
ompared to the SIFT variants. Thereason is that these modi�
ations remove some of the �ner detail in the images, showing theadvantage of theE�2 variants' emphasis on higher-level des
riptors. This e�e
t is seen in atotal of six modi�
ations.5 Con
lusionThis paper has given an overview on the porting of the E�2 des
riptors onto a GPU usingthe CUDA programming model. The experimental evaluation shows a signi�
ant speedadvantage, not only over CPU implementations, but also beating SiftGPU. We have alsoshown, however, that GPU-E�2 still has room for improvement in s
ale-spa
e 
omputationand keypoint dete
tion e�
ien
y, whi
h we aim to address in our future work.Referen
es[1℄ Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan. GpuCV: An opensour
eGPU-a
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eedingsof ACM Multimedia, Van
ouver, BC, Canada, 2008.[2℄ NVIDIA CUDA Programming Guide, Ver. 2.0, 2008.[3℄ H. Lejsek, F. H. Ásmundsson, B. T. Jónsson, and L. Amsaleg. S
alability of lo
al imagedes
riptors: a 
omparative study. In Pro
eedings of ACM Multimedia, Santa Barbara,CA, USA, 2006.[4℄ H. Lejsek, F. H. Ásmundsson, B. T. Jónsson, and L. Amsaleg. NV-tree: An e�
ientdisk-based index for approximate sear
h in very large high-dimensional 
olle
tions. IEEETransa
tions on Pattern Analysis and Ma
hine Intelligen
e, 2009.[5℄ D. G. Lowe. Distin
tive image features from s
ale-invariant keypoints. InternationalJournal of Computer Vision, 60(2):91�110, 2004.[6℄ S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Gen
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