HASKOLINN | REYKJAVIK

REYK]JAVIK UNIVERSITY

IKON FLUX 2.0

ERIC NIVEL

RUTR - CS0O7006

DeEc. 2007

REYKJAVIK UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

TECHNICAL REPORT

ABSTRACT. Structurally autonomous systems embody a continuous process of adaptation of their
internal structure to new situations, goals and constraints in open-ended environments and in real-time.
An operational definition for autonomy is proposed: self-programming, that is, a continuous process of
architectural synthesis. Ikon Flux is described, a proto-architecture consisting of a language and an
executive, designed to enable the construction of autonomous systems as self-programming systems.
The prototype of such a system is a dynamic and self-referential architecture generating in real-time its
own structures and processes, both grounded mutually in high-dimensional topological spaces. A brief
comparison of lkon Flux with prominent state-of-the-art architectures is given. | discuss some salient
issues pertaining to engineering evolutionary systems and conclude to the necessity of designing a new
methodology based on process generativity.

1 INTRODUCTION

The work presented here aims at the construction of machines able to adapt to unforeseen
situations in open-ended environments. “Adaptivity” is used here in a strong sense as the
ability of a machine not only to maintain but also to improve its utility function and so, in
partially specified conditions with limited knowledge and resources - including time.

Ikon Flux is a prototypical architecture for such autonomous systems. It is not the
architecture of a particular system per se, but an executive and a language to frame the
engineering of such architectures in the sense that a prototype is an abstract type, to be
instantiated in a concrete domain.

lkon Flux has been implemented: its development started in 1998, and version 1.6 was
finalized in 2005 when an actual system - Loki - was built to act as a meta character in
theatrical performances® and in particular, the play Roma Amor? premiered at the Cite des
Sciences et de L'Industrie in Paris. Its function was to generate and enact the stage control
according to the development of the drama, a la maniere de characters in the play, present
on stage or not. In return, human characters responded to the system in an adaptive way:
the system formed by the script, the actors and the machinery then assumed some degree of
autonomy, along the lines of the constructivist approach to theatre>.

This paper describes the version 2.0 of Ikon Flux currently under redevelopment. lkon Flux
V2.0 uses the same fundamental concepts as version 1.6 and is intended to bring
improvements on two main fronts: the performance of the executive and the syntax of the
programming language.

This report presents three levels of reading:

* Theoretical level - section 2: an operational definition of autonomy as a self-programming
process,

= Operational level - section 3: a description of the core concepts of Ikon Flux, that support
the construction of self-programming systems,

»= Technical level - section 4: a description of the lkon Flux executive. Also, the Annex
provides a definition of the lkon Flux language: code synthesis rules, built-in operators,
object types and system functions, and also some code examples.

Finally, section 5 provides a brief discussion about related architectures.

2 SELF-PROGRAMMING: OPERATIONALIZING AUTONOMY

Lacking an operational definition for the concept of autonomy has considerably weakened its
impact on system engineering. In practice, so-called “autonomous” systems are hardly
autonomous at all since they are primarily built only to address situations that can be
described beforehand. The mainstream approach towards system engineering today consists
essentially of building sophisticated ways to select and tune hard-coded goals and behaviors
for handling situations framed in hard-coded ontologies. Systems designed this way belong to
the category of behaviorally autonomous systems (Froese et al. 2007) - systems that,
essentially, embody task automation. The definition of both their tasks and their domain of
operation is pre-determined and, by and large, such systems are not aware of their own
purpose: they are defined entirely by a set of target values and mechanisms to reach them,
both imposed from outside their reach. Shall these values and mechanisms become obsolete
in a changing world, such systems will cease to operate correctly, if at all. In other words,
they are ignorant of the the laws of both their construction and their determination, and

L work supported by grants from the French Agency for Research (ANVAR) and the Ministry of Culture.
2J.M. Musial, director.

3 see for example Meyerhold’s acting system - Biomechanics. See also Meyerhold (1969) and Hoover (1974). For a
more general perspective, see http://www.univie.ac.at/constructivism.

2/ 47

sensing the world is for them to recognize events using the sieve of an immutable
phenomenology. Defined from the outside in, these systems cannot - by design - adapt to
change without the intervention of their programmers: in fact, such systems fall directly in
the category of allonomic systems (systems governed exclusively by external laws), the
exact opposite of what autonomous systems are (governed entirely by their own law)!

If the goal of building autonomous systems is to be pursued in an authentic way, then
motivations, goals and behaviors shall be envisioned as being dynamically (re)constructed by
the machine as a result of changes in its internal structure, the latter resulting from changes
in the environment, which in turn is modified by the system’s behaviors. This perspective -
structural coupling - draws on Varela’s conceptual framework, namely autopoiesis, and his
work on operationally closed systems (Varela et al. 1974, Varela and Maturana 1980, Varela
1992) that is:

“machine[s] organized (defined as a unity) as a network of processes of production
(transformation and destruction) of components which: (i) through their interactions and
transformations continuously regenerate and realize the network of processes (relations)
that produced them; and (ii) constitute it (the machine) as a concrete unity in space in
which they (the components) exist by specifying the topological domain of its realization
as such a network.”

Although autopoiesis is a model designed primarily to describe the formation of complex
organizations in bio-chemical substrates, it constitutes an abstract theory as it does not
impose any constraint on the substrate. Autopoiesis defines relations between the
components, processes, network and topological domains rather than it describes them
individually. In that sense autopoiesis has to be made operational in a particular domain, that
is, to be instantiated by the specification of the entities mentioned above. For example,
Fontana (1996, see also Ancel and Fontana 2000), has proposed a computable model for
chemistry and RNA folding based on lambda calculus where components (molecules) and
networks (chemical reactions) are specified as lambda-terms and reduction rules. Addressing
the case of computational substrates | map Varela’s terminology as follows:

= Component: a program. The function of a program is to synthesize (i.e. to produce or to
modify) other programs. For example, generating new missions is creating new programs
that define goals, resource usage policies, measurement and control procedures, etc. In
this view, planning is generating programs (a plan and a program to enact it). In a similar
way, learning is modifying the existing programs to perform more efficiently.

* Process: the execution of a program.

= Network of processes: the graph formed by the execution of programs, admitting each
other as an input and synthesizing others.

» Space: the memory of the computer, holding the code of the machine, exogenous
components (e.g. device drivers, libraries) and its inputs/outputs from/to the world.

= Topological domain: the domain where synthesis is enabled as an observable and
controllable process. This domain traverses increasing levels of abstraction and is defined
at a low level by the synthesis rules, syntax and semantics and at higher levels by goal and
plan generating programs and related progress measuring programs.

Program synthesis operates on symbolic data, i.e. the programs that constitute the machine.
It follows that such constituents must be described to allow reasoning (symbolic
computation) about what they do (e.g. actions on the world), what their impact will be
(prediction) - or could be, given hypothetical inputs (simulation) - what they require to run
(e.g. CPU power, memory, time, pre-conditions in the world), when their execution is
appropriate, etc. Such descriptions constitute models of the programs of the machine:
models encode the machine’s operational semantics. The same idea can easily be extended
to entities or phenomena in the world, models then encode either (1) their operational
semantics in the world through the descriptions of their apparent behaviors or, (2) the
operational semantics of the machine as an entity situated in the world (constraints and
possible actions in the world, reactions from entities, etc.).

Under operational closure the utility function is defined recursively as the set of the system’s
behaviors, some among the latter rewriting the former in sequential steps. But this alone
does not define the purpose of the utility function: mere survival is not operational in the
context of machines - death is no threat to a computer, whereas failure to (re)define and
fulfill its mission shall be. To remain within the scope of this paper, suffice it to say that
teleology has also to be mapped from biology onto an application domain (e.g. in the case of

3/ 47

an exploration robot: surviving — succeeding at discovering interesting facts on a foreign
planet). Program synthesis is a process that has to be designed with regards to (meta)goals
in light of the current situation and available resources. Accordingly, system evolution shall
be seen as a controlled and planned reflective process. It is essentially a global and never-
terminating process of architectural synthesis, whose output bears at every step the
semantics of instructions to perform the next rewriting step. This instantiates in a
computational substrate a fundamental property of (natural) evolutionary systems called
semantic closure (see Pattee 1995 and Rocha 2000). Semantic closure is (Rocha 1995)

“a self-referential relation between the physical and symbolic aspects of material
organizations with open-ended evolutionary potential: only material organizations
capable of performing autonomous classifications in a self-referential closure, where
matter assumes both physical and symbolic attributes, can maintain the functional value
required for evolution”.

A computational autonomous system is a dynamic agency of programs, states, goals and
models and as such these assume the “physical” - i.e. constitutive - attributes mentioned
above. System evolution must be observable and controllable, and thus has to be based on
and driven by models, a requirement for system engineering - see for example Sanz et al.
(2007). Some models describe the current structure and operation of the system, some
others describe the synthesis steps capable of achieving goals according to internal drives,
and finally yet some other models define procedures for measuring progress.

To differentiate the approach described here form the misleadingly named “behavioral
autonomy” | have - hopefully temporarily — to resort to using the term “structural autonomy”.
To summarize,

a computational structurally autonomous system is a system

= situated,

= performing in real-time,

= based on and driven by models,

= operationally and semantically closed.

The operational closure is a continuous program/model synthesis process, and the semantic
closure a continuous process of observation and control of the synthesis, that results itself
from the synthesis process.

2.1 SELF-PROGRAMMING

Self-programming is the global process that animates computational structurally autonomous
systems, i.e. the implementation of both the operational and semantic closures. Accordingly,
a self-programming machine - the self - is constituted in the main by three categories of
code:

» C,;: the programs that act on the world and the self (sensors* and actuators). Sensors and
actuators on the self operate in any of the three categories: they are programs that
evaluate the structure and execution of code (processes) and, respectively, synthesize
code.

» C,: the models that describe programs in C;, entities and phenomena in the world -
including the self in the world - and programs in the self. Goals contextualize models and
they also belong to C,.

» C;: the states of the self and of the world - past, present and anticipated - including the
inputs/outputs of the machine.

In the absence of principles for spontaneous genesis we have to assume the existence of a
set of initial hand-crafted knowledge - the bootstrap segment. It consists of ontologies,
states, models, internal drives, exemplary behaviors and programming skills.

A NEW CLASS OF PROGRAMMING LANGUAGES. Self-programming requires a new
class of programming language featuring low complexity, high expressivity and runtime
reflectivity. As a case in point, C++ is one of the most powerful languages today for
engineering real-world systems: it offers both performance, direct access to computing
resources and high-level abstractions. But for a C++ program to generate another one is a
real challenge: difficulties lie for example in its syntax being irregular and too permissive,
and — more dramatically - in its operational semantics being not explicit, i.e. not expressed as

4 Sensing is acting, i.e. building - or reusing - observation procedures to sample phenomena in selected regions of the
world or the self.

4 / 47

C++ objects. The object-orientation paradigm has been introduced for project management
purposes and to instrument a static top-down analysis that excludes bottom-up dynamic
code production. Operational semantics being unavailable, a program would have to infer the
purpose of source code by evaluating the assembly code against a formal model of the
machine (hardware, operating system, libraries, etc) - the latter being definitely unavailable
for the off-the-shelf components we use daily. Besides, the language structures are not
reflected at assembly level either and it is practically impossible from the sole reading of the
memory to rebuild objects, functions, classes and templates: one would need a complete
SysML blueprint from the designer. In other words, what is good so far - and even that is
disputable! - for a human programmer is unsuitable for a system having to synthesize its own
code in real-time. This discussion also holds for civilized languages like Erlang or Haskell, for
which the principal difficulties still prevail - lack of operational semantics and exclusive top-
down orientation.

A good approach towards addressing this issue is to reduce the apparent complexity of the
computational substrate (language and executive) and to code short programs in assembly-
style while retaining significant expressivity. There seem now to be a consensus on this
approach, as several recent works indicate (for example, Paun 2002, Schmidhuber 2004,
Spector et al. 2005, Yamamoto et al. 2007).

In addition, runtime data must be generated on the fly to reflect the status of program
rewriting for self-programming is a process that reasons not only about the structure of
programs but also about their execution (processes). For example a reasoning (set of)
program(s) has to be aware of (1) the resource expenditure and time horizon of a given
process, (2) the author (program) and conditions (input and context) of code synthesis, and
(3) the success or failure of code invocation.

AN EXPERIMENTAL APPROACH TO SYSTEM MODELING. As a foundation for
implementing autonomous systems in and for real-world conditions, automatic theorem
proving is most-likely not as appropriate as it may seem in theory. Theories of universal
problem solving impose actually a stringent constraint: they require the exhaustive
axiomatization of the problem domain and space. For proof-based self-rewriting systems -
see for example Schmidhuber (2006) - this means that complete axiomatization is also
required for the machine itself. However this is very unlikely to happen before long: modern
hardware and operating systems present such complexity and diversity that axiomatization is
already a daunting task way out of reach of today’s formal engineering methods - not even
mentioning the cost issue. More over, the pace of evolution of these components is now so
fast that we would need universal standards to anchor the development of industrial systems
in theory. Bearing in mind that standards take in general at least a decade to reach maturity
and an extra one to be widely established, it seems that by and large, the need for
exhaustive axiomatization drives theorem proving away from industrial practice.

We have no choice but to accept that theories — and knowledge in general - can only be given
or constructed in partial ways, and to trade provable optimality for tractability. Self-
programming has thus to perform in an experimental way instead of a theoretical way: an
autonomous system would attempt to model its constituents and update these models from
experience. For example, by learning the regular regime of operation of its sensors such a
system could detect malfunctions or defects. It would then adapt to this new constraints, in
the fashion it adapts to changes in its environment. From his perspective, the models that
specify and control adaptation (program construction) are a-priori neither general nor
optimal. They operate only in specific contexts, and these are modeled only partially as the
dimensions of the problem space have to be incrementally discovered and validated - or
defeated - by experience, for example under the control of programs that reason defeasibly
(see Pollock 2001). A system continuously modeling its own operation has to do so at
increasing level of abstraction, from the level of program rewriting up to the level of global
processes (e.g. the utility function), thus turning eventually into a fully self-modeling system -
see Landauer and Bellman (2003).

MULTI-SCALE GLOBAL SEMANTICS. In that respect, self-programming systems need to
capture and construct operational knowledge at any arbitrary - and global - scale. Open-
ended evolution requires the constant observation and discovery of phenomena: these are
either external to the system (they occur in the world) or internal - in which case they
constitute the phenomenology of the self-programming process. In that respect, modeling is
the identification of processes underlying this phenomenology down to the level of
executable knowledge - programs. On the one hand, when no explanation is available, for

5/ 47

example a sound featuring a distinct pitch for some reason not known yet, there is at least a
geometric saliency we would like to capture in relevant spatio-temporal spaces. When on the
other hand, a phenomenon results from known dynamics, i.e. programs rewriting each other,
| speak of computational saliency to be observed in the system'’s state space. Phenomena are
salient forms manifesting an underlying and potentially hidden process. They must be
captured possibly at any scale — e.g. from the scale of optimizing some low-level programs to
the scale of reconfiguring the entire system.

Accordingly, | define states as global and stable regimes of operation - intuitively, stable
phenomena and their underlying processes, either already known or still to be discovered. At
the lowest level, states are the stable existence of particular (set of) programs (and objects
like models, inputs/outputs, etc.), while higher level states are abstract processes whose
coordinates in space control the execution of the programs that implement theses states.
The dimensions of the state space are thus dynamic objects and they bear the semantics of
processes — expressed in practice as rewrite graphs. From this perspective, sense making is
identifying - or provoking - causal production relationships between processes: a
phenomenon P makes sense through the development of its effects in the system, and P
means another phenomenon P’ if observing P leads to the same (or analogue) effects as for
P’. Sense making is performed regardless of the length or duration of rewriting graphs: it is a
process that can be observed or fostered at any arbitrary scale.

3 CoRE CONCEPTS

Self-programming systems require a programming language designed for efficient and
tractable dynamic code synthesis. It also requires support for capturing the operational
semantics of a system at multiple and potentially global scales. This section describes how
these key requirements are addressed in Ikon Flux. References to the annex are provided (in
boldface) whenever concepts are mapped directly to language constructs.

3.1 A LANGUAGE FOR CODE SYNTHESIS

The lkon Flux language has been designed for simplifying the task of programs rewriting
other programs. For the sake of scalability, rewritings are performed in a unified memory
distributed over a cluster of computing nodes. The lkon Flux language is an interpreted
functional language with low-level axiomatic objects (primitive types, operators and
functions) and programs written in it are stateless and have no side effects. Programs are
also kept simple by virtue of abstraction: memory allocation, parallelism, code distribution,
load balancing and object synchronization, all are implicit.

OBJECTS. Since programs are potential inputs/outputs for other programs, they are
considered data and unified as objects. Primitive types define prototypical and executable
models of code structures, in the form of graphs of short®> code fragments. For example the
type program (pgm) defines the specification of a pattern (spc) and the specification of code
synthesis (modification of existing objects or production of new ones), and there is no need
for an additional model to describe its operational semantics - in the case of programs:
“when an object has the form defined by the pattern, the system is added the code specified
in the synthesis segment”. Structures and structure composition are both explicit: in general,
types are dynamic and expressed in terms of other structures, which at some point derive
from axioms. lkon Flux neither defines nor allows any opaque and coarse-grained axiomatic
constructs, like for example long-term memory, planner, attention mechanism, etc. The
general orientation is that if high-level structures such as these are needed, then they have
to be either hand-coded in terms of existing structures or result from code production by
existing structures. However, to encompass wider technical domains (e.g. algebra,
differential topology, etc.), Ikon Flux allows the manual extension of the set of primitives with
user-defined objects (see 4.2).

564 bytes for fragments, 88 for sys-objects.

6 / 47

I(-ycatl: sys (...)
I(bmk.ins ()
kr:sys (OJ...)

n object: sys (...)
catl: sys (...)
()\ mkr: sys ((mk.ins catl object))
object: sys (...0...)

Figure 1 - Objects and fragments. Sys-objects (sys) are objects that live freely in the
memory, whereas fragments are the internal constituents of said sys-objects and are
bound to them. Here three sys-objects (object, mkr,catl) are represented. Any object can
reference others (e.g. mkr referencing mk.ins) and this list of references constitutes a sub-
structure of a given sys-object (e.g. black block in object). NB: dots (...) denote the
existence of structures not represented for the sake of readability.

PATTERN MATCHING. From a low level perspective, programs in lkon Flux all run in
parallel, and they react automatically to the presence of any other object. Reaction is
constrained by patterns on code structures, and pattern matching is the only mechanism for
valuating formal structures. Pattern matching is deep, i.e. patterns — as any object they are
encoded in graphs - can specify sub-structures and conditions at any depth in a target

structure.
P catl: sys (...I;.l...)<~\\
,ymk ins (O I;.|) ! ‘\\
2w sys (0. L - \
ymkl:() ——’—_,f L _ » mk.ins (I;Hj)
object: sys (...[]...) «----""" W sys (Ij...) N
k2 (i) cat2: sys (...)
sys ({:) ‘\
pgml: pgm (nil mk.ins (
li {' IL-}J.nJ (core
pgml: pgm .
spc (sys :object :mkl ::)
(red mkl
pgm . - .
spc inl: (sys (mk.ins object :a) :mk2 ::)
(red mk2
pgm

spc in2: (sys (mk.ins a :b) :int :act :res :) nil
((nil in2))

)
((nil inl1))
)
((nil
inj (core (sys (mk.ins object b) act int res)))
)

Figure 2 - Deep pattern-matching. Pattern matching is performed by and on any
objects. Patterns specify incomplete composition of sub-structures of arbitrary depths.
Here a program (pgml) is represented defining a pattern (object, dashed structure
composition pointers). The program states that whenever an object is an instance (mk.ins)
of a category object (catl1) and this category is itself an instance of another category (cat2)
then a new tag is added to the system that expresses that object is also an instance of
cat2.

Pattern matching is performed by the lkon Flux executive (see section XXX for a description
of the executive) system-wide, that is, (1) on any object regardless of its location in the
computer cluster, and (2) patterns can be defined as combinations of multiple and inter-
dependent patterns targeting different objects amongst the entire system, i.e. for the
purpose of identifying tuples of correlated objects.

7/ 47

’,ymk.xet (I;,__|...) /,ymk.xet (LT_l...)

/ s 1
o / o ’

/y sys (Ii'l ijtl) R4 /y sys (Ij ijt2) R4
’

» ()
4
pl: sys (|;||j...)<-

\
» pro (...

ifn
spc nil
0 ((]= pl p2) (= ijtl ijt2))

spc pl: sys ((pro ::) mkl: ::)

(red mkl
pgm
spc (sys (mk.xet pl ::) : : :ijtl) nil
) ((nil pl1))
spc p2: sys ((pro ::) mk2: ::)
(red mk2
pgm
spc (sys (mk.xet p2 ::) : : :ijt2) nil
((nil p2))

)

Figure 3 - System-wide pattern-matching. Pattern matching can be performed on
multiple sys-objects simultaneously. Here a pattern specification is represented targeting
pairs of objects. The specification is a composition of patterns which can share fragments
and/or references to any of the input objects. Here, the pattern (defined by the implicit
function ifn (efn)) detects processes that are different (|=) and terminate at the same
time (= on the injection times ijt of completion markers (xet)).

Objects in Ikon Flux have a limited lifespan (controlled by a resilience value) and also, can be
activated/deactivated either as input data (intensity value) or program (activation value).
Rewriting is performed upon successful pattern-matching (1) by producing new code®
explicitly specified in programs and (2) by modifying the control values (resilience, intensity
and activation) of target objects.

REFLECTIVITY. Runtime reflective data are automatically notified by the executive and
injected in the system as objects encoded in the lkon Flux language. For example the
invocation of a function triggers the injection of a process object (pro) which in turn will be
referenced by a completion object in case of termination, indicating the run time and
resource usage and also the program responsible for the termination in case of non natural
death. Processes are also used by the executive to notify a system of any rewriting that
occurred in the past. At a higher level, “reflectivity” means reflecting in objects the effects of
the computation on the system and on the world. This is achieved by models, ontologies and
observation procedures, provided by the programmer either directly — i.e. as is - or indirectly
- i.e. produced dynamically by intermediate programs deriving ultimately from hand-crafted
knowledge.

FORWARD/BACKWARD CHAINING. As in mixed-paradigm languages (e.q.
functional/logical in Curry’ or Maude?®), programs in Ikon Flux encode indifferently production
rules (pgm) and equational rewrite rules (with the expressivity of first order logic - erw) and
the executive offers functions to perform both forward chaining (rewriting - eva, red) and
backward chaining (inv, ctx). Backward chaining has been implemented as a support for
planning, but the executive is not a planning system itself: it is the responsibility of the
programs to define and constrain the search space. In that respect, |kon Flux does not
provide nor does it use any heuristics: these are to be generated - and applied - by programs
to control the activation/intensity values of the objects in the system.

6 nB: duplicates of code are automatically eliminated — multisets are not supported.
7 see http://www.informatik.uni-kiel.de/~curry/
8 see http://maude.cs.uiuc.edu/

8 / 47

INTERNAL SuB-sYSTEMS. From a higher-level perspective, the language allows the
construction of sub-systems as groups of objects that altogether contribute to a given or an
emergent function of the system - a function being here a process of arbitrary granularity,
level of detail and abstraction that transforms the system state in some way. Sub-systems
(ent) are meant for macro-modeling purposes: they are used to describe functions of the
system itself, behaviors, roles or functions of entities in the world, etc. Sub-systems can be
allocated a dedicated instance of the executive (spv) to perform rewritings in isolation from
the main self-programming process: they can read and write the entire memory and their
code can also be read, but not written from their exterior. This feature is meant as a support
for (1) the modeling/construction of large-scale systems as recursive organizations of
(potentially) autonomous sub-systems and (2) for designing, debugging and monitoring
purposes (also called supervision): this allows for example, profiling code to run in isolation
from the system under evaluation so that time readings are not including profiling run time.

EXTERNAL SUB-SYSTEMS. Some coarse-grained functions cannot be expressed in the
Ikon Flux language, either for efficiency reasons or because their re-implementation is too
costly, for example, low-level audio/video signal processing, device drivers, and in general,
functions which do not need to evolve. Such functions, if needed, are kept in their canonical
implementations and run on separate machines. Their code is thus hidden from rewriting
programs and gathered in dedicated sub-systems - called external sub-systems (dev) which
are wrapped in dedicated interfaces to communicate with the lkon Flux executive. Wrapping
consists of (1) defining new axiomatic objects (types and functions) and (2) writing a
converter to translate lkon Flux objects into binary code invocation and vice and versa. The
functions of external sub-systems constitute the system’s boundary with the world and are
the only functions (in addition to the functions of the executive) that do have side effects.

3.2 TOPOLOGICAL SPACES

Self-programming systems have to model dynamically their own operation. This means that
every process in the system has to be accounted for in terms of its effects on the system - at
the lowest level (resource usage), at the highest level (contexts and goals) and also at
intermediary levels (rewritings). lkon Flux adopts a process-centric approach to modeling the
operational semantics of a system at multiple scales. It is essentially plunging processes into
topological spaces to measure their contribution to the achievement of other processes. Each
process is projected into several dimensions each representing another process like for
example, the execution of a program (concrete atomic process), the observation of a salient
value (abstract atomic process), a rewriting graph (concrete composite process), or the
achievement of a goal (abstract composite process).

DIMENSIONS. lkon Flux defines a state space dimension as an object (of type realm - rm)
constituted essentially by IR" and the specification of an arbitrary reference process. Some
dimensions are known a-priori, they are application-dependent and must be given by the
programmer, but some are a-priori unknown, as they relate to newly discovered phenomena,
and as any other object, dimensions are in general also the subject of dynamic production
and decay. As discussed earlier, self-programming has to perform in light of goal
achievement. A general definition for “goal” is “a set of regions in the state space”, and this
implies the existence of a distance function over the state space: only under this condition is
it possible to assert whether or not the system is in a given state and therefore whether it
has achieved its goals or not, not to mention the necessity of measuring progress. Thus, in
addition to spatial dimensions, an autonomous system has to define a distance function,
which in combination with the dimensions forms a topological space.

In Ikon Flux, the distance function is the measure of the contribution of an object (either as
an input data or as a program) to the rewriting graphs that impacted the achievement (or
failure) of the reference process. For example, if the process is implemented as a rewrite
graph, then positively contributing objects are objects that intensify, activate or produce the
elements of the process’ graph. This contribution is encoded as the depth - along the
execution time scale - of an object in the rewrite graph that contributed to the reference
process®.

The contribution of an object to the achievement of the reference process is called a
projection of the object onto the dimension associated to the process. The executive projects

9 NB: in case the object can be found at several locations in the graph, the smallest depth is retained.

9 / 47

every object in a system upon request by programs (calling the function ctx for a given
realm).

<7

[Al [B]

[P(A,B)]

/ positive contributions

1

1

i A

1

1

1

! ta-t1 | d,p3
'

: t4-t2 - c,p2
'

1

' t4-13 — a,po
1

: 0 -9 b,pl
]

i -(t4-t3) - a,ps
1

i

i v

1}

. negative contributions

N
~
|-h
N
N
(8]

L/: __________________ \\\ b 4 past
-~ A AN ‘-,"
t4-t0 | e,p5 \ i
ta-t1 | d,p3 E '
Vo
El ta-t2 - c,p2 b
: 1
|

1
1
1
1
1
1
1
1
'
[E] i
1
1
1
1
1
1
1
1
1
1

t4-t3 - a,po v—:—Pat t’
1
o
@ 0 6 —# b,pl v
’]
(-) P
’ Vo
a VY
’ 1,
@ B N v e
Y- e
4
4.4 »
future 4.5

Figure 4 - Evaluating the contribution of rewrite graphs to a process. Fig. 4.1: let
an abstract process P reacting to the patterns A and B, and producing objects patterned
after P(A,B). Let P be implemented by an actual rewrite graph (dashed enclosure). Fig. 4.2:
by time t=t4, several other processes have contributed positively (p2 increasing the
activation value of p0, p3 producing a, an input for p0) or negatively (p4 decreasing the
activation value of p1). Fig. 4.3: the performance times of these contributors are recorded
on the realm associated to P. Fig. 4.4: at the time t=t’ of a subsequent run of P, shall a
process p5 successfully deactivate p4 (negative contributor to P), then a new instance of
the realm would be created, featuring p5 as a positive contributor — NB: p4 would
disappear from the realm as it could not run anymore. Notice also that contribution
evaluation does not necessarily depend on a particular scale: for example p0, pl, etc.
could be abstract processes as well (as is P), and in that case, the contribution of their
constituents could also be rated with regards to P. More over should P exert feedback on its
contributors, P would be rated in their respective realms (e.g. the realms associated to p2,
p3, p4 and p5).

~
\

’
’

CoNTROL. There exists an axiomatic dimension (the system realm, also called sys-realm)
that does not refer to any reference process. It merely holds projections for every object in
the system; such projections are directly defined as the final intensity and control values
(instead of contributions to a reference process). Contribution values are translated into
either intensity or activation control values depending on the role of the object in the graph
(input data or program), and a control value is computed as the inverse of a contribution
value. Control values are thus locally bound to a dimension but can be subsequently
combined?!? as final values on the sys-realm: these will eventually be used by the executive to
control a given object. Each realm defines two pairs of thresholds: one for the positive

10 Programs are responsible for defining/selecting the method for combining projections, i.e. average, maximum, etc.

10 / 47

contributions, one for the negative ones, and in each pair there is a threshold for input data
and another one for programs. On the sys-realm, these thresholds pairs control intensity and
activation control values: only objects with a final intensity value above an intensity threshold
will be considered by the executive as potential inputs for programs; symmetrically, only
programs with a final activation value above the activation thresholds will be considered by
the executive for execution.

positive
A contributions
7 A
rd
4 [l
02 . ie e
rd
e VI
1 — 4 ~o ”/
0_—‘ 01 \$ ’/
P2 o -7
' _,/ 1_
r2 0 — o ; P1
\ negative rl
contributions

sys-realm

Figure 5 - Translating contributions to control values. In general, the deeper an
object in a rewrite graph the less likely it is to be finally intense or active. However, this
only holds locally, i.e. for a given realm. Shall an object (like o0;) be projected on another
realm, its final control value will be a combination of its local contributions - see rlm for the
methods of combination. If the maximal local value was chosen, o, would be activated
(activation thresholds indicated by brackets). NB: it is also allowed to define or modify
control values explicitly, i.e. programmatically.

As a support for self-reference, any object in a given system can be projected on any
dimension and such a projection is an object as well (pja, pji). This holds also for dimensions
themselves and sub-spaces in the state space can thus be represented symbolically in the
global state space itself (the sys-realm). As for objects in general, projecting a dimension
onto another one means evaluating its contribution to a given reference process. In this
particular case, the contribution of a dimension D to a process P is the multiplication of the
contribution of the first object O being its best contributor (and having contributed to P) with
the contribution of O to P. This is calculated for the two domains of positive/negative
contributions and the highest absolute value is retained, thus determining the domain of the
contribution (positive or negative). Projected that way, dimensions also receive a final control
value (intensity) in the sys-realm. When a dimension gets under the intensity threshold, all
the projections it holds are discarded for the computation of final control values;
symmetrically, when it gets back above the threshold, the related projections are taken back
into account. In practice, intensifying or deintensifying realms controls the intensity or
activation of objects forming entire subsets of the system, i.e. system configurations. System
configurations can be formed either by projecting dimensions as discussed, or alternatively
by explicitly (programmatically) modifying the final intensity values of such dimensions.

11 / 47

pr -~

[c24 a1

Ny
1
I
|
!

a0,po | \
bo,pl |
[

runtime t1,to

[B]

runtime t2,t1,t0

runtime t2

6._1 Pll

Figure 6 - System configurations. Fig 6.1: with regards to process P, the contribution of
P’ is the contribution of P2 and PO. The projection of the realm associated to P’ onto the
realm associated to P holds the product of the contribution of PO to P (the best contributor
to P in P’) and the contribution of PO to P’. If the value of the projection of P’ onto P gets
above the activation thresholds defined for P, then p2 and p3 would be deactivated, but
not p0 since as a main contributor to P already accounted for in the dimension associated
with P its projection would be probably well below the threshold. These rules also apply to
P”, and as it contributes negatively to P, its constituents would be also deactivated if the
goal was to maintain P. Fig. 6.2: projections of P’ on P, P”’ on P, P’ on P’ and P"’ on P’. Pairs
of activation thresholds are indicated by brackets; in this example thresholds are all set to
the same values on their respective realms.

GOAL SEMANTICS. Thom (1972 and 1990) defines a pregnance - like hunger, fear, and
reproduction in the animal reign - as an internal and global dynamics, i.e. a global process,
that targets abstract forms (e.g. anything edible will do for a famished dog) and pregnances
constitute the ultimate reflective standard to measure the system’s utility (for the dog,
survival). Goals can be considered as instantiated pregnances (e.g. eating a particular bone)
and they are identified thereafter to pregnances. In Ikon Flux, a pregnance is implemented as
a type (pre) for specifying abstract regions in the state space, using a pattern. For example,
hunger could be encoded as (1) a pregnance object P defining a pattern like “a state such as
the intensity of P is lower than it is now” and (2) a program P’ that modifies the intensity of P
according to an underlying (simulated) biological model - the execution of P’ being the
expression of hunger as a process — see fig. 7 below. As processes, pregnances are used to
define dimensions of the state space and along these, the distance function is defined along
the same line as for general processes. In the particular case of a pregnance, the distance
function is, for a given object O, the length - along the execution time scale - of the shortest
rewriting path - if any - that from O leads to an increase (or decrease) of the intensity of the
pregnance. As for general processes, this measurement is computed by the executive for any
object and for one dimension upon request by any program, e.g. whenever the intensity of a
pregnance changes.

For unification, geometric saliency (sln) detection is given goal semantics: the expectation of
a stable form in space using a particular observation procedure - for example, a program
detecting occurrences of uncommon pitch patterns in sounds.

12 / 47

[object at location L

|:+— object suitable for consumption] visual attention [food at location L] —>|:|

@ [intensity(energy)>T0] _+:|

|:+— [food within reach] o @ [intensity(energy)<T1] —El

|:+— [activation(salivate)<T3] 00
D— [activation(digest)<T2] @l’ [intensity(energy)>T0]
sln:visual
attention chew digest salivate pre:hunger
o ,—V chew, p2 o 0 o
— _ visual attn.— ,” salivate ¢ o PP » digest —|
-] ,r' — I’ p3 S digest — —]
meat in sight—7 meat within reach—] nutriments —{, "< p2 — pe —
T —-—-—
] —] —] —] pl, consume energy —]
7.2

Figure 7 - A (simplified) model for the pregnance hunger. Rating the contribution of
rewrite graphs in a dimension associated to a pregnance. Fig. 7.1: a simulation of a
biological substrate. The salivation process stimulates the digestion process (+a) via p3,
whereas p2 acts symmetrically. The pregnance hunger is controlled in intensity by pO and
pl. Fig. 7.2: the resulting projections of processes and objects on the significant realms
(realms for p; are not represented). NB: visual attention is a geometric saliency (sln)
detection process.

SENSE MAKING. In Thom’s semiophysics (Thom 1990), when a form (like a discernable
event over a noisy background) becomes salient enough under the empire of a pregnance, it
can, under some conditions, trigger the contraction of event-reaction loops in shorter ones:
this is called the “investing of forms by a pregnance”, or pregnance channeling. Thom gives
an example of this in his interpretation of Pavlov’'s famous experiment: the bell becomes
invested by the pregnance hunger, to the point where its sole ringing triggers a response
normally associated only with the subsequent occurrence of the meat: the bell assumes the
pragmatics of the meat. Subsumed by a pregnance, a form progressively stands for - means
— another. In our computational substrate, pregnance channeling can easily be implemented
as the combination of (1) programs that learn an interaction pattern - e.g. occurrence of the
bell, then of the meat, then of the rewriting of the event “meat” into the salivation reaction -
(2) underlying models for pregnances - e.g. the consumption / digestion process, for which
salivating is a positive contribution - and (3) programs that turn this pattern into a process
upon repeated pregnance satisfaction - e.g. rewriting “bell ringing” into the invocation of the
function “salivate”. Learning is, in this example, identifying recurrent values for the
projections of events (e.g. occurrences of bell, meat and rewriting events) along the
dimensions associated to the pregnance hunger and to related intermediate processes (e.qg.
consumption / digestion); feedback (or reinforcement) comes as the satisfaction of the
pregnance - see fig. 8 below.

Pregnance channeling constitutes a semantic association between events and reactions at a
global scale. As a global learning mechanism, pregnance channeling instruments behavior
conditioning (Pavlov’s experiment), and also constitutes one possible mechanism for
implementing a general associative memory - pregnance channeling would trigger the
spreading of intensity control values across the system. From a more general perspective,
pregnance channeling is, in the main, instrumented by plunging reflective processes in
topological spaces for identifying causal and dynamic relations at any scale. This approach is
a general solution for observing and controlling a system as a whole — for a related way of
achieving global control, see Campagne (2005). This solution is general for it is an abstract

13 / 47

and structural dynamics - it operates on rewriting semantics and does not depend on any
application domain - and also because it is independent from scale.

[F(x,p,dtl)]

1
1
1
'
1
1
R [p: stn] . [x at t] i — ip] [F(x,p,avg F(x,p,dt:))] —p]
; H [x at t]
|} [x at t] po [fm?] 4’6’] i D [xet p at t+dt2]
1 m
1
1
1
1
1
1
1

[xet p at t+dt]
|:+_ [F(x,p, [pji r x dt] _>|:|
B’ [r: rim p]

8.1
sln:auditive sln:visual
attention attention . Ip: pre
intensity(p)>T
|:+_ r: rim pl |;|
[pri: pji r x: pro intensisy(r>T]

Jw audit. attn. D/ r2: rim x] O

e
/ (o5)y—(>Lr |
I’ o Ir:rmp Ix]

bell rings —Ji meat in sight intensity(r)>T]

[prj: pji r x: pro [prj: pii r x:] \D
r2: rlm x] |j
8.2 |£| 8.3

Figure 8 - A (simplified) model for pregnance channeling. Here are represented the
main processes and associated realms for implementing the example discussed above. It is
an addition to the model presented in figure 7. Fig 8.1: p0 generates a forward model (fmd)
that predicts the occurrence of an event (here the termination (xet) of a salient process p)
given a harbinger (x). This sequence is learnt by pl and p2. P1 creates a new forward
model whenever the occurrence of x is followed by the process termination with a different
delay (dt2 instead of dtl1); the old model is destroyed (the resilience r is decreased) and a
new one is created (here taking the average (avg) of the observed delays). P2 projects the
harbinger onto the realm associated with the salient process. Fig 8.2: the resulting
projection. Fig. 8.3: exploitation. P3 and p4 propagate intensities to realms contributing
starting from the pregnance realm (backwards). P5 forwards the intensity of a projection to
the realm it belongs to. In our example, when the bell rings, p5 intensifies the auditive
attention realm, then the visual attention realm and so on until the pregnance realm. The
control mechanism that translates contributions values from realms to actual
intensity/activation values on the sys-realm will result in activating every process involved,
in particular: chew, digest, salivate. Only the salivation program can act with no input, and
will therefore be executed.

ANALOGY MAKING. The experimental nature of system modeling calls for experimental
model construction procedures. From this perspective, modeling is essentially reasoning
about actions with insufficient and uncertain knowledge. For example, available models may
be limited to the description of the outcome of specific actions in particular contexts. In order
to explore wider contexts, self-programming systems have to build hypotheses and validate
or invalidate them by evaluating the results of experiments. Exploring wider contexts - i.e.
states - is for a modeling system applying available models to different - but somehow
related - states. One way to do so is producing analogies between models and/or between
states.

lkon Flux defines models as objects that encode either (1) the outcome of an action (forward
models - fmd) or (2) the actions to be performed to achieve an arbitrary outcome (inverse
models - imd) - for further details on forward/inverse models, see Wolpert and Kawato
(1998). “Outcomes” are objects that encode the probability of a state transition, and model
analogy is defined as follows:

» Let a forward model M; encoding the state transition ST, resulting from the performance of
an action A, from state S.

» Let a forward model M, encoding the state transition ST, resulting from the performance of
an action A, from state S.

14 / 47

= M, and M, are analogues when there exist (1) a process P and (2) a set of forward models
M that specifies that ST, and ST, have the same meaning for P. “Same meaning” means
technically that each M would encode that substituting ST, to ST, in a given rewrite graph
R already represented along the dimension of P would yield another graph featuring the
same contributions to P. NB: actions A; and A, — and respectively, models M; and M, - are
said to be analogues with respectto S, P and {M'}.

Making an analogy in Ikon Flux is building models such as M/, and using an analogy is to build
a program that from any occurrence of the action A; in the state S produces ST, as an
outcome - and vice and versa.

This definition can easily be extended to inverse models, briefly: two inverse models M, and
M, are said analogue if there exist a process P and a set of forward models M' encoding that
performing the actions specified by either M; or M, have outcomes that have the same
meaning for P. In this context, using an analogy is building a program that from any program
expressing that a pregnance can be satisfied by invoking M,, produces another program that
expresses that the same result can be achieved using M,.

Analogies can also be performed on states as well, and here again would be encoded in
models: a set of forward models can express that the states in question are the outcome of
analogue actions, while a set of inverse models would express that to reach these states,
analogues actions can be performed.

Performing analogies makes use of contextual knowledge: models, states and processes.
These contexts in turn can also be defined by analogy: for example by substituting the term
“same” with the term “analogue” in the definition of analogy between forward models. Notice
that analogy operations — however sophisticated and contextualized - are, in the end, all
anchored in axioms, i.e. equality check and pattern matching. For example, performing
analogies at a low level between rewrite graphs is typically performed by checking for equal
contributions of the two graphs for a given pregnance (same coordinates on the dimension
associated to the pregnance) and matching the objects in their respective graphs against
pre-defined patterns.

4 EXECUTIVE

The lkon Flux executive is similar in concept to a distributed virtual machine: it interprets
objects and performs the rewritings (also called reductions) regardless of their location in a
cluster. This section describes the sub-systems that constitute the lkon Flux executive.

4.1 ARCHITECTURE

Performing in real-time deep pattern matching over a massive!' amount of programs is
computationally intensive but not intractable. Ikon Flux has been designed to take advantage
of distributed computing resources and version 1.6 has been implemented on a cluster of
standard PCs!? running RTAI'3 and interconnected through RTnet*.

For many reasons - essentially, performance concerns and intractability of axiomatizing
industrial-grade components - the executive has not been written in the lkon Flux language
and no model of its operational semantics has been made available at the code level. In
other words, the executive is not meant to evolve.

11 | oki was constituted by roughly 300 000 objects in average.

12 pentium IV 3.2GHz, 4GB RAM.

13 A real time kernel extension for Linux - see www.rtai.org

14 A real time network protocol stack - see www.rts.uni-hannover.de/rtnet

15 / 47

spv spv

spv spv

——
SR dev.
RAM self @M
SR dev.

a d b e c
... i
VOO CECEEEnnT [W W W CEDT | ——
:_ CORE CFAB l<=> mrmm :

... = !
node Lo
<$| 1

L

Figure 9 - Architecture of a computing node. Objects are constructed from operators
(a), CORE functions (b) and CFAB functions (c). They also interact with external sub-
systems (e). The executive automatically injects objects encoding reduction events (d).
Objects live in RAM, kept consistent across the nodes by the CFAB (black arrows). The
CFAB also updates the I/O stacks (black squares) of the external sub-systems (dev) that
usually run on separate machines.

CoORE suB-sYSTEM. This is the reduction engine. It performs reductions in cycles of five
main steps:

1. the core sub-system deletes sys-objects whose resilience dropped down to zero; it
notifies the outcome of every reduction operation performed during the previous cycle,
including the execution of core functions.

2. external sub-systems are polled for inputs, i.e. inputs are popped out of their output
stacks.

3. sys-objects are fed as input to programs performing modifications on control values.
Control values are used to select both the inputs and the programs. Modifications are
averaged.

4. sys-objects are fed as inputs to programs performing productions, accordingly to control
values updated in step 3.

5. sys-objects produced during the cycle and representing function calls on external sub-
systems are pushed in the sub-systems input stacks. Other products are injected in the
sys-realm for the next iteration. These include runtime reflective data (application and
process objects).

The core sub-system offers three main categories of functions: (1) synthesis (injection,
modification and assignment of control values, respectively inj, mod and set), (2)
contextualization (inv to compute inverse models, ctx to project sys-objects according to
their contribution to the achievement of processes) and, (3) monitoring functions (min and
max monitoring the maximal, respectively minimal values of a function applied to objects
matching a specific pattern).

SYSTEM cLOCK. The system clock provides the time and reduction count (functions now
and rdc) at any point in a reduction cycle from the booting time of the system (function btt).
In addition, the system clock injects a tick object (tck) in each reduction cycle. The time
resolution is 1 ms.

COMPUTING FABRIC. This sub-system represents the component that distributes
computation across the cluster. It implements a MIMD scheme where memory is replicated
in every cluster node (n x n connectivity, where n is the node count). Each node is dedicated
to the execution of selected subsets (work list) of the programs in the system. The programs
resulting from these reductions are appended to the node’s work list.

The computing fabric determines the depth of reduction cycles as the number of cycles
before updating, cluster-wide, the reduction results obtained locally by core sub-systems (this
reduction depth is a parameter that can be modified with the function rdp). Accordingly,
external sub-systems 1/O are only performed at memory update times.

16 / 47

Each node maintains a representation of each other work list (as a part of the replicated
memory) and load balancing is achieved by making the content of the working lists even,
under the assumption that every node is identical — the norm in high performance computing
clusters. Each node can define a reduction budget (expressed in time quanta via the function
rdq). Load balancing is performed by evaluating the actual time consumption against the
available budget, and triggering if needed content migration between work lists.

The computing fabric also ensures that the nodes are synchronized, i.e. that the time stamps
are consistent across the network and that reduction cycles are performed synchronously at
the granularity of the reduction depth.

The computing fabric handles the connection between the core sub-systems and the external
sub-systems - typically running on separate machines.

The computing fabric notifies to core sub-systems the events related to distributed resource
management like (un)loading sub-systems, nodes joining (or leaving) the cluster.

SUPERVISION SUB-SYSTEMS. Supervision sub-systems belong to a generic class of sub-
systems, representing reduction sub-systems as sets of objects that can read and write in the
global memory but cannot be written by general sys-objects. Supervision sub-systems are
used to hold probes for debugging / profiling purposes, but can also - in a general way - hold
any non evolvable code needed by the developer to perform direct control over the activity
of the system.

As for reduction systems, supervision sub-systems are organized in realms, and this is in fact
the case for the self and all other entity in the system.

The supervision sub-system class provides code-handling functions: a code loading function
(ldr), a swapping function (swp), and a function for controlling reduction (rct), as usually
exhibited by debuggers (start, stop, halt, resume, etc).

4.2 EXTENSIBILITY

As introduced earlier, Ikon Flux can be extended by developers intending to define additional
axioms or initial ontologies for particular systems in various ways. The following list
summarizes them:

= operators and data types: operators must come with rewrite rules defining their related
equational logic for inverse modeling purposes (erw, inv);

= markers: to define new ontologies, or, more generally, new categories (markers).
Operators can be defined to interpret these new markers.

= external sub-systems: to implement the connection with heterogeneous componentry.
Defining new external sub-systems leads to defining new operators to identify their
functions and also possibly, new object types and constants. Developers shall implement
their sub-systems so that they (the sub-systems) provide runtime reflectivity in the same
fashion the core sub-system does.

= core functions: future versions will propose a programming model for extending the set of
core functions by user-defined code (plug-ins).

An APl has been defined to frame the development of extensions (this APl is not described in
this report).

4.3 PERFORMANCE

Loki was built on lkon Flux 1.6 and was running on a cluster of 16 machines (not counting
external sub-systems). It was constituted by nearly 300 000 sys-objects among which 20%
where intense/active enough to trigger reductions. With a reduction depth of 4, the memory
update frequency was 4Hz for an average of 800 reductions per second and per node. Our
measurements of Loki’s performance show that under constant load, rewriting speed scales
fairly well with the number of processors: for a load of N sys-objects distributed over n nodes,
adding one node yields a new load per node of roughly N/(n+0.8), instead of the ideal value
N/(n+1). However, the measurements also show that the admissible load is limited by
inadequate networks and protocols (low bandwidth, high latency, very poor scalability): from
8 to 16 nodes under a constant load, the memory update frequency did not catch up with the

17 / 47

improvement of reduction speed. As a result, a new implementation (for version 2.0) is
planned, targeting modern hardware (multi-core processors, RDMA?® over Infiniband).

5 RELATED WORK

Ikon Flux has been built to enable the construction of structurally autonomous systems:
systems that can improve their utility function in real-time and in open-ended environments.
The architecture described here is a platform for experimenting new designs and new
engineering methods to build truly autonomous systems, the theory of which still remains to
be conceived. The emphasis is put on the parallel execution of a multitude of programs in
real-time and on the construction of reflective knowledge to control what is the essence of
the targeted systems: targeted code evolution. Very little work has been done so far to
support the engineering of systems of this class. However a few architectures stand up at the
upper boundary of behavioral autonomy, having the potential to be brought to increased
levels of adaptivity. Here is a succinct review of three salient examples; | also indicate the
common grounds that these approaches share with Ikon Flux.

AKIRA (Pezzulo and Calvi 2005, 2007) is a schema-based computational substrate that
controls the execution of individual schemas with a connectionist activation network,
borrowed from DUAL (Kokinov 1997). Essentially, Ikon Flux shares with AKIRA (1) the
homogenous approach (in AKIRA everything is a schema instead of a program), (2) the
control on a global scale, (3) support for the cooperation of sets of programs (called bands
and hordes in AKIRA) and, (4) support for the modeling of program interaction (AKIRA also
uses forward and inverse models). The three main differences between thi sworka nd lkon
Flux are that (1) AKIRA does not focus on generativity, (2) it does not support runtime
reflectivity, i.e. the execution of schemas is not monitorable at the substrate level and, (3) it
does not support the modeling of its own components - schema code is opaque and no
specification for it is made available. In a general way, the granularity of a schema is too
coarse to allow the dynamic modeling of their operation. Their non-explicit structure and the
unrestricted presence of internal states and side effects limit in practice the scope of online
reasoning to surface operations, in line with the tenets of the behavioral approaches to
modeling. On the technical side, AKIRA has not been engineered to scale up with the
computation load. It features client/server capabilities but genuine distribution of the
executive and of the load for real-time performance was not part of its requirements. From a
technical perspective, doubtlessly, AKIRA is well-born and its shortcomings can be addressed
without changing dramatically its nature. This means reducing the granularity of schemas,
supporting schema generativity, improving the reflectivity and transparency of both schema
structure and processes and finally, developing schemas to measure and control the
formation of bands and hordes.

NARS (Wang 2004, 2007) results from an approach that focuses on reasoning in real-time
with insufficient knowledge and resources in changing environments. NARS — Non-Axiomatic
Reasoning System - has been designed form the beginning to support the production of
experience-grounded semantics and in that respect, lkon Flux adopts similar views. On the
technical side, NARS puts primarily its emphasis on logic to represent and infer knowledge
and encode the control of real-time tasks at the substrate level - structures are made explicit
and reflective: NARS has been designed to express the tasks’ operational semantics as
executable models and to reason about them. This makes NARS eminently suitable for
developing models of internal processes experimentally. On the theoretical side, NARS is
among the very few systems today that emphases a generative approach towards structure
building and grounding system operation in light of goal achievement. Wang adopts a
theoretical stance of envisioning systems as holistic organizations - Ikon Flux follows a similar
perspective although for entirely different reasons, briefly, for architectural and engineering
reasons rather than in light of anthropo-centric considerations. In any case, the practical
question of how to observe and control a large and complex system as a whole has by and
large not received much attention. To achieve such a global control, one needs to evaluate
the resources involved between the occurrence of salient inputs and the generation of salient
effects. In NARS, the execution of tasks is essentially reflected by means of implicit and
indirect effects on other tasks (selection, available CPU, response times, etc.). In order for a
system to reason about the development of one of its processes - i.e. its incremental
construction as task graphs and its execution - one would need a trace of its causes and
effects in the system over time. In that respect, NARS would most likely benefit from the
addition of means to express the global and explicit operational semantics of dynamic
organizations of tasks.

15 Remote Direct Memory Access. Switched interconnects like Infiniband or Rapid-lO enable the implementation on

commodity hardware of mainframe-style designs for real-time systems, in the fashion of crossbar organizations:
streams of computation flowing within a unified memory from/to a multitude of processors.

18 / 47

The architecture developed by Cardon et al. (Cardon 2003, Cardon et al. 2005, Campagne
2005) is one of the most advanced architecture implemented today for building actual
systems endowed with a fair degree of behavioral autonomy. It follows the (massively) multi-
agent paradigm, as does AKIRA. Cardon’s architecture is a massive organization of agents
organized to form a single “mind”. This organization is controlled in real-time and at a global
scale using morpho-analysis — also based on Thom’s general theory of models (Thom 1972
and 1999). Agents in Cardon’s architecture do not come with a fine-grained model of their
function and execution. Only the general aspects of the agents and their population is
captured and used for control: these are the contributions of teams of agents to the
achievement of another team’s work. But modeling the functioning of the agents themselves
does not seem to have received any explicit support. Compared to lkon Flux, this architecture
offers superior handling of the global trajectory of the system in the state space, but
unfortunately does not go deep enough to enable fine and accurate control at arbitrary
scales of implementation, from the global morphogenesis process down to the code level, i.e.
the level where are defined the agent’s individual behaviors and internal observation/control
schemes. Lastly, the agents responsible for the morpho-analysis can be generated
dynamically, but this is not the case for the rest of the system: the agents that actually
perform the tasks in the environment are still individually hard-coded. The latter two points —
limited scope for modeling and limited generativity - indicate the current limitations on
adaptivity in this approach. These limitations, however, pertain only to the scope of
implementation of the key concepts, nothing that cannot be solved by subsequent
refinements of the present design.

The works discussed in this section represent fairly well the state-of-the-art of architectures
for behaviorally autonomous systems at the point of this writing. It is no doubt possible to
introduce additional features — where relevant - to these existing systems to endow them
with increased levels of autonomy without breaking down their core concepts. These
improvements would include essentially:

= down-sizing the grain of the components that constitute the computational substrate,

* enabling the dynamic construction of the operational semantics of these components in the
same substrate,

» allowing the global observation, modeling and control at arbitrary scales of implementation
and,

= provisioning, at the executive level, for the reflective and real-time execution of component
organizations of very large sizes. On the latter point - large scale organizations: only a
significant amount of complexity is adequate to manifest and therefore to experiment
meaningful responses to the problem of global control with acceptable response times in
real-world systems.

Reciprocally, lkon Flux would certainly benefit from implementing a morphogenetic
perspective on the dynamics of global observation and control along the lines described by
Cardon et al. Ikon Flux is naturally very well suited for this approach as processes are already
represented in topological spaces in a way that accounts for the collaboration/competition of
their respective constituents. Morphogenetic observation/control methods will be considered
for integration in future versions of the executive.

6 CoNcLusION

In the domain of computational systems, autonomy can be operationalized by the concept of
self-programming, for which lkon Flux is an abstract type: a dynamic and self-referential
architecture generating its own structures and processes in real-time, both grounded
mutually in high-dimensional topological spaces.

An actual system has been built from this proto-architecture, using experimental engineering
methods. Building the bootstrap segment of such a system is the real difficult part: to my
knowledge, there exists today no actual methodology for the principled engineering of
evolutionary systems, and this is an open issue that calls for investigation along two main
lines. First, it is leveraging prior knowledge and meta-knowledge by coding analogy making
programs and abstraction building programs - essentially along lines like the ones described
by Dormoy and Kornman (1992). These programs are used to infer goals and plans - by
generating new heuristics from the ones provided in the bootstrap segment - and also to
unify local models into more general ones. The second and more decisive research avenue is
identifying and fostering the formation and the transformation of high-level structures,
functions and processes. This is required essentially (1) to measure and control the stability
of functions, (2) to understand their formation for building new ones for arbitrary purposes,
(3) to keep the system complexity at a reasonable level as it expands by producing new
knowledge, and (4) to identify and optimize existing rewrite graphs. In other words, observing

19 / 47

and controlling the formation of high-order structures is a necessary step towards endowing a
system with self-organization properties.

Pursuing the preliminary goal of designing a vocabulary and a grammar to identify, express
and design the dynamics of structural transformations, | resorted so far to injecting some
“architectural” code in the bootstrap segment: these are experimental programs and models
able to identify and construct instances of classes of high-level organizations. These classes
are defined as patterns of process interaction, technically, the mutual projection of realms on
some others:

» Functions: stable coupling over time of inputs and effects,

= Organons: ephemeral aggregates of code forming a substrate for a function, i.e. abstract
patterns of computation flux,

= Organisms: aggregates of organons operationally closed for a set of functions, and

» Individuals: aggregates of functions, organons and organisms semantically closed for a (set
of) pregnance(s).

The identification of high-order structures such as these has been encoded in the lkon Flux
language relatively easily: this is always the case when one knows beforehand what to look
for. In that respect, this method of identification can be viewed as an allonomic measurement
procedure. In the long term, the method in question will most likely restrict the scope and
depth of system self-improvement. At this stage of development, most of the bootstrap
segment is to be kept away from evolution, notably architectural code and internal drives.
Loki‘s bootstrap code represented roughly 30% of the whole system, which translated into a
significant amount of tedious manual labor. Instead of relying on a static typology, this calls
for anchoring the development of bootstrap code in a model of the dynamics of the formation
of structures. Even in the - relatively - simplified case of Loki, to control the formation in both
general and predictable ways remains an open issue.

Harnessing the emergence of high-order organizations in a general scalable way calls for new
engineering methodologies and as | have argued here, these must be based on a process-
oriented and generative approach. To this end | am currently investigating the possibility of
modeling self-programming processes using Goldfarb’s (2005) Evolving Transformation
System.

REFERENGCES

Ancel L.W., Fontana W. (2000). Plasticity, Evolvability and Modularity in RNA, Journal of
Experimental Zoology. 288:242-283.

Campagne J.C. (2005). Morphologie et systémes multi-agents. Ph.D. thesis, Université Pierre
et Marie Curie, Paris.

Cardon A. (2003) Control and Behavior of a Massive Multi-agent System. In Truszkowski W.,
Rouff C., Hinchey M. eds. Workshop on Radical Agent Concept 2002, LNAI 2564, pp. 46-60.
Springer-Verlag Berlin Heidelberg.

Cardon A., Campagne J.C., Camus M. (2005) A self-adapting system generating intentional
behavior and emotions. In Workshop on Radical Agent Concept 2005, NASA Goddard Space
Flight Center.

Dormoy J.L., Kornman S. (1992). Meta-knowledge, autonomy, and (artificial) evolution: Some
lessons learnt so far. In Varela F.J. and Bourgine P. eds. Toward a Practice of Autonomous
Systems Proceedings of the 15t European Conference on Artificial Life. MIT Press (A Bradford
Book), 1992: 392-398.

Fontana W., Buss L.W. (1996). The Barrier of Objects: From Dynamical Systems to Bounded
Organizations. In Casti)., Karlqvist A. eds. Boundaries and Barriers. pp.56-116, Addison-
Wesley.

Froese T., Virgo N., Izquierdo E. (2007). Autonomy: A review and a reappraisal. In F. Almeida
e Costa et al. eds. Proc. of the 9™ European Conference on Artificial Life. Springer-Verlag,
Berlin, in press.

Goldfarb L., Gay D. (2005). What is a structural representation? Fifth variation, Faculty of
Computer Science, University of New Brunswick, Technical Report TR05-175.

Hoover M.L. (1974) Meyerhold: The art of conscious theater University of Massachusetts
Press, 1974

20 / 47

Kokinov, B. (1997). Micro-level hybridization in the cognitive architecture DUAL. In R. Sun & F.
Alexander eds., Connectionist-symbolic integration: From unified to hybrid architectures.
Hilsdale, NJ: Lawrence Erlbaum Associates.

Landauer C., Bellman K.L. (2003). Self-Modeling Systems. In R. Laddaga, H. Shrobe eds. Self-
Adaptive Software: Applications. Springer Lecture Notes in Computer Science, 2614:238-256.

Meyerhold V. (1969). Meyerhold on Theatre, trans. and ed. by Braun E. Methuen, London.

Pattee H. (1995). Evolving Self-Reference: Matter, Symbols, and Semantic Closure. In
Communication and Cognition. Artificial Intelligence, 12(1-2).

Paun G. (2002). Membrane Computing. An Introduction, Springer-Verlag, Berlin.

Pezzulo G., Calvi G. (2005). Dynamic Computation and Context Effects in the Hybrid
Architecture AKIRA. In Dey A., Kokinov B., Leake D., Turner R. eds. Modeling and Using
Context 5% International and Interdisciplinary Conference CONTEXT 2005. Springer LNAI
3554,

Pezzulo G. Calvi, G. (2007). Designing Modular Architectures in the Framework AKIRA. In
Multi-agent and Grid Systems, 3:65-86.

Pollock J. (2001). Defeasible reasoning with variable degrees of justification. In Artificial
Intelligence, Vol. 133, Nos. 1-2, p. 233-282.

Rocha L.M. ed. (1995). Communication and Cognition - Artificial Intelligence, Vol. 12, Nos. 1-
2, pp. 3-8, Special Issue Self-Reference in Biological and Cognitive Systems.

Rocha L.M. (2000). Syntactic autonomy, cellular automata, and RNA editing: or why self-
organization needs symbols to evolve and how it might evolve them. In Chandler J.L.R. and G,
Van de Vijver eds. Closure: Emergent Organizations and Their Dynamics. Annals of the New
York Academy of Sciences, 901:207-223.

Sanz R., Lépez ., Herndndez C. (2007). Self-awareness in Real-time Cognitive Control
Architectures. In Al and Consciousness: Theoretical Foundations and Current Approaches.
AAAI Fall Symposium 2007. Washington, DC.

Schmidhuber). (2004). Optimal Ordered Problem Solver. Machine Learning, 54, p. 211-254.

Schmidhuber J. (2006) Gédel machines: Fully Self-Referential Optimal Universal Self-
Improvers. In B. Goertzel and C. Pennachin, eds. Artificial General Intelligence, p. 119-226,
2006.

Spector L., Klein J., Keijzer M. (2005). The Push3 execution stack and the evolution of control.
In Proc. Genetic and Evolutionary Computation Conference (GECCO 2005), p. 1689-1696.

Thom R. (1972). Structural Stability and Morphogenesis. Reading, MA: W. A. Benjamin.
Thom R. (1990). Semiophysics: A Sketch. Redwood City: Addison-Wesley.
Thom R. (1999). Paraboles et catastrophes. Flammarion.

Varela F.J., Maturana H.R., Uribe R. (1974). Autopoiesis: the organization of living systems, its
characterization and a model. In: BioSystems, 5:187-196.

Varela F.J., Maturana H.R. (1980). Autopoiesis and Cognition: The Realization of the Living.
Boston, MA: Reidel.

Varela F.J. (1992). Autopoiesis and a Biology of Intentionality. In McMullin B., Murphy N. eds.
Autopoiesis and Perception A Workshop with ESPRIT BRA 3352 (pp.4-14). Dublin.

Wang P. (2004). Toward a Unified Artificial Intelligence. AAAI Fall Symposium on Achieving
Human-Level Intelligence through Integrated Research and Systems. p. 83-90, Washington
DC.

Wang P. (2007). The Logic of Intelligence. In Artificial General Intelligence. Springer Verlag.

Wolpert D.M., Kawato M. (1998) Multiple paired forward and inverse models for motor control,
Neural Networks 11, pp. 1317-1329.

Yamamoto L., Schreckling D., Meyer T. (2007) Self-Replicating and Self-Modifying Programs in
Fraglets. Proc. of the 2" International Conference on Bio-Inspired Models of Network,
Information, and Computing Systems.

21 / 47

ANNEX — LANGUAGE DEFINITION

Al OVERVIEW
The lkon Flux language defines seven categories of constructs:

Atoms: constants, blocks (lists of atoms), identifiers, variables and code fragments. The
latter are the basic sub-structures that are composed together to form system objects -
sys-objects (sys). They are neither the input nor the product of rewriting — only sys-objects
are.

Directives: instructions to specify how the interpreter shall handle code. Directives are not
subject to rewriting.

Operators: symbols defining operations to be performed on a list symbols; an operator
followed by such a list constitutes a fragment. Operators are implemented in the executive
and their semantics cannot be modified at runtime. Operators can be user-defined.
Operators fail gracefully when applied to ill-formed fragments.

Object types: symbols defining static types. A type defines a specific fragment structure
and its (axiomatic) semantics — exception: sub-systems are axiomatic objects and have no
structure. Objects can be user-defined.

Sub-systems: symbols representing either axiomatic systems (external, i.e. application
dependent or internal, i.e. the components of the executive) or explicit systems, i.e.
abstractions denoting phenomena (external, i.e. phenomena observed in the world, or
internal, i.e. phenomena observed in the state space). External axiomatic sub-systems can
be user-defined. Explicit sub-systems (called entities) can be dynamically instantiated.

Sub-system functions: symbols representing function entry points in a given sub-system.
Sub-system functions cannot be rewritten as they are implemented in an non-explicit form.
A function symbol followed by actual arguments is yet another example of fragment. Sub-
system functions can be user-defined. Sub-system functions fail gracefully when applied to
ill-formed fragments.

Marker classes: symbols representing ontologies, i.e. dynamic object types. They define
fragment structures but not their semantics - their rewriting and use by programs and
models does. Marker classes can be user-defined. Marker classes can be dynamically
instantiated.

Operators, objects types, sub-systems, sub-system functions and marker classes are
represented by numerical opcodes; However, for the sake of readability, when these

el

ements are built-in the executive, they are identified by trigrams and/or by non numerical

symbols (aliases).

Al1.1 GENERAL SYNTAX

From this point onwards, the following syntactic elements are used to define the language

constructs:
key description
in italic optional

list of atoms / fragments, etc, whatever

<expression> syntax of expression defined separately

<arg=value> optional argument with (optional) default value
ATOMS

symbol description

nit “nothing”, polysemic

block, generic fragment
o) nested definition of a fragment, block or generic fragment
b c code fragment composed of atoms a, b and ¢

a

o: f definition of an object / fragment name mapping a fragment f

v definition of a variable v (in a pattern) mapping any fragment

v definition of a variable v (in a pattern) mapping any rest of fragment

anything (wildcard, i.e. unreferenced variable in a pattern)
the rest of the fragment can be anything (in a pattern)

22 / 47

name:

"N

vV, O

this

-10, 1.234+56

+inf, —inf
/7, 11/
mk.id
ent.id
spv.id
dev.id
sys.id
mk. :

mk. :x

mk.. x

DIRECTIVES

directive

if, then, else, endif

macro
load
region

in

fragment name

right-hand reference to a variable (equational rewrite rules only)
reference to a variable v, to an object o

reference to the address of an object from inside that object (C++ fashion)

numbers (IEEE754, 64 bits). 1.234+56 means 1.234 10+56. Infinite numbers are
supported. NaN is coded nitl

positive infinity, negative infinity

comment, comment block opening and ending

reference to a marker of class id

reference to an entity named id

reference to a supervision sub-system named id

reference to an external sub-system named id

reference to an internal sub-system named id

reference to any marker (also holds for ent, spv, sys and dev)

definition of a variable x mapping any marker (also holds for ent, spv, sys and
dev)

reference to a variable mapping a marker (also holds for ent, spv, sys and dev)

“contrary” meta-operator, polysemic. Applies to some operators and objects,
but neither to markers nor sub-system functions.

description

control the code definitions

defines a syntactic substitution

loads source code files

defines a group of code

defines membership of code relatively to regions

BUILT-IN OPERATORS

operator
equ
sor
wor
add
mul
new
eva
red
scn
mrg
spl
pow
exp

dis

BUILT-IN OBJECT TYPES

object type
pgm
spc
pre
app
sln

ifn

alias contrary description
= |= tests for equality
> <= tests for strong order relationship
>= < tests for weak order relationship
+ - addition
* / multiplication

del instantiation

leva evaluation

| red reduction

|scn Scan

N/A merge blocks

N/A split blocks

log power

in exponent

N/A distance
description
program
pattern specification
pregnance
application (of a function, a model, a pregnance)
saliency

implicit function

23 / 47

efn explicit function

pro process
fmd forward model

imd inverse model

rim realm

sys sys-object

dev external sub-system
spv supervision sub-system
ent entity

tck clock tick

erw equational rewrite rule

BUILT-IN SUB-SYSTEMS AND FUNCTIONS

sub-system alias function description
sys.0 core core reduction engine
inj injection of an object
mod modification of control values
set assignment of control values
get read control values
inv computation of an inverse model
ctx projection of sys-objects on a realm
min monitoring of the maximum of a target application
max monitoring of the minimum of a target application
avg monitoring of the average of a target application
rnd random number generator
sys.1 clk system clock
btt gets the boot time
now gets the current time
rdc gets the current reduction count
sys.2 cfab distributed computation fabric
rdp sets the reduction depth
rdq sets the reduction quanta
SpV.x supervision sub-systems
ldr loads code
rct controls the runtime of the supervision sub-system
swp swaps code from/to disk
ent.0 self axiomatic reference to the system. No functions are

pre-defined; they have to be constructed dynamically
or manually (bootstrap code).

BUILT-IN MARKER CLASSES

marker class alias description
mk.0 mk.pja projection, activation semantics

mk.1 mk.pji projection, intensity semantics
mk. 2 mk.ins instance

mk.3 mk.hyp hypothesis

mk. 4 mk.sim simulation

mk.5 mk.prd prediction

mk.6 mk.xet process execution time

mk.7 mk.min minimal application value

mk.8 mk.max Maximal application value
mk.9 mk.avg average application value

24 / 47

CODE FRAGMENT
fragment name: opcode <data>
opcode: identifies an operator, an object, a function, a sub-system or a marker class. If omitted
in a nested definition, the fragment is:
- a block or,
- a general fragment with no built-in semantics.
data: list of atoms.

Notes

The implicit conversion of a block in its first element will be performed if needed; the implicit
conversion of a fragment in a block containing it will also be performed if needed. This need
can arise during the evaluation of fragments lead by the red, mrg, Or spl operators.

Examples
<= :x (/y (+:zw) // :x <=y/(:z+w)

|=a fragl: (red (...) (pgm (spc in:(sys self ::) nil) ((nil in)))) // when successfully
evaluated, fragl points to the result - here (sys self ::), to nil otherwise

NOTES

Variables are pointers to fragments formally defined within pattern specifications. Variables
defined inside a sys-object are not visible outside, but are everywhere inside.

Separators: in { * ‘, \n’, ‘\tab’, ‘\backtab’, ‘\'}. They are not required after nor before (or),
neither after object/fragment definitions. NB: some of the separators have side effects, see 0
below.

app is implicit when the opcode leading a fragment maps to a function, a pregnance, a
(forward/inverse) model.

red is implicit when the opcode leading a fragment maps to a pattern specification.

Identifiers (fragment names and variables) are case sensitive and can contain any character /
strings but those in:

{ separators, “(‘,)", 2", “=" T }
As a general rule, identifiers cannot be written as any operator / object / function / marker /
fragment could be. Identifiers are independent from directives.

Literal symbols (alphanumerical character strings) are hosted in external sub-systems,
referenced to by numerical identifiers. In the source code, literal symbols are mere numbers.
A1.2 CODE SYNTACTIC FORM

Code is defined using indents to limit parenthesis explosion.

Examples

The following two examples are legal and describe the same code, i.e. the code introduced in
section 3.1.

pgml: pgm
spc (sys :x :mkl ::)
(red mkl
pgm
spc inl: (sys (mk.ins x :a) :mk2 ::)
(red mk2
pgm
spc in2: (sys (mk.ins a :b) :int :act :res :) nil
((nil in2))
)
((nil inl))
)
((nil

inj (core (sys (mk.ins x b) act int res)))

// this empty line is required

pgml: pgm
spc (sys :x :mkl ::)
() // means generic fragment, or block
red mkl

pgm

25 / 47

spc inl:(sys (mk.ins x :a) :mk2 ::)
red mk2
pgm
spc in2:(sys (mk.ins a :b) : :int :act :res :) nil
() (nil in2)
()
nil inl
()
() nil
inj (core (sys (mk.ins x b) act int res))
// this empty line is required

A1.3 SOURCE CODE ORGANIZATION

General structure for application code:
List of directives.
List of object definitions.
List of applications (ex: object injections).
Setting of the reduction depth and quanta (applications of rdp and rdq).

Structure for equational rewrite rules:
List of directives.
List of object definitions.
List of rewrite rules definitions.

Notes

The following are predefined and pre-loaded:
sys-realm: srm
sub-systems: core, clk, cfab, self

The equational rewrite rules defined for the built-in operators are also pre-loaded.

Object definitions and code management directives shall not be mixed, i.e. directives shall be
invoked in their own lines.

Directives can be found anywhere; they are optional.

Applications (app) can also be found anywhere provided the fragments they refer to are
defined.

Redefining different code with the same identifier overwrites the previous definition and
remaps existing references to the latest definition: allows forward incomplete definitions
(C++ style).

A2 LANGUAGE CONSTRUCTS

A2.1 DIRECTIVES

LOAD - Code loading directive.

load <file id>

file id: integer.

Loads a source file and translates it into a binary form, or loads binary code.

Notes
Files are identified by integer values (e.g. symbolic links to actual files).

Binary code is produced by swp.

REGION - Region definition directive.

region <id>

id: an integer identifying the region.

Regions define logical groups of hand-crafted code.
Notes

26 / 47

Region are provided for code management purposes. They are not objects and are not visible
in the sys-realm nor can they be generated dynamically. However, fragments can control the
(un)loading of regions.

IN - Region membership directive.
in <id list>
id list: integers identifying regions.

Objects defined after a membership directive are members of the specified regions, until a
new membership directive is found.

Notes
Objects can belong to several regions. In that case they are load when the first region is

loaded and unloaded when the last region is unloaded.
MACRO - Syntactic development directive.

macro <expression> <fragment>

expression: name OI (name <arglist>).

arg: any fragment.

Specification of syntactic developments.

Imacro undefines the syntactic development.
Examples

Predefined:

macro
macro
macro
macro
macro
macro
macro

self
core
clk

cfab
_now
_rdc
_btt

ent.0
sys.0
sys.1
sys.2
(now
rdc

clk))
clk))
clk)),

macro

(
(btt
(rdp

_rdp cfab))

User-defined:

macro (find mk.class a b blockl guards block2 act int res ijt)

red blockl (pgm (spc (in: sys (mk.class a b) :block2 act int res ijt) gquards) ((nil
in)))
macro
macro
macro
macro
macro
macro

run_once -1
match _once -2
run_match_once -3
~int 0

~act 1

_res 2

Usage:

pgml: pgm

spc (sys :x :mkl ::)

()

(find mk.ins :x :a mkl ((find mk.ins mk2 a :b :act :int :res :)) mk2 ::)

()
nil /// empty guard block /// (inj core (sys (mk.ins x b) act int res))

IF THEN ELSE ENDIF - Source control directive.
if <macro> then <defl> else <def2> endif

macro: definition of a syntactic development.
defl, def2: lists of definitions / applications / directives.

Controls the definitions / directives in a source file. If there exists a definition for <macro> then
<defl> is processed, else <def2>.

Notes
Similar to the C++ pre-processor directives #ifdef ... #else ... #endif.

27 / 47

A2.2 OPERATORS

= Equivalence operator.
= <tl> <t2>

t1: any fragment.
t2: any fragment.

Checks for equivalence of t1 and t2. Returns |nil if successful, nil otherwise.

|= checks for the non equivalence of t1 and t2. Returns |nil if successful, nil otherwise.

> Strong order relationship operator.
> <tl> <t2>

t1: any fragment.
t2: any fragment.

Checks for the strong order relationship between t1 and t2. Returns |nil if successful, nil
otherwise.

|> is noted <=; checks for the weak order relationship between t2 and ti. Returns |nil if
successful, nil otherwise.

> = Weak order relationship operator.
>= <tl> <t2>

t1: any fragment.
t2: any fragment.

Checks for the weak order relationship between t1 and t2. Returns |nil if successful, nitl
otherwise.

|>= is noted <; checks for the strong order relationship between t2 and t1. Returns |nil if
successful, nil otherwise.

+ Addition operator.

+ <tl> <t2>

t1: any fragment.
t2: any fragment.

Performs the addition of t1 and t2, returns the result.

|+ is noted -; performs the substraction of t2 from t1, returns the result.

* Multiplication operator.
* <tl> <t2>

t1: any fragment.
t2: any fragment.

Performs the multiplication of t1 and t2, returns the result.

|* is noted /; performs the division of t1 by t2, returns the result, nit if t2=6.

NEW Instantiation operator.
new <t>
t: mk, ent.

Depending on the argument, creates a new marker class, or a new entity, returns the new
object.

Inew is noted del; deletes its argument and its related fragments: when a marker class is
deleted, the sys-objects instances of this class are deleted too. del works on any object, not
only the types specified for new.

Notes

28 / 47

Deleting an object triggers a garbage collection notification.

EVA Evaluation operator.

eva <t>

t: any fragment.

Performs (forces) the evaluation of its argument.
leva prevents the evaluation.

Notes

Evaluation is always implicit in the generation of productions (programs, functions, models).
It is also implicit when a pattern specification is tested against an object: the object is
evaluated step by step following the structure of the pattern.

The attempt to evaluate ill-formed fragments fails gracefully, returning nit.

RED Reduction operator.
red <t>

b: a block or a single fragment.

t: a fragment, pattern specification, program or block of programs / pattern specifications.
Performs the reduction of b by t, returns a block containing the results. Reduction is
performed as follows:

- if t is a program, then all the fragments in b are evaluated against the program pattern
specification, the productions, if any, are appended to the result block.

- if t is a pattern specification, then all the fragments in b are evaluated against it and they
(the fragments in b that match) are appended to the result block.

- if t is a fragment (ex: (= x nil) where x is a reference to a variable), then all the fragments
in b are evaluated against it and the result is appended in the result block.

- if t is a block, then all the fragments in b are evaluated against each fragment in t, as
described above.

- if b is a single fragment, then reduction is performed as described on b instead of the
content of b.

|red performs the anti-reduction (see |pgm, |pre). t - or fragments in t if it is a block - are
appended to the result block if no fragments in b - or b if it is a single fragment - evaluates
successfully.

SCN Scan operator.
scn <pattern> <production>
pattern: spc <fragment> <guards>

production: any fragment.

Evaluates every sys-object against the pattern, returns a block containing the productions or
nil if no match has been detected. This is the standard reduction, i.e. controlled by the
intensity values of input objects, and the activation value of the program executing scn.

|scn checks if no sys-object matches the pattern, returns the production if successful, nitl
otherwise.

Notes

The scan operator allows computing new patterns during reduction and checking the sys-
objects against these patterns during the same reduction cycle. Without scn, one would have
to generate a program holding a new pattern, and check the sys-objects against this new
pattern during the next reduction cycle.

MRG Merge operator.
mrg <bl> <b2>

bl: a block or a fragment.
b2: a block or a fragment.

29 / 47

Returns one block, having the content of b1 and of b2. If b1 is a single fragment, b1 is
appended to b2 in the result, and reciprocally. If b1 and b2 are single fragments, returns a
block containing the two.

[mrg returns nit.

SPL Split operator.
spl <pattern>

b: a block.

pattern: spc <fragment> <guards>

Returns a pair of two blocks: the first contains the fragments that match the pattern and the
second, fragments that don't.

|spl returns nil.

POW Power operator.
pow <tl> <t2>

t1: any fragment.
t2: any fragment.

Performs the elevation of t1 at the power of t2, returns the result.

|pow is noted 1log; computes the logarithm of t1 in the base of t2, returns the result.

EXP Exponent operator.

exp <t>

t: any fragment.

Performs the elevation of e at the power of t, returns the result.

|pow is noted log; computes the Neperian logarithm of t, returns the result.

DIs Distance operator.
dis <tl> <t2>

t1: any fragment.
t2: any fragment.

Computes the distance between t1 and t2, returns the result.
When t1 and t2 are numbers, returns |t1-t2].

|dis returns nil.
A2.3 OBJECTS

ERW Equational rewrite rule.

rule name: erw <lht> <rht>

tht: left hand fragment, a specification (see pgm)

rht: right hand fragment, the production, i.e. a code fragment

Notes

Equational rewrite rules are not part of any sys-realm, i.e. they are not potential input
objects, nor can they be generated dynamically (although nothing prevents that: this will be
considered for future versions). They are used by the inference engine, which is not a sub-
system but an internal part of the executive.

Examples

Key: a © b means “a is rewritten in b”; y: <f> is the name of the fragment f and a reference
to the variable :y.

erw (spc z: (+ :x :y) nil) y: (- z x) // z=x+y > y=z-X

erw (spc (+ :x :y) nil) (+ vy X) // X+y > y+x

30 / 47

erw (spc (+ (+ :x :y) :z) nil) (+ x (+y 2)) // (x+y)+z > x+(y+z)

erw (spc z: (* (:x :y) ((|]=x0))) y: (/ z x) // z=x*y > y=z/x when x # 0

sYS Sys-object.
object name: sys <t> <ref> <int> <act> <res> <ijt= rdc+1>

t: explicit definition or variable or reference.

ref: reference to the reference block. This block is populated automatically with any
sys-object pointing at object name; in particular, ref blocks contain markers and projections.

int: intensity value.
act: activation value.
res: resilience value.

ijt: injection time, in reduction cycle count (homogenous to the return value of the function
rdc).

Notes

When new sys-objects are specified for injection, the <ijt> is optional and by default, set to
_rdc+1.

int and act are the result of a global computation (involving realms) at the time of the current
reduction cycle. At injection time, projections on the sys-realm are created automatically:
mk.pja <object> srm act and/or mk.pji <object> srm int.

For programs, res=-1 means kept alive until an input object triggers the program, kill at the
end of the cycle (unless res has been increased in the meantime). For general input objects
res=-2 means kept alive until it matches in a program (kill as for programs). In case of a
program being an input, res=-3 will do as -1 and -2, and will switch to -2 upon triggering, or -1
upon matching.

Sys-objects can be injected in the future, i.e. rdc+n, where n>1.

Duplicates of the same sys-object (same structure and same age) are eliminated
automatically. The remaining original gets the maximum of the control values (minimum if
negative) of the duplicates. Duplicates in blocks are also eliminated.

SPV Supervision sub-system.

spv_name: spv.id

id: integer identifying the sub-system.

Supervision sub-systems are instances of the reduction engine. They can read an write the
memory, can be read from other sub-systems but cannot be written.

Notes

Supervision sub-systems are meant primarily for debugging/profiling purposes, but nothing
prevents their usage as regular internal systems to build an entire system as an organization
(e.g. recursive) of systems.

ENT Entity.

ent _name: ent.id
id: integer identifying the sub-system.

An entity is an axiomatic construct to identify phenomena, either internal (in the system) or
external (in the world).

Notes
The self is defined as ent.o.

DEV External sub-system.
dev_name: dev.id

id: integer identifying the sub-system.

31 / 47

External sub-systems are aggregates of exogenous functions. Such a sub-systems provides
an interface to communicate with the executive in the lkon Flux language. An interface is an
interpreter to/from binary invocation from/to application objects, plus user-defined object
types and operators.

Notes

External sub-systems can be loaded / unloaded dynamically: this usually triggers notifications
by the corresponding dev instance (developer’s responsibility).

The core sub-system provides notifications of rewriting events by injecting new objects
describing the reductions that have been performed: for example, “at time t, the occurrence
of object T, triggered the production of object T, by object T,”. They constitute internal
inputs, conveying immediate causality ((T,,T;) —» T,). Developers can choose to implement
causal loops in their external sub-systems, in the same fashion the executive does (runtime
reflectivity), i.e. to have external sub-systems behave as if they were reduction engines. For
example a locomotion device is expected to inject and relate the event “reached target” to
the command “reach target” issued at t,: “at time t;, object “reach target” received at t,
triggered the production of object “target reached” by device “locomotion””. Exceptions
occurring during the execution of a command are also considered feedback information that
are generally notified in the same way.

sPC Pattern specification.
spc_name: spc
<pattern>
v <guardy>
;éﬁardn>
pattern: pattern name: <fragment>
fragment: any fragment - generally containing variable definitions, but not necessarily.

guard: <fragment> OI <program> OI <pattern specification> Oor block of fragments, programs, pattern
specifications.

A pattern is a partial description of the structure of any kind of object. It is also a procedural
description (guards express conditions on the structure).

Pattern matching fails if at least one of the guards fails, i.e. returns nit.

Evaluation in pattern matching is lazy, i.e. performed from left to right and in case of failure,
no further evaluation is attempted.

Ispc is an anti-pattern. Matching against a fragment t will succeed if t does not match the
pattern.
Notes

Applications of pattern specifications can be built in the same fashion as for functions:
(<pattern spec> <fragment>). This is equivalent to (red <pattern spec> <fragment>).

Guards can specify interdependencies between variables in the pattern.

Examples

exl

spcO: spc (sys (mk.ins :x :a) : : : :t) ((=t rdc)) is equivalent to spc (mk.ins :x :a) : : : rdc)
nil and to spc (:y :x :a) ((= x mk.ins))

_rdc will be called when spce is evaluated, only if a successful match for (sys (mk.ins :x :a) : :
: :t) is found (lazy evaluation).

pgm@:pgm <pattern spc>
()

nil (inj (core (sys
pgm
spc (sys (mk.ins :x :a) : : : rdc) nil // rdc will be evaluated at
the time when pgm@ is triggered

nil (inj (core (sys
pgml: pgm
spc (sys (mk.ins :x :a) : : : (|]eva rdc)) nil // rdc will be
evaluated at the time when the pattern specification of
// pgml is evaluated

32 / 47

ex2
pgm (spc (sys (imd : :target_state ::) ::) nil) // deep pattern: target_state is a pattern
specification in an inverse model held by a sys-object
()
nil (inj (core (sys
pgm
spc (target state some args) nil // the specification will be some args

if some _args matches target state, nil otherwise

nil (inj (core ié&s
pgm
target state // used as is

PGM Program.

pgm_name: pgm
spc <pgm-pattern>

<guardy>
;éﬁardn>
0)

<productiong>

<production,>
<sem count=-1>

pgm-pattern: input object variable name: sys <t> <ref> <int> <act> <res> <ijt>

t: explicit definition or variable (object) or reference or : or ::
ref: variable (ref block) or: or ::

int: intensity value or reference or : or ::

act: activation value or reference or : or ::

ijt: injection time value or reference or : or ::

guard: <fragment>

production: ()
<guarde>

<guardn>
<result>

result: (inj (core <sys-object>)) OfF,

(mod (core <sys-object> 0/1 0/1 0/1/2)) Ofr,
(<function> <arglist> <delay cycles=0>) // general form, the target sub-system is generally

the first arg OF,
<code> // when the program is in the right side of a red operator lead evaluation

sys-object, code, arg: explicit definition or reference
function: reference

sem count: semaphore count, i.e. number of instances allowed for simultaneous instances, <0
meaning infinite. The sem count is decreased by 1 each time an instance of the program is
injected. Instantiation results from generating a program from a template defined with
variables (an instance is not a duplicate). If at injection time sem count is 0, the injection is not
performed and a notification occurs in a form similar to a regular process notification:

|pro <denied application> <producer> <input object>.

sem count iS increased by 1 when the program instance dies, or its activation falls below the
sys-realm activation threshold. In such cases, and if sem count>=1, the sem count is decreased by
1 when the activation of the program instance is put back above the threshold. If already O,

notification occurs as described. sem count increases or decreases are performed immediately
during evaluation.

A program generates a result whenever an object matches the pattern and the guards
attached to the result specification are satisfied.

|pgm is an anti-program: it generates all of its results if no object matches the pattern and the
guards attached to the result specification are satisfied.
Notes

As any sys-object, input objects held by reference blocks are controlled by their intensity and
activation values. When guards reduce reference blocks, only the objects in the block with an
intensity above the sys-realm intensity threshold are reduced. If guards use the reference

33 / 47

block to reduce other fragments, only the programs in the block with an activation above the
activation threshold in the sys-realm will attempt the reduction.

Sometimes, the results and their guards are parameterized by the input object. In that case,
an anti-program would not be able to generate these results.

EFN Explicit functions.

fn_name: efn
<abstraction>

()
<implementation,>

<implementation>
<realm=nil>
<sem count=-1>

abstraction: spc <fun-pattern> <guards>
fun-pattern: <args>

arg: argument for the function, the first being generally the sub-system exhibiting the
function.

implementation: (<guards> <application>) Or (<guards> <fragment>).

sem count: as for programs, where “application of the function” replaces “instance of a
program”. sem count is decreased by 1 each time an application is injected. If at this time sem
count is 0, the injection is not performed and a notification occurs. sem count is increased by 1
when the process resulting from the application finishes (occurrence of a mk.xet), or the
application is killed before the process is generated, or the application’s intensity gets below
the sys-realm intensity threshold. In such cases, and if sem count>=1, sem count is decreased by
1 when the intensity of an application is put back above the threshold. If already O,
notification occurs.

Variables are valuated from abstraction to implementation. The semantics of explicit
functions is the same as usually found in functional language, i.e. explicit functions encode
the semantics of an abstraction.

|efn is undefined.

Notes
Functions can be called only as productions in programs, by functions or by models.

Reduction graphs are encoded as graphs of functions both explicit and implicit: the
implementation parts reference reductions to be performed subsequently in time while the
detection parts (of implicit functions ifn) define pattern detection to be performed priory.

IFN Implicit functions.

fn_name: ifn
<abstraction>

()

<detectiony>
<detection,>
<sem count=-1>
abstraction: spc <fun-pattern> <guards>
fun-pattern: <args>

arg: argument for the function, the first being generally the sub-system exhibiting the
function.

detection: (spc <pattern> <guards>) Or <application> Or <fragment>.

sem count: as for programs, where “application of the function” replaces “instance of a
program”. sem count is decreased by 1 each time an application is injected. If at this time sem
count is 0, the injection is not performed and a notification occurs. sem count is increased by 1
when the process resulting from the application finishes (occurrence of a mk.xet), or the
application is killed before the process is generated, or the application’s intensity gets below
the sys-realm intensity threshold. In such cases, and if sem count>=1, sem count is decreased by
1 when the intensity of an application is put back above the threshold. If already O,
notification occurs.

Variables are valuated from detection to abstraction. The semantics of implicit functions is
the encoding in an abstraction a pattern over correlated objects in the system. Implicit
functions are coupled pattern detectors, i.e. they build abstractions from the detection of

34 / 47

several objects matching a set of patterns. As many abstractions are produced as there are
tuples of objects matching the patterns. The detection parts shall resolve eventually in either
a pattern specification or an application of an implicit function. It is thus allowed to encode a
detection as an application of an explicit function that is implemented in the end at least by
one application of an implicit function. The abstraction can feature variable definitions and
these can be used to parameterize the detectors.

|ifn is undefined.

Notes
Functions can be called only as productions in programs, by functions or by models.
Reduction graphs are encoded as graphs of functions both explicit and implicit: the

implementation parts (of explicit functions efn) reference reductions to be performed
subsequently in time while the detection parts define pattern detection to be performed

priory.

APP Application.

<reference> <args> <delay cycles=0>

reference: to a function, a forward model, an inverse model, or a pregnance.

arg: any code or code fragment, the first being generally a sub-system to execute the
function, model or pregnance.

delay cycles: an integer value n. Indicates if the corresponding process object shall be
generated immediately (n=0 i.e. will appear at the same cycle as the application object) or
not (n>0, would appear n cycles later). If delayed, the process will be generated if and only if
the application is intense enough at this point in time.

Notes
The app opcode is implicit in the definition of an application.

Process objects are generated automatically (with a potential delay) upon injection of
application objects.

Examples

ex1:

move: efn
spc (self :translation :duration) nil)
()
nil (set motors (dev.locomotion (/ translation duration) duration)) // application

ex2:

move object: efn
spc (self :object :destination :t) nil)
()
nil (grab (self object)) // attach object to hand

nil
inj (core (sys
pgm
spc (sys grab pro: (pro (grab (self object)) ::) :mrkl ::) // when
attached
()
red mrkl
pgm
spc (sys (mk.xet grab pro ::) : : : :tl) ((= t1 rdc))

(nil grab pro)
()
nil (move hand (ent.x destination (- t (+ duration grab
duration_release)))) // move hand towards destination
0 1 run_once))
nil
inj (core (sys
pgm
spc (sys move hand pro: (pro (move hand (self object)) ::) :mrk2 ::) //
when destination reached
()

red mrk2
pgm
spc (sys (mk.xet move hand pro ::) : : : :t2) ((= t2
_rdc))
(nil move hand pro)
()
nil (release_grasp (ent.x)) // release object
0 1 run_once))

35 / 47

ex3:

object moved: ifn
spc (ent.x start from to) nil // can also feature input variables
()
spc (sys ent.:x :mrk ::)
()
red mrk

pgm
spc (sys (mk.last position ent.x :from :start) ::) nil
(nil start)
red mrk

pgm
spc (sys (mk.at ent.x :to) : : : : :tl)((< start tl))
(nil t1)

An application of object moved by a program pgm1 upon matching an object in generates:

p: (pro (object moved (entity start from to) pgml in)) and (mk.xet p duration rdc duration ms) //
NB: duration ms >= tl

Works with:

position updater: pgm
spc (sys o: (pro (object moved (ent.:x : :from :to)) ::) :mrk :int :act :res)
(red mrk
pgm (spc (sys (mk.xet o :t) ::) nil) ((nil t))
)

(nil (inj (core (sys (mk.last position ent.x to t) int act res))))

ex4:

object moved at night: ifn
spc (ent.x t from to) ((= t t2) (< :lumen 0.1))
()

object moved (ent.:x :t :from :to)
spc (sys (mk.ambient luminosity :lumen) : : : :t2)
Invocation:

object moved at night: ifn

spc (ent.x t from to) ((is_nighttime (clk t)) // is_nighttime: function added to clk, user-
defined

(object moved (ent.:x :t :from :to))

or
object moved at night: ifn (spc (ent.x t from to) nil) ((object moved (ent.:x :t :from :to)))

and

pgm
spc (sys (tck :t ::) ::) ((is_nighttime t))
(nil (object moved at night (::)))

FMD Forward model.

model _name: fmd
<abstraction>
<application-spc>
()

<predictory>

<predictor>
<sem count=-1>

abstraction: pattern specification.
application-spc: spc <application-pattern> <guards>.

predictor: <guards> <program>.

sem count: a@s for functions, the application being the execution of the model.

A forward model defines the outcome of executing actions. An outcome is the production of
objects (generally marked as predictions — marker prd). Actions are specified as patterns of
function applications.

A forward model is executed in the same fashion a function is, i.e. using an application
object.

| fmd is undefined.
Notes

36 / 47

The anticipated time of the occurrence of the predicted sys-object is the injection time of the
predicted object, i.e. in the future.

To execute a forward model: (<model> <args> <delay cycles=0>), just like a standard function
application.

Examples

ex1:

fmdl: fmd
spc (self :t :speed :duration) nil
spc (motors (dev.locomotion t speed duration)) nil
()
nil
pgm
spc (sys self :mrk :int :act :res t)
(red mrk (pgm (spc z: (sys (mk.at location self :y) ::) nil) ((nil z))))
()
nil (inj (core m: (sys (mk.at location self (+ y (* speed duration))) int act
res (+ t duration))))
nil (inj (core (sys (mk.prd m 1) int act res)))

NB: this model deals with locations as linear distances. Dealing with heading would require
vectors as a user-defined object (along with related specific operators and upgrades of
existing ones).

Execution:
fmdl (self now 10 150)
ex2:

fmd2: fmd
spc (self ent.:x :destination :t) nil
spc (move hand (self ent.x destination t) nil // assumes the hand holds ent.x

0)

nil
pgm (spc y: (sys ent.x :mrk :int :act :res :) nil)
()
nil (inj (core m: (sys (mk.at location ent.x destination) int act res t)))
nil (inj (core (sys (mk.prd m 1) int act res)))
)
Execution:

predictor: pgm (spc (sys (pro (move hand (self ent.:object :dest :t)) ::) ::) nil) ((nil (fmd2 (self
ent.object dest t))))

with
sﬂrnulator:pgm (spc (sys (pro (grab (self :)) ::) ::) nil) ((nil (mod (core predictor 1 0 1)))) //
grab assumed to be atomic here (pro with no duration)

hﬁhibitor:pgm (spc (sys (pro (release (self :)) ::) ::) nil) ((nil (mod (core predictor 6 0 1)))) //
idem for release (would have to check for xet marker)

IMD Inverse model.

model _name: imd
<abstraction>
<target-state-spc>
()

<implementery>

<implementer,>
<sem count=-1>

abstraction: pattern specification.
target-state-spc: spc <pgm-pattern> <guards>.
implementer: <guards> <program>.

sem count: as for functions, the application being the execution of the model.

An inverse model defines the actions to be performed to reach a state. Actions are specified
as applications, states as patterns.

As forward models, inverse models are executed using an application object.

|imd is @an anti-inverse model. It specifies actions to perform so that no object will match the
target state specification.

37 / 47

Notes
To execute an inverse model: (<model> <args> <delay cycles=6>), just like a standard application.

To compute an inverse model: inv (core <state> <timeout>)
state: can contain variables (partially specified) or not (fully specified).

Example
imdl: imd
spc (self :Ltarget :ttarget) nil)
spc (sys (mk.at location self Ltarget) : : : : t) ((<= t ttarget))
()
nil (pgm (spc (sys (mk.at location Lcurrent) : : : : :tcurrent) ((<= tcurrent ttarget))
(nil (set _motors (dev.locomotion tcurrent (/ (- Ltarget Lcurrent) dt: (- ttarget tcurrent))
dt))
Execution:

imdl (self some_location (+ _now 1000))

This inverse model can be hand-crafted, but can also be produced by explicit inverse
resolution, given adequate forward models like fmd1 as defined in the previous example:
inv (core (spc (sys (mk.at location :L) : : : :t) nil) 400)

If fmd1 constrains its application specification with (<= speed speed limit), then the inverse
resolution call above yields:
imd

spc (self :Ltarget :ttarget) nil

spc (sys (mk.at location self Ltarget) : : : : ttarget) ((<= t ttarget))

()

nil (pgm (spc (sys (mk.at location Lcurrent) : : : : :tcurrent)
(

<= tcurrent ttarget
<= tcurrent (- ttarget dt: (/ (- Ltarget Lcurrent) speed limit))

)
(nil (set motors (dev.locomotion tcurrent speed limit dt)))

NB: constraints have to be expressed as reachable values (ex: using <= and not <)

PRO Process.
process name: pro <application> <spawner> <input object> <realm=nil>

arg: any code or code fragment.
application: reference to an application.

spawner: the program having generated the application (automatic generation of process) or
the process itself (programmatic generation).

input object: the object that triggered the generation of the application or the process.
realm: realm associated to the process, if any.

A process encodes the fact that an application (function, model or pregnance) is being
performed. A process can be associated to a realm.

|pro is an anti-process. It is automatically generated when a program (the producer) has
attempted to generate an application or to inject a program for which no resources are
available (sem count:O).

Notes

Processes are generated automatically following an application, or explicitly by programs. In
the latter case, the last two arguments are valuated automatically.

When a process finishes, a completion marker mk.xet is created automatically, indicating the
process duration. Process completion is reached if:

- the application is a function call and the call returns, or

- the application is the execution of a model and the model has generated its outputs, or

- the application is the instantiation of a pregnance.

The process’ starting time is its injection time.

pro (del <sys-object>) core nil is a process notifying imminent garbage collection. It is
automatically generated when the resilience of the sys-object falls down to 0. This
notification gives a chance to save doomed objects. If its resilience is left to 0, the sys-object

38 / 47

will be killed at the end of the current cycle. In any case the process will be killed at the end
of the current cycle.

Injection of a process object does not trigger the automatic construction of an associated
realm.

ToK Clock tick.
tck <rdc> <t> <avg> <foreseen>

rdc: reduction cycle count.

t: time (ms).

avg: average duration (ms) of one cycle.

foreseen: expected duration (ms) of the cycle to be run.

Notes
Clock ticks are injected at each reduction cycle by clk. They have a resilience of 1.

RLM Realms.

realm_name: rlm <reference> <thr act pos> <thr_act neg> <thr_int pos> <thr_int neg> <delay>
<policy=0> <rng _act pos=nil> <rng act neg=nil> <rng int pos=nil> <rng int neg=nil>

reference: <pregnance> OI' <saliency> Ol <process> Ol nil.

<thr_act pos>, <thr act neg>, <thr int pos>, <thr int neg>: thresholds for intensity and control
values, defined for positive and negative contributions.

<rng_act _pos>, <rng_act neg>, <rng_int pos>, <rng int neg>: ranges of the control values defined in
the realm, computed from their respective thresholds. They are read only and set initially to
nil when the realm is created.

delay: the period (in reduction cycles) at which the ranges are updated.

policy: 0 add the object control value defined in a realm to the object control value in the
embedding realm,

1 if realm threshold>=object control value, add the object control value to the object
control value in the embedding realm, else add nothing,

2 as 1 but if realm threshold<object control value hide the object from any other
realm (incl. sys-realm), i.e. final control value=0.

Realms are objects representing the dimensions of state spaces. They are associated with
arbitrary reference processes, (of type pro, sin or pre). Objects are projected onto realms by
building projection markers (mk.pji, mk.pja) that hold contribution values, akin either to
intensity control values or to activation control values. These values represent the
contribution (positive or negative) of the projected object to the achievement of the
reference process, either as input object (intensity value) or programs (activation value). A
positive contribution is the depth - expressed in time units - of an object in a rewrite graph
that actually supported the reference process. For example, a graph that produced at time t
an object matching at time t’ the specification hold by a pregnance would be rated as
contributing positively with a value, i.e. a projection, of t’-t. A negative contribution is the
depth of an object in a graph that hampered the reference process. Another example - this
time of a negatively contributing object - would be a graph that lead to deactivating the
production of an object matching the specification hold by a pregnance. Projections are
valuated in IR, 0 being the termination of the process. Control values are computed as the
inverse of these projections.

As objects, realms can be projected on other realms, in other words, realms can define sub-
spaces of the state space. There exist a pre-defined realm, called sys-realm (noted srm) that
holds no reference process. It is the root of all spaces, i.e. the global state space.

An object projected on several realms is associated by as many local contribution values.
These values are automatically combined to form final control values that will be attached to
the object in question in the sys-realm. Local contribution values are filtered by two realm-
defined thresholds (respectively for input data and programs) and there are currently three
methods for applying thresholds and combining local values into a final one (defined by
policy).

A realm keeps track of the ranges of local contribution values (rng_int xxx and rng_act xxx both
defined for positive and negative contributions); these are updated at variable rates,
specified by delay. This is provided as a convenience for detecting new projections holding

39 / 47

“out of range” control values, i.e. salient projections with regards to existing distributions of
control values.

As a sys-object, a realm is also controlled by its final intensity value. When a realm is not
activated, the projections it holds are not taken into account for computing the final control
values of objects in the system.

|rim is undefined.

Notes
Not all objects have to be projected in a realm.

Realms are constructed automatically whenever pregnances or saliency objects are injected.
This is not the case for regular processes (pro), for which the decision is left to the
application.

Realms are usually populated by an application of the function ctx. However, modifying,
adding and removing projections programmatically is allowed.

PRE Pregnance.

pregnance name: pre
<abstraction>
<expectation>
<realm=nil>
<sem count=-1>

abstraction: pattern specification; similar to the abstraction in explicit functions.
expectation: spc <pattern> <guards>, as a function detector.

realm: the realm - if any — associated to the pregnance.

sem count: as for functions, the application being the instantiation of the pregnance.

Pregnances represent internal drives, and by extension, goals. They define an abstraction
that specifies a state of the system, e.g. the occurrence of an object, the occurrence of tuples
of objects, etc. Pregnances can be reference processes for realms.

|pre is an anti-pregnance: it expresses the drive that no object exists that matches the
expectation.

Notes

To instantiate a pregnance: (<pregnance> <args> <delay cycles=0>), like a standard application.
This generates a process, and a completion marker will also be generated when the
pregnance’s intensity gets lower than the sys-realm intensity threshold, or if the pregnance
gets killed.

|pre ... <|expectation> ... iS equivalent to pre ... <expectation> ... but not to |pre
<expectation> ... NOr to pre ... <|expectation> ...

The injection of a pregnance triggers the automatic building of a corresponding realm. The
contribution of objects to the satisfaction of pregnances can be computed by the executive
upon a call to the function ctx.

Example

be at_location_100mAhead tomorrow: pre // 100mAhead being a reference to an existing location
spc nil nil
spc (sys self :mrk ::)
(red mrk
pgm (spc (z: sys (mk.at location self L) : : : : :t) ((< t (+ _now 86400000)))) //
rough deadline: now+1lday(in ms)
(nil z)
)

Works in conjunction with:
inj (core (sys (be at location 100mAhead tomorrow nil) 1 0 1000))

Variant:

be at location L at time T: pre // L and T are now variables
spc (self :L :T) nil

spc (sys self tmrk : : : T)
(red mrk
pgm (spc (z: sys (mk.at location self :L) : : : : T) nil) ((nil 2z))

)

Works in conjunction with:
inj (core (sys (be at location L at time T (self 100mAhead (+ now 86400000))) 1 0 1000))

40 / 47

Upon injection of be at location L at time T, @ realm, say rimi, is created by the executive and
the <realm> slot in be at location L at time T now contains a reference to rimi.

SLN Saliency.
saliency name: sln <abstraction> <realm=nil>

abstraction: pattern.

realm: the realm - if any — associated to the saliency.

Local representation of an abstract (or geometric) saliency. Saliency holds goal semantics,
i.e. a saliency object would attempt to observe more or less specific facts, specified by the
abstraction. A saliency object is thus used as pregnances to define dimensions of the state

space, and any process can be projected on saliency objects to express their contribution to
the occurrence of objects matching the abstraction.

|sln is an anti-saliency, that is, the saliency of no object matching the abstraction.
Notes

The injection of a saliency object triggers the automatic construction of an associated realm.

A2.4 SUB-SYSTEM FUNCTIONS

INJ Inject an object.

inj (core <sys-object>)

sys-object: any sys-object.

Injects the sys-object in the sys-realm. Returns the projections (mk.pja and mk.pji) of the object
on the sys-realm.

Notes

No application is injected, but a process is generated, tagged by an execution time marker
(xet) if the injection was successful.

The sys-object can have an injection time set in the future.

MOD Modify a control value.
mod (core <object> <operation> <selection> <target> <delay=0>)

object: realm, projection or sys-object (in that case resilience must be the target).
operation: increase (1), decrease (0).

selection: base control value (0), control value (1): only applies to int, act, res, thr_int, thr_act
and delay.

target: intensity (0), activation (1), resilience (2), threshold intensity positive (3), threshold
intensity negative (4), threshold activation positive (5), threshold activation negative (6),
delay (7), policy (8), sem count (9) (when defined).

delay: in reduction count. Postpones the performance of mod in the future.

Modifies one control value of the target with an amount specified by the base control value. If
the target is a base control value, then the modification amounts to 1.

Notes

No application is injected, but a process is generated.

SET Set a control value.
set (core <object> <selection> <target> <value> <delay=0>)

object: realm, projection or sys-object (in that case resilience must be the target).

selection: base control value (0), control value (1): only applies to int, act, res, thr_int, thr_act
and delay.

target: intensity (0), activation (1), resilience (2), threshold intensity positive (3), threshold
intensity negative (4), threshold activation positive (5), threshold activation negative (6),
delay (7), policy (8), sem count (9) (when defined).

value: any number.
delay: as for mod.

41 / 47

Sets one control value of the target.

Notes
No application injected, but a process is generated.

GET Get a control value.
get (core <object> <selection> <target>)

object: realm, projection or sys-object (in that case resilience must be the target).

selection: base control value (0), control value (1): only applies to int, act, res, thr_int, thr_act
and delay.

target: intensity (0), activation (1), resilience (2), threshold intensity positive (3), threshold
intensity negative (4), threshold activation positive (5), threshold activation negative (6),
delay (7), policy (8), sem count (9) (when defined).

Returns one control value of the target immediately upon evaluation.

Notes
No application is injected, no process is generated.

INV Compute inverse models.
inv (core <specification> <timeout>)

specification: spc <fragment> <guards>.
timeout: in ms. If set to -1, inv will execute until the next reduction cycle.

Attempts to compute the inverse model that, when executed would inject an object matching
the specification. It is a backward evaluation process that uses equational rewrite rules (erw)
to infer possible reduction graphs that would produce objects matching specification from
existing objects (e.g. predictions in the forward models, existing reduction graphs, etc.). If
successful, an inverse model is injected, otherwise (the function times out) the reduction
graph candidates found so far cannot be initiated by any object in the system. Pregnances
are then created and injected, expressing the need of objects able to trigger or activate the
reduction graph candidates, or the need to deactivate or suppress objects that deactivate
possible candidates.

inv performs only on a sub-set of the system. A sub-set is identified by a realm, associated to
the process of executing a particular application of inv. This realm is created automatically
upon the application of inv, meaning that by default, the entire system will be investigated.
Subsequent calls to inv will make use of projections determined either by ctx or by programs.
In order to restrict the search space beforehand, the realm must be created
programmatically, and this also the case for the initial projections.

Notes
No application is injected, but a process is generated.

cTXx Compute contexts.
ctx (core <process> <timeout>)

process: (<pregnance> <args>), (pro ...) OrI (sln <args>).

timeout: in mMs. If set to -1, ctx will execute until the next reduction cycle.

Populates the realm associated to a process with projections of sys-objects (markers mk.pji,
mk.pja). The function returns either when each object has been evaluated (and possibly
projected) or when it times out. Object evaluation is performed by starting from the end of
rewrite graphs having led to the termination of the process (marker mk.xet with no killer) and
backtracking towards including older objects, i.e. located earlier in the graph. Positive
contributions are also found in reduction graphs that contributed negatively to anti-processes
or process abortion (mk.xet with a killer). Negative contributions are evaluated in parallel,
finding other reduction graphs that attempted to inhibit participants in positive graphs, or
finding positive contributions to anti-processes or process abortion.

Notes
No application is injected, but a process is generated.

42 / 47

BTT Get the boot time.
btt (clk)
Returns the boot time (ms).

Notes
No notification (i.e. no application nor process will be generated).

NOw Get the current time since boot time.
now (clk)
Returns the current time (ms).

Notes
No notification.

RDC Get the reduction count since boot time.
rdc (clk)

Returns the current reduction cycle count.
Notes

No notification.

RDP Set the reduction depth.
rdp (cfab <depth>)

Sets the reduction depth, i.e. the number of reduction cycles to perform before admitting
inputs from the sub-systems, and updating the memory across the computing nodes.

Notes
No application is injected, but a process is generated.

RDQ@R Set the reduction quanta.
rdg (cfab <quanta>)
Sets the reduction quanta for the sub-system that issued the call.

Notes
No application is injected, but a process is generated.

LDR Code loader.
ldr (<spv> <code region> <in/out>)

spv: a reference to a supervision sub-system.
code region: an integer identifying a region in a source file.
in/out: 1 (load) or O (unload).

(Un)loads code regions in a supervision sub-system. These regions are defined in source code
files.

Notes
No application is injected, but a process is generated.

If an object t is member of r0 and rl1 and only r0 is unloaded, t will not.

RCT Reduction control.
rct (<sub-system> <function>)

sub-system: a reference to core or to a supervision sub-system.
function: O (run), 1 (stop), 2 (pause), 3(resume).

Controls the reduction performed by a supervision sub-system.

Notes
No application is injected, but a process is generated.

43 / 47

sSWP Swap.

swp (<sub-system> <function> <id> <block>)

sub-system: a reference to core or to a supervision sub-system.
function: O (disk to ram), 1 (ram to disk).

id: integer identifying a file (generally a symbolic link).

block: contains references to objects to be swapped out (only when function=1) if nil, the
entire CORE block will be swapped out, leaving only srmand self.

Swaps code to/from disk.

When function=0, the block is irrelevant. The objects are loaded from disk and placed directly
in ram.

When function=1, the identifier is optional. If not provided, the file identifier is generated by
the sub-system.

swp returns the file identifier or nitl in case of trouble.
Notes

No application is injected, but a process is generated.
Code is stored on disk as it is in CORE blocks.

MIN Min monitor.
min (core <application/process> <selection> <control> <on/off=nil>)

application/process: a pattern specifying any application (function, model, etc) or process.

selection: a pattern identifying the application output value to be monitored (there can be
several).

control: 0/1; constrains the search space to objects with an intensity value above the sys-
realm threshold (1) or performs regardless of these values (0).

on/off: 0/1 to start/stop.

Starts/stops the monitoring of the minimal value of the specified application. When the
minimal value changes a marker (mk.min) is attached to the application.

min searches the system for applications with a positive resilience. To include objects before
they get garbage-collected, set start to 1; otherwise set start to nil.

Note
Monitor semantics.

No application is injected, but a process is generated.

MAX Max monitor.
max (core <application/process> <selection> <control> <on/off=nil>)

application/process: a pattern specifying any application (function, model, etc) or process.

selection: a pattern identifying the application output value to be monitored (there can be
several).

control: 0/1; constrains the search space to objects with an intensity value above the sys-
realm threshold (1) or performs regardless of these values (0).

on/off: 0/1 to start/stop

Starts/stops the monitoring of the maximal value of the specified application. When the
maximal value changes a marker (mk.max) is attached to the application.

max searches the system for applications with a positive resilience. To include objects before
they get garbage-collected, set start to 1; otherwise set start to nil.

Note
Monitor semantics.

No application is injected, but a process is generated.

44 / 47

AVG Average monitor.
avg (core <application/process> <selection> <control> <on/off=nil>)

application/process: a pattern specifying any application (function, model, etc) or process.

selection: a pattern identifying the application output value to be monitored (there can be
several).

control: 0/1; constrains the search space to objects with an intensity value above the sys-
realm threshold (1) or performs regardless of these values (0).

on/off: 0/1 to start/stop

Starts/stops the monitoring of the average value of the specified application. When the
average value changes a marker (mk.avg) is attached to the application.

avg searches the system for applications with a positive resilience. To include objects before
they get garbage-collected, set start to 1; otherwise set start to nil.

Note
Monitor semantics.

No application is injected, but a process is generated.

RND Random number generator.

rnd

Convenience function. Returns a number in [0,1].
Note

No application is injected; no process is generated.

A2.5 MARKERS

Markers are objects used to attach descriptions on existing objects. They are instantiated
from existing marker classes, defining the ontological concepts of a given system.

PJA, PJlI Projection markers.

marker_name: mk.pj<x> <sys-object> <realm> <value>

x: in {a,i}.

realm: reference to a realm.

value: contribution (akin to activation for mk.pja, or intensity for mk.pji) for the sys-object
projected on the realm.

A projection encodes the contribution of an object to the achievement of the process the
realm is associated to. When the object is a program the contribution is used to compute the
activation value, whereas when the object has been an input data for reductions, the
contribution is used to compute the intensity value. Contributions are numbers in IR: they
represent the depth - in time units - of a given object in a rewrite graph measured from the
time of the contribution to the process: termination, intensification, activation, etc. Final
control values are computed as a combination of the inverse of the contributions (see realm
policy).

Notes

Projections on the sys-realm are the result returned by the inj function.

To inject projections on p-realms programmatically is allowed.

INS Instance marker.

marker _name: mk.ins <sys-object> <category>

sys-object: any sys-object.

category: any sys-object.

Indicates that the sys-object is an instance of another sys-object, acting as a category.

Notes

This instance relationship is not structural (like a template being instantiated or pattern
matched), but purely axiomatic.

45 / 47

HYP Hypothesis marker.

marker _name: mk.hyp <sys-object> <actuality>

sys-object: any sys-object.

actuality: in [0,1], O: indicates a non existent fact, 1 a true fact.
Indicates that the sys-object is an hypothesis.

Notes

Shall be generated by programs, functions, or models to mark their productions when they
result from processing hypothesis.

sSIM Simulation marker.
marker _name: mk.sim <application or program>
application or program: reference to any application or program.

Indicates that an application is a simulation or a program runs in simulation mode. If the
application or the program execution is resolved to an actual call of a sub-system function, it
will not be performed.

Notes

Any production resulting from the application or the program are automatically marked as
simulations.

Simulated objects are different from hypothetic objects. The former are objects certain to be
obtained if the application/program ran in real (non-simulated) mode, whereas hypothesis are
uncertain. If an object is marked as both a simulation and an hypothesis it means that it is an
hypothesis that would be generated if the producer ran in real mode.

PRD Prediction marker.

marker _name: mk.prd <sys-object> <confidence>

sys-object: any sys-object.

confidence: in [0,1], O: indicates an impossibility, 1 a certainty.

Indicates that the occurrence of the sys-object is a prediction with regards to a confidence
value.

Notes
Generated by forward models, programs or functions.

XET Execution time of a process.
marker _name: mk.xet <process> <killer> <duration rdc> <duration ms>

process: reference to any process.
duration: of the process both in reduction count and ms.
killer: reference to the object that aborted the process, if any.

Indicates the termination of a process.

Notes
Automatically generated when the corresponding application terminates.

The process termination time is given by the injection time of the xet marker.

mk.xet carries the time a particular reduction took; to be used in comparison to the total time
of a reduction cycle, given by tck.

MIN, MAX, AVG Minimal/maximal/average application values.
marker_name: mk.<x> <min/max/avg application> <application/process> <value>
x: in {min,max,avg}.

min/max/avg application: the application of a min/max/avg function.

application/process: the actual application (or process) that produced the value - only for min
and max. For average, the application/process is set to nitl.

value: the minimal/maximal value of the application.

46 / 47

Tags an application object (application) that produced a minimal maximal or average value.
These values are monitored by the eponym functions.

Notes
Automatically generated by min/max/avg functions.

47 / 47

