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Abstract 
 
This paper presents an empirically-based game-theoretic model of the exploitation of 
the Norwegian Spring Spawning Herring stock, also known as the Atlanto-Scandian 
herring stock. The model involves five exploiters; Norway, Iceland, the Faroe Islands, 
the EU and Russia and an explicit, stochastic migratory behaviour of the stock. Under 
these conditions Markov Perfect (Nash) equilibrium game strategies are calculated 
and compared to the jointly optimal exploitation pattern. Not surprisingly, it turns out 
that the solution to the competitive game is hugely inefficient leading very quickly to 
the virtual exhaustion of the resource. The scope for co-operative agreements 
involving the calculation of Shapley values is investigated. It turns out that although 
the grand coalition of all players maximizes overall benefits such a coalition can 
hardly be stable over time unless side payments are possible.  
 
Keywords: Fisheries economics, migratory fish stocks, fisheries game theory, multi-
nation fisheries games, high seas fishing, natural resource extraction games  
 



 
1. Introduction 
 
The Norwegian spring-spawning (Atlanto-Scandian) herring stock is potentially one 
of the largest and biologically most productive fish stocks in the world. During the 
early 1950s its total biomass ranged between 15 and 20 million metric tonnes and its 
spawning stock averaged 10 million metric tonnes (Patterson 1998, Bjorndal et al. 
1998). Although annual catches during the 1950s were in excess of 1 million metric 
tonnes, average fishing mortality was usually less than 0,1.  
 

In the 1960s, new harvesting technology led to greatly increased exploitation 
of the stock.1 Several European fishing nations participated in the fishery with 
Norway, Iceland and the USSR being the most prominent. In the late 1960s, the stock 
suffered a collapse apparently due to a combination of overfishing and deteriorating 
environmental conditions. In spite of a moratorium on fishing from the spawning 
stock imposed in 1969, the stock continued declining reaching a nadir of 71.000 
metric tonnes and a spawning stock of 2.000 metric tonnes in 1972 (Patterson, 1998). 
Since then, the stock has recovered and the current spawning stock is now close to its 
previous size of 10 million metric tonnes.  
 

The Atlanto-Scandian herring is highly migratory. The adult stock spawns off 
western Norway in February to April (see map in Figure 1). After spawning the adult 
stock embarks on feeding migrations westward and northward following the 
zooplankton blooms across the North Atlantic. The feeding period normally ends in 
September at which time the stock commences migrations to its wintering area. There 
the adult stock stays until January each year when it migrates to the spawning grounds 
off western Norway.  

 
Although the above describes the essential features of the Atlanto-Scandian 

herring’s migratory pattern, the exact migratory routes and distances have been 
somewhat variable. Although not fully understood, it appears that this migratory 
variability depends primarily on two factors: (i) spawning stock size and (ii) 
environmental conditions especially the availability of feed and ocean thermoclines. 
A stylized migratory pattern based on the migratory behaviour for a sizeable 
spawning stock is illustrated in Figure 1. 

 

                                                 
1 Including the introduction of the sonar and the powerblock. 
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Figure 1 
The Atlanto-Scandian Migratory Routes: National EEZs and the Herring Loophole 
 
 

It is primarily during the feeding migrations from May to September each 
ear2 that the Atlanto-Scandian herring becomes subject to international fishing 
ressure. On leaving the Norwegian EEZ, the herring enters international waters (the 
erring loophole, see Figure 1). It then enters one or more of the EEZs of the Faroe 
lands, Jan Mayen (Norway) and Iceland. During this period, the herring tends to 

orm dense schools that are particularly suitable for purse-seine fishing. In the herring 
ophole, access to the stock is basically open to all. This is followed by sequential 

ut somewhat stochastic exclusive national access by the three countries with adjacent 
EZs, Iceland, the Faroe Islands and Norway.  

 
This obviously defines a fairly intricate game-theoretic situation. First of all, 

e game is dynamic or evolutionary, in the sense that the opportunities (or moves) 
vailable to each player depend on the size of the stock and, consequently, his moves 
nd those of the other players’ in previous time periods. Secondly, over the course of 
e year, the set of moves available to each player depends on the location of the 

tock. Thus, if the stock is located within a country’s EEZ, the other players do not 
ave access to the stock and are reduced to the role of observers. Thirdly, any co-
perative agreement the players may manage to arrange is potentially threatened by 
                                               
 Possibly also in the wintering area, from October to December each year.  

Herring
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Iceland
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(i) the entry of new players wanting to take advantage of a growing stock and (ii) 
altered migratory behaviour of the herring which will change the respective national 
threat-points and may render the existing co-operative sharing untenable. 
 

In recent years, a number of fishing nations have participated in the Atlanto-
Scandian herring fishery. The most important of these are Norway (about 60% of the 
total harvest), Iceland (about 15%), Russia (about 11%), EU nations3 (about 8%) and 
the Faroe Islands (about 5%). A few years ago, these nations agreed on setting and 
sharing an overall quota in this fishery. The agreed quota shares are roughly in 
conformance with recent historical catch shares. This agreement, however, is not 
intended to be permanent, in particular the quota shares are periodically renegotiated. 
Given the high likelihood of altered migratory behaviour of the stock and the 
possibility of new entrants, it is unclear how stable this agreement can be.  

 
Our intention in this paper is to study the fisheries game situation in which the 

exploiters of Atlanto-Scandian herring fishery find themselves. Our approach is to 
devise a simple model of the situation based on the measurable realities of the fishery. 
Since the model is quite simple and its key relationships imperfectly estimated we 
prefer to refer to this model as a stylized portrayal rather than an empirical model of 
the fishery. Subsequently, on the basis of this stylized model, we seek equilibrium 
strategies for each of the players under a variety of competitive and co-operative 
situations and study the implications for the fishery. Although designed for the 
Atlanto-Scandian herring fishery, our modelling framework is in fact quite general 
and can with little modifications be used to study multi-player, migratory fisheries 
games in general.  

 
The structure of the paper is as follows. In section 1 we provide an overview 

of our game-theoretical framework for studying multi-player, migratory fishery games 
and describe the numerical solution methods we employ. In section 2, we outline the 
empirical content of our model. In section 3, we present our results from simulating 
the Atlanto-Scandian herring fisheries game involving the current five exploiters (e.g. 
Norway, Iceland, the Faroe Islands, the EU and Russia). Finally, in section 4 we 
briefly discuss the main results of the paper. 
 
 
2. Theory 
 
Considerable research has been conducted into the strategic aspects of the exploitation 
of fish stocks (Clark 1976, Levhari and Mirman 1980, Hannesson 1993). Kaitala 
(1986) provides a survey of the use of game theory to analyze the exploitation of fish 
stocks prior to 1986. This paper studies the special situation of strategic interaction 
where the fish stocks are strongly migratory.  
 
 We regard the situation as a game between various fishing agents, each of 
whom is trying to maximize the present value of their net returns. We describe the 
evolution of the game in terms of Markov perfect equilibria and utilize recently 
developed methods for analyzing such equilibria, example of which can be found in 
Ericson and Pakes (1995), Pakes and McGuire (1994), Pakes (1994) and Rust (1994 

                                                 
3 Especially Denmark, Scotland, Sweden and the Netherlands. 
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and 1996). According to these methods, the agents select decision rules that prescribe 
their reaction to changes in the state variables, in this case the size of the fish stock 
and its location. Furthermore, each decision rule gives a best response to the decision 
rule of all the other agents. Agents' controls are usually either fishing effort or the 
amount of biomass caught. The setup is general enough to allow for more state 
variables such as several species and cohorts and more than one control per agent. 
However, computational limitations may prevent the implementation of these 
extensions. The Markov perfect equilibrium assumption means that agents cannot 
commit themselves for extended periods.4 When coalitions are introduced it will be 
assumed that coalitions do not co-operate with each other or with single players. 
Coalition agreements are assumed to be binding.5 
 
 Our particular setup focuses on the importance of the migratory behaviour of 
fish stocks and in particular whether a fish stock, at a point of time, is located within 
the EEZ of a particular country or in high seas. Authors that have introduced EEZs or 
other ways of ensuring the excludability of potential exploiters include Fischer and 
Mirman (1994), Kennedy (1987), Kennedy and Pasternak (1991), Krawczyk and 
Tolwinsky (1993) and Naito and Polasky (1997). 
 
 In addition to finding the (competitive) Markov perfect equilibrium, we also 
calculate the jointly optimal solution. No attempt is made to model how the jointly 
optimal solution could be implemented, except by calculating Shapley values 
(Shapley, 1953). Several authors, including Kaitala and Pohjola (1988), have looked 
at the possibility of side payments to support a solution that is a Pareto improvement 
on the competitive outcome. 
 

1.1 The Basic Model 
 
We are concerned with modelling the harvesting from a migratory fish stock by more 
than one exploiter (nation).6 Compared to the usual bioeconomic fisheries models, 
this implies two additional features; (i) variable catchability depending on the location 
of the stock at each point of time and (ii) strategic behaviour by each of the exploiters 
of the stock.  
 
 The following equations represent the essential structure of our model: 

 
Biomass growth: 

(1) �−=− −−
i

i
tttt yxGxx )( 11 , 

where x represents the size (biomass) of the fish stock, y is the catch, t denotes time 
and the index i refers to the different exploiters. The function G(.), of course, 

                                                 
4 Reinganum and Stokey (1985) look at the importance of the period of commitment when extracting 

a common resource in an oligopolistic setting.  
5 The stability of coalitions is briefly discussed in section 3.4. 
6  It is possible to set up a model where players are individual vessel owners instead of nations. This 

was not done for several reasons. One reason is practical; the solution algorithm will quickly bog 
down if the number of players is too high. More importantly it is more natural to think of nations as 
players in a game like this where EEZ’s are of paramount importance.  



 5

represents the natural growth of the biomass.7 
 

Harvesting costs: 
 
The generic form of the harvesting cost function employed is: 
 
(2)   ( )i

tt
i
t

i
t dxyc ,, , 

 
where dt represents the distance from the base of the exploiter to the centre of the fish 
stock at time t. More specific assumptions on the effect of the three variables, catches, 
stock size and distance on cost will be introduced later. 
 

Migrations and the location of fish stock: 
 
Several modelling assumptions are possible, but to keep the presentation reasonably 
simple let us initially assume that the fish migrate in a deterministic fashion, so that 
location in each period is a function of the location in the previous period. A more 
general stochastic type of migrations is discussed in section 1.3 below.  
 
 Let lt = (lx

t,ly
t) represent the location of the stock at time t, where x denotes the 

x-coordinate and y denotes the y-coordinate of the location. Then a simple 
deterministic presentation of migrations is given by the differential equation: 

 

(3)   )(1 tt lLl =+ . 

 
Location of exploiters: 
 
It seems plausible to assume that the exploiters operate from a number of fixed ports 

or locations il
∧

. Note that in principle each country may have fleets operating out of 
different ports so that the number of these locations may exceed the number of 
national exploiters. The exploitation pattern may and presumably will shift over time 
as the fleets embarking from each exploitation point vary between zero and a positive 
number over time.  
 

Distance from exploiter to centre of fish stock: 
 
Ignoring the curvature of the globe (which is reasonable for relatively short distances) 
we represent the distance between the ports of exploiter i and the location of the 
stocks by the expression: 
 

( ) ( )22 ˆˆ y
t

y
i

x
t

x
i

i
t lllld −+−= . 

 
 

                                                 
7  In principle it is possible to employ cohort disaggregated growth functions. This, however, is 

computationally much more demanding.  



 6

Prices: 
 
We provisionally assume that all prices including the price of landed fish, p, and the 
discount factor, β,8 are constant. This assumption is easy to relax.  
 

Profits each period: 
 

( )i
tt

i
t

i
t

i
t

i
t dxycyp ,,−⋅=Π . 

 
 
Net present value of future profits: 
 

�Π Πi
t

t
i

t

= ⋅−

=

∞

�β 1

1

. 

 
 
1.2 Solution method 
 
In order to facilitate the appreciation of the method we employ to obtain explicit 
numerical solutions to the migratory fisheries game it is useful to consider first 
relatively simple game situations. In section 1.3 below we extend the model to include 
stochastic migrations and the restrictions imposed by exclusive economic zones. 
 

Case 1: One exploiter 
 
First we will consider the situation of one exploiter referred to as exploiter i. In this 
situation, presumably, the exploitation of the stock will be optimal (given the location 
of this exploiter).  
 
 The problem for one exploiter is easily solved using dynamic programming. In 
particular, note that the net present value of future profits can be split into two parts, 
the profits this year and the present value of all future profits, as follows: 
 

( ) ( )11,~,~
++Π⋅+Π=Π tti

i
ttti lxlx β . 

 
 It is important to notice that this system has two state variables; the size of the 
fish stock and its location. Profits will be a function of these two variables. To 
maximize the net present value of profits, exploiters will have to find the optimal 
catch, given the size of the fish stock and its location. Mathematically: 
 

( ) ( ) ( ) ( )( )[ ].,,~,,sup,~
0 t

i
ttitt

i
t

i
tyxtti llyxXlxylx i

tt
Π⋅+Π=Π

≥≥
β . 

 
This is a straightforward contraction mapping that can be solved numerically with the 
help of a computer. The form of Π  is known, given the above equations for cost, 
distance and the price of fish. The forms of the X and l functions are also known. The 
only unknown is thus �Π . This can be found by iterative techniques. We start with a 

                                                 
8  β≡(1+r)-1, where r is the rate of discount. 
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guess for �Π  on the right hand side and use that to compute the �Π  on the left hand 
side. The guess for the left hand side �Π  thus found is then used as a guess for the right 
hand side �Π  and a new guess for the left hand side �Π  found. This is repeated until the 
�Π 's on the left and right hand side are deemed sufficiently similar. A Fortran program 

has been written that performs these calculations.9 
 
 Having found �Π  we have implicitly derived the decision rule for the exploiter: 
 

( ),, tt
i
t lxy Γ=  

 
where 
 

( ) ( ) ( ) ( )( )[ ]t
i
ttitt

i
t

i
tyxtt llyxXlxylx i

tt
,,~,,maxarg,

0
Π⋅+Π=Γ

≥≥
β . 

 
 To maximize profits, the harvesting activity should be concentrated on the 
period when the stock is closest to the home port of the exploiter. This rule is in 
general modified by capacity constraints (in this paper no capacity constraints are 
assumed) and the rate of discount.  
 

Case 2: Two or more exploiters that cooperate 
 
This is a straightforward extension of case 1. The only change is that the relevant 
profit function is now the sum of the two exploiters´ individual profit functions and 
there are two locations and harvests to maximize over. Consequently, essentially the 
same method as in the single exploiter case can be used to solve this problem. Having 
gone through that exercise we find the individual and total exploitation rule each 
period as: 
 

( ),, tt
ii

t lxy Γ=  all i. 
 

( )tt

I

i

i
tt lxyy ,

1
Γ=≡�

=

. 

 
Case 3: Two or more exploiters that compete 
 
The simplest assumption is that each exploiter takes the decision rule (Γi(xt, lt), i.e. 
catch as a function of stock size and the location of the stock) of his opponents as 
given and chooses his decision rule without taking into account that his choice of 
decision rule may affect the choice of a decision rule by the other exploiter.10 In 
effect, this means that exploiter 1 behaves as if the growth function for the stock is: 
 

(4)   ( ) ( ) ( )tt

I

i

i
ttttttt lxyxbxalyxX ,1,,

2

12
111 �

=
−−− Γ−−⋅−⋅+= . 

                                                 
9 The program is available from the authors upon request. Contact gylfimag@hi.is for details. 
10 The decision rule is sometimes referred to as the reaction function. The assumption that players 

take the decision rules of other players as given is fairly widely used but one could also attempt to 
model players that try to affect the decision rules of each other. 
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 Exploiter 1 then finds his optimal decision rule, Γ1, given this "growth" 
function. We have found an equilibrium if each Γi’s is the best response to all the 
other decision rules (Γj’s). This is referred to as a Nash equilibrium of the competitive 
game (Nash 1951). 
 
 To calculate this, we need a somewhat more complicated process than in cases 
1 and 2. For the two exploiter game, we start with any decision rule for exploiter 2. 
One possibility might be the decision rule for exploiter 2 if he were the sole exploiter. 
Given this, we solve the problem for exploiter 1 in the same way as in case 1 but 
using the new "growth function", i.e. equation (4), given above. This yields his 
decision rule, i.e. Γ1(xt, lt). Then we use this decision rule to find the optimal decision 
rule for exploiter 2 and so on. This process is repeated until it converges, i.e. the 
changes in the two decision rules between iterations are deemed sufficiently small. 
This then represents the Nash equilibrium of the game.  
 

With more than two exploiters, n, say, we start with any set of n-1 decision 
rules. On this basis we find the decision rule for the n-th exploiter, then the decision 
rule for exploiter number n-1, given the initial guess for the first n-2 exploiters and the 
one calculated for exploiter n. This is repeated until we have found a decision rule for 
all exploiters. Then we start with the n-th exploiter again and repeat the process until 
it converges in the sense that the changes in each exploiter's decision rule between 
iterations is arbitrarily small.  
 
 The computational requirements of the problem obviously increase very fast 
with the number of competing exploiters. Several exploiters also make it much more 
difficult to analyze and explain the outcome. The computer program that has been 
developed is however quite general and will in theory work for any number of 
exploiters. The computational requirements, however, limit the number of exploiters 
that can be practically deal with.  
 

Case 4: Coalitions that compete 
 
This case is a straight-forward combination of case 2 (co-operation) and case 3 
(competition). From the viewpoint of the other players (single players or coalitions), 
each coalition acts as a single player. The only change is in the cost function, a 
coalition has a cost function that is based on the cost functions of all its members as in 
case 2. Having found the cost functions for the various coalitions, the game is played 
and simulated in the same way as in case 3 (for any number of coalitions and single 
players).  
 
 The establishment of coalitions, decisions whether to join one or not and 
whether to join a coalition and not adhering to the strategy of the coalition are, of 
course, games in and of themselves. This paper is not concerned with modelling this 
aspect of the strategy of high seas fisheries. 
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1.3 Model Extensions 
 
The basic migratory model described above may be extended in various ways. For the 
purposes of describing the Atlanto-Scandian herring fishery the following additions 
have been adopted:  
 

Stochastic migrations 
 
The actual migrations of the Atlanto-Scandian herring are not very regular. They are 
more properly regarded as stochastic movements around an expected path. Stochastic 
migrations only call for a relatively minor change in the theoretical setup described 
above, at least if we assume that the set of points that the fish can swim to is bounded. 
The computational requirements, however, increase drastically.  
 
 Under uncertainty, it is natural to assume that exploiters will want to 
maximize the expected value of future profits.11 We need to model the migrations of 
the stock, i.e. we need some function that describes the probability distribution over 
the stocks location next period as a function of the location this period (and perhaps 
other factors, such as the stock size). More precisely we seek: 
 

( )tt lllp *
1 =+ , 

where 

( )�
∈

+ ==
Ll

tt dllllp
*

1**
1 , 

and 

( ) 01 *
1 ≥=≥ + tt lllp . 

 

 The changes stochastic migrations require for the profit maximization setup in 
case 1 above are given by the following expression. The changes needed for the other 
cases are analogous: 
 

( ) ( ) ( )( ) ( ) �
�

�
�
�

�
=Π⋅+Π=Π +

∈
≥≥ �

**
1

*
0

*

,,~,,sup,~ dllllplyxXlxylx tt
Ll

i
ttitt

i
t

i
tyxtti i

tt
β . 

 
So, clearly, the solution method does not change in principle, but the computational 
burden (involving integration over probabilities) may be considerably greater.  

 
The simulations for the Atlanto-Scandian herring game that are described in 

section 3 below are based on stochastic migrations along these lines. The transition 
function that is used for the simulations reported in that section generates stochastic 
migration within the boundaries of a box but with a tendency to move from one 
quadrant of the box to another quadrant in a somewhat circular fashion. The function 
was also designed so that points near the centre of the box are chosen with a higher 
probability than points close to the boundaries. 

                                                 
11 Taking risk aversion into account is also possible.  
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Exclusive economic zones 
 
The existence of exclusive economic zones (EEZs) means that some fishig areas may 
be off bounds for a particular exploiter. This does not call for major alterations to the 
theoretical setup, only the choice set of the exploiters changes. Theoretically, this is of 
minor importance (provided of course the opportunity set does not become too 
convoluted) although it may render the numerical search for a maximum more 
difficult. Below we provide the appropriate maximization set up for the case of one 
exploiter, i.e. case 1 above. The changes in the maximization set up for the other cases 
are analogous: 
 

( ) ( ) ( ) ( ) ( )( )[ ]t
i
ttitt

i
t

i
tlxytti llyxXlxylx

tt
i
t

,,~,,sup,~
,

Π⋅+Π=Π
Ω∈

β  

 
where 

( ) { }
( )�
�
�

∈
∉

=Ω
itt

it
tti Elx

El
lx

 if ,0
 if 0 

,  

 
where Ei represents what we refer to as accessible zone for exploiter i. The accessible 
zone normally includes the exploiter’s EEZ and the high seas. In some cases the 
accessible zone may include parts or all of another exploiter’s EEZ. Note that 
accessible zones generally overlap. Thus the high seas would normally be within the 
accessible zones of all exploiters. The Ω function simply says that if the stock is 
located within the accessible zone of a player, he can catch anything between zero and 
the whole stock but if the stock is not located in the economic zone of a player, the 
player cannot catch at all. 
 
 
2. Empirics 
 
In addition to the migrations of the herring, described above, the empirical content of 
the model consists of the specification and estimation of the biomass growth and cost 
functions specified in equations (1) and (2) above.  
 
 A simple specification of biomass growth corresponding to (1) is given by:  
 

(5) )11()( 111
γ
−−− −⋅=+− ttttt x

K
xryxx , 

 
where xt denotes the biomass of the resource at time t and yt the total harvest and r, K 
and γ are parameters. When γ =1, this equation represents the well known logistic 
growth function in which case r and K represent the so-called intrinsic growth rate 
and carrying capacity of the stock, respectively (Clark 1976).  
 

Using annual data on spawning stock size and harvest for the Norwegian 
spring spawning herring during the period 1950-1995, equation (5) was estimated. 
The estimation equation is: 
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 3
12111 )( βββ −−− +=+− ttttt xxyxx , 

 

where, obviously, β1=r, β2= K
r  and β3=γ+1.  

 

1
p
th
p
n

r
e
b
(
m

th
e

Table 1 
Estimates of the biomass growth function, equation (5), for the Norwegian 
spring-spawning herring.  
(Dependent variable measured in 1000 metric tonnes, Standard errors in parenthesis) 

 

 NL1  NL2  IV-1  IV-2  

         

β1 0,45387 0,47093* 0,29910 0,48549* 

 (0,40377) (0,11499) (0,39100) (0,15566) 

β2 -0,00003 -0,00005* -0,00002 -0,00006* 

 (0,00033) (0,00001) (0,00006) (0,00002) 

β3 2,06884 2 2 2 

 (1,26294)    

(Implied) K  15129  9418,6  14955  8091.5 

    
2R  0,146 0,163 0,073 0,296 

BG 4,528 1,600 0,301 13,868* 

White 11,528 * 6,779* 31,707* 2,129 

Jarque-Bera 19,159 * 19,108* 31,341* 20,736* 
2R  is the adjusted R2, BG represents the Breusch-Godfrey Lagrange multiplier test for serial correlation, here 
 
Results from estimating the parameters of equation (5) are presented in Table 

. Column two presents the results of a nonlinear least squares estimation of all three 
arameters simultaneously. This procedure yields an estimate of β3=2,07 (γ=1,07). As 
is value is very close to and seemingly statistically indistinguishable from 2, the 

arameter β3 is restricted to be equal to 2 in the subsequent regressions reported in the 
ext three columns.  

 
According to the results reported in column three in Table 1 (headed NL2), 

estricting β3=2 does not appear to be contradicted by the data. In fact, the two 
stimated parameters, β1 and β2, now seem to be statistically more significant than 
efore. The corresponding intrinsic growth rate of the biomass, r, is now about 0,47 
47%) and the implied carrying capacity of the biomass (spawning stock) about 9,4 
illion metric tonnes.  

 
It may be noted that lagged values of the herring stock appear both as a part of 

e dependent variable and as explanatory variables on the right-hand-side of 
xpression (5). Moreover, estimates of the herring stock are subject to measurement 

second-order correlation, White the White test for an unknown form of heteroskedasticity and Jarque-Bera 
represents the Jarque-Bera test for normally distributed residuals. * denotes that the parameters or tests are
significant at the 1% level of significance. 
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errors. Both may lead to inconsistent estimates of the parameters reported in columns 
2 and 3 of Table 1. These problems may be bypassed by using suitable instruments for 
the two herring stock variables. The results of doing this are reported in columns 4 
and 5 in Table 1. In column 4, headed IV-1, lagged values of the annual catch were 
used. In column 5, headed IV-2, second lags of the herring stock were used as 
instruments.  

 
None of the procedures employed to estimate (5) yields a seemingly valid 

statistical description of the data generating process. All fail one or more of the 
diagnostic checks reported. In particular, according to the Jarque-Bera test the 
assumption of normally distributed error terms is consistently rejected. Similarly, 
according to the White test, three of the estimates appear to be plagued by 
heteroskedasticity. Both of these results may be regarded as an indication of 
functional misspecification. This is not surprising as it is well known that the 
aggregative biomass growth function can only be regarded as an approximation to the 
real population growth process. One of the implications is that the parameter 
estimates reported and the usual tests for their significance are unreliable. In spite of 
this, estimates of (5) may be acceptable for forecasting purposes. For this purpose we 
have chosen to use the NL2 estimation results  

 
 In addition to the biomass growth function, we require estimates of the 
harvesting cost functions ( )i

tt
i
t

i
t dxyc ,,  for the different players. The available data 

consist of annual observations on the operations, costs and harvests of several 
Icelandic and Norwegian herring fishing vessels during the 1990s. Since this data set 
does not include distances the fishing grounds and is in any case on an annual basis, it 
is of limited help in this study which is concerned with the annual cycle of migrations 
and the consequent variable distance from port to the fishing grounds within the year. 
Our recourse is to construct what may be called a technical or engineering type of a 
costs function for this fishery that at the same time is consistent with the available 
data.  
 
 Examination of the available cost data suggests that vessel costs may be 
divided into four main categories: 
 

(i) The crew share and similar costs that are broadly speaking a fraction of 
the value of landings. 

(ii) Vessel sailing costs to and from the fishing grounds depending 
primarily on the distance travelled.  

(iii) The flow of fixed costs which depend on the length of the period in 
question. 

(iv) Other fixed costs (a sort of set-up costs) which are independent of the 
length of the period.  

 
On this basis we may write the cost function as: 

 
(6)  ci (y,T,d)= Φ+⋅⋅⋅+⋅∆+⋅⋅ hdTyp 2λκ  
 
In this expression the variables are as follows. y is the volume and p the price of 
landings, so that p⋅y represents the gross value of landings. T is the length of the 
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fishing season. d is the distance to the fishing grounds and h is the number of fishing 
trips, so that 2⋅d⋅h is the total distance travelled. Φ represents fixed costs. The 
parameters are κ, ∆, λ and Φ. κ is the fraction of the value of landings that represents 
costs to the operation. The crew share is normally by far the largest part of this cost. ∆ 
is the (more or less) fixed cost per vessel per day at sea. This consists of various items 
of which vessel and crew maintenance, crew salary, vessel insurance, fishing 
operational costs are among the most significant. λ is the cost per mile of distance 
travelled. The most prominent of this cost is fuel consumption. Finally, Φ represents 
the fixed costs not attributable to any of the variables of expression (6). 
 
 Now, the number of trips, h, during a season of length T depends on a number 
of factors. Analysis of this issue (see the Appendix) suggests the following expression 
for h: 
 

(7)  
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where a is the daily rate of harvest when the vessel is on the fishing grounds, b is the 
proportion of each season spent in harbour due to repairs, bad weather, etc., y  is the 
hold capacity of the vessel, s is the sailing speed (in miles/day) of the vessel and e is 
the landing time per trip. T and d, it will be recalled, represent the season length and 
the distance respectively.  
 
 Combining (6) and (7) yields the vessel cost function as: 
 

(8) ci(y,T,d)= Φ+⋅
�
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 It is important to realize that this cost function, (8), does not explicitly include 
the biomass of the stock, x.12 This is in conformance with empirical results (Bjorndal, 
1987 and Agnarsson et al. 1999) and, of course, reflects the fact, that herring is an 
extreme schooling species so that the harvest is largely independent of the stock size. 
 
 Now, the fishing technology of all five players engaged in the Atlanto-
Scandian herring fishery is similar. They all use standard, large boat purse seine 
fishing technology.13 Hence, it stands to reason that the technological parameters of 
(8) be very similar. On the basis of technical information the following values for the 
parameters were assumed: 
 

                                                 
12  It could of course be included as one of the arguments determining a, the rate of harvest (see the 

appendix). 
13  This does not apply to the Norwegian inshore fishing of immature herring. But that fishery is not 

included in our international spawning herring fishery game anyway.  
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Table 2 
Technical parameters 

 

Parameters Units Values 

Catch rate, a Metric tonnes per day 500 
Maintenance time, b Fraction 0,1 
Hold capacity, y , Metric tonnes 1000 

Vessel speed, s Miles per day 240 
Landing time per trip, e Days 0,5 

 
 Obviously, inserting these technical parameters values in (8) yields a linear 
cost function in three variables, p⋅y,T and d, and four unknown parameters, κ, ∆, λ 
and Φ. This equation is, in principle, estimable. The problem, however, is that the 
available data has T of one year and no observations on d, the distance, at all. 
Therefore, with our data set it is not possible to estimate (8) directly. Our approach, 
therefore, was to select values for the parameters of (8) on technical and accounting 
grounds. The following values were employed.  
 

Table 3 
Economic parameters 
 

 

Parameters Units Values 

Crew share and similar, κ Fraction 0,35 
Operating time cost, ∆ M.ISK/day 0,1 

Distance costs, λ  M.ISK/mile 0,0001 
Annual fixed costs, Φ  M. ISK 150 

 
 
 While this approach is somewhat arbitrary, it may be indicative of its 
appropriateness that by setting the season length at 360 days and selecting values for 
the distance, d, from within a plausible interval, it was possible to obtain a very good 
fit to the available vessel cost data.14 It should be noted, however, that this is not 
much of a test because varying d within plausible bounds allows us to span quite a 
wide cost range. Basically, it just shows, that this constructed cost function is not 
contradicted by the data.  
 

A cost function based on (8) is a bit too cumbersome to be practical in 
simulations. Therefore, we elected to use this function to generate cost data for each 
quarterly season (91 days) and a wide range of distances and harvests. More precisely, 
we generated the data on the basis of (8) as follows: 

 

                                                 
14  When d was allowed to vary within reasonable range for each individual vessel, the fit was virtually 

perfect (R2=0,99999). With identical d  for all the Icelandic and another one for all the Norwegian 
vessels the fit was still very good (R2=0,96), 
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 For T=91 and y and d in the range ],50000,1000[∈y  ]1500,10[∈d . 

 
The resulting data series, 1155 data points, were used to estimate by OLS a cost 
function of the following form: 
 
(9)  ( ) ( ) ( ) 32

1, ααα dydyc ⋅⋅=  
 
It turned out that this function provided a very good fit to these generated data15 
Hence we conclude that we may employ (9) as a reasonable approximation to the 
theoretically more appropriate cost function defined by (8).  
 
 Now, this cost function applies to individual vessels but our players in the 
Atlantic-Scandian fisheries game are nations. These players make their moves by 
selecting national harvest quantities. Therefore we have to establish a relationship 
between the number of vessels and the national harvest quantity.  Catch per vessel is 
defined by the identity: 
 
 faTy = , 
 
where Tf represents the time fishing and a, it will be recalled, is the rate of harvest. As 
shown in the appendix fishing is given by: 
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Hence, denoting the national harvest by Y, the number of vessels needed to take that 
harvest is given by the ratio: 
 

 Y/y = 
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Multiplying (9) by this number of vessels finally yields the aggregate national costs.  
 
 
 
 
 

                                                 
15  R2 =0,99997. 
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3. Games: Simulating the exploitation of the Atlanto-Scandian herring 
 
In this section we employ the model outlined in section 1 and 2 to explore the possible 
outcomes of the harvesting game for the Atlanto-Scandian herring fishery. A further 
description can be found in Arnason et al. (2000).  
 

3.1 Extreme schooling and optimal equilibrium 
 
Before proceeding, it may be helpful to briefly consider a somewhat peculiar aspect of 
this model compared to more conventional fisheries models.This is the feature that the 
stock of fish does not enter the player’s profit functions. This is in accordance with 
the theory of extreme schooling species (Clark, 1976, Bjorndal, 1987). An extreme 
schooling species forms schools of roughly equal density irrespective of the size of 
the stock. Hence the size of the stock only affects the number of schools and perhaps 
their average size. With modern technology, schools of pelagic species such as 
herring are releatively easy to locate. Moreover, purse seiners usually harvest a small 
part of one school. It follows immediately that the catchability of an extreme 
schooling species is largely independent of the stock size, provided, of course, the 
stock is large enough to form schools of reasonable size. This means that the elasticity 
of output with respect to stock size is zero or at least close to negligible as long as 
catches are (considerably) smaller than the stock size. 
 

Now, the Atlanto-Scandian herring is an extreme schooling species. Hence, it 
is to be expected that the stock size does not play a role in the profit function of the 
harvesting process (provided the stock is big enough to form schools). Indeed, 
empirical investigations (Agnarsson 1999, Agnarsson et al. 1999 and Bjorndal 1987) 
broadly support this hypothesis. 
 
 Optimal harvesting programs for extreme schooling species are particularly 
simple. For instance, provided the harvesting capacity is sufficiently high, it is easy to 
show that a profit maximizing equilibrium is given by the simple expression: 
 

Gx(x) = r 
 
where G(x) is the biomass growth function. In our case, using the biomass growth 
parameters of section 2 and a rate of discount of 5% per annum, the optimal 
equilibrium biomass of the Atlanto-Scandian herring stock is found to be 
approximately 4,209 million metric tons. This is presumably the equilibrium biomass 
level to which a cooperative game solution would converge. Of course, with variable 
distance, full equilibrium is not attainable. So in that case, we would expect the 
optimum biomass path to converge to a regular cyclical pattern with an average in the 
neighbourhood of 4,209 million metric tons.  
 

3.2 The game setting 
 
We will consider five different players of the game as follows: 
 

- Player 1, Norway 
- Player 2, Iceland 
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- Player 3, Russia 
- Player 4, the Faroe Islands 
- Player 5, EU countries 

 
 We take it for granted that each of these players seeks to maximize his 
expected economic returns (expected present value of profits) from the fishery. The 
stragegy space open to each player is his harvesting quantity. More precisely he can 
choose any positive level of harvesting bounded only by availability of fish. The game 
is a quarterly game. This means that each player makes his harvesting choice once 
every quarter. The players are assumed to have identical profit functions (defined in 
section 2).16 They differ, however, in terms of their location and the section of the 
herring's possible migratory routes covered by their EEZs. The relative location and 
EEZs of the five players is illustrated in Figure 2. 
 

 
 
t
(
N
p
s
t
 

 
1

1

Figure 2 
Relative Location and EEZs of the Four Players (stylised) 
In Figure 2, the herring fishing area is drawn as a rectangle (box), with each of 
he players located at the edges of the box. Note that the exclusive fishing areas 
EEZs) of the players are of different sizes with far the largest one belonging to 
orway. This is not supposed to be geographically accurate17 but is believed to 
rovide a reasonable approximation to each player's actual access to the stock. In the 
imulations, it is assumed that a player can not fish from another player’s EEZs unless 
hey are members of the same coalition. All players can fish from the high seas.  

                                                
6 Simulations were also run assuming that one of the players was more efficient than the others. The 

results are noted below. 
7  For instance, mature NSS herring never enters the Russian EEZ  
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 As discussed above, the migrations of the stock are modelled as a stochastic 
process where the stock moves quarterly from one area of the box to another in a 
roughly circular fashion. Each simulation represents one realization of this stochastic 
process. Averaging over a number of simulations produces a migratory pattern similar 
to the one that has been observed.  
 

3.3 Playing the Game 
 
The game simulations assume, as discussed above, that the players choose their 
harvest volume once every quarter. The game solution algorithm was as described in 
section 1, so that all moves are consistent with Markov perfect equilibria. The game 
solution defines a decision rule for each agent   an agent being either a single nation 
or a coalition of nations. Thus, obviously, the game has different solutions depending 
on the extent of coalitions. Each decision rule prescribes the amount to be caught by a 
given agent as a function of the fish stock and its location   the state variables of the 
game. Although, the stock size does not enter each the players’ profit functions 
explicitly, it imposes an upper bound on the harvest and thus determines whether the 
fishery can be profitable. Consequently, for each player this is a constraint that will 
have to be taken into account. Since this is a dynamic game, it follows that the 
biomass growth constraint has to be taken into account as well. We take the initial (at 
the beginning of the game) biomass to be the virgin stock equilibrium of some 9,4 
million metric tons. The initial location of the stock is taken to be within the EEZ of 
player 1, Norway. 
 
 Having found Markov perfect equilibrium decision rules, the game was 
simulated for a period of 500 quarters (125 years). These simulations were then 
repeated 25 times each time using a different seed for the pseudo-random number 
generator that generates the migration patterns. The results reported below constitutes 
averages over these 25 runs. It should be pointed out that this averaging obscures how 
the game might evolve in reality because for some coalition and parameter scenarios 
outcomes varied significantly between runs.18 This variation was generated by 
different migration patterns only since the rest of the model is deterministic.19 
 

3.4 Game outcomes 
 
The results of the game simulations were generally as expected. The most crucial 
outcomes are:  
 
(1) Player co-operation is needed to save the stock from (near) extinction since the 

competitive game always resulted in the stock being (almost) fully depleted.  
(2) Co-operation offers substantially more overall profits than competition.  
(3) The more extensive the co-operation the higher the profits.  
 
We will now study these outcomes in a little more detail. 
 
                                                 
18  The standard deviation of the net present value of the fisheries to an agent across runs was usually 

on the order of 5-20% of the average. 
19  Introducing other sources of stochasticity, namely in growth or in catches as a function of effort is 

actually relatively straight-forward. 
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The competitive game 
 
In spite of its inefficient nature, under our specifications the competitive game yielded 
substantial present value of profits to the players. The reason for this is that the game 
starts at the virgin stock equilibrium and good profits can be made by the initially 
good catches (see Figure 3) as the stock is run down to bio-economic equilibrium 
where annual profits are virtually zero. Some pertinent numerical outcomes for the 
competitive game are listed in Table 4.  
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Table 4 
The competitive game: Some outcomes 
 
Rate of discount 5% 
Landings price, p =0,006 M.ISK/tonne 

 

Present value of profits (B.ISK.) 3,972 
Average long run stock (million metric tons)  Negligible 
Total catch in first two years, million metric tons 10,167 
Average long run catch (million metric tons) Negligible 
he cooperative game (full co-operation) 

igure 3 compares the harvesting and biomass paths for competition and co-operation 
epectively. As expected, full co-operation generated considerably (over three times) 
igher net present value of profits than competition. However, even the fully co-
perative solution had the stock being harvested intensively at the outset and quickly 
educed to the long run optimal level of approximately 4,4 million metric tons. After 
hat, the harvesting continued at approximately the level needed to maintain the stock, 
ith some variability due to migration. The most pertinent outcomes of the co-
perative game are listed in Table 5.  
Table 5 
The co-operative game: Some outcomes 
 
Rate of discount 5% 
Landings price, p =0,006 M.ISK/tonne 

 

Present value of profits (B.ISK.) 12,604 
Average long run stock (million metric tons)  4,384 
Total catch in first two years, million metric tons 6,906 
Average long run catch (million metric tons), per year 1,137 
It is worth noting that even in the long run, harvest rates and stock levels 
luctuate quite a bit under co-operation as illustrated in Figure 3. This is caused by the 
tock migrations. This does two things. First it affects the profitability of fishing since 
istances affect costs. Second, it prevents full equilibrium from being established.  
ince the migrations are stochastic, the fluctuations are also stochastic. 



 20

 

 
 It may be noticed that average long run stock level under the co-operative 
solution is close to the optimal theoretical equilibrium of some 4,2 million metric 
tonnes. The difference is due to the averaging over 25 stochastically generated 
migratory paths. 
 
 Figure 3 illustrates that under the competitive game, the herring stock is 
reduced must faster than under co-operation. In the long run the stock becomes extinct 
under competition.  
 
 Finally, we should note that the very high initial level of fishing (millions of 
metric tonnes per quarter) in both the competitive and the co-operative game requires 
harvesting and processing capacity which may be in excess of what is actually 
available. Aggregate capacity constraints were not included in the model. Therefore, 
these rapid approach paths to equibrium may not be feasible. What would more 
realistically happen is full utilization of capacity until the neighbourhood of 
equilibrium levels is reached.20 
 

                                                 
20  It is of course not easy to get rid of excess capacity so the transition to long term equilibrium may 

be far from smooth in practice. 

Figure 3 
The Development of Stock and Catches Under Competitive and Co-operative Games  
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Discount rate=5%, P=6
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Co-operation: Pay-off to different coalitions 
 
For our five players there is a great variety of different coalitions that can be formed. 
Excluding the coalition of one, i.e. the competitive case, 26 different coalitions 
possible   ten two player coalitions, ten three player coalitions, five four player 
coalitions and one five player coalition.21 Game simulations were run for all of these 
possible coalitions for rates of discount of 5% and 10% and the price of the output of 
4 ISK/kg and 6 ISK/kg. For each case, the return (present value of profits) to each 
player was calulated as well as the Shapley values22, each player's gain from full co-
operation (according to the Shapley values) and the transfer payment needed to make 
that gain possible. Some of these results are summarized in Table 6 below. 
 

Shapley values represent but one possible distribution of the total net profits 
available when all agents co-operate to maximize profits. However, the Shapley 
values represent a distribution of the benefits that is fair according to quite reasonable 
criteria (Shapley 1953) and, thus, may be regarded as more acceptable to the players 
than some other distribution. The Shapley values, however, should not be interpreted 
as the only possible distribution of profits or in any sense a ‘solution’ to the game.  

 
Table 6 lists the calculated pay-off (in million ISK) to the players from all 

possible (single) coalitions games assuming a landings price of 6 ISK per kg and a 
rate of discount of 5% per annum. Also in the Table we report the relevant Shapley 
values (for the fully co-operative game) and the necessary transfer payment needed to 
give each player his Shapley value. under full co-operation. The last column of the 
table gives the aggregate pay-off to the coalition specified. This, as it stands, is not 
very informative. It has to be compared to some alternative. One relevant alternative 
(but by no means the only one) is the pay-off the coalition members would get under 
the competitive game, i.e. the ‘none’ coalition in Table 6.  

 
Table 6  
Results of game simulations: Pay-offs 
(Rate of discount 5%, Price = 6) 

 Pay-off to individual participants  
(M.ISK) 

 

 Player no.  Payoff to 
Coalitions 1 2 3 4 5 Total Coalition 

None (competitive game) 3.407 50 140 373 4 3.972 0 
(2,3) 3.408 71 120 373 4 3.976 191 
(1,4) 2.117 148 156 1.949 4 4.374 4.066 
(1,3) 1.698 135 1.980 361 8 4.182 3.678 
(2,4) 3.408 145 140 284 4 3.981 429 

                                                 
21  The general equation for the number of possible coalitions of any size r from a number of players n 

is � −r rnr
n

)!(!
!

. However this includes coalitions with a single member and ignores the 

possibility of two or more coalitions. 
22  See Shapley (1953). A description of how Shapley values are calculated can be found in many 

advanced textbooks on Microeconomics or Game Theory. The underlying idea is to find a way to 
distribute gains from co-operation equally. The (marginal) contribution of each player to all 
possible coalitions is calculated. The average of this contribution for each player is his or her 
Shapley value. 
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(3,4) 3.624 263 271 444 46 4.647 715 
(1,2,4) 1.737 1.198 170 1.481 12 4.599 4.417 
(2,3,4) 3.656 293 270 407 62 4.688 970 

(1,2,3,4) 2.392 2.185 2.306 2.420 1.963 11.266 9.303 
(1,2) 1.623 2.001 118 413 3 4.157 3.624 

(1,3,4) 1.768 359 1.527 1.482 99 5.235 4.777 
(1,2,3) 1.082 1.590 1.282 409 14 4.377 3.954 
(2,3,5) 3.742 191 200 577 147 4.857 538 
(1,4,5) 2.028 309 203 1.690 1.122 5.352 4.840 
(1,3,5) 1.414 437 1.460 498 1.262 5.072 4.136 
(2,4,5) 3.742 276 234 424 192 4.868 892 
(3,4,5) 3.743 308 241 406 160 4.858 807 

(1,2,4,5) 1.875 1.080 332 1.391 901 5.578 5.246 
(2,3,4,5) 3.754 275 255 394 208 4.886 1.132 

(1,2,3,4,5) 2.701 2.583 2.645 2.607 2.069 12.605 12.605 
(1,2,5) 1.623 2.001 118 413 3 4.158 3.627 

(1,3,4,5) 1.633 360 1.370 1.249 961 5.572 5.213 
(1,2,3,5) 935 1.554 1.125 613 1.171 5.399 4.786 

(1,5) 2.074 295 234 565 1.818 4.985 3.892 
(2,5) 3.742 184 234 564 121 4.845 305 
(3,5) 3.743 295 167 564 72 4.841 239 
(4,5) 3.743 296 234 445 127 4.844 572 

  
Shapley values 5.554 1.856 1.958 2.339 897  

Transfer payments needed 2.853 -727 -687 -268 -1.172  
Total gain from co-operation 2.148 1.806 1.819 1.966 894  

 
 
 As shown in Table 6, the overall benefit of the fishery increases with the size 
of the coalitions. This is further illustrated in Figure 4 which gives the average (over 
all possible coalitions of a given size) total payoff to the game.  
 

 
 

Figure 4 
Aggregate pay-offs as a function of coalitions 
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Stability of coalitions  
 
Without side payments, relatively few coalitions seem to be stable in the sense that 
each player benefits from participating compared to what he could expect in the 
competitive case. More precisely, for the case in Table 6, (β=0,95 and price= 6 
ISK/kg), only 10 out of 26 coalitions have this property.  
 
 It is particularly interesting to note that Norway can not be induced to enter a 
coalition without side payments. This also implies that without side payments the 
grand coalition, the coalition of all players, is not stable. If side payments are possible, 
the picture changes drastically. In that case the grand coalition seems quite stable. On 
average it yields almost three times the aggregate benefits of the competitive case and 
about 12% more than the best alternative coalition (1,2,3,4). If the benefits from the 
grand coalition are allocated according to the Shapley value criterion, the country that 
gains least in percentage terms compared to the competitive case, i.e. Norway, still 
increases its net benefits by over 60%. All the other nations receive several times 
more than they could expect under competition. More importantly, perhaps, all 
countries receive much more than they would be able to obtain from any other stable 
coalition without side payments. Thus, assuming the appropriate side payments, it is 
to the advantage of no-one to block the grand coalition.  
 
 For achieving of economic efficiency in the Atlanto Scandian herring fishery, 
the participation of Norway in an co-operative utilization arrangement seems to be 
crucial. This, however, does not seem to be possible without side payments. Hence, 
the possibility of side payments seems to be the key to efficiency in this fishery. 
 
3.5 Altered conditions 
 
Several simulations were run with some of the conditions of the game altered. In 
particular we investigated the effect of varying the relative economic efficiency of the 
national fishing fleets and altering the relative size of the national EEZs. It may be 
noted that the latter may also be taken to represent a shift in the migratory pattern of 
the Atlanto-Scandian herring.  
 
 Although the outcomes of these different cases vary in detail, they exhibit the 
same qualitative characteristics as described above. Most importantly, the more 
extensive co-operation between the players, the higher the aggregate present value of 
profits and the equilibrium stock level. What changes, however, is the stability of 
particular coalitions and the distribution of benefits of co-operation between the 
various players.  
 
 An extensive account of these additional runs is outside the scope of this 
paper. Therefore we only provide a few sample results pertaining to the grand 
coalition. These results, listed in Table 7 should be compared to the grand coalition 
base case reported in Table 6.  
 
 The results in Table 7 list the individual and aggregate pay-offs before and 
after side payments (transfer payments) under the grand coalition for conditions 
altered in three different ways. The first section of the table reports on the pay-offs 
assuming player 1, Norway, is 20% more efficient (20% higher net profits per unit of 
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harvest) than the other players. This leads, as shown in Table 7, to an increase both in 
the aggregate payoff and the gain from co-operation compared to the base case. At the 
same time, according to the Shapley value calculations, most, but not all, of the added 
benefits go to the more efficient operator, Norway. 
 
 The second case reports on the aggregate payoffs assuming that the EEZs of 
players 1 and 2 are equal. All the other EEZs and the extent of the high seas are 
unchanged. This means, that the EEZ of player 2, Iceland, is increased at the cost of 
player 1, Norway. This is equivalent to assuming that on its migratory routes, the 
herring now spend the same amount of time in the Icelandic as the Norwegian EEZs 
as seems to have been the case in the 1950s and 1960s. In this case, the aggregate 
pay-off to the grand coalition is unchanged, but the distribution of the benefits 
according to the Shapley values tilts substantially toward Iceland compared to the 
base case.  
 
 The third case in Table 7 reports on the case where the landings price is 
reduced by a third (from 6 ISK/kg) to (4 ISK/kg). The main impact of this is to reduce 
the aggregate pay-off from the grand coalition by about 58% and the individual pay-
offs proportionately.  
 
Table 7  
Altered conditions: Simulation results 
(Amounts in M. ISK) 
 

 Direct Transfer Shapley Gain from
Case 1 profit payment value cooperation
Player 1 20% more efficient     
 Player 1 4.035 2.025 6.061 1.939 

Player 2 2.286 -388 1.898 1.898 
 Player 3 2.501 -529 1.971 1.971 
 Player 4 2.545 -110 2.434 2.434 
 Player 5 1.887 -997 890 890 
 Sum 13.254 0 13.254 9.132 

Case 2     
EEZ of Players 1 and 2 equal      
 Player 1 2.709 -107 2.601 1.862 

 Player 2 2.582 31 2.613 1.858 
 Player 3 2.648 -244 2.404 1.658 
 Player 4 2.597 -270 2.327 1.581 
 Player 5 2.069 591 2.659 1.915 
 Sum 12.605 0 12.605 8.874 

Case 3     
Price of landings 4 ISK/kg     
 Player 1 1.710 1.506 3.216 1.238 

 Player 2 1.479 -409 1.070 1.049 
 Player 3 1.516 -371 1.146 1.058 
 Player 4 1.610 -256 1.354 1.143 
 Player 5 987 -470 517 515 
 Sum 7.303 0 7.303 5.002 

 
Finally, we may mention that altering the discount rate, just as altering the 

price of landings, primarily affects the aggregate and individual pay-offs but does not 
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affect the overall tenor of results under the grand coalitions or the distribution of the 
benefits.  
 
 
4. Discussion 
 
The above analysis of the Atlanto-Scandian herring fishery is based on quite a simple 
empirical description of the fishery   a description that is more properly regarded as 
a stylized portrayal rather than an empirical model. For this reason, the numerical 
results reported should be regarded as indicative only. The qualitative nature of the 
results, on the other hand, is probably more reliable. They are first of all very much 
along the lines predicted by theory. Secondly, they are in good conformance with the 
game as it seems to have been played hitherto by the nations involved.  
 
 Perhaps the most striking result of the paper is the difficulty in establishing 
stable coalitions for this fishing game unless side payments between the players are 
possible. There are ample incentives to reach agreement however, since the co-
operative solution generates far higher aggregate profits than other solutions. Side 
payments may take various forms. Monetary payments will of course do the trick and 
it is implicitly assumed in this paper that side payments are monetary. A perhaps more 
acceptable method is to allow certain players selective access to other player’s EEZs. 
As is well known, such agreements are often seen in practice. 
 
 The game simulations reported in this paper do not cover some pertinent 
aspects of the actual game situation. Among the more interesting aspects of the game 
omitted in the paper, but perfectly feasible to analyze within the model that has been 
developed, are (i) the possibility of entry by new players and (ii) the question of time 
consistency of whatever cooperative agreement reached.  
 
 Under the UN agreement on high seas fishing (United Nations 1995), 
interested fishing nations must be included in regional fisheries agreements. This 
potentially opens the door for new nations to enter a fishery once co-operation 
between the current fishing nations has rebuilt the stocks and enhanced the 
profitability of the fishery. Clearly, this threat will affect the optimal game strategies 
of the existing players. A way to model this within the framework of the current 
model is to define a less efficient additional player that can enter profitably once the 
stock has exceeded a certain size or the migratory behaviour of the stock has become 
sufficiently favourable.  
 
 To be dynamically stable or time consistent, any co-operative agreement must 
at all times provide the parties with an expected present value in excess of what he 
could get by leaving the coalition. In the case of the Atlanto-Scandian herring fishery, 
the evolution of the stock variables over time will generally alter the players’ threat 
points and thus potentially destabilize a previously stable co-operative agreement. 
This aspect of the game can also be analyzed within the framework of the model. 
What is needed is essentially a calculation of the necessary side payments or Shapley 
values over time. With significantly variable conditions, it may be that a necessary 
component of a stable cooperative agreement is dynamic sharing of the aggregate 
pay-off depending on the state of the fishery.  
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Appendix 
Derivation of the fishing time and fishing trips equations 
 
Consider a fishing vessel. Its instantaneous rate of harvest may be written as 
 
(A1) y(t) = F(x(t),k(t))⋅φ(t), 
 
where y(t) represents the rate of harvest, x(t) fish stock biomass and k(t) vessel characteristics 
(i.e. capital) all at time t. φ(t) is a shift variable for fishing with φ(t)=1 when fishing takes 
place and φ(t)=0 otherwise. (A1) is essentially the standard form a harvesting function used in 
fisheries economics (Clark, 1975). The only modification of that theory is the explicit 
inclusion of the shift parameter φ(t). 
 

Over a period of time, e.g. a fishing trip, the accumulated harvest may be written as: 
 

(A2) y = �
T

0
F(x(t),k(t))⋅φ(t) dt = F(x(t),k(t))⋅tf, 

 
where tf represents the fishing time during the period and x(t) and k(t) must be regarded as 
representing their average values during [0,T]. Alternatively, the time period may be regarded 
as short enough so that x(t) and k(t) may be regarded as constant during the period. For 
simplicity, we may write (A2) as: 
 
(A3) y = a⋅tf, 
 
where a ≡ F(x(t),k(t)).  
 
 In pelagic purse seine fisheries, such as the Atlanto-Scandian herring fishery, the 
harvest during the fishing trip is typically only limited by the hold capacity of the vessel, y , 
say. Clearly in this case: 
 
(A4) tf = y /a. 
 
 Now, consider a longish period of fishing operations, a month, quarter of a year or 
even a year. Let the length of this period be represented by T. Let the actual fishing time 
during the period be Tf. Also, let the ineffective time, i.e. the time for sailing from port to the 
fishing grounds and back, landing the catches and re-supplying the vessel etc. be represented 
by Tt. Finally, let delays due major maintenance of the vessel, bad weather etc. be a constant 
fraction of the overall period, b where 0< b <1. Thus, 

 
(A5) T = Tf + Tt+ b ⋅T 
 
 Note that T-b⋅T represents what may be called vessel operating time (sometimes 
measured as days at sea), a statistic that is frequently recorded by fisheries authorities. For 
later reference write this as: 
 
(A6) To = T- b⋅T = Tf + Tt. 
 
 Let the ineffective time depend on the number of trips, h, as follows: 
 
(A7) Tt = h⋅(ts + e) 
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where ts is the sailing time to and from the fishing grounds and the harbour and e is the 
landing and re-supplying time each trip.  
 
 The sailing time clearly depends on the distance to the fishing grounds, d. I.e., 
 
(A8) ts = 2⋅(d/s), 
 
where s represents the sailing speed of the vessel.  
 
 The number of trips, on the other hand, is: 
 
(A9) h = T⋅(1-b)/(tf + ts+ e). 
 
 Combining (A7) and (A9) yields: 
 
(A10) Tt = T⋅(1-b)⋅( ts+ e)/(tf + ts+ e). 
 
Therefore, in view of (A10), (A5) and (A5), the overall fishing time is given by: 
 
(A11) Tf = To⋅[1- ( ts+ e)/(tf + ts + e)] = To⋅[tf /(tf + ts +e)] 
 
 
 Now, substituting in for tf , To and ts from (A4), (A6) and (A8), respectively, we find: 
 
(A12) Tf = T⋅(1-b)⋅[ y /a /( y /a+2⋅d/s+e)] = T⋅(1-b)⋅[ y  /( y +a⋅(2⋅d/s+e))]. 
 
Obviously, according to this equation, total fishing time is a declining function of distance, 
and the catch rate, a, increasing in vessel speed, s, and vessel hold capacity, y . Moreover, in 
accordance with intuition, as y  approaches infinity, there is only one fishing trip and fishing 
time reaches an upper limit of T⋅(1-b). The same applies when the rate of catch, a, goes to 
zero. If distance to the fishing grounds, d, is zero, fishing time is Tf =T⋅(1-β)⋅[ y  /( y +a⋅e)]. 
However when distance goes to infinity, fishing time converges to zero as intuition also 
suggests.  
 
 Finally, the number of trips, h, is obviously given by h = Tf /tf. Hence, by (A4): 
 
(A13) h = Tf ⋅a/ y . 
 
Therefore, it follows from (A12) and (A13) that  
 
(A14) h = T⋅(1-b)⋅[a /( y +a⋅(2⋅d/s+e))]. 
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