
Technical Report
I S S N 1 6 7 0 - 5 7 7 7

Reykjavík University - School of Computer Science

RUTR-CS08004— November 2008

Stefán Freyr Stefánsson, Björn Þór Jónsson, Kristinn R. Thórisson

Evaluation of a YARP-Based
Architectural Framework for
Robotic Vision Applications

Evaluation of a YARP-Based

Architectural Framework for

Robotic Vision Applications

Stefán Freyr Stefánsson∗, Björn Þór Jónsson∗, Kristinn R. Thórisson∗

Technical Report RUTR-CS08004, November 2008

Abstract: The complexity of robot vision architectures calls for an architectural framework
with great flexibility with regards to sensory, hardware, processing, and communications
requirements. We are currently working towards a system that will use time-of-flight and
a regular video stream for mobile robot vision applications. We present an architectural
framework based on YARP, and evaluate its efficiency. Overall, we have found YARP to
be easy to use, and our experiments show that the overhead is a reasonable tradeoff for the
convenience.

Keywords: YARP, computer vision, architecture, performance evaluation.

(Útdráttur: næsta síða)

∗ Reykjavík University, Kringlan 1, IS-103 Reykjavík, Iceland. stefan/bjorn/thorisson@ru.is

Mat á hentugleika YARP fyrir

högun tölvusjónarkerfis

Stefán Freyr Stefánsson, Björn Þór Jónsson, Kristinn R. Thórisson

Tækniskýrsla RUTR-CS08004, Nóvember 2008

Útdráttur: Hátt flækjustig högunar tölvusjónarkerfa kallar á högunarramma sem er mjög
sveigjanlegur gagnvart kröfum um skynjara, vélbúnað, úrvinnslu og samskipti. Við erum
að þróa tölvusjónarkerfi sem mun nota dýptarmyndavélar auk vefmyndavéla til að útfæra
tölvusjón. Við lýsum högun sem byggð er á YARP og metum afköst hennar. Við teljum
YARP þægilegt í notkun og tilraunir okkar sýna að yfirbygging YARP kerfisins er ásættanleg
miðað við þægindin við notkun þess.

Lykilorð: YARP, tölvusjón, högun, afkastamælingar.

(Abstract: previous page)

Evaluation of a YARP-Based Architectural Framework . . . iii

Contents

1 Introduction 1

2 Architectural Requirements 2
2.1 Sensory Requirements . 2
2.2 Hardware Requirements . 3
2.3 Processing Requirements . 3
2.4 Communication Requirements . 4

3 Communication Infrastructures 4
3.1 YARP . 4
3.2 Alternative Architectures . 5

4 Current Status 6
4.1 Sensors . 6
4.2 Hardware . 7
4.3 Image Processing Components . 7
4.4 Experience . 7

5 Experimental Evaluation 7
5.1 Experiment 1: Transport Mechanisms . 8
5.2 Experiment 2: Multiple Pipelines . 10
5.3 Experiment 3: YARP Overhead . 11

6 Conclusions 13

RUTR-CS08004

iv Stefánsson, Jónsson & Thórisson

Reykjavík University, School of Computer Science

Evaluation of a YARP-Based Architectural Framework . . . 1

1 Introduction

One of the most important sensory mechanisms for mobile robots is a sense of vision that ro-
bustly supports movement and manipulations in a three-dimensional world. Here, we use the
term “vision” broadly to encompass any visuospatial sensory inputs and processing required
for an understanding of the environment. Accumulated experience has shown, however, that
for such robotic vision it is necessary to employ a number of sensors and processing mecha-
nisms, integrated in various ways—often dynamically—to support realtime action in various
contexts. We are developing such a vision system, which will eventually employ a number of
techniques, including (a) color video cameras, which provide shape and color information but
do not easily give any depth information, (b) time-of-flight cameras, which can yield sufficient
depth information to create a depth map of the environment, (c) image descriptions, such
as edge maps and SIFT descriptors [Low04], which can be used for object recognition and
obstacle detection, and (d) a communications infrastructure [TLPD07, TFF+05, TLPD05]
which allows basic real-time processing on the robot itself while more advanced processing
may take place on a dedicated off-board cluster.

In order to study the use and interactions of all these components it is clearly necessary
to use an architectural framework which supports flexible manipulation of such compound,
multimodal data, on diverse hardware platforms. Such a framework must allow for easy
runtime configuration of the processing pipeline, while incurring limited overhead. Low-level
options, such as shared memory and/or remote procedure calls, are not flexible enough, as
they must be augmented with mechanisms for handling variable latency, priorities or other
necessary features of complex architectures and soft-realtime response generation. What is
needed is a higher-level framework that supports free selection of communication methods,
including shared memory and TCP/IP, depending on the data and architectural constraints
at any point in time.

Several frameworks exist which partially address our needs, but very few address all of
them. One of these frameworks is YARP (Yet Another Robot Platform), which is a set of
libraries to cleanly decouple devices from software architecture [MFN06, FMN08]. It is an
attempt to provide a foundation that makes robot software more stable and long-lasting,
while allowing for frequent changes of sensors, actuators, processors and networks. As the
authors themselves say: “YARP is written by and for researchers in robotics, particularly
humanoid robotics, who find themselves with a complicated pile of hardware to control with
an equally complicated pile of software” [MFN06, p. 1].

In this paper we report on an effort to evaluate the use of YARP for architectures that
capture and manipulate data from a standard color video stream. We explore how well the
platform supports our basic needs, such as for sequential processing in a pipeline architecture,
how easy the platform is to use and how well it performs.

RUTR-CS08004

2 Stefánsson, Jónsson & Thórisson

Communication

Sensors

Hardware

Software

SIFT

OpenCV

...

Figure 1: Architectural Requirements

2 Architectural Requirements

Any computer vision architecture has a set of requirements that must be satisfied. The
main requirements for our project are shared with many other mobile robot projects and
put a strong emphasis on multimodal integration. The requirements are illustrated in Fig-
ure 1, which depicts four major categories of requirements: sensory aparati, other hardware,
software and communication. We now describe each of these.

2.1 Sensory Requirements

As Figure 1 shows, a robot sensory and vision system must handle input from a variety of
sensors, such as:

• Color video cameras, which capture 2-D image streams.

• Depth cameras, such as time-of-flight cameras. Their output can be used to build
a map of the area, be combined with data from other range sensors such as sonars,
and/or be combined with the color images to yield color+depth information.

• Proximity sensors can augment a standard computer vision system, for example through
collision detection, as depth cameras typically have an upper and lower limit on their
range.

• Position sensors for head motion provide information about the direction that cameras
and other sensors point in; the robot’s head has cameras and a directional microphone,
which, when combined with depth information, could be used to determine the source
of environmental sounds, e.g. human speech.

Reykjavík University, School of Computer Science

Evaluation of a YARP-Based Architectural Framework . . . 3

Furthermore, advanced processing methods can be used to build “super sensors”, such as
head-motion sensors, through a combination of image analysis, face detection, outline detec-
tion, and other means. This is discussed further in the section on processing requirements.

Finally, most sensors require or allow some parameter settings and it is imperative that
the infrastructure allows easy runtime access to those.

2.2 Hardware Requirements

Mobile robots typically have at least one on-board computer. The processing power of on-
board computers, however, tends to be less than the average desktop machine for reasons
of energy efficiency. Such low-power, slow computers can nonetheless be used for impor-
tant real-time analysis such as collision detection and other critical tasks. Performing more
significant processing on a mobile robot thus requires off-robot processing, e.g. on comput-
ing clusters, necessitating network communication with the robot. Ideally the developer
should not need to be much concerned with whether processes are located locally or re-
motely; changing the configuration should be as seamless as possible. In a similar manner,
the sensor/processing architecture must gracefully handle access to sensors that necessitate
dedicated hardware and/or software.

2.3 Processing Requirements

We divide processing requirements roughly into three categories, based on complexity:

• Routine signal processing and pre-processing tasks. Good examples are standard rou-
tines included in OpenCV and other image processing libraries, including image re-
sizing, sharpening, blurring, brightness adjustment, and so on.

• Ad-hoc image processing tasks, including multimodal fusion such as the merger of
information from a multitude of sensors.

• Advanced image description tasks such as database searches, semantic analysis/tagging
and the like.

An example of an ad-hoc image processing task is the segmentation of a color image
based on distance information. As the depth camera can not be located at exactly the same
spot as the color image camera, and is quite unlikely to have exactly the same focal length,
the two images will always differ in some respects, especially for close objects. Determining
how to project the distance information onto the image is a typical complex and ad-hoc
image processing task [LK07].

As an example of an advanced image description task, the SIFT image description scheme
supports well the recognition of objects [Low04]. In this scheme, each image is described
through a set of high-dimensional vectors of numbers; an object is recognized through the
matching of SIFT descriptors from a current image to descriptors from pre-described im-
ages in a reference collection. The architectural framework should be able to handle the

RUTR-CS08004

4 Stefánsson, Jónsson & Thórisson

conversion of the image to such an image description, communicate with a search engine,
and deliver lists of matching objects. Another example is edge detection; known edge con-
figurations may be stored in a collection, and edges from the current image can be used to
query that collection.

2.4 Communication Requirements

The communication infrastructure is a key component of any vision or multimodal sensory
system. To satisfy the requirements above, the communication infrastructure must:

• Transparently allow any hardware to work together, by abstracting the communication
protocol from the processing tasks. It must at least support shared memory and
TCP/IP transport (other protocols may be useful as well).

• Provide support for processing tasks of any complexity, e.g. by allowing processes to
communicate any data structures between themselves, whether locally or remotely over
networks. For example, it must be possible to augment video streams with additional
information, and it must be easy to publish such information even though it may be
represented by non-standard datatypes, such as image descriptor streams or object
lists. In many cases, control and tagging messages must also be transmitted.

• It must be easy to use for the developer. The chosen infrastructure should enable the
developer to focus on the sensory/perception system exclusively and not draw away
their attention to communication issues.

• It must have reasonable overhead. Although some overhead is acceptable—and indeed
unavoidable as a trade-off for all the above benefits—any significant overhead will
eventually lead to the abandonment of the communication infrastructure in favor of
hard-coded, specialized solutions.

3 Communication Infrastructures

There are several potential candidates that can be chosen as underlying communication
infrastructure for video data, including YARP [MFN06, FMN08], OpenAIR [TLPD07],
CAVIAR [LBF+05], Psyclone [TLPD05] and others. In the remainder of this section we
first give a short description of YARP, and our reasons for evaluating it, and then briefly
describe some of the alternatives.

3.1 YARP

YARP (Yet Another Robot Platform) is a set of libraries to decouple devices, processing, and
communication. YARP provides loose coupling between sensors, processors, and actuators,
thus supporting incremental architecture evolution. The processes implemented on top of

Reykjavík University, School of Computer Science

Evaluation of a YARP-Based Architectural Framework . . . 5

YARP often lie relatively close to hardware devices; YARP does therefore not “take control”
of the infrastructure but rather provides a set of simple abstractions for creating data paths.

A key concept in YARP is that of a communications “port”. Processes can have zero,
one or more input ports, and produce output on zero, one or more output ports. Ports are
also not restricted to a single producer or receiver—many producers can feed a single port,
and many receivers can read from a single port. To keep track of ports, YARP requires
a special registry server running on the network. The data communicated over the ports
may consist of arbitrary data structures, as long as the producer and receiver agree on the
format. YARP provides some facility to translate common datatypes between hardware
architectures and such translation can be easily implemented in user defined datatypes as
well. Each port may be communicated via a host of transport mechanisms, including shared
memory, TCP/IP and network multicasting. YARP is thus a fairly flexible communication
protocol that leaves the programmer in control.

Our main reason for for evaluating YARP is the fact that it is unobtrusive and basic.
Other reasons include the following:

• YARP abstracts the transport mechanism from the software components, allowing
any software component to run on any machine. It supports shared memory for local
communication, and TCP/IP, UDP, and multicast for communication over a network.

• YARP interacts well with C/C++ code, which is required for our use of the SR-3000
time-of-flight camera. YARP can be used with several other languages too.

• YARP can communicate any data structure as long as both receiver and sender agree
on the format. Furthermore, it provides good built-in support for various image pro-
cessing tasks and the OpenCV library.

• It is open-source software. As we wish to make our framework freely available, the
communication infrastructure must also be freely available (indeed, we have already
sent in a few patches for YARP).

• Finally, although this was by no means obvious from any documentation, the support
given by YARP developers has been very responsive and useful.

These requirements are undoubtedly also met by alternative frameworks and libraries; we
have not yet made any formal attempt to compare YARP to these other potential approaches.
As described in Section 4, the overall experience of using YARP has been good. With a host
of tradeoffs the choice of low-level or mid-level middleware/libraries can be quite complex.
We leave it for future work to compare YARP in more detail to the approaches described
next.

3.2 Alternative Architectures

OpenAIR is “a routing and communication protocol based on a publish-subscribe architec-
ture” [TLPD07]. It is intended to help AI researchers develop large architectures and share

RUTR-CS08004

6 Stefánsson, Jónsson & Thórisson

code more effectively. Unlike YARP, it is based around a blackboard information exchange
and optimized for publish-subscribe scenarios. It has thoroughly defined message seman-
tics and has been used in several projects, including agent-based simulations [TLPD05] and
robotics [NTHLT+07]. OpenAIR has been implemented for C++, Java and C#.

CAVIAR [TFF+05] is a system based on one global controller and a number of modules
for information processing, especially geared for computer vision, providing mechanisms
for self-describing module parameters, inputs and outputs, going well beyond the standard
services provided by YARP and OpenAIR. The implementation contains a base module with
common functionalities (interface to controller and parameter management).

Psyclone (see www.cmlabs.com) is an AI “operating system” that incorporates the Ope-
nAIR specification. It is quite a bit higher-level than both OpenAIR and YARP and provides
a number of services for distributed process management and development. Psyclone was
compared to CAVIAR by List et al. [LBF+05] as a platform for computer vision. Like
CAVIAR, Psyclone has mechanisms for self-describing semantics of modules and message
passing. Unlike CAVIAR, however, Psyclone does not need to pre-compute the dataflow
beforehand but rather manages it dynamically at runtime, optimizing based on priorities
of messages and modules. Both CAVIAR and Psyclone are overkill for the relatively basic
architecture we intend to accomplish at present, at least in the short term, but it is possible
that with greater expansion and more architectural complexity, platforms such as Psyclone
would become relevant, perhaps even necessary.

Compared to, e.g., CAVIAR and Psyclone, YARP looks like a fairly standard library—
neither does it do its own message scheduling nor does it provide heavy-handed semantics
for message definitions or networking. That may be its very strength.

4 Current Status

We have constructed a preliminary vision system using YARP as the communication in-
frastructure. We now describe the sensors, hardware, and image processing components
implemented in our current setup, and discuss our experience with this setup and configu-
ration of the system.

4.1 Sensors

In our setup, we use two cameras; a regular off the shelf web camera (Unibrain Fire-i) and
the Swiss Ranger 3000 depth camera from Mesa Imaging AG.

The SR-3000 camera provides both intensity and depth information. Depth information
is obtained using a phase-measuring time-of-flight principle. The camera allows adjustments
of various parameters, such as integration time and amplitude threshold, which makes it
suitable for a variety of applications and environments. The camera produces 176x144 pixel
images with 16-bit depth resolution.

Reykjavík University, School of Computer Science

Evaluation of a YARP-Based Architectural Framework . . . 7

The Unibrain Fire-i RGB camera is an IEEE 1394 (FireWire) web camera with a Sony
progressive scan color CCD. It can provide 640x480 pixel video resolution at 30 frames per
second, although in our setup we retrieve a 320x240 pixel video stream.

While YARP does come with a device driver for FireWire cameras based on the dc1394
library, we found this driver to be unsuitable for our needs as it was only capable of producing
a fixed size monochrome video stream. We therefore decided to implement a new YARP
device driver for IIDC capable FireWire cameras which is able to produce color images
and dynamically handle different resolutions of the stream. We plan on making this driver
available and, if accepted, a part of the YARP distribution.

We also developed a small utility application for publishing the SR-3000 camera video
streams on a YARP port. The code for this utility will also be made publicly available if per-
mission is granted from the manufacturer of the SR-3000 as it depends on their proprietary
software.

4.2 Hardware

Our experimental setup runs on a 2.6 GHz Pentium 4 Dell OptiPlex GX270 computer with
1.2 Gb RAM. It is equipped with an NVIDIA GeForce 6600 GT 3D accelerated graphics
card. No processing is done on the GPU in our case, although YARP does provide modules
and libraries for that purpose.

4.3 Image Processing Components

While YARP handles module communication, we use OpenCV for most image and signal
processing. Additionally, however, we have already implemented YARP modules to combine
the depth and color video streams, create IFT descriptors and perform database searches.
Our future plans include research on whether depth information may be used to guide image
descriptor generation, for more efficient database searches.

4.4 Experience

Overall, we have found YARP to be satisfactory and easy to use. Installing and learning to
use YARP took about one man-week, while most of our time was spent on creating hardware
drivers and working with the cameras. In the following section, we describe experiments to
study the overhead and performance of YARP on our hardware.

5 Experimental Evaluation

In this section, we report on an initial performance study of the YARP transport mecha-
nisms. In this study we focus on single processor configurations. At present, the goal is not
to study the scalability of the system, but rather to compare some configuration choices of
YARP for vision.

RUTR-CS08004

8 Stefánsson, Jónsson & Thórisson

Blur nProducer Blur 1 Receiver...

Figure 2: The basic pipeline setup.

To that end, we set up a basic processing pipeline, shown in Figure 2. The pipeline
consists of 1) a producer, which produces 320x240 pixel image frames at a given frame rate;
2) a number of blur operators, which run the “simple” OpenCV blur algorithm over the
frames; and 3) a receiver, which receives the frames. We change the processing pipeline
length, or the number of blur operators, to study the effects of overloading the computer.

Each frame is augmented by sequence numbers and time stamps by each of these compo-
nents, which are used to measure dropped frames and latency, respectively. Other metrics
collected include the frame rate observed by the receiver (lower frame rate occurs when
frames are dropped) and CPU load.

5.1 Experiment 1: Transport Mechanisms

In this experiment, the frame rate of the producer was set to 50 frames per second, which
is similar to a high-quality video stream. The length of the processing pipeline was varied
from one to five consequtive blur operators. We ran measurements using shared memory,
local TCP/IP and network multicast connections, with the expectation that shared memory
should be fastest. For each configuration, the experiment was run until the receiver had
received 50,000 frames.

Figure 3 shows the frame rate observed by the receiver. The x-axis shows the length
of the processing pipeline. Overall, two effects are visible in the figure. First, using local
TCP/IP and shared memory maintains a frame rate of 50 frames per second, until the
pipeline consists of four or more blur processes. At that point, the processor is overloaded
and frames are dropped as a result, leading to lower frame rates observed by the receiver.
Shared memory performs slightly better due to lower communication overhead.1

Second, turning to the performance of multicast, Figure 3 shows that the processing
pipeline achieves a much lower frame rate, ranging from 25 to 8 frames per second. The
reason for the lower frame rate is clearly visible in Figure 4, which shows the number of
frames that are dropped for each configuration. As Figure 4 shows, even with only one blur
operator, every other frame is dropped with the multicast transport mechanism. The frame
rate observed by the receiver is therefore only half the frame rate of the producer. As more
blur operators are added, more frames are dropped, explaining the lower frame rates seen
in Figure 3.

Turning to latency, Figure 5 shows that, as expected, latency of the multicast transport
mechanism is very high and constantly increasing with pipeline length as frames can be

1 Our early experiments demonstrated a problem in the shared memory transport implementation, which
has subsequently been fixed by the YARP developers.

Reykjavík University, School of Computer Science

Evaluation of a YARP-Based Architectural Framework . . . 9

0

10

20

30

40

50

1 2 3 4 5

F
ra

m
e

R
at

e
(f

ra
m

es
/s

ec
)

Number of Blur Operations

Shared Memory
Local TCP/IP

Multicast

Figure 3: Exp. 1: Frame rate at receiver.

0

50

100

150

200

250

1 2 3 4 5

D
ro

pp
ed

 F
ra

m
es

 (
th

ou
sa

nd
s)

Number of Blur Operations

Shared Memory
Local TCP/IP

Multicast

Figure 4: Exp. 1: Frame drops in pipeline.

dropped anywhere in the pipeline. For the other two transport mechanisms, latency is
relatively low until the pipeline consists of five blur operators. At that point, the CPU is
saturated and scheduling conflicts occur. Again, latency is significantly lower using shared
memory than TCP/IP due to the lower communication overhead.

RUTR-CS08004

10 Stefánsson, Jónsson & Thórisson

0

50

100

150

200

1 2 3 4 5

La
te

nc
y

(m
s)

Number of Blur Operations

Shared Memory
Local TCP/IP

Multicast

Figure 5: Exp. 1: Latency of received frames.

5.2 Experiment 2: Multiple Pipelines

The previous experiment showed that while the shared memory and TCP/IP transport
mechanisms have similar performance, the multicast mechanism performs much worse. Since
the pipeline was linear, however, the experiment did not exercise the potential benefit of
the multicast mechanism. To achieve this we set up an experiment with multiple parallel
processing pipelines each consisting of a chain of a single blur operator and a receiver which
logs the same information as in our previous experiment.

A single producer still provides a stream of images at 50 frames per second. This stream
then gets published to all the independent pipelines, using one of the three transport mech-
anisms (we use the shared memory transport mechanism between each blur operator and
the corresponding receiver). In this experiment we thus increase the number of pipelines
that the producer sends the video stream to as opposed to increasing the number of blur
operators within a linear pipeline. Figure 6 shows this setup.

Figure 7 shows the number of frames dropped by each of the transport mechanisms. As
before, the x-axis shows the number of blur operators in the configuration, but in contrast
to the previous experiment each blur operator is now part of a separate pipeline. The
figure shows that while dealing with one or two blur operators, frame drops are virtually
non-existent for all of the transport mechanisms. When the third blur operator is added,
however, the shared memory and TCP/IP transport mechanisms still have negligible frame
drops, while the multicast transport mechanism suddenly starts dropping about half of the
frames that are produced. Close examination of the log files revealed that roughly every
other frame that is produced gets dropped before it reaches any of the blur operators. The
reason is that as before, the cost of the multicast transport mechanism means that full CPU

Reykjavík University, School of Computer Science

Evaluation of a YARP-Based Architectural Framework . . . 11

Figure 6: The multiple pipelines setup.

utilization can not be achieved. Since frames are being broadcast they either reach all blur
operators or none.

The shared memory and TCP/IP transport mechanisms start experiencing frame drops
with four concurrent blur operators and the drop rate increases slightly more than twofold
once the fifth blur operator is added. These frame drops are explained by the fact that once
four blur operators are started, the CPU is fully utilized and processing each frame takes
too long for the operators to be able to keep up with the frame rate of the producer.

Figure 8 shows the latency of frames as the number of blur operators increases. As the
figure shows the latency increases steadily for the multicast transport mechanism, while the
latency for shared memory and TCP/IP jumps once there are four blur operators. The
different behavior is due to the different ways that frames get dropped depending on the
transport mechanism used.

With the multicast transport mechanism, every other frame is not being received by the
blur operators and so no processing is wasted on them. The blur operators therefore have
enough CPU power to keep up with the frames that they receive and the only increase in
latency is because the frames are being processed at nearly the same time by all the blur
operators. This results in longer blurring times and increased latency due to saturation of
the CPU.

The shared memory and TCP/IP transports display the same gradual increase for up to
three concurrent blur operators but once the fourth is added a jump in latency is observed.
The reason for this jump is that at four blur operators, the CPU is saturated. This means
that the blur operators cannot keep up with the frame rate and frames that are sent from
the producer do not get picked up instantly and wait until either the blur operator finishes
or until the next frame is produced. In the former case the wait results in increased latency
while in the latter case the frame that was waiting will get dropped.

5.3 Experiment 3: YARP Overhead

The conclusion that can be drawn from the previous two experiments is that the multicast
transport mechanism is not suitable for local processing, and that using shared memory
is slightly more efficient than using local TCP/IP. The goal of our final experiment is to
measure the overhead of the shared memory transport mechanism, compared to a stand-
alone process running the entire pipeline.

RUTR-CS08004

12 Stefánsson, Jónsson & Thórisson

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5

D
ro

pp
ed

 F
ra

m
es

 (
th

ou
sa

nd
s)

Number of Blur Operations

Shared Memory
Local TCP/IP

Multicast

Figure 7: Exp. 2: Average frame drops per receiver.

0

10

20

30

40

50

60

1 2 3 4 5

La
te

nc
y

(m
s)

Number of Blur Operations

Shared Memory
Local TCP/IP

Multicast

Figure 8: Exp. 2: Average latency of received frames.

With a stand-alone process, there is no inter-process communication, and all the CPU
power is spent on the processing pipeline. In order to measure the overhead accurately, we
modified the basic processing pipeline of Figure 2 slightly. The producer now produces a
single frame and waits until it is received by the receiver (the receiver sends a notification to

Reykjavík University, School of Computer Science

Evaluation of a YARP-Based Architectural Framework . . . 13

0

5

10

15

20

25

1 2 3 4 5

La
te

nc
y

(m
s)

Number of Blur Operations

Shared Memory
Process

Figure 9: Exp. 3: Latency of YARP and stand-alone process.

the producer). In order to guarantee delivery, we used a synchronization feature of YARP.
This experiment therefore gives a strict upper bound on the overhead of YARP.

Due to the simple configuration, the overhead is identical whether measured in terms of
CPU cost, latency, or observed frame rate. Figure 9 shows the latency of YARP compared
to the stand-alone process. The overhead is most significant for a short processing pipeline,
about 77%, but is quickly reduced to 50–60%. The reason for the high overhead for shorter
pipelines is that for a pipeline of length n there are n + 1 communication ports; as there
are more blur operators the effect of the additional port are less pronounced. Based on this
experiment, we conjecture that for a complex processing pipeline, we could expect about
50% overhead compared to a well-tuned, handwritten code. We believe that to be a great
tradeoff for all the convenience that YARP has to offer.

6 Conclusions

In this paper, we have described our efforts towards a flexible computer vision infrastruc-
ture based on the YARP toolkit. YARP greatly simplifies making the infrastructure flexible
towards sensors, hardware, processing, and communication requirements, compared to start-
ing from scratch. We have found YARP easy to use, and our experiments show that the
overhead is a reasonable tradeoff for the convenience gained.

RUTR-CS08004

14 Stefánsson, Jónsson & Thórisson

References

[FMN08] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-lived
robot genes. Robot. Auton. Syst., 56(1):29–45, 2008.

[LBF+05] T. List, J. Bins, R. B. Fisher, D. Tweed, and K. R. Thórisson. Two approaches
to a plug-and-play vision architecture - CAVIAR and Psyclone. In Workshop
on Modular Construction of Human-Like Intelligence, Pittsburgh, PA, USA,
2005.

[LK07] M. Lindner and A. Kolb. Data-fusion of PMD-based distance-information and
high-resolution RGB-images. In Proc. of the Int. IEEE Symp. on Signals,
Circuits & Systems (ISSCS), Iasi, Romania, 2007.

[Low04] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
of Computer Vision, 60(2):91–110, 2004.

[MFN06] G. Metta, P. Fitzpatrick, and L. Natale. YARP: Yet another robot platform.
Int. J. Adv. Robotic Systems, 3(1):43–48, 2006.

[NTHLT+07] V. Ng-Thow-Hing, T. List, K. R. Thórisson, J. Lim, and J. Wormer. Design
and evaluation of communication middleware in a distributed humanoid robot
architecture. In Workshop on Measures and Procedures for the Evaluation of
Robot Architectures and Middleware, San Diego, CA, USA, 2007.

[TFF+05] D. Tweed, W. Fang, R. Fisher, J. Bins, and T. List. Exploring techniques for
behaviour recognition via the CAVIAR modular vision framework. In Proc.
HAREM Workshop, Oxford, England, 2005.

[TLPD05] K. R. Thórisson, T. List, C. Pennock, and J. DiPirro. Whiteboards: Schedul-
ing blackboards for semantic routing of messages & streams. In Workshop
on Modular Construction of Human-Like Intelligence, Pittsburgh, PA, USA,
2005.

[TLPD07] K. R. Thórisson, T. List, C. Pennock, and J. DiPirro. OpenAIR 1.0 speci-
fication. Technical Report RUTR-CS07005, Reykjavik University School of
Computer Science, 2007.

Reykjavík University, School of Computer Science

School of Computer Science

Reykjavík University

Kringlan 1, IS-103 Reykjavík, Iceland

Tel: +354 599 6200

Fax: +354 599 6301

http://www.ru.is

