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Abstract

The durations between trading on a stock market are monitored. The durations are assumed
to be exponentially distributed with a time-varying parameter. A gamma prior is used for the
parameter, and as data are observed, the Bayes rule is used for updating. Given data, the
parameters of the gamma distribution can be estimated. The posterior predictive duration is
Pareto-distributed. The method is applied to Icelandic stock market data. Results suggest

that most stocks are rather illiquid.



1 Introduction

When a new stock market opens it is of interest to have an objective expression concerning
the intensity of trading. Traditionally, when activity is reported, it is customary to give a
historical review, e.g., number of transactions last year, last 6 months, last 3 months, etc.
The procedure introduced in this paper is designed to complement traditional reporting. In
this paper an on-line monitoring method of duration between transactions is suggested. The
approach taken is a stochastic one, where duration between trades is assumed to follow a
given probability distribution. Assuming that transactions occur randomly, the choice of
the exponential distribution is, due to its memoryless property, a natural base line. By the
memoryless property, it is understood that past durations do not affect future durations. The
analysis of durations is essentially analysis of waiting times. It is, however, unrealistic to
assume that the trading intensity is constant over time. In practice trading intensity is also
unknown. Therefore, some approach for dealing with this uncertainty is necessary.

The approach taken in this paper is to assume that durations are locally exponentially dis-
tributed with time-varying intensity. The setup is similar to Kalman filtering (Harvey, 1989),
a filtering process consisting of recursively updating the estimated intensity as observations
on durations become available. The same concepts as in state-space modeling apply here, i.e.,
predicted state, filtered state, predicted observation and the corresponding variances. The
Kalman filter for a linear, normal, state-space model is based on applying the Bayes rule,
recursively updating the estimated state as observations arrive. To achieve analytical results
when the Bayes rule is applied requires that the model and the prior come from a conjugate
family; for details see, e.g., Bernardo and Smith (1994), Zellner (1971) or some statistical
textbooks like Casella and Berger (1990). The analytical form of the Kalman-filter updating
and filtering equations is due to the fact that for normal observations, the conjugate prior is
the normal distribution. The conjugate prior for the exponential distribution is the gamma
distribution. As the durations are assumed to be locally exponential, it is convenient to let
the intensity be gamma-distributed. In Section 2 a version of this idea is reviewed; for details
see, e.g., Harvey (1989) . Precisely analogous to the normal state-space model, the unknown

intensity is assigned a prior distribution from the gamma family, the variance of the predicted



state is taken as the variance of the gamma prior up-scaled with a smoothing constant. This
constant represents the uncertainty about the future. This amounts to scaling down the pa-
rameters of the prior distribution. Having obtained an observed duration, it is straightforward
to apply the Bayes rule and obtain the posterior distribution of the intensity, which will result
in a gamma posterior-distribution. It can be shown that the predictive distribution of a dura-
tion, conditional on the last duration, will be a Pareto distribution with parameters given by
the posterior gamma distribution. The Pareto distribution is a heavy-tailed distribution with
only a finite number of moments(Mood et al., 1974). The parameters of the posterior gamma
decide how many moments there exist. The smoothing constant can be estimated using some
criterion, e.g., maximum likelihood.

The existence of moments of the Pareto distribution can be interpreted. More moments
means less extreme values. In other words if a standard deviation does not exist, very long
waiting times are plausible. If the standard deviation exists, the probability of exceeding a
given bound can be calculated, e.g., by use of Chebychev inequality(Mood et al., 1974). If the
higher moments exist, e.g., the fourth moment, this indicates that the standard deviation can
be consistently estimated by use of the usual sample estimator. However, it is straightforward
to calculate quantiles of the Pareto distribution which is useful for getting an objective idea
on extreme values.

In Section 3, the method of Section 2 is applied to data from the Iceland Stock Exchange.
The results indicate that the distribution of durations between transactions in Icelandic stocks

is in general quite heavy-tailed, i.e., Icelandic stocks rather illiquid.

2 Stochastic intensity

In this section an on-line monitoring procedure is described. The idea is based on state-space
modeling, i.e., a pair of equations, a measurement equation and a state equation. The measure-
ments are assumed to be observations on a latent state of the system, and the state equation
describes the dynamics of the latent state. For the normal model this is frequently moni-

tored with the Kalman-filter recursions. As an example of a normal model, the measurement



equation is given by:
yr=pr+er e iid N(0,02) (1)
and the state equation
pe =1 +er g iid. N(0,02) (2)

The model described by equations (1) and (2) is a noisy, normal, random-walk. The mem-
oryless property of the random walk, i.e., only the last observation matters is an attractive
feature in many applications, e.g., for the analysis of stock market data, where the efficient
market hypothesis states that today’s price is the best prediction of tomorrow’s prices. As
measurements arrive, information on u; is updated. The Kalman-filter recursions consist of

the prediction equations and updating equations. The prediction equations are:

Btjt—1 = He—1)t—1 (3)
Ptft—1 = Pr—1jt—1 + o’ (4)
Ytjt—1 = Htjt—1 (5)

fijt—1 = pyr—1 + o7 (6)

Given information at time-point ¢ — 1, py;—1 and p;_1;—1 in equation (4) denote the variance
of the unknown state at time ¢ and ¢ — 1, respectively. As new measurements of y; arrive, one

applies the updating, or filtering, equations:

et = tgje—1 + Peje—1/ frje—1 (Yt — bgo—1) (M)

Pyt = Ptjt—1 — pg\t71/ft|t—1 (8)

The updating equations are derived by use of the Bayes rule. The analytical form of equations
(3) through (8) follows from the fact that both state and measurement are normal, i.e., because
the conjugate prior for the normal distribution is the normal distribution. According to
equation (3), the prediction for the next state is today’s state, but the variance for the predicted
state is larger than the one for the filtered (current) state. Models based on equations (1)
through (8) are applied to analyze observed value dynamics in ISE in T6émasson (2000b) and
Tomasson (2000a).



The purpose of this paper is to transfer these ideas for monitoring the intensity of trading.
The duration between transactions is inherently positive, so a normal model is not appropri-
ate. Due to its memoryless property the exponential distribution is a natural choice for the

distribution of the duration between trades:
p(di | Ai) = Niexp(—Xid;) 9)

Ai in equation (9) denotes the intensity of the trading process at transaction time number 3.
The intensity is assumed to evolve according to a state equation. An evolution scheme in the

spirit of the Bayesian updating as in the Kalman filter is to assume
Ai | Aimy ~ T(@ji—1, Biji-1) (10)
and
Ai | A~ T(evjs, Byji) (11)

Equation (10) defines the distribution of intensity for transactions i conditional on past his-
tory, I'(e;—1, Bi—1) denotes the gamma distribution and A;_1 = (d;—1,d;—2,. .. ), denotes past
values of duration between transactions. The numbers, (;;_1,8;ji—1), and (ay;, Byj;) are the
predicted and filtered estimates of the parameters, respectively. Similarly, equation (11) de-
notes the on-line distribution of the intensity. The gamma distribution is chosen here because
it is the conjugate prior of the exponential distribution, and therefore recursive use of the
Bayes rule will yield analytical results. The idea is that the expected future intensity should
be the same as the current one, but the future variance conditional on current information

should be greater than the current one. Standard results for the gamma distribution give:

Qg

E(\i | Aq) = B (12)
and
V| Ay = 20 (13)

ili
We want E(N\; | Aj—1) = E(X\i—1 | Ai—1), and due to the added uncertainty of prediction,

V(Ai | Ai1) > V(A1 | Aj—1), say by a constant factor w, i.e.,

wV()\i ‘ Aifl) = V()\i,1 | Aifl)



where 0 < w < 1. By equation (13)

Q15— [e 1P
Vit [ A1) = 2L — V(O [ Agy) = 2 (14)
i—1li—1 ili—1
and
Q115 [e X1V
Ehict | Aiy) = 1L BOG | Agy) = L (15)
Bi-1ji-1 Biji—1

Solving equations (14) and (15) for o;; and S in terms of a;;_; and B;;_; gives the prediction

scheme:

Q51 = WA_1]i—1 (16)
Biji—1 = wBi1i1 (17)
The measurement equation is based on observing a duration, d;, assumed to be exponentially

distributed with mean A;;_;. Applying the Bayes rule to the measurement with the a priori

distribution of A;;_1 gives the posterior distribution:

Aifi ~ T(eva, Bija) (18)

where
Qi = i1+ 1 =way g1 +1 (19)
Biji = Biji—1 + 6 = wBi_1ji—1 + i (20)

The on-line estimate of the intensity is thus A;; = ay;/B;;.- Integrating A;;_; out of the
predictive density shows that the predictive density of §; conditional on A;_1, i.e., as a function

of a;;_1 and f;;_1, is proportional to:

1
(Biji—1 + &) i

(21)
Equation (21) shows that the predictive distribution of ¢; conditional on A,_; is a Pareto
distribution with density:

Qjl5—1
li—1B; "4

(Biji—y + 6g) i1 +1

f(6ilAi—1) = (22)



The parameters of the Pareto distribution in equation (22), a;;—1 and £;;_1 may be used as
measures of the liquidity of the market. The mean of the distribution given in equation (22)

is:

Biji—1 (23)
a1 — 1
which is finite if a;;_; > 1. The variance of the distribution given by (22) is
2
aili—lﬂiuq (24)

(aiim1 — 1) (@vjio1 — 2)
which is finite if a;);_1 > 2. In general m moment exist if a;;_1 > m.
The necessary parameters are the starting values, ag, fgjo, of the gamma distribution,
and w, the speed of learning. Given these parameters and n observed durations, the values
of these parameters, the system can be calculated recursively, and by equation (22) the log-

likelihood can be calculated:
n
log(L(w, |0, Bojo)) = Zlog(f(5i|Ai)) (25)
i=1

Maximizing (25) numerically yields a maximum-likelihood estimate.

Some algebra and a standard result from calculus

)OL.Z‘

lim ( = exp(—a)

z—oo x4+ 1
shows that if

Qjli—1

ajji_1 — 00, b;;_1 — oo such that =A (26)

ili—1
then the density in equation (22) approaches the exponential density with parameter A. The
condition b;;_; — oo would also mean that the variance of the prior goes to zero, i.e., that
the uncertainty about A vanishes.

Ifw=1and ao‘o = b0|0 = 0, then

bn\n _ Z?:l 1 _ S\ML
Qp|n Zzn:1 d;

where Apsr, is the usual maximum-likelihood estimator for a pure exponential model. If w < 1,

then @uoo|ee = 1/(1 —w). The number ay o can be interpreted because it says how many



moments of the Pareto distribution, equation (22), exist. Fewer moments means that more
extreme durations can be expected. At each transaction time point equation, (22) can be used
to calculate a 95% prediction interval for next duration, d;:

). B (1 - 1
(1—0.975)"/eti-1”’ i1 (1 —0.025)"/@ili-1

(61, 0u) = (Biji—1(1 — ) (27)

Equation (27) can be generalized to the case when the duration from transaction i — 1 is

already 4, so it is known that §; > § by noting that:

(Biji—1 + 6)%i-
(Biji—1 + 6;) %1

At any point in time it is possible to monitor the trading intensity and give a probability

F((Si\Ai_l,&i > (5) =1- (28)

statement about the duration to the next transaction. Direct interpretation of the condition of
existing moments for the fat-tail nature of a distribution is perhaps not straightforward. To get
an idea of the fat tail nature of the Pareto distribution one can apply standard order statistics
(Mood et al., 1974) to calculate the median of maximum of the next 100 durations, assuming
that they are independently Pareto distributed with «;;_; and ;;_; given by equation (22).

The hazard rate of a waiting time distribution is given by:

___f(9)
ho) = 1— F()

where f and F' denote the density function and the distribution functions, respectively. The

Pareto density, equation (22), has its hazard function given by:

Qi1

(Biji—1) +0)

i.e., the hazard is a decreasing function of §. This means that at each point in time, the

h(8|Ai1) = (29)

available information consists of past information A;_1 and the fact that no transaction has
taken place after §;_1, i.e., §; will be greater than §. This expresses a growing pessimism as
time passes without transactions. The expected value of the next duration, J;, conditional on

this information is

P £9

@1 — 1

E(5i|Ai—1,5i > 5) = (30)

Le., the expected remaining duration increases linearly with slope 1/(e;;_; —1). Both equation

(29) and equation (30) illustrate that the risk of a transaction decreases as the time from the



last transaction increases. As o );_1 — 00, however, the properties of exponential distribution,

i.e., constant hazard rate and constant expected remaining duration become more apparent.

3 Some empirical results

The methods of Section 2 were applied to data from the Iceland Stock Exchange(ISE). The
ISE is an automated, computerized market, which opened in 1991. Active trading started in
1993 and has gradually increased, in both the number of companies registered and trading
intensity. By the year 2000, over 70 companies were registered. The accessible data consist of
every registered transaction since the opening of the ISE. The data used in this paper consist
of durations between all transactions from 1 January 1998 up to May tenth 2000, a total of
roughly 63000 transactions on 38 stocks. Since the opening of the ISE up to 10 May 2000,
roughly 88000 transactions on 76 stocks were observed. The observation period is 860 days
long, of which the market was open on 586 days. The period from the first trade of the day
until the last trade of the day was defined as the duration per day. The average period between
the first transaction and the last one was 5.7 hours. This means that if the first transaction on
a particular day was in stock happening to be the last one traded the day before, then those
transactions were defined as simultaneous. All simultaneous transactions were considered as
a single transaction, i.e., only positive durations were considered. Time was measured in 24-
hours days, so a typical day at the market lasts 5.7 hours =~ 0.24 days. A measured duration
of one day is therefore about four days in real life.

Tables 1 and 2 show numerical results for the procedure described in Section 2. Table 1
shows results for stocks already on the market 1 January 1998, and Table 2 shows results for
stocks entering the market during the observation period. The number k£ denotes the stock
code. As new companies are registered on the ISE, they are assigned a number in chronological
order, i.e., k = 1 denotes the first company registered. The number n denotes the number
of transactions during the observation period. All stocks with 30 or more transactions in
the observation period were included. The numbers § and ss denote the sample mean and
sample standard deviation, respectively. The parameter w was estimated by maximizing the

likelihood function. This was done both for the case with the restriction ago = Sy = 0,



k n d 84 w Qnin ﬁn|n Q0.5(100) lo — 1y

1 328 044 085 0.72 3.60 1.56 6.53 65.79

2 2754 0.06 0.09 070 336 0.04 0.18  377.04

3 238 0.06 0.12 0,51 2.0 0.08 4.71  744.26

4 2041 0.07 0.16 0.58 238 0.08 1.63  761.92

5 39 3.58 3.56 1.00 39.00 68.02 17.82 0.00

6 172 0.80 1.31 0.71 347 181 8.39 1.07

7 61 228 2.70 0.91 10.82 13.92 8.33 2.16

8 31 449 719 083 5.77 13.71 20.84 1.14

9 803 0.19 0.37 0.58 237 0.54 11.28  288.62
10 1220 0.12 0.20 0.67 3.00 0.57 4.16 110.42
12 266 0.52 0.89 0.65 2.87 0.87 7.59 35.00
13 582 025 033 0.79 4.79 1.97 4.23 18.61
14 454 031 043 0.75 4.05 0.98 3.02 48.89
15 3890 0.04 0.12 0.56 2.28 0.22 5.79 1190.23
16 629 0.22 0.34 0.78 4.63 1.78 4.11 48.95
17 71 193 2.63 0.55 2.20 1.71 57.38 16.22
18 488 0.28 047 0.74 3.88 2.26 7.78 77.32
19 799 0.18 028 083 593 1.66 241 39.90
20 463 031 056 071 344 0.86 4.10 3150.28
21 718 0.20 0.35 0.71 346 0.32 1.48 108.81
22 662 021 035 0.72 3.58 1.18 5.02 127.27
23 675 0.21 033 0.89 8091 1.52 1.18 39.46
24 899 0.15 0.25 0.75 4.01 0.65 2.04 95.86
25 527 0.27 061 0.73 3.65 0.54 219  322.92
26 36 3.89 540 086 7.01 15.61 17.24 1.27
27 66 2.10 3.01 0.81 5.22 4.61 8.38 5.61
28 55 247 386 034 152 583 26273.52 24.61
29 114 1.08 1.44 0.81 5.13 1.83 3.43 22.45
30 206 0.67 1.00 095 1842 10.17 3.18 2.14
31 460 030 048 0.78 445 348 8.73 133.43
32 563 025 044 076 415 0.62 1.83 113.58
33 39 3.53 5.54 087 742 14.55 14.72 1.04
34 44 249 413 042 1.73  4.53 1740.31 12.92
35 237 0.59 0.89 0.62 262 125 15.89 26.14
36 1590 0.09 021 0.62 263 0.14 1.80 360.13
38 1745 0.09 0.19 056 226 0.22 6.34  564.80

Table 1: Results for stocks registered before 1 January 1998.



k n 4 55 w Qn|n ﬁn|n Q0.5(100) lo — 1
39 611 0.24 044 0.62 266 0.30 3.53  153.62
40 37 3.78 645 090 9.73 26.81 18.46 0.22
41 1552 0.09 0.26 0.60 248 0.14 2.28  817.86
43 304 047 1.02 069 320 1.73 10.25  110.63
44 141 099 195 0.52 210 0.90 43.05 66.59
45 70 195 264 089 9.14 15.00 11.26 0.51
47 1125 0.13 0.25 0.79 4.66 0.52 1.19  416.23
48 702 0.18 0.34 058 240 044 8.58  670.27
49 458 030 0.61 0.72 3.61 6.79 28.13 136.49
50 158 0.84 1.29 0.67 3.06 4.83 33.00 21.07
51 53 244 3.07 058 238 6.99 143.85 2.32
52 322 041 0.71 055 222 0.36 11.26 74.20
53 101 1.29 260 0.65 282 2.02 18.78 8.15
54 40 295 3.69 0.8 6.73 11.04 13.00 2.28
55 930 0.13 022 079 478 1.74 3.77  230.24
56 91 122 156 0.92 1222 22.14 11.34 3.45
58 181 0.57 0.89 0.79 471 3.09 6.86 18.87
59 827 0.12 0.20 0.74 390 1.09 3.69 86.51
60 578 0.16 028 0.73 365 0.64 2.55 98.38
61 271 034 052 050 200 0.09 6.82 31.57
62 2177 0.05 0.19 0.52 210 0.10 5.03  940.19
63 3208 0.03 0.08 0.61 258 0.10 1.32  1009.76
64 90 1.01 1.38 083 599 9.22 13.14 8.75
65 1513 0.06 0.10 0.70 3.29 0.02 0.09  386.98
66 1524 0.06 0.14 0.71 348 0.22 1.02  423.86
67 87 095 121 077 426 7.17 19.75 9.14
68 171 047 1.01 059 241 0.70 13.45 43.81
70 1096 0.06 0.13 064 279 0.16 1.49  215.68
71 49 112 1.26 1.00 49.00 55.01 5.57 0.00
73 207 028 044 08 6.74 1.32 1.55 24.48
75 1419 0.04 0.18 0.60 249 0.02 0.25 731.24
76 1660 0.03 0.19 0.49 196 0.00 0.42 1014.78

Table 2: Results for stocks registered after 1 January 1998.
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and for the case where agg and fyp were estimated as free parameters along with w. Both
cases are logical choices. If w < 1 then «;); quickly converges to 1/(1 —w), so perhaps there is
not much point in estimating agjo. The variance in the prior distribution of the intensity, A;,
is proportional to 1/f;. As it is natural to assume that in the beginning of the period little
information is available on A it is natural to choose the initial value such that the variance
is big, i.e., choose [y close to zero, e.g., 10720, It is observed that the fixed parameter
exponential model has w = 1 and A = «;/8; for all 5. This corresponds to setting fyo to
a large number. Therefore estimating the fixed parameter exponential model is the same as
estimating a restricted version of the three-parameter model with parameter (w, g0, Bojo)- It
is then possible to calculate the difference in the log-likelihood values for the two models to
get an idea of the statistical significance of the deviation from the exponential model. This
difference is denoted Iy — I; in the tables. In most cases, the exponential model is clearly
rejected. The maximum-likelihood estimate of w, @, is shown in the tables. In most cases,
the difference of @ between the case when the initial values are fixed close to zero and the
case when they are estimated is marginal. In some cases the maximum-likelihood estimates
of agjp and fy| are very large, e.g., 10%°. In most of these cases, however, the likelihood is
relatively flat, i.e., it changes by only a few units relatative to large changes in agp and fo)o-
The estimate @ is shown in the tables. The situations where [5 — [ is small, i.e., estimating w
is not a significant improvement over the exponential model (w = 1), is characterized by small
sample sizes. In two cases, the maximum-likelihood estimate of w is exactly one. This should
not be surprising because w was estimated with the restriction w < 1. In small samples, it
is plausible that the unconstrained estimate of w is greater than one, so the small sample
distribution of the constrained maximume-likelihood estimator therefore has a point mass at
one. The final estimates of a and 3, ay), and (), are also shown. Judging from the the
estimate of a;,|,, which for many stocks is a low number, it is clear that liquidity is low on the
ISE. Due to the low values of a,,,, only a few moments of the predictive distribution exist, i.e.,
predictive distributions are heavy-tailed. To get an objective measure of the extreme values,
the median for the maximum of the 100 next durations was calculated, based on a;,,. This

median is denoted by Q.5(100) in the tables. For example, for stock number 3, the median

11



value for the maximum of the 100 next durations seems to be 10 times the expected value.

All calculations were done using the statistical package R (Ihaka and Gentleman, 1996).

Hazard functions for duration of stocks

— Stock 2

- Stock 3

Stock 75

- Stock 76

Figure 1: Hazard function for some stocks conditional on A,,.

In Figure 1, the hazard function conditional on the latest information for stocks 2, 3, 75
and 76 is plotted. Stocks 2 and 3 are well established on the market, whereas stocks 75 and
76 are registred at the end of the year 1999. The inital hazard for transaction is highest for
stock 2 because it has the highest a1, but as time without a transaction increases, they
all converge to zero. The time scale shown in Figure 1 goes from zero to two 24-hour days,
which in real life is approximately one week. The common conclusion for all four stocks is
that after one week of non-trading predictions for future transactions would be pessimistic.

Figure 2 shows the expected remaining duration as a function of §. It is clear from looking
at the slopes that stock number 2 is least affected by a period of non-trading. Stock 76 had
@ < 0.5, this suggests that the predictive distribution does not have a finite expectation.
The expected remaining duration is therefore a useless concept in such cases. It is, however,
possible to analyse quantiles of the predictive distribution directly. Figures 3 and 4 are based
on the estimates in Tables 1 and 2 and the formulas of Section 2. They show the median of the

predictive distribution for a few stocks as a function of § in relation to their 95% prediction

12



Expected remaining duration

Duration

30

20

10

15

10

Expected remaining duration for some stocks

—— Stock 2 -

--- Stock 3 e

Stock 75 .

0.5 1.0 15 20

Figure 2: Expected remaining duration for three stocks

Median and 95% quantiles of predicted duration

—— 50% quantile for stock 2 .

95% prediction interval for stock 2 -

50% quantile for stock 3 -

- 95% prediction interval for stock 3 e

Figure 3: Median and 95% prediction intervals for stocks 2 and 3.
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Median and 95% quantiles of predicted duration

15
1

—— 50% quantile for stock 75

95% prediction interval for stock 75

50% quantile for stock 76

- 95% prediction interval for stock 76

Duration

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Median and 95% prediction intervals for stocks 75 and 76.

intervals. The heavy-tailed nature of the Pareto distribution is apparent from the asymmetric
intervals. The stocks illustrated in these figures, stocks, 2,3,75 and 76, were chosen because
they are among the more frequently traded ones in the observation period. Stocks 2 and 3
are among the oldest in the market, whereas stocks 75 and 76 are among the youngest. The
stocks with very few transactions, say less than 100, were shown in Tables 1 and 2 to contrast
them with the more frequently traded ones. It is clear that it is not possible to make very

precise statements on stocks that are on average traded every five days.

4 Conclusion

In this paper, an objective method of monitoring durations in a financial market is proposed.
The basis is a simple exponential model, modified by relaxing the assumption of a constant
intensity. The computational process has a Bayesian flavor, i.e., the conjugate prior distri-
bution is combined recursively with the observations. The interpretation need not, however,
be Bayesian. The updating is controlled with a smoothing parameter w, reminiscent of ex-

ponential smoothing shown in textbooks, see, e.g., Newbold (1995). The resulting predictive
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distribution is easily interpretable. Expected duration can be calculated along with quantiles
of the predictive distributions, order statistics, etc. This helps analysts and agents to get an
objective view of liquidity on the market. It is also of potential value to market authorities,
e.g., they can react if too many or too few transactions take place in a given period. The tool
described in this paper is useful for comparing expected durations with observed ones as well

as making predictions.
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