v

REYKJAVIK UNIVERSITY

HASKOLINN | REYKJAVIK

Performance of Semantic Caching Revisited

Maria Arinbjarnar, Bjarnsteinn Porsson, Bjorn Pér Jonsson

RUTR-CS06002 — September 2006

Reykjavik University - Department of Computer Science

Technical Report

ISSN 1670-5777

v

REYKJAVIK UNIVERSITY

HASKOLINN I REYKJAVIiK

Performance of Semantic Caching Revisited

Maria Arinbjarnar*, Bjarnsteinn Pérsson*, Bjorn Por Jonsson*

Technical Report RUTR-CS06002, September 2006

Abstract: A caching architecture for database clients called semantic caching was pro-
posed in 1996 and evaluated extensively against a then-current relational database server
in 1998. While semantic caching was shown to perform well for a range of workloads, the
relational server was not well equipped to handle complex remainder queries. Since then,
hardware has become increasingly faster with considerable increases in memory size and
caching capabilities. Additionally, there have also been significant performance improve-
ments in relational database systems, in particular query optimization. In this report we
first review some recent related work. We then evaluate the semantic caching architecture
against modern hardware and software, and propose and evaluate two new approaches to
query execution at the relational server. Our conclusion is that despite the hardware and
software performance improvements which have reduced query processing time very signifi-
cantly, complex query workloads still present significant difficulties for the semantic caching
architecture.

Keywords: Semantic caching; Performance evaluation.

(Utdrdttur: nesta sida)

* Reykjavik University, Kringlan 1, IS-103 Reykjavik, Iceland. {maria0l|bjarnsteinn|bjorn}@ru.is.

)4

HASKOLINN i REYKJAVIK

REYKJAVIK UNIVERSITY

Afkost fyrirspurnahads skyndiminnis endurmetin

Maria Arinbjarnar, Bjarnsteinn Pérsson, Bjorn Por Jonsson

Teekniskyrsla RUTR-CS06002, September 2006

Utdrattur: Fyrirspurnahad skyndiminni er arkitekttar fyrir skyndiminni gagnasafns-
bidlara, sem fyrst var sett fram 1996. Afkost pess voru meaeld itarlega arid 1998, og var
ba notadur nylegur gagnasafnsmiolari. Pott afkost fyrirspurnahads skyndiminnis veeru géo
fyrir morg notkunartilfelli, var gagnasafnsmiolarinn ekki vel biinn til pess a0 rada vio floknar
fyrirspurnir. Sidan ba hafa afkost vélbunadar sifellt aukist, dsamt bvi a0 minni hefur ordid
steerra og skyndiminnisgeta pvi 6flugri. A0 auki hafa afkost gagnasafnsmidlara einnig aukist,
og sér i laga hefur fyrirspurnabesturum farid mjog fram. I pessari skyrslu er fyrst fjallad um
nylegar rannsoknir sem tengjast fyrirspurnahddu skyndiminni. Svo eru afkést bess metin
& moéti natimalegum vél- og hugbunadi, og tveer nyjar adferdir settar fram vid trvinnslu
fyrirspurna a gagnasafnsmiolurum. Nidurstada okkar er st a0 pratt fyrir ad framfarir & svioi
vél- og hugbinadar hafi minnkad keyrslutima fyrirspurna umtalsvert, radi fyrirspurnahad
skyndiminni ekki enn vel vid floknar fyrirspurnir.

Lykilord: Fyrirspurnahad skyndiminni; Mat 4 atkostum.

(Abstract: previous page)

Performance of Semantic Caching Revisited iii
Contents
1 Introduction 1
2 Related Work 1
2.1 Data Warehousing e 3
2.2 e-ComMMErce v v v v e e e e e e e 3
2.3 Mobility and Location Dependency 5
2.4 Other Applications L 6
3 Experimental Environment 6
3.1 System Configuration L L 6
3.2 Database and Workloads L 6
3.3 Metrics o e e 7
3.4 CacheSize. 8
4 Single Attribute Experiments 9
4.1 Experiment 1: Clustered, Indexed Attribute 9
4.2 Experiment 2: Unclustered, Indexed Attribute 10
4.3 Experiment 3: Unindexed Attribute 11
5 Double Attribute Experiments 11
5.1 Remainder Querieso 12
5.2 Experiment 4: Clustered and Unclustered Attributes 14
5.3 Experiment 5: Two Unclustered Attributes 15
5.4 Comparison of Remainder Query Approaches 16
6 Multi-Attribute Workloads 17
6.1 Experimental Environmento 17
6.2 Experiment 6: Three or Fewer Attributes 19
6.3 Experiment 7: Four or More Attributes 19
7 Summary and Conclusions 21

RUTR-CS06002

iv

Arinbjarnar, Pdrsson, and Jonsson

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 1

1 Introduction

Semantic Caching is a caching schema proposed in 1996 by Dar, Franklin, Jénsson, Sri-
vastava and Tan [DFJT96]. Semantic caching uses the semantics of queries to intelligently
determine whether they can be satisfied from the client cache, either in whole or partially,
and constructs a remainder query to retrieve from the database server any part of the user
query that cannot be satisfied from the cache. The cache is managed by dividing the contents
into semantic regions determined by the data retrieved and the user queries issued.

Joénsson evaluated semantic caching extensively against a then-current relational data-
base server in 1998 [J6n99]. While semantic caching was shown to perform well for a range of
workloads, the relational server was not well equipped to handle complex remainder queries.
Since then, hardware has become increasingly faster with considerable increases in memory
size and caching capabilities. Additionally, there have also been significant performance
improvements in relational database systems, in particular query optimization.

This report documents an undergraduate independent study performed at the Reykjavik
University Database Lab. The objective of the study was to update the performance eval-
uation of the semantic caching architecture against modern hardware and software to see
how it performs relative to previous experiments. Furthermore, we proposed and evaluated
two new approaches, based on standard SQL constructs, to remainder query execution at
the relational server.

The performance evaluation consisted of three parts. In the first part, we studied single-
attribute workloads in order to understand issues of clustering and indexing. In the second
part, we studied workloads with selections over two attributes, in order to understand the
performance of our proposed remainder query execution strategies. In the third and final
part, we studied the performance of semantic caching with multi-attribute selections, to
understand the effects of complex workloads on query response time and cache processing.
Overall, our conclusion is that despite the hardware and software performance improvements,
which have reduced query processing time very significantly, complex query workloads still
present significant difficulties for the semantic caching architecture.

The remainder of this report is organized as follows. Section 2 reviews some recent related
work. Section 3 describes our experimental environment. Sections 4 through 6 describe the
performance experiments and their results.! Finally, Section 7 summarizes the performance
results and gives our conclusions.

2 Related Work

The last decade has seen a great increase in diverse kinds of database driven web services.
This increase calls for efficient, secure and accurate data handling to and from the database.

L The results presented in Sections 4 through 6 have appeared in [JAPT06].

RUTR-CS06002

2 Arinbjarnar, Pdrsson, and Jonsson

Fortunately hardware has become cheaper and hence client processing power is growing fast
and getting more robust. Most often the client is only using a small portion of its hardware
capabilities, which opens up the possibility of caching data in the client and running many
of the necessary algorithms on the client instead of the database server, thus freeing up the
database server and the network for other traffic.

The present architecture usually consists of at least the three following layers (e.g.,
see [LKM02]):

Database layer: The database server is typically a powerful, multiprocessor machine with
huge memory and disk space.

Application layer: The application layer is where the application logic resides. This layer
can sometimes be divided into sub-layers to isolate individual activities, such as net-
work dispatching, caching or locking mechanisms. The application layer usually resides
on a separate machine(s) from the database server, with a fast network connection be-
tween the database server and application server.

Presentation layer: The presentation layer runs entirely on the client; typically (but not
necessarily) on a commercial Internet browser.

There are two main opportunities for caching: application layer caching and client
caching. Caching at the application layer is convenient because it is relatively simple to
implement and maintain as it is close to the application logic. Application layer caching is
also very fast and can take full advantage of the actual database structure. It effectively
relieves the excess throughput of the database server [LKM™02, Tim02].

Client caching is also a promising caching technique; it effectively moves the overhead
of performing calculations and storing the actual cached data to the user hardware. This
saves both hardware costs for the web service company in question and provides some added
bonuses for the user. The data is cached at the client computer and the algorithm to decide
whether the client needs to contact the application layer or the database server for data
handling also runs on the client. This effectively compensates for slow or shaky network
connections; the user can live without an established connection to the application layer for
some periods of time without necessarily needing to stop working. This, of course, is very
useful in today’s mobile computers, which tend to have an unstable connection.

According to Amiri et al. [APTPO03], the primary concerns in this environment are:

Database independence: As applications may access various back-end databases, which
can be running on different database management systems from different vendors, it is
necessary to have caching techniques independent of database management systems.

Self-management: The cache needs to be able to adapt dynamically to workloads and
available resources to eliminate the need for costly administration.

Fast query matching: With increased cache sizes, it is important that the cache be able
to efficiently determine whether a query can be satisfied locally or not.

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 3

Efficient space management: Necessary to effectively benefit from the caching potential.

Counsistency: So that effective scaling can be achieved without compromising correctness
of the application.

There is an obvious need for data consistency. In many e-commerce applications data
integrity can be of paramount importance and thus we need a robust locking mechanism to
ensure consistency without affecting performance and scalability too much. Such a locking
mechanism needs to use either invalidation or propagation. With propagation, the database
server can transmit changes fast and efficiently to individual clients, but it runs the risk of
using too much throughput when traffic is high. This is not true for the invalidation process,
since information is only re-fetched when it is re-used. Carey et al. [CFLS91] propose to gain
the pros of both propagation and invalidation by constructing a heuristic dynamic locking
mechanism called optimistic-dynamic two-phased locking mechanism. On the whole, the
proposed mechanism is more efficient than either the invalidation or propagation locking
mechanisms.

2.1 Data Warehousing

Data warehousing has been somewhat different from other areas of caching due to the
infrequency of data updating, although updates are becoming more common. The queries
are also frequently asking for averages, sums, counts, etc. from large quantities of data, which
calls for costly calculations that return small sets of data. The data warehouse environment
also calls for short response times. This is the perfect setting for intelligent caching that can
take place at more than one level.

Scheuermann et al. (in [SSV96]) propose WATCHMAN (WArehouse inTelligent CacHe
MANager). WATCHMAN evaluates rate of reference, size for each retrieved set and execu-
tion cost of the associative query, by employing a special profit metric that aims to reduce
query response time by minimizing execution cost. WATCHMAN uses also a complemen-
tary cache admission algorithm, as not all data retrieved needs to be stored in the cache,
especially if it would push out other query results that are frequently accessed and require
costly calculations. The WATCHMAN cache replacement algorithm shows cost savings by
a factor of three. But data warehousing is not descriptive for other caching environments,
since it is a very closed and controlled environment, while other caching applications do not
have that luxury.

2.2 e-Commerce

In e-commerce there are very different concerns from that of data warehousing. E-commerce
applications run on one or more large database servers that are accessed through application
servers. The data stored is dynamically changing both from input from users and also
from the actual companies running the applications in question. This calls for robust and
intelligent caching techniques.

RUTR-CS06002

4 Arinbjarnar, Pdrsson, and Jonsson

An interesting caching technique that is frequently used in e-commerce is the caching
of tables, which may be implemented as replication of data. Views are also an interesting
way to cache data; a fairly obvious quality of using views is that it keeps the relational
context of the data. This is also the main complication of using views; view caching makes
it necessary to maintain and update the data in a relational context and raises questions on
when and how this is best accomplished. Many existing solutions use production rules to
do view maintenance, with deductive algorithms in database systems.

An alternative solution is the ADMS system proposed in [DR92], which maintains simple
materialized views, called View-Caches, in a multi-database environment. ADMS uses ma-
terialized views in query optimization and addresses questions of caching, buffering, access
paths, etc. As Pottinger and Levy [PL00] discuss the problem becomes even more profound
when adding the complication of keeping the cache dynamic and flexible, as that requires the
views to be database system independent; the views need to have a technique for handling
relational data that is independent of individual database system versions. This maintenance
issue touches on other closely related issues such as data integration, query optimization,
and the maintenance of physical data independence [PLO0O].

An interesting algorithm is the MiniCon algorithm proposed in [PL00], which attempts
to solve this problem. It begins in a similar way to a bucket algorithm: when MiniCon
finds sub-goals in a view that correspond to sub-goals in the query, it starts to consider join
predicates and variables to be able to map the sub-goals of the view to that of the query.
The MiniCon algorithm scales well and effectively shows that views can be used for caching
large web applications.

Another very efficient caching method for the application layer is the TimesTen caching
technique; it caches table fragments in the application layer. The table fragments are de-
scribed with extended SQL syntax, forming tables in the application layer that are handled
by a relational database handler [Tim02].

Altinel et al. [ABK ™ 03| proposed a system called DBcache, which defines new database
objects called Cache Tables and uses DB2’s distributed query processing for application
layer caching. An optimizer can then decide on whether to execute the query at the local
database or at the back end server. The optimizer can also choose to execute parts of the
query locally and the rest at the backend server. The system is able to support static,
prearranged data caching, and can also rewrite input queries into an appropriate form that
can process dynamic subsets at runtime. The system constructs special query plans that
have three parts: probe query, local query, and remote query. The probe query executes first
and determines whether to use remote and/or local queries. The dynamic caching adds only
limited overhead in the cache database and it is clear that the benefits of better response
time, higher scalability and availability on the Internet are worth the effort [ABK™*03].

DBProxy is another caching technique, proposed by Amiri et al. [APTP03], which uses
materialized views on edge servers. DBProxy is implemented using the IBM Websphere
Edge Server, and uses a query evaluator to determine an access hit or miss by invoking a
query matching module. The query matching module uses the query constraints and other
clauses as its arguments, it decides whether to satisfy the query locally. If the query can

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 5

not be satisfied locally then the query matching module rewrites the query for the back-end
server. DBProxy uses a resource manager to keep score of hit rates, response times, and
such, and a consistency manager to maintain cache consistency.

Candan et al. [CLL101] discuss how to respond to dynamically changing web pages.
They propose an intelligent invalidation technique based on the database content, which
enables caching of dynamically generated web pages.

2.3 Mobility and Location Dependency

Mobile clients typically have much smaller memory than a PC and thus what to cache be-
comes more important than in other applications. Caching is even more useful for mobile
clients than in stationary computers because wireless links are relatively unreliable and lim-
ited which makes it a necessity to have previously stored, relative or necessary information
in memory, for the given application to run efficiently and correctly. Additionally the com-
puter is traveling between locations and is thus going in and out of specific service areas
and will need to continuously update specific information. Ren and Dunham [RDO00] discuss
the benefits of semantic caching over page caching in location dependent mobile clients with
emphasis on these special concerns of mobility.

When dealing with location dependent mobile computers it is good to use a replace-
ment algorithm like FAR (Furthest Away Replacement), discussed in [DFJ*96, MdCCC04,
RD99, RD00, ZLL04], that uses a direction factor to determine what to replace next. Thus
the algorithm determines in what direction the mobile unit is heading, e.g. by using GPS
information, and replaces first whatever is farthest away and behind the client.

In semantic caching, semantic regions are used to determine which data will be dis-
carded from the cache next. Semantic caching can use LRU or semantic replacement poli-
cies [DFJ196]. Ren and Dunham [RD99] propose an addition to this replacement scheme.
Instead of storing every new query result in the cache they only store query results that are
semantically related to the formerly cached data. This successfully avoids the storing of any
cold queries in the cache, an important thing in mobility due to the generally small cache
size.

Another interesting investigation into nearest neighbourhood searches in mobility is done
by Zheng et al. [ZLL04], where an index is used by the server, based on a Voronoi Diagram, to
support nearest neighbourhood querying of stationary service by mobile users, and semantic
caching is used to enhance the access efficiency of such service. A Voronoi Diagram records
information about the closest regions corresponding to a set of geometric points. Voronoi
Diagram has a high maintenance and construction cost, especially for high dimensions, but
location based services have a two-dimensional search space and are infrequently updated
so this is not an issue here.

Manica et al. [MdCCCO04] discuss in some detail the complications associated with se-
mantic caching in mobile units and propose a cache replacement policy ASCR (Adaptive
Semantic Cache Replacement) that uses previous movements of the client to calculate pos-
sible future movements.

RUTR-CS06002

6 Arinbjarnar, Pdrsson, and Jonsson

2.4 Other Applications

There are some other caching applications that can put semantic caching to good use. Stuck-
enschmidt [Stu04] has an interesting discussion on using semantic caching as a high level
optimization technique for RDF (Resource Description Framework) querying to supplement
existing work on lower level techniques. The similarity of semantic caching to RDF queries
is utilized to determine the costs of modifying the results of a previous query into the result
for the actual query.

Luo and Xue [LX04] propose a template based proxy to handle user defined functions, so
that the proxy can answer previously cached data in collaboration with the original website
using partial semantic caching as the main caching schema, and show that in practice this
is an efficient caching schema for websites that use a great amount of user defined functions.

3 Experimental Environment

The objective of the study reported here was to update the performance evaluation of the
semantic caching architecture against modern hardware and software to see how it performs
relative to previous experiments. In addition to the hardware and software improvements,
however, database sizes have also increased significantly in this period and hence the data-
bases and workloads have been scaled up by an order of magnitude. In this section we
describe the experimental environment used in this report.

3.1 System Configuration

In the following, the semantic caching client prototype is compared against a non-caching
client, which also uses ODBC to connect to the database server. Clients are run on a 1.5 GHz
Intel Pentium PC with 512 MB of memory and an 18.6 GB disk, running Windows XP
Professional Workstation SP2. The server is run on a 1.6 GHz Intel Pentium PC with 512 MB
of memory and an 18.6 GB disk. The relational server used is Microsoft SQL Server 2000
Enterprise Edition, version 8.00.194, running on Windows Server 2000 Standard Edition.
The database is assigned disk space of nearly 2.5 GB and stored in a regular file. The server
is used as it was installed; i.e., no performance tuning has been done. Both machines are
used exclusively for the experiments. The network connecting the two machines is a 100
Mbit isolated Ethernet.

3.2 Database and Workloads

The database used in the experiments in this section is based on the Wisconsin bench-
mark [DeW93]. It contains a single relation of 10 million tuples, called Wisc10M.? Each

2 In the experiments, only 10% of the relation is used. The reason for using this large relation is that
some of the workloads used in Section 6 cannot be defined on a smaller relation. Although using such a
large relation results in more expensive query evaluation in some cases, it does not favor semantic caching.

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 7

Parameter Value Description

QuerySize 1,000-10,000 Size of each query (tuples)
HotSpot 10,0000 Size of hot region (tuples)

Skew 90% Percentage of queries to hot region
CacheSize 4-128 MB Size of the cache

Table 1: Workload Parameters and Settings

tuple holds 208 bytes of data, for a total of over 2 GB of data. Three candidate keys from
the relation are used in the experiments: Unique2 is indexed (using a BT-tree index) and
perfectly clustered—the relation is ordered on this attribute; Uniquel is also indexed with a
B+-tree index, but is completely unclustered; Unique3 is both unindexed and unclustered.?
The candidate keys have values from 0 to 9,999,999.

Table 1 shows the key parameters of the workloads. A benchmark consisting of simple
selection queries is used. The size of the result (QuerySize) ranges from 1,000 tuples to
10,000 tuples and is varied in the experiments by adjusting selectivities along one or more
of the candidate keys listed above. A fixed portion of the queries (Skew) has the center-
point uniformly distributed within a hot region of size HotSpot. The remaining queries are
uniformly distributed over the cold area, which surrounds the hot spot. The cache size
selection is discussed in detail in Section 3.4.

3.3 Metrics

The semantic caching architecture was motivated in part by network-constrained environ-
ments. In such environments, the most important metric is the number of tuples trans-
ferred across the network. Also of interest is the performance of semantic caching in high-
bandwidth local-area networks, such as the network that the prototype and server are con-
nected to. For that environment, the “wall-clock” response time of queries is the main metric.
The prototype architectures maintain over 50 other metrics, such as cache hit rate, cache
overhead, etc.; some of these metrics are discussed when they give further insights into the
performance trade-offs.

Each data-point was typically obtained by posing queries from the workload until the
cache was full and then averaging the metrics across 1,000 subsequent queries. For the non-
caching client, however, the performance of each query is independent of the previous queries
and the metrics converge much faster than with caching. For the non-caching architecture,
therefore, at least 100 queries were measured. These workloads were sufficient to obtain
conclusive results, within a reasonable timeframe. In all of the experiments the results of
individual queries were discarded, i.e., they were neither displayed to a screen nor written
to a file.

3 Note that contrary to intuition Unique2 is the clustered attribute and Uniquel the unclustered one.
This naming convention stems directly from the Wisconson benchmark.

RUTR-CS06002

8 Arinbjarnar, Pdrsson, and Jonsson

1.0 T T T T T T T

One Attribute —+— -
Two Attributes —<—

0.8

0.6

Hit Ratio

04

02 |

0.0 1 1 1 1 1 1 1
0 16 32 48 64 80 96 112 128

Cache Size (MB)

Figure 1: Cache hit ratio as a function of cache size

Note that in all of the experiments in this report, semantic caching maintains six at-
tributes, including all three candidate keys. For single- and double-attribute selections, this
means that semantic caching maintains 5 and 4 attributes, respectively, that are not being
used by the workloads. The cache overhead of semantic caching is therefore higher in these
experiments than is strictly necessary.

3.4 Cache Size

In order to determine suitable cache sizes for our experiments, we initially ran query work-
loads with 10,000-tuple queries over one and two attributes. Figure 1 shows the hit ratio
of the cache, as the cache size is varied from 4 MB to 128 MB. Overall the figure shows
that for small cache sizes, the cache effectiveness is roughly proportional to the size of the
cache. Once the cache becomes large enough to hold the hot-spot, however, additional cache
memory does not siginificantly improve the hit ratio. Note that the skew of the workloads
is 90%, so the hit ratio levels off after reaching 0.9.

For queries over one attribute, the hot spot fits in less than 30 MB. For queries over two
attributes, however, the hot spot requires much more memory, and is not contained until
around 60 MB. This is because the query workload is created such that the center point of
the query is within the hot spot. Parts of the query, however, may extend beyond the hot
spot—forming a “warm spot” of tuples which are also frequently accessed—in particular with
the large 10,000-tuple queries. In the remainder of this section, we have therefore chosen to
experiment with three different cache sizes: 32 MB, 64 MB and 96 MB.

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 9

10000 T T T T T T T T

8000

6000

No Caching —e—
4000 32MB Cache —=&—
64MB Cache ——
96MB Cache —v—

2000

[N;
O i YT T 1 1 1 1

1000 2000 3000 4000 5000 6000 7000 8000 900010000
Query Size (tuples)

Tuples Transferred (tuples)

Figure 2: Tuples transferred for clustered attribute

4 Single Attribute Experiments

In this first group of experiments we study single-attribute workloads in order to better
understand issues of clustering and indexing. We use three different attributes: a clustered,
indexed attribute; an unclustered, indexed attribute; and an unindexed attribute.

4.1 Experiment 1: Clustered, Indexed Attribute

In this experiment the selections are performed on the Unique2 attribute, which has a
clustered index. This represents the most efficient access pattern at the server. Figure 2
shows the tuples transferred across the network for each configuration. The query result size
is varied along the z-axis by changing the selectivity of the queries posed at the client. As the
figure shows, semantic caching performs very well on this metric compared to non-caching,
reducing network traffic by 85-93%.

Figure 3, on the other hand, shows the query response time when remainder queries
are run against the relational database server across a local-area network. As was the case
with network traffic, Figure 3 shows that semantic caching provides significant savings over
non-caching, ranging from 81% to 92%. The savings for response time are relatively smaller
than for tuples transferred, as there is a fixed cost of query optimization which is paid for
each query sent to the server.* This cost is also relatively higher for the smaller queries,
leading to smaller relative savings for small queries.

The bulk of the query response time is due to remainder query execution, as cache
processing (not shown) always requires less than 15 milliseconds for the semantic cache. In

4 The remainder queries were not coded to take advantage of plan caching, which could reduce this cost.

RUTR-CS06002

10 Arinbjarnar, Pdrsson, and Jonsson

0.8 T T T T T T T T

0.7 -
0.6 _
05 | -

04 No Caching —e— -
32MB Cache —=&—

03 r 64MB Cache —o— 7]
0.2 96MB Cache —s— |

Response Time (seconds)

q
0.1

00 | | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Query Size (tuples)

Figure 3: Response time for clustered attribute

some cases, however, the client is able to completely answer the queries from cache and avoid
contact with the server resulting in extremely efficient query processing. The percentage of
queries answered completely from cache (not shown) ranges from 72% to 81% for the smallest
cache size and 87% to 91% for the largest cache size.

The cache overhead (not shown) consists of the data structures to keep track of regions
and tuples, and free space resulting from eviction of large regions from the cache. For all
query sizes and cache sizes, the size of the data structures is about 3.3% of the cache size,
while the free space is less than 2% in all cases, except for large queries running against the
small cache, where the free space is less than 3%.

4.2 Experiment 2: Unclustered, Indexed Attribute

This next experiment considers workloads where the selection is on Uniquel, the unclustered,
indexed attribute. The results for tuples transferred across the network are identical to the
clustered case and are therefore not shown here. Figure 4 shows the query response times
for the three architectures. As the figure shows, using semantic caching results in similar
relative savings as before. Because the queries are now run against an unclustered index,
however, the remainder query response time is much higher than for the clustered attribute,
by a factor of 40 or more. Cache processing time (not shown) is unaffected and remains
below 15 milliseconds in all cases.

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 11

40 T T T T T T T T
@ 35 NoCaching —e— +
= 32MB Cache —=&—
3 30 F 64MB Cache —o—
& o5 | 96MB Cache —v— i
(0]
£ 20 i
'—
© 15 -
c
S 10 .
0 h
g 59 b
O i Y 1 1 1 1 1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Query Size (tuples)

Figure 4: Response time for unclustered attribute

4.3 Experiment 3: Unindexed Attribute

This experiment considers selections on the unindexed attribute Unique3. The unindexed
attribute is a special case in terms of query response time, as the server must perform a
sequential scan of the relation for each remainder query. Because each sequential scan costs
a fixed amount of time (7-8 minutes with our large relation), the savings of semantic caching
depend solely on how many queries are answered fully from cache.

Figure 5 shows the fraction of queries that generate a remainder query to the server
(all non-caching queries are considered remainder queries in this figure). Overall, Figure 5
shows that with a 32 MB cache, 72-81% of all queries may be satisfied entirely from cache,
while with the larger cache sizes, 87-91% may be answered from cache. As explained above,
response time is improved proportionately.

Figure 5 shows a very interesting effect, however, as the performance is slightly improved
with larger queries for larger cache sizes, while for the smaller 32 MB cache, performance
is noticably worse with larger queries. The explanation for the worse performance of the
32 MB cache is that with such a small cache, a cold query will result in the eviction of hot
spot data; with larger queries, more hot data must be replaced, resulting in lower hit ratio
and higher ratio of remainder queries. For the larger cache sizes, cold data evicts other cold
data and performance is improved as expected.

5 Double Attribute Experiments

In the experiments above, we saw that semantic caching performs very well for single at-
tribute queries. In many cases, however, more than one attribute is included in the query

RUTR-CS06002

12 Arinbjarnar, Pdrsson, and Jonsson

1.0 T * T * T * T T
il
< 08 [_
n; No Caching —e—
S 06 L 32MB Cache —&— |
8, ’ 64MB Cache —<—
ud 96MB Cache —<—
S 04| -
c
.E {
() 0.2 z;/é’/é/é/——é
o .

00 1 1 1 1 1 1 1 1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Query Size (tuples)

Figure 5: Fraction of queries resulting in a remainder query for unindexed attribute

constraints. The workloads of this sub-section therefore considers moderately complex work-
loads, which use a combination of two attributes. The queries are “square” shaped, with
equal ranges along each attribute. The value of these experiments is two-fold. First, as
mentioned above, the “warm spot” around the hot spot extends further with two attribute
workloads than with a single attribute, requiring a larger cache to achieve comparable hit ra-
tio. More importantly, however, this workload exposes a flaw in the relational server, which
is unable to efficiently process some of the remainder queries of semantic caching, often
reverting to scanning large portions of an index or even the entire relation. We first explain
why the server is unable to process remainder queries efficiently in some cases and propose
two solutions to this problem, based on augmenting the remainder queries with standard
SQL constructs. Then we examine the performance of these remainder query approaches.

5.1 Remainder Queries

Consider the following, actual remainder query over two attributes, resulting from one of
our experiments:

SELECT =*
FROM Wiscl1OM

WHERE ((Unique2 > 1669497 AND Unique2 < 1694104) AND
(Uniquel > 2037839 AND Uniquel < 2064950))

OR ((Unique2 > 1698170 AND Unique2 < 1702035) AND
(Uniquel > 1965742 AND Uniquel < 1971745))

OR ((Unique2 > 1702034 AND Unique2 < 1707060) AND
(Uniquel > 1965742 AND Uniquel < 1968517))

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 13

The optimizer should potentially be able to find a lower bound and an upper bound on
each of the two attributes and use those bounds to limit the search. This feature is not
implemented in SQL Server, however, resulting in a sequential scan of the entire relation.®
The lack of this feature is understandable, of course, since queries such as this remainder
query are quite uncommon in typical workloads.

Our first remainder query approach compensates for this flaw, by simply supplying a
bounding box with the query, resulting in the following remainder query:

SELECT =*
FROM Wisc1OM

WHERE ((Unique2 > 1669497 AND Unique2 < 1694104) AND
(Uniquel > 2037839 AND Uniquel < 2064950))

OR ((Unique2 > 1698170 AND Unique2 < 1702035) AND
(Uniquel > 1965742 AND Uniquel < 1971745))

OR ((Unique2 > 1702034 AND Unique2 < 1707060) AND
(Uniquel > 1965742 AND Uniquel < 1968517))

AND ((Unique2 > 1669497 and Unique2 < 1707060) AND
(Uniquel > 1965742 and Uniquel < 2064950))

The server is able to use the last constraint to guide the index usage, while the original
constraints are used to filter out tuples that should not be returned.

Our second approach treats each individual factor with a separate SELECT statement.
Since the factors are guaranteed not to overlap, the final result can then be assembled via
UNION ALL statements, resulting in the following query:

SELECT *

FROM WisclOM

WHERE ((Unique2 > 1669497 AND Unique2 < 1694104) AND
(Uniquel > 2037839 AND Uniquel < 2064950))

UNION ALL

SELECT *

FROM WisclOM

WHERE ((Unique2 > 1698170 AND Unique2 < 1702035) AND
(Uniquel > 1965742 AND Uniquel < 1971745))

UNION ALL

SELECT *

FROM WisclOM

WHERE ((Unique2 > 1702034 AND Unique2 < 1707060) AND
(Uniquel > 1965742 AND Uniquel < 1968517))

5 Note, that if all factors share a common upper or lower bound, then the optimizer is able to use that
bound to limit query processing.

RUTR-CS06002

14 Arinbjarnar, Pdrsson, and Jonsson

10000 T T T T T T T T
w
Q
S. 8000 .
=]
2 6000 [.
> No Caching —e—
S 4000 32MB Cache —— |
= 64MB Cache —o—
n 96MB Cache h
()
s 2000
[¢ 7

04

1000 2000 3000 4000 5000 6000 7000 8000 900010000
Query Size (tuples)

Figure 6: Tuples transferred for two attributes

The benefit of the UNION ALL approach is that it may result in shorter index scans for
factors that are not adjacent to each other. Furthermore, different indexes may be used for
different queries, which may lead to faster evaluation in some cases. The downside, on the
other hand, is that factors which overlap significantly along one of the attributes may result
in repeated scans of the same index portion, which the bounding box approach is able to
avoid. Both approaches, however, only return actual result tuples to the client.

5.2 Experiment 4: Clustered and Unclustered Attributes

We first consider selections on clustered and unclustered attributes, both of which are in-
dexed. Note that SQL Server is able to apply a very clever query processing plan in this
case, because of the index architecture of the server. Each unclustered index stores not only
the value of the indexed attribute, but also the value of the attribute used for the clustered
index. This second value is typically used only to look up the tuples satisfying constraints
on the unclustered attribute; with this workload, however, it is used directly to determine
whether the tuples satisfy the constraints on the clustered attribute. Therefore, only tuples
that actually satisfy the query are fetched.

Figure 6 shows the tuples transferred across the network. The figure shows that for the
larger cache sizes, the semantic caching architecture performs well, saving 90-93% of the
network traffic, which is similar to the single attribute query workloads. For the small 32 MB
cache, however, the hot spot does not quite fit in the cache and the savings only range from
85% to 87%. The overhead of the cache (not shown) is similar to the single attribute case,
and does not affect the hit ratio.

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 15

2.0 T T T T T T T T
@ No Caching —e—
i 32MB/BB —=—
S 15 UA —a— .
(8]
7} 64MB /BB —¢— 3
g UA —+— i
Q 96MB / BB
E 10}
= UA
Q y
(%] v
c
8 05
%) ®
(0]
12

0.0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Query Size (tuples)

Figure 7: Response time for clustered and unclustered attributes

Turning to the query response time, Figure 7 shows the response time of semantic caching
with both the bounding box (BB) approach and the UNION ALL (UA) approach (recall
that without using one of these approaches, semantic caching may perform much worse than
no caching). We first observe that both approaches perform about the same in the figure.5

Figure 7 furthermore shows that the time savings are much smaller than the 80-90%
savings seen with single attribute queries. For the small cache, in particular, no savings are
seen at all. Even with the largest cache, only 50-60% savings are seen. The reason for the
smaller savings is that since the server is also able to cache portions of the relation, the
queries to the hot spot may be evaluated somewhat efficiently even with the non-caching
client. The cold queries, on the other hand, take much more time; since these queries must
be evaluated both by the non-caching and semantic caching clients, they weigh heavily in
the average.

5.3 Experiment 5: Two Unclustered Attributes

We now consider selections on two unclustered attributes, both of which are indexed. In
this case SQL Server considers the option of scanning both indexes and retrieving only the
intersection of the tuples satisfying the constraints on each attribute. This plan, however, is
never used in our experiments; instead only one index is scanned and the tuples themselves
are then checked against the other constraint.

Figure 8 shows the response time for this workload with both the bounding box (BB)
approach and the UNION ALL (UA) approach. In this experiment, the UNION ALL ap-

6 The “bumps” with small cache and no cache appear to be due to random effects—the drawback of
measuring a live system.

RUTR-CS06002

16 Arinbjarnar, Pdrsson, and Jonsson

60 T L T T T T T T
— No Caching —e—
§ 50 32MB/BB —&— b
5] UA —a—
2 40 b 64MB /BB —<— |
L2 UA —o—
) 96MB /BB —v—
£ 30 UA
|_
(]
2 20
(o]
o
3 10
x L
0¥

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Query Size (tuples)

Figure 8: Response time for two unclustered attributes

proach performs slightly better, especially for the small cache. This is to be expected, as
index scans are cheap while fetching tuples is expensive, and the bounding box approach
results in more tuples being fetched into memory.

The figure also shows much greater proportional savings than with the clustered and
unclustered combination. The primary reason is that all queries are now very expensive,
and therefore cold queries do not affect the average as much as before.

5.4 Comparison of Remainder Query Approaches

We conclude with a brief comparison of the bounding box (BB) and UNION ALL (UA)
approaches. With single attribute selections and uniform query sizes, each remainder query
has only one factor and both approaches result in the same remainder queries. We have
observed that for two attribute queries, the UA approach performs slightly better, although
the difference is quite small with large caches.

While not shown here, we also experimented with three attributes. In this case, the BB
approach performed slightly better. The reason is that in our workloads, with three or more
attributes, the remainder query factors are more likely to overlap along one or more of the
attributes. As mentioned above, the UA approach may result in repeated scans of the same
index portions in this case, leading to inferior performance.

In summary, both approaches have advantages in certain situations, but overall the
difference is minimal. Since some systems may not implement the UNION ALL clause, we
believe the BB approach to be more generally applicable.

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 17

6 Multi-Attribute Workloads

As the preceding experiments with two attributes have demonstrated, the relative perfor-
mance gains of semantic caching are reduced with more attributes. This reduced perfor-
mance is partly due to the query processing performance of the server, which may struggle
with some of the remainder queries, but is also partly due to the workload, which allows
arbitrary overlap between queries and may result in very complicated remainder queries.
The goal of the following experiments is to analyze the effects of query overlap and the
dimensionality of the queries on the performance of semantic caching.

Jonsson [Jon99] listed several concerns regarding the caching overhead at the client.
Although improvements in CPU performance have extended the cache manipulation capa-
bilities of the client, complex cache descriptions are still a concern. Jonsson [J6n99] also
listed several concerns regarding the server processing of remainder queries. Although the
bounding box approach to submitting remainder queries appears to lead to efficient execu-
tion, very complex remainder queries are still a concern. In order to study the effects of
these cache and remainder query overheads, this section puts semantic caching through a
“stress test” to determine its performance under increasingly difficult selection workloads.

6.1 Experimental Environment

The experiments reported in this section use the same system configuration as the ex-
periments of the previous section. This discussion therefore focuses on the database and
workloads used in this section.

As before, a Wisconsin benchmark relation [DeW93] of 10 million tuples is used, where
each tuple holds 208 bytes of data. In order to be able to use many similar attributes,
3 new random attributes, R through R3, were added (the string-valued attribute String4
was shortened to compensate). Each attribute Riis defined based on Uniquel by shifting it
(with wrap-around) by 7 * 10%.

Each query returns 10,000 tuples and queries are multidimensional hyper-cubes with
uniform side-lengths. The number of attributes (d) is varied from 1 to 5 with the attributes
being added in the following order: Unique2 (i.e., the clustered attribute), Uniquel, RI,
R2, and R3. Since the query size is fixed, the queries must select a larger portion of each
attribute as more attributes are added.

To model overlap of queries, a “partial overlap restriction” is defined based on the se-
lectivity of the queries along each attribute. This value, called p, is also varied in each of
the experiments. The possible values of p are r, 5, 7, 75, and © = 1. More formally, p = =,
where c is an integer, means the queries can overlap in any multiple of £ along each attribute.
When p = r, there is no partial overlap; any two queries are either identical or they do not
intersect. When p = 1 there are no restrictions; any query can intersect any other query
in arbitrary ways. For example, the workloads of Sections 4 and 5 correspond to p = 1.
Figure 9 shows four possible two-attribute queries when p = 3.

As before, a hot-cold distribution is used with the hot queries (90%) being drawn from
the center of the relation and the cold queries (10%) from the rest of the relation. Assigning

RUTR-CS06002

18 Arinbjarnar, Pdrsson, and Jonsson

Figure 9: Four possible two-attribute queries with p = 3

R1

Unique2

Figure 10: 10 hot hyper-cubes with two attributes

a hot spot to the center of the relation is more difficult with many attributes than in
the single-attribute case. To determine the hot spot, the relation was broken up into at
least 100 adjacent whole hyper-cubes of the same size as the queries (10,000 tuples). The
“center-point” of the relation was found and the 10 hyper-cubes closest to it (using euclidean
distance) were assigned as the hot-spot. For example, Figure 10 shows the hot (shaded)
hyper-cubes for two attributes. When queries were generated, hot queries were required to
have the center-point in one of the hot hyper-cubes. Additionally, the overlap of queries was
determined using the “partial overlap restriction” described above.

Note that as there are more variations and more attributes, the hot-spot size grows,
leading to a lower hit-ratio. As a “rule of thumb”, the worst case (p = 1) can reference 2¢~!
times the size of the intended hot-spot, because each query can be offset in each of the d
attributes but in at least one of those attributes the query will fall in one of the other hot
hyper-cubes. Of course, the access frequency within the accessed area is not uniform. We
have used cache sizes of 32 MB, 64 MB, and 96 MB as before. Due to the long running
times of some of the experiments, we have measured 100 queries for each setup.

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 19

20000 T T T T

No Caching
32 MB Cache mmmmm
15000 64 MB Cache =™ -
96 MB Cache ——3

10000
v L L L L L
0 1 1 1 1
r r/2 r/4

/16 1
Partial Overlap Restriction

Tuples Transferred (tuples)

Figure 11: Tuples transferred for three attributes

6.2 Experiment 6: Three or Fewer Attributes

As was shown in the previous sections, semantic caching performs well in all respects for
one and two attributes. In fact, the workloads of the previous experiments are equivalent to
the case where p = 1, which is the most complex situation examined here.

Turning to the performance of semantic caching for queries with three attributes, Fig-
ure 11 shows the savings in tuples transferred for semantic caching compared to the non-
caching architecture. The figure shows that when there is no partial overlap (p = r) semantic
caching performs very well, saving 85-93% of the network traffic. With overlap, the effec-
tiveness of the 32 MB cache is significantly reduced, saving only 55-60% of the network
traffic. The larger caches, however, still save about 80-90% of the network traffic on the
non-caching architecture.

Figure 12, on the other hand, shows the query response time for the same workload. As
before, the benefits with no partial overlap are significant, particularly for the larger cache
sizes which save 80-85% of the query response time compared to non-caching. For restricted
overlap, the performance is also good for the larger cache sizes, while for significant overlap
(p > {5) the benefits of semantic caching disappear for the most part.

6.3 Experiment 7: Four or More Attributes

Figure 13 shows shows the savings in tuples transferred for semantic caching compared to
the non-caching architecture when four attributes are used. The figure shows that when
there is no partial overlap (p = r), the performance is very good as before. With overlap,

RUTR-CS06002

20 Arinbjarnar, Pdrsson, and Jonsson

30 T T T T
) No Caching s
S 25 - 32 MB Cache mmmm .
o 64 MB Cache m=—=1
& 20 96 MB Cache —— .
(O]
E 15 .
|_
8 10 - -
o
x
O | | | |
r 12 rl4 r/16 1
Partial Overlap Restriction
Figure 12: Response time for three attributes
20000 T T T T

No Caching =
32 MB Cache mmmmm
15000 + 64 MB Cache =——m .
96 MB Cache ———1

10000
O | | | |
r r/2 r/4

r/16 1
Partial Overlap Restriction

Tuples Transferred (tuples)

Figure 13: Tuples transferred for four attributes

the largest cache is still able to maintain a decent hit ratio and save 70-85% of the network
traffic. With five attributes (not shown), the same trend is seen.

Turning to the query response time, Figure 14 shows that with no overlap, the response
time savings of semantic caching are 55-85%. With any partial overlap, however, semantic
caching performs no better than the non-caching architecture and with significant overlap it

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 21

140 T T T T
) No Caching]
g 120 - 32 MB Cache s B
© 100 | 64MB Cache == i
& 96 MB Cache ———
o 80 5
£
= 60 -
(]
2
S 40 .
o
é ” :L—W m h '—H |

0 1 1 1 1
r r/2 rl4 r/16 1

Partial Overlap Restriction

Figure 14: Response time for four attributes

even performs significantly worse than no caching, taking up to 3 times as long to execute
queries in the extreme case. With five attributes (not shown), again the same trend is seen.

The excessive running times are partly due to cache management overhead at the client
(not shown), which rises to 10 seconds for the case of the 96 MB cache. The primary reason
for the query response time, however, is the complexity of the remainder queries that are
sent to the server. Figure 15 shows the number of factors in the remainder query; checking
as many as 75 factors results in significant CPU overhead at the server, which is the primary
reason for the inefficient remainder query execution.

7 Summary and Conclusions

The current perfomance results may be summarized as follows. With single attribute se-
lection workloads, semantic caching performs very well in terms of network utilization and
response time, regardless of the indexing and clustering status of the attribute. With queries
over two attributes, remainder queries must be carefully coded to perform well, but using
a standard SQL rewrite we were able to achieve good response time with semantic caching.
With more complex workloads, the network utilization remains good with semantic caching,
while the response time savings dissipate due to inefficient query execution of complex re-
mainder queries. With very complex queries, in fact, using no caching is preferable.

When comparing the results presented in this report to those of [Jon99] we observe
that, overall, the response time is generally improved by more than an order of magnitude,
despite scaling up the database size and query workloads by an order of magnitude. This
performance improvement is consistent with the performance improvements of CPU and

RUTR-CS06002

22 Arinbjarnar, Pdrsson, and Jonsson

80 T T T T —
2 70 b 32MBCache mmmm i
s 64 MB Cache ==
o 60 - 96 MB Cache C——J —
> 50 + -
g
o 40 -
L 30 -
c
‘© 20 -
g
2 10 -

0 Lo o BT, |

r /2 r/4 r/16 1

Partial Overlap Restriction

Figure 15: Remainder query factors for four attributes

memory. As disk performance has improved less, disk intensive operations such as unindexed
scans show the least performance improvement. Even the modern database software has
significant trouble with optimizing queries with many factors on the same set of attributes,
which is likely due to the fact that such queries are infrequent in common applications.
We are able to overcome this deficiency, by proposing two new remainder query execution
strategies based on standard SQL constructs. Interestingly, however, the relative difference
of the workloads has not changed dramatically since 1998, and complex query workloads
still present significant difficulties for the semantic caching architecture.

In our view it is evident that semantic caching is a very good caching technique for
workloads on one, two and even three attributes, but by the fourth attribute the hit rate
drops and along with it the advantage of semantic caching. There are many applications
that do not handle high-dimensional data to any extent and there the benefits of semantic
caching are clear. There has been an increasing effort on research into semantic caching
and related caching techniques in the last few years, especially with the increased emphasis
on mobility. With mobile clients the benefits of semantic caching become especially clear,
as these typically work with locally dependent low-dimensional data. We expect to see
considerable development and research going into the area of intelligent caching techniques as
the market demands continuously faster and more flexible clients and software applications.

Reykjavik University, Department of Computer Science

Performance of Semantic Caching Revisited 23

References

[ABK*03]

[APTPO3]

[CFLS91]

[CLL*01]

[DeW93]

[DFJ+96]

[DR92]

[JAP+06]

[J6n99]

[LKMT02]

M. Altinel, C. Bornhovd, S. Krishnamurthy, C. Mohan, H. Pirahesh, and
B. Reinwald. Cache tables: Paving the way for an adaptive database cache. In
J. C. Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, and
A. Heuer, editors, Proceedings of the Conference on Very Large Data Bases
(VLDB), Berlin, Germany, 2003. Morgan Kaufmann.

K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A dynamic
data cache for web applications. In U. Dayal, K. Ramamritham, and T. M.
Vijayaraman, editors, Proceedings of IEEE Conference on Data Engineering,
Bangalore, India, 2003. IEEE Computer Society.

M. J. Carey, M. J. Franklin, M. Livny, and E. J. Shekita. Data caching tradeoffs
in client-server DBMS architectures. In J. Clifford and R. King, editors, Pro-
ceedings of the ACM SIGMOD Conference on Management of Data, Denver,
CO, 1991. ACM.

K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal. Enabling
dynamic content caching for database-driven web sites. In W. G. Aref, editor,
Proceedings of the ACM SIGMOD Conference on Management of Data, Santa
Barbara, CA, 2001. ACM.

D. J. DeWitt. The Wisconsin benchmark: Past, present, and future. In J. Gray,
editor, The Benchmark Handbook for Database and Transaction Processing Sys-
tems. Morgan-Kaufmann Publishers, San Mateo, CA, 1993.

S. Dar, M. J. Franklin, B. P. Jonsson, D. Srivastava, and M. Tan. Semantic data
caching and replacement. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan,
and N. L. Sarda, editors, Proceedings of the Conference on Very Large Data
Bases (VLDB), Bombay, India, 1996. Morgan Kaufmann.

A. Delis and N. Roussopoulos. Performance and scalability of client-server
database architectures. In L.-Y. Yuan, editor, Proceedings of the Conference on
Very Large Data Bases (VLDB), Vancouver, Canada, 1992. Morgan Kaufmann.

B. P. Jénsson, M. Arinbjarnar, B. Porsson, M. J. Franklin, and D. Srivastava.
Performance and overhead of semantic cache management. ACM Transactions
on Internet Technology, 6(3):302-331, 2006.

B. P. Jonsson. Application-Oriented Buffering and Caching Techniques. PhD
thesis, University of Maryland, College Park, MD, 1999.

Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G. Lindsay,
and J. F. Naughton. Middle-tier database caching for e-business. In M. J.
Franklin, B. Moon, and A. Ailamaki, editors, Proceedings of the ACM SIGMOD
Conference on Management of Data, Madison, WI, 2002. ACM.

RUTR-CS06002

24

Arinbjarnar, Pdrsson, and Jonsson

[LX04]

[MdCCCO4]

[PLOO]

[RD99]

[RDOO]

[SSV96]

[Stu04]

[Tim02]

[ZLL04]

Q. Luo and W. Xue. Template-based proxy caching for table-valued func-
tions. In Y.-J. Lee, J. Li, K.-Y. Whang, and D. Lee, editors, Proceedings of
the International Conference on Database Systems for Advanced Applications
(DASFAA), Jeju Island, Korea, 2004. Springer.

H. Manica, M. S. de Camargo, R. R. Ciferri, and C. D. A. Ciferri. A new model
for location-dependent semantic cache based on pre-defined regions. In M. So-
lar, D. Fernandez-Baca, and E. Cuadros-Vargas, editors, 30ma Conferencia
Latinoamericana de Informdtica (CLEI2004), Arequipa, Peru, 2004.

R. Pottinger and A. Y. Levy. A scalable algorithm for answering queries using
views. In A. El Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K.-Y. Whang, editors, Proceedings of the Conference on
Very Large Data Bases (VLDB), Cairo, Egypt, 2000. Morgan Kaufmann.

Q. Ren and M. H. Dunham. Using clustering for effective management of
a semantic cache in mobile computing. In Proceedings of the ACM Interna-
tional Workshop on Data Engineering for Wireless and Mobile Access (Mo-
biDE), Seattle, WA, 1999. ACM.

Q. Ren and M. H. Dunham. Using semantic caching to manage location depen-
dent data in mobile computing. In Proceedings of the International Conference
on Mobile Computing and Networking (MobiCom), Boston, MA, August 2000.
ACM.

P. Scheuermann, J. Shim, and R. Vingralek. WATCHMAN: A data warehouse
intelligent cache manager. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan,
and N. L. Sarda, editors, Proceedings of the Conference on Very Large Data
Bases (VLDB), Bombay, India, 1996. Morgan Kaufmann.

H. Stuckenschmidt. Similarity-based query caching. In H. Christiansen, M.-S.
Hacid, T. Andreasen, and H. L. Larsen, editors, Proceedings of the International
Conference on Flezible Query Answering Systems (FQAS), Lyon, France, 2004.
Springer.

TimesTen Team. Mid-tier caching: The TimesTen approach. In M. J. Franklin,
B. Moon, and A. Ailamaki, editors, Proceedings of the ACM SIGMOD Confer-
ence on Management of Data, Madison, WI, 2002. ACM.

B. Zheng, W.-C. Lee, and D. L. Lee. On semantic caching and query scheduling
for mobile nearest-neighbor search. Wireless Networks, 10(6):653-664, 2004.

Reykjavik University, Department of Computer Science

REYKJAVIK UNIVERSITY

HASKOLINN | REYKJAVIK

Department of Computer Science
Reykjavik University
Ofanleiti 2, 1IS-103 Reykjavik, Iceland
Tel: +354 599 6200
Fax: +354 599 6201
http://www.ru.is
ISSN 1670-5777

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

