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Abstract: Video analysis using local descriptors demands a high-throughput descriptor
creation process. The most practical method to this goal is to use GPUs that come with
most recent computers. In this report, we adapt the computation of the Eff> descriptors, a
variant of SIFT, to the GPU. We compare our GPU-Eff2 descriptors to SiftGPU and show
that while both GPU-based variants yield similar results, the GPU-Eff> descriptors require
significantly less processing time.
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stadveerra lysinga med CUDA
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Utdrattur: Greining myndbanda med stadvaerum lysingum (e. local descriptors) krefst
mikilla afkasta vid gerd lysinganna. Skilvirkasta leidin ad pessu marki er ad nota GPU
myndvinnslugjérvann sem fylgir 6llum nyrri tolvum. I pessari skyrslu 1ogum vid atreikninga
Eff? lysinganna, sem eru tilbrigdi vid SIFT lysinga, ad GPU. Vid berum GPU-Eff? lysingana
saman vid SiftGPU og synum ad pott baedi GPU-byggou tilvikin gefi svipadar nidurstéour,
ba purfi GPU-Eff? lysingarnir mun minni vinnslutima.

Lykilord: Stadveerir myndlysingar, GPU, Eff2, SIFT, CUDA.

(Abstract: previous page)
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1 Introduction

Video analysis is a central component in many applications, such as video surveillance, news
analysis, and video copyright protection. Recent methods for such analysis are typically
based on computing many local descriptors per frame; these frame-based descriptions are
then merged to form the video description. As many applications require real-time per-
formance, high demands are made on the efficient computation of the local descriptors,
particularly on high throughput.

The traditional method for achieving high throughput is using a cluster of multi-core
computers. The advantage is that the same description code can be used, but there are two
major disadvantages. First, merging the local descriptors in the correct order may require
major coding efforts for synchronization. Second, computing clusters are very expensive and
it is difficult in practice to deliver cluster-based software products to end users.

An alternative method, solving both problems, is to use powerful graphics processing
units (GPU). The advent of highly scalable and parallel, yet inexpensive, GPUs has consti-
tuted a minor revolution in the computer industry; many projects have therefore investigated
the use of GPUs for a variety of tasks, such as image processing [1], feature tracking [6] and
local descriptor computation [7].

The disadvantage of GPUs, however, is that the description code does not work un-
changed. In fact, adapting computations to GPU has been considered a complex and time-
consuming task. Data and computations had to be adapted to meet severe constraints on the
access patterns and operations available on-GPU. As a result, some computational processes
could not be completely adapted, forcing data loadback to the host CPU for completion (e.g.,
see [7]). Fortunately, however, GPUs have now become much easier to utilize due to the
recently released CUDA programming environment from NVIDIA [2]. The CUDA model
allows a larger set of access patterns to data, and supports a large set of computing primi-
tives. While the learning curve is still significant, adaptation to GPU has become easier and
more complex computations made tractable.

In this paper, we adapt the computation of the Eff?> descriptors, a variant of SIFT,
to the GPU through the CUDA environment. We compare the GPU-Eff2 descriptors to
SiftGPU [7], another GPU-based variant of SIFT, and show that while both GPU-based
variants yield similar results (better than SIFT, and comparable to Eff?), the GPU-Eff?
descriptors require significantly less processing time.

2 Background
In this section, we review the state of the art in local descriptor processing, as well as
previous efforts to create GPU-based local descriptors. We end with a brief discussion

of the new CUDA programming environment from NVIDIA, which we have used for our
implementation.
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2.1 SIFT and Eff?> Descriptors

The SIFT local descriptors (Scale Invariant Feature Transform), developed by Lowe [5], have
been considered the state of the art in image description for robotic vision and various other
computer vision and image processing applications. The creation process consists of two
steps, and can be roughly outlined as follows.

In the first step, keypoint detection, small regions of interest are detected where descrip-
tors may potentially be created. This is done by creating a sequence of gaussian blurs at
different scales, taking their differences, and then detecting local minima and maxima in the
differences across the scales. The keypoint is then localized precisely to a sub-pixel accu-
racy. In the second step, the descriptor itself is created. First, the dominant gradient angle
(direction of cegreatest contrast) around the keypoint is found. Then a 4 x 4 grid is created
around the keypoint, aligned to the dominant gradient angle, and a gradient histogram of 8
bins created in each cell of the grid, obtaining a 4 x 4 x 8 = 128 dimensional histogram of
gradient strengths, finally normalizing it.

In this paper, we focus on the Eff? descriptors, proposed by Lejsek et al. [3], which are a
more scalable variant of SIFT. There are three key differences to SIFT. First, relatively more
descriptors are created at higher scales, as more scales are considered and gamma correction
is applied to the increasingly coarse blurs. Second, a 3 x 3 grid is used around the point,
resulting in 3 x 3 x 8 = 72 dimensions in total. Third, advanced filters remove descriptors for
lines and bright spots, that appear in very many images and have little information content
(similar to common words in information retrieval). Several other minor changes were made,
including parameter tuning, to improve the recognition of various image transformations.
The Eff? descriptors have been shown to perform significantly better than SIFT for most
image transformations [3].

2.2 GPU-based SIFT Descriptors

SiftGPU is an implementation of SIFT for GPU [7]. SiftGPU uses the parallel capabilities
of the GPU to build the gaussian blur pyramids and detect keypoints. SiftGPU then uses a
mixed GPU/CPU method to build compact keypoint lists. Finally keypoints are processed
in parallel to compute the dominant gradient angle and the descriptor.

The SiftGPU code runs on GLSL, CG and CUDA; it is thus not optimized particularly
for CUDA and despite our best efforts we were unable to run the code on our Linux-based
system. As will be demonstrated in the experimental section below, the SifttGPU descriptors
are orders of magnitude faster than the CPU based SIFT descriptors, and also yield better
results.

2.3 The CUDA Programming Environment

A GPU supporting CUDA has multiple identical general-purpose single-instruction-multiple-
threads (SIMT) parallel processors [2]. Each processor is capable of most regular CPU
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operations. Some are performed very quickly (e.g., most floating point math and bit opera-
tions), while other operations are slower (e.g., integer modulus). The SIMT-processors are
organized into several multiprocessors. Each multiprocessor must run the same instruction
sequence on each of its sub-processors, and processing is thus arranged into groups of one
or more multi-processors. Each of these groups is called a block, consisting of individual
threads. Typically, each block processes a certain sub-segment of memory, and each thread
is responsible for processing an atomic part of the problem based in that sub-segment. The
arrangement of blocks is called a grid.

The CUDA GPU has its own on-device memory hierarchy with several types of memory
each having different characteristics. The point of the different memory types is to keep the
multiprocessors fed with data, in the manner most appropriate to each data access problem.
At the bottom of the hierarchy is the global device memory, which is typically 512MB—
1GB. This memory has high latency but also high throughput. For faster access, but to
smaller quantities of data, there is fast but volatile random-access shared memory. This
memory is typically 16KB, which are divided among live thread blocks. Then there is a set
of very fast, low-latency, per-thread registers for small data that is local to each thread. For
certain operations, CUDA also provides a spatial-locality cache on top of global memory,
called “texture” memory. Finally, there is a small single-address broadcast-cached constant
memory, which is essentially read-only, and is used when all simultaneously live threads in
a block need to read the same small piece of data at the same time.

In summary, we have found that programming with CUDA consists of making “educated
guesses” about the number of threads and type of memory to assign to each part of the prob-
lem. With more experience those guesses improve, resulting in better performance. CUDA
provides a profiler which can be used to determine the worst bottlenecks. By addressing
those bottlenecks in sequence, a reasonable solution is typically found in a reasonable time.

3 Implementation

In this section we describe our implementation of the Eff?> descriptors within CUDA. We
first present the keypoint extraction process and then our major contribution, which is the
parallelization of the descriptor extraction process to fully use the capabilities of the GPU.
This parallelization involves some changes to the descriptor extraction part which retain full
descriptors quality while yielding significant speed improvements.

3.1 Keypoint Extraction

The scale space creation process is relatively easily parallelized, as the process of repeated
gaussian blurring of octaves and the subtraction of adjacent blurrings is a prime example of
where each thread can be applied to produce pixels independent of other threads.

Once the rough keypoint location is determined, it must be localized as precisely as
possible. In the CPU based implementation, this is done by shifting the points by fractional
amounts in the two spatial dimensions, and sometimes by moving between scales in the scale
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Figure 1: Details of the Descriptor Extraction

space. In the CUDA implementation, however, the two-dimensional shift is implemented,
but not the scale-space jumps.

The reason for this change is as follows. On GPUs it is efficient to assign a certain
segment of problem space to each thread. In our implementation, one thread’s processess-
ing is done in one scale, in one octave. Allowing jumps out of the scale being processed
requires either a synchronisation step or significantly more complex interest point detection
processing. We determined, through experimentation, that scale jumps increased execution
time significantly with no measurable accuracy benefits.

3.2 Descriptor Extraction

While building up a scale-space of an image has been discussed in several papers before,
descriptor extraction on the GPU has been too complex for the previously available inter-
faces. The first of two processing steps in descriptor extraction is determinnig the dominant
gradient angle around the interest point. Next, the descriptor histogram is computed using
that angle. The following description of the process is aided by Figure 1.

3.2.1 Dominant Angle Determination

To identify the dominant gradient angle around the interest point, we must compute a
gradient orientation histogram within a circular window around the point (Figure 1(a)).
Note that histogram computation is considered difficult to parallelize, as writes to histogram
buckets must be co-ordinated to avoid write conflicts, limiting effectiveness on the GPU. In
order to make effective use of the parallelization capabilities of the GPU, we have 1) created
a process that works in thread-shared cache as much as possible, and 2) tweaked the gradient
histogram itself to allow more efficient processing.

The histogram computation proceeds as follows. First, we take the smallest bounding
box that fits the circle and process every pixel row in parallel. The gradient orientation
of each pixel is weighted based on its distance to the center point (using weights stored in
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the constant device memory) and the gradient strength of each pixel is split up among two
adjacent orientation buckets. For each pixel in the row the two bucket identifiers, and their
corresponding gradient strenghts, are stored in a shared memory block on the GPU. Then
the threads are synchronized after each row and two single threads sum up the processed
values into the histogram. Note that using two threads does not result in write conflicts, as
by design, writes occur to two independent buckets of the histogram, while using additional
threads would give rise to write conflicts. Once all the bounding box’ rows have been
completed, a single thread calculates the strongest angle from the histogram.

The gradient orientation histogram was tweaked slightly, by reducing the number of
orientation bins from the SIFT standard of 36 buckets to 32 buckets. While this change
grows the bucket radius from 10 to 11.25 degrees, the already-present interpolation between
buckets means that the influence on detection accuracy is less than 2%. The efficiency
benefits due to this small implementation tweak are significant, however. On the GPU,
integer modulus is a very expensive operation (140 clock cycles on our current GPU) while
bitwise AND, which can be used in place of modulus with 32 bins, is much cheaper (only
16 clock cycles). The efficiency benefits of this minor change, which is also used in the
descriptor histogram creation, are thus around 10% of the dominant angle determination.

3.2.2 Descriptor Histogram Computation

Once the strongest gradient direction has been found, the shape signal must be encoded
into a 72-dimensional descriptor, which is created by computing a gradient histogram of 8
buckets for each block of the 3 x 3 grid - shown in Figure 1(b). As each subhistogram is
calculated from a specific area around the point, all 9 areas can be processed in parallel by
a separate set of threads.

For each block, we must first calculate the border vertices of those areas with respect
to strongest gradient direction computed above. Each of the 9 threads rotates the four
bounding vertices and determines the smallest pixel-aligned bounding box of the rotated
square; this area is highlighted in Figure 1(b) and shown in detail in Figure 1(c). Within
this bounding box, seven independent parallel threads process the gradient strength with
respect to the distance to the actual interest point and the center of the actual cell. The
computation of the gradient histogram then proceeds as in this histogram computation
described above for the determination of the strongest gradient. The pixels are thus read in
the order shown in Figure 1(c).

The reason that seven threads are applied to each histogram, is that there are nine
areas processed in parallel, and 7 x 9 = 63, which is almost a full set of 64 threads. We
experimented with assigning 14 threads to each histogram (for a total of 14 x 9 = 126
threads) but the process was slower due to less efficient register usage, as each thread must
store some local information. This trade-off, of course, may change as the hardware develops.

Finally, after all 9 x 8 = 72 orientation buckets have been calculated, a single thread
normalizes the descriptor.

RUTR-CS09003
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SIFT Eff?
descriptors | time [ms] | descriptors | time [ms]
CPU | 1212 1,200 698 360
GPU 486 37 686 27

Table 1: Descriptor creation statistics per image.

4 Experimental Evaluation

In this section we present the results of our experimental evaluation of the four descriptor
variants: SIFT, SiftGPU, Eff2, and GPU-Eff2. All experiments have been performed on a
desktop computer equipped with an Intel Q6600 processor and a NVIDIA GTX 280 GPU.
First, we compare and analyze the time spent on descriptor extraction, and then we study
the result quality with each of the four variants.

4.1 Extraction Time

In this experiment, we applied each of the variants to a collection of 29,277 high-quality
news images [3], where each image’s longer edge is rescaled to 512 pixels. Table 1 shows
the number of descriptors created and the running time. The descriptors of each image are
computed three times, and the average time of the second two runs is used, in order to avoid
measuring initialization effects that are common between the GPU-based variants.

Asg Table 1 shows, descriptor creation on the GPU is almost an order of magnitude faster
than Eff> on the CPU and nearly another order of magnitude faster than SIFT. Furthermore,
GPU-Eff? performs descriptor creation significantly faster than SifttGPU.

Table 2 shows a more detailed break-down of the execution time for each of the GPU-
based variants. The first two lines indicate the time required to create the entire scale-space
and to localize the keypoints. As the table shows, this is significantly faster for SiftGPU. The
primary reason is that SiftGPU uses fewer octaves (4 or 5 for our experimental collection,
as opposed to 7 for GPU-Eff?) and scales (3 vs. 7 for GPU-Eff?), resulting in significantly
less processing (at the expense of lower recognition for some image modifications, as shown
below). Another reason is that this part is the earliest code of GPU-Eff?, and SiftGPU is
using some well-known optimizations that we have yet to apply.

The third line indicates the time required to gather the keypoints into a list for descriptor
extraction. This part is partially implemented using the CPU with SiftGPU and is therefore
slower. The final three lines indicate the cost of creating the descriptors themselves. The
time required for feature orientation is with 0.7 ms very low as gradient calculation has been
performed within the “Build pyramid” step. As mentioned above, the GPU-Eff? descriptors
only extract a single descriptor per keypoint, and hence the multi-orientation is not needed.
Finally, the descriptor creation itself also benefits from our efficient histogram calculation,
and is significantly faster for GPU-Eff2.

Reykjavik University, School of Computer Science
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Phase SIFT Eff?
Build pyramid 5.4 (14 %) | 12.6 (47 %)
Detect keypoints 46 (12%) | 7.6 (28 %

)
Gather keypoints 11.9 (32 %) | 3.7 (14 %)
Feature orientation | 5.8 (16 %) | 0.7 (3 %)
Multi-orientation 2.5 (7%) -(-)
Descriptor creation | 7.1 (19 %) | 2.3 (8 %)

Table 2: Descriptor creation time breakdown [ms].
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Figure 2: Detection rate for selected modifications.

4.2 Detection Capability

In order to study the detection capability of the descriptors, we loaded each descriptor
collection into an NV-tree index [4]. We then used the same 108 original query images
and 26 StirMark modifications used in [3] to evaluate the detection capabilities of the four
different descriptor variants. As reported in [3], we found that about 41.2% of the SIFT
query descriptors find a match from the original image in the top 30 neighbors, while about
57.1% of the Eff> query descriptors find a match. Both SiftGPU and GPU-Eff?, however,
perform similarly to Eff?, finding 57.6% and 58.1% respectively. For individual modifications,
however, the tradeoffs are slightly different and Figure 2 presents a representative set of six
modifications that we now discuss.

The first two modifications, AFFINE 3 (affine transformation on both axes) and RESC
75 (rescaling to 75%) represent the majority of the modifications (18 in total). For these
modifications SiftGPU, Eff? and GPU-Eff?> descriptors yield very similar rates, while the
SIFT descriptors yield a lower score. Most of these modifications are easy to detect; the
lower ratio for SIFT is due to the abundance of descriptors.

RUTR-CS09003
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The next two modifications in Figure 2, CONV 1 (low brightness) and CROP 75 (75%
central crop), show a better detection rate with the SIFT variants than with the Eff? vari-
ants. This phenomenon was already described in [3] and is a result of the emphasis of
the SIFT variants on low-scale, low-octave descriptors. Note that these were the only two
modifications where the SIFT variants performed better.

The last two modifications, JPEG 15 (compression) and SS 1 (conversion to HSV color
format), show an advantage for the Eff? variants compared to the SIFT variants. The
reason is that these modifications remove some of the finer detail in the images, showing the
advantage of theEff? variants’ emphasis on higher-level descriptors. This effect is seen in a
total of six modifications.

5 Conclusion

This paper has given an overview on the porting of the Eff?> descriptors onto a GPU using
the CUDA programming model. The experimental evaluation shows a significant speed
advantage, not only over CPU implementations, but also beating SiftGPU. We have also
shown, however, that GPU-Eff? still has room for improvement in scale-space computation
and keypoint detection efficiency, which we aim to address in our future work.
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