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ABSTRACT 

Geothermal district heating systems have been modelled in order to 
evaluate the influence of the outdoor temperature on the system flow. 
The district heating system was lumped into a single building, and the 
models were based on knowledge of its thermodynamics. The results 
were compared with data from the Municipal District 
Heating Service, Hitaveita The building 
thermodynamics can not describe the flow controller element, which 
defines the relation between the indoor temperature and the district 
heating water flow. The flow controller is a combination of the 
radiator control system and the behaviour of the residents. Three 
flow controllers were studied. The ideal controller, giving the correct 
flow to keep the indoor temperature at the set point, results in a 
steady state model for the system consumption. The P-controller 
(proportional) results in a dynamic model with one state, the system 
flow. The PI-controller (proportional and integrating) results in a 
dynamic model with two states, the indoor temperature and the 
system flow. A linear model based on the PI-controller gave the best 
results of the models tested. 

1. INTRODUCTION 

Return temperature 

The district heating system is spread out over the city to be heated. In 
a macroscopic model, the whole system is lumped into one model 
block, relating the output signals to relevant inputs. In each 
macroscopic model, the entire distribution system and all of the 
consumers are considered as seen from the district heating water 
supply station. In each model, use is made of either black box 
methods to relate the input signal to the output signal, or physical 
knowledge of the process involved. Parameter estimation techniques 
are used to obtain estimates of the unknown values of the various 
parameters. The macroscopic models treated in the present work are 
physical models, with their parameters estimated by statistical 
methods. 

2. PHYSICAL MODELS 

The basis for physical district heating models is knowledge of the 
thermal behaviour of buildings. The logical choice of influence 
factors is to take weather as the input signal, and system water supply 
temperature as a control signal. The model output signals are then the 
water mass flow to the district heating system, and the return water 
temperature. 

A macroscopic model treats the district heating system as one 
entity. The whole system is then lumped into a single "equivalent 
consumer". The system is then treated in the same manner as a single 
building would be. Like for a single building, the indoor temperature 
plays a central role. The building internal energy (stored in the 
building is directly proportional to this temperature. The indoor 
temperature could be treated as an output signal, but is more akin to 
an internal state variable, as there is no way of measuring it directly. 
As a refinement, the model of one equivalent building can be serially 
coupled to a pipeline cooling model, to account for the heat loss m 
the distribution system. 

Basically, a building model is composed of four elements, a 
building energy storage element, a heat loss element, a radiator 
element and a flow controller element. The building energy storage 

element describes the building thermal storage effect, that is the 
reaction of the indoor temperature to the net heat flow into the 
building. The heat loss element describes the heat lost to the 
surroundings as a function of the weather and of the indoor 
temperature. The radiator element describes how heat is transferred 
from the district heating water to the building as a function of water 
mass flow, building water supply temperature and indoor 
temperature. As an additional output signal the water return 
temperature is calculated The flow controller element describes how 
the indoor temperature controls the district heating water flow. 

The flow controller is a combination of the behaviour of the 
people living in the building, and of the radiator control system, and 
cannot be determined theoretically. The radiator control systems 
have known characteristics, but they are of different types from one 
building to another. The residents have almost an unpredictable 
behaviour. Their tolerance to variations in the indoor temperature is 
very individual. 

A block diagram for a physical district heating model is shown in 
Figure 1. 

Figure 1. Block diagram of a lumped district heating model. 

2.1 Building Heat Loss Model 

The heat lost is a function of the outdoor weather conditions and the 
indoor temperature. The heat is lost by heat transfer through the 
building surfaces, and by exchange of air between the heated space 
and the building surroundings. The heat loss is mainly a function of 
the outdoor air temperature. By taking the outdoor temperature as a 
primary influencing factor for the weather, the heat loss model 
becomes: 

where 
: Building heat loss 
: Building heat loss factor 
: Indoor temperature 
: Outdoor air temperature 

2.2 Radiator Model 

The radiator transfers heat from the district heating water to the 
indoor air. The heat transferred from the water is written as: 

= 
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where 
: Heat supplied 
: Water flow 
: Water heat capacity 
: Building supply water temperature 
: Building return water temperature 

cooling of the district heating water is a non-linear function of 
the operational and design parameters, and can be written as 

: Supply water temperature at ref. condition 
: Indoor temperature at reference condition 

: Return water temperature at ref. condition 
This non-linearity has not a great effect on the model performance, 
and can barely be extracted from the available operational data. See 
Valdimarsson (1993) for closer treatment of the identification of the 
return water temperature. 

2.3 Building Energy Storage Model 

By assuming all heated parts of the building to be at uniform indoor 
temperature at times, the building can be modelled as a single heat 
capacity element. A differential equation is then written relating the 
net heat flow to the building to the time derivative of the indoor 
temperature and the building heat capacity. Then the building energy 
storage becomes as described in Equation (4). 

: Water flow at reference condition 

where 
: Building heat capacity 
: Net heat transferred to the building 

The heat supplied is an output signal from the radiator model, and the 
lost heat is calculated in the heat loss model. 

2.4 Flow Controller Model 

The flow controller is unknown, there being no direct physical 
relation between the indoor temperature and the water flow. 
Buildings have different regulating systems, and additionally its 
inhabitants have different tolerances to changes in the indoor 
temperature. The relation used between the indoor temperature and 
the water flow has to represent some average of all consumers in the 
system. 

One way to treat this problem is to study typical controller 
characteristics. A P-controller (Proportional controller) is defined by 
Equation (5 ) .  

where 
: Flow controller gain 

: Average flow 

= - 

: Indoor temperature set point 

The proportional controller adjusts the water flow as a linear function 
of the deviation of the indoor temperature from the desired value. 
Here the water flow is assumed to be at its average value when the 
indoor temperature is at the desired level. The indoor temperature 
will not be at the desired value for any other situation. 

A PI-controller (Proportional and uses, in addition to 
this, the integral of the temperature error, which is by 
Equation (6) 

t 

= - + - 
0 

where 
: Flow controller integration factor 
:Time 

2.5 Macroscopic Steady State Model 

A steady state model assumes that the system is memoryless, that 
any previous history can be discarded. Thus the output signals are 
only dependent on the input and the control signals at the same point 
in time. This implies that there are no state variables, the input 
temperature is a constant. That also means that the flow controller is 

ideal, it will be able to adjust the flow such that the heat lost will 
be supplied to the building exactly. Recalling Equations (1) and (2) 
this implies that: 

The steady state model for the flow can then be obtained directly as: 

or 

This is the steady state model, relating the input signal to the flow 
for constant indoor temperature 

2.6 Macroscopic Dynamic P-Controller Model 

A model with a P-controller can be written as a order differential 
equation by differentiating Equation (5):  

Additionally Equation ( 5 )  can be solved for to obtain 

and the building model for a building with a P-controller is then 
obtained by combining Equations (9) and (10) as 

= - k - ) + - (1 1)  
C 

This is the final form of the P-controller building model. 

2.7 Macroscopic PI-Controller Model 

The model of a building with a PI-controller is a second order model, 
and is obtained by first differentiating Equation (6): 

By combining Equations and (4) the first state equation for 
the model becomes: 

By inserting Equations (10) and (13) into Equation (12) the second 
state equation becomes 

= ( k ,  - - k ,  C - - - + (1  4) 
C C 

No measurements are for the indoor temperature, and it is 
also only a measure of the stored energy in the hot mass of the 
buildings. A measurement equation relates the two states to the 
available output signal. 

The classical state form for Equations (13) and (14) together with 
the measurement equation is: 

This is the form of the PI-controller building model. 

2.8 Identifiability 

It is not certain that all parameters needed in a model can be 
Some of the parameters may be related through the model 

structure, or they may not be separable in the real world. The former 
case can be tested for by calculation,, but the latter case only by 
studying model behaviour. 
Calculation of the identifiability of a certain model structure involves 
calculating the transfer functions from the input signals to the output 
signals, counting the number of independent parameters, and ensuring 
that there are not any common factors cancelling out, see Ljung 
(1987). This number is the maximum number of parameters available 
for identification for this given model structure. Ljung also mentions 
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used in the model. The derivation of the criterion is treated m 
Ljung (1987) and Olbjer (1 985). 
The for a model with parameters, N data points and the error 
variance estimate is: 

The Prediction Error, FPE, is a measure similar to the AIC, 
taking into account the number of parameters in the model. The 
reflects the error variance when the model is applied to a validation 
data set, see Ljung (1987). The FPE for a model with parameters, 
N data points and the error variance estimate is defined as: 

that it is possible to show that the number of identifiable parameters is 
three times the number of states. 

A maximum of six parameters can thus be estimated in the 
controller model. Furthermore, since the second input in Equation 
( 1 5 )  is constant one of these parameters cannot be estimated, because 
there is no time dependency in the signal. Therefore only five 
parameters in Equation (15) can be estimated for this model 
structure. 

Equation (15) contains eight physical parameters, C, 
and One is given, in that the heat capacity of water 

known. The difference between the building supply and return 
temperatures goes into the model, so only their - can 
be estimated. The indoor temperature set point can be estimated to 
be close to and to remain constant at that value. This brings 
the number of individual parameters down to five, which allows them 
all to be estimated. The underlying physics of the system, however, 
show a coupling between the parameters and - so only the 
ratio between them can be estimated. 

3. STATISTICAL METHODS 

3.1 Score Functions 

A score function can be used to define the quality of the model, when 
calculated and measured values are compared. The most common 
type of score function used is the quadratic error measure. If N 
measurements are available for evaluation of the model quality, and 
the error can be assumed independent of time, the quadratic error 
function is: 

where 
V 
N 

: of the score function 
: Number of data points 

Y : Model estimate of the output y 
: The error at time point i 

This function can be minimised to obtain the model parameter values. 
It is not helpful when deciding the model degree, as it will always be 
lower for the higher model degree. When the number of model 
parameters approaches the number of data points, the score function 
will approach zero, "parrot" learning of the model has occurred and 
the model is likely to perform badly on another set of data. The 
relative error is also of interest, and is defined 

where 
: Relative flow model error 
: Flow estimate 

The root mean square relative error is defined by: 

where 

These two rclative error measures are included here, as they are easy 
to understand, and can be expressed as percentages, so they give an 
indication on the quality of incomparable models. They are 
not used here as criteria in the decision on which model to use. The 
AIC and error measures are better suited to that task, as they 
take the number of parameters into account. Both error measures are 
based on the absolute error. and use the variance for the 
model error defined as: 

: Root mean square relative flow model error 

where 

The Akaike Information Criterion, AIC, is an attempt to measure the 
model quality taking into consideration the number of parameters 

: Standard deviation of the estimation error 

3.2 Error Analysis 

The model error should be white noise when the model has 
incorporated all available information from the data. The 
correlation function of the error will show whether there exists a 
correlation within the error function. The autocorrelation function is 
defined as: 

where 

The autocorrelation is considered here significantly different from 
zero if it lies outside the 99% confidence interval around zero. The 
halfwidth of the interval is then 

: Time shift 

I 

assuming a normal distribution of the error and time-invariant 
variance. 

Similarly the correlation of the error to the input signals has to be 
tested. Assuming a normal distribution of the error, and time- 
invariant variance, the crosscorrelation function between the error e 
and the input is defined by: 

N 

Here the crosscorrelation is also considered significantly different 
from zero if it lies outside the 99% confidence interval around zero. 
The halfwidth of the interval is then 

I .  m 

assuming as before a normal distribution of the error and time- 
invariant variance. 

3.3 Model Validation 

In the present work a model is considered valid 

a. The AIC or FPE are at minimum for the current set of 
parameter values. 

b. All parameters are significantly different from zero. 
c. The error is not significantly correlated with itself. 
d. The error is not correlated with any of the 

e. The model performs well on a validation data set. 
inputs. 

This concludes the treatment of basis for the statistical models 
used in the presen' work. 
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4. COMPARISON WITH DATA 

4.1 

The Reykjavik Municipal District Heating Service, Hitaveita 
Reykjavikur, has made available operational data for the Reykjavik 

heating system for the years 1989 and 1990. Meteorological 
data for the city of Reykjavik were obtained from the Icelandic 
Meteorological Office. 
The district heating water flow series for the suburbs Breidholt 1 and 
Breidholt 2 during the year is used here as a demonstration of 
the modelling. The weather series used for this purpose was the 
outdoor air temperature during 1990. The temperature series was 
averaged to show daily averages. The models used are heating 
models, so the tap water consumption had to be removed from the 
data. In (1993) the removal of the tap water 
consumption is treated, but here the water flow at hrs in the 
morning is used as the heating flow for the day. The district heating 
water was pumped into the distribution system at and the 
ground temperature is assumed to be 3°C. No return temperature 
series were available. 

The models were used to make a "one step ahead" prediction. 
Using this prediction, the errors caused by incorrect parameter values 
will be similar for all data points. Alternatively one could simulate 
the whole period from a single starting value. Then the deviation of 
the model from the real measurements will accumulate, the further 
away from the starting point one gets. The "one step ahead" 
prediction is more stable, and will give a better estimate of the 
parameter values. 

It has been shown, Ljung that the parameters obtained 
using the "one step ahead" prediction, describe the real system better 
than those obtained by multistep methods. 

4.2 Steady State Model 

In the steady state model, no account is taken of dynamic effects in 
the system. Using it, a steady state curve, relating the flow to the 
outdoor air temperature is obtained. The steady state model can be 
written as a linear model, assuming to be constant: 

where: 
m = b . + c 

. - 

The flow data for a given day can be related to the outside air 
temperature of the same day. The dynamic character of the system, 
however, gives reason to believe that the flow might have a better 
correlation with the temperature at some previous time. This can be 
tested by the temperature series relative to the flow series. A 
shift of one day relates the outdoor air temperature yesterday to the 
flow today, a shift of two days relates the outdoor air temperature the 
day before yesterday to the flow today and so on. 

The best results are relating the flow today to the flow yesterday. 
Following are the resulting model parameters: 

b=-5.531 

The model performance parameters are: 

-91.81, 
1 1.24% 

The results of the steady state model are shown in Figure 2 together 
with the model absolute error. 

The model absolute error autocorrelation and the absolute error 
crosscorrelation with the outdoor temperature are then calculated. 
Figure 3 shows these correlation functions. 

I 
I 

160 

Flow 

00 . . . . . . . . .  

........... 
I 

....... .... 

Error . . - 

0 1 0 0  200 400 

Day No. 

Figure 2 Steady state model results for Breidholt 1 and 2 flow series. 
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Figure 3 Error analysis for the steady state model. 

The pair of solid horizontal lines drawn together with the correlation 
functions indicate the 2.58 standard deviations confidence interval 
around zero. This shows that there is information left in the error 
signal, since the autocorrelation function is over the upper limit. 
However the crosscorrelation function is not significantly different 
from zero, which implies that there is no further information to be 
extracted from the input signal. 

The model does not give as good a performance when applied to a 
validation data set. The model compared to measurements when the 
year 1989 is used is shown in Figure 4. 

0 

0 100 

Day No. 

0 

Figure 4 Validation of the steady state model for the year 1989. 

4.3 Dynamic P-controller Model with Constant Coefficients. 

The dynamic P-controller model can be rewritten to show which 
parameters can be identified. Here the water temperature decrease 

at the consumer is assumed to remain constant throughout the 
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year, and is therefore simply included in one of the system 
parameters. 

The P-controller model in Equation (1 1) then becomes: 
. . . .  . . .  . .  . . . .  ....... 

. . .  . . . . .  . . .. .... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - = 

where 

. .... ... ..... 

b .  

Error 

-20 

When this equation is integrated, the value of the flow at time is: 

+( + . 
t 

or 
1 + -( - 1) . (b  . + C) 

The model parameters are: 

a=-0.3185 b=-1.922 day) 

The performance parameters are: 

day) 

. . . . . . .  

. . . . . . .  . . . . . .  . . . . . . .  I........ 

. . -  

In this model, only three parameters are identified. However, a total 
of five physical parameters are needed. 

The P-controller model with the absolute error for the Breidholt 1 
and 2 validation flow series (1989) is shown in Figure 5. 

Flow 

0 20 

. . . . . . . . . . . . . . . . .  ............. 

.................................. 

0 1 0  20 
-0.2 

-30 -20 

Figure 6 Error analysis for a linear dynamic P-controller state model. 

It can be concluded that a dynamic F-controller model is a valid 
model of the district heating flow. 

4.4 Dynamic PI-controller Model with Constant Coefficients. 

The factor be assumed to be close to and the radiator 
water cooling close to 45°C. The only available system data 
are the water flow, so the radiator water cooling can not be separated 
from the building heat loss coefficient For every value assumed 
for the radiator water cooling there will be a new pair of the thermal 
parameters C and resulting in the same model flow series. 

For the analysis of dynamic PI-controller model the above 
mentioned values for the indoor reference temperature and the 
radiator water cooling were taken as given. Then the building heat 
loss factor the building heat capacity the controller proportional 
gain and the integral factor were estimated from the model. 

A Kalman filter was used to estimate states for given 
parameter values, taking at any time into account the errors at the 
preceding time step. The score function minimum was found by 
searching through the parameter values with a minimisation 
algorithm. 

The results show that the model and controller model 
parameters do not change when is varied from 40 to 
Each set of the thermal parameters and will result in the 
same time series for the estimate of the indoor tempcrature. The 
controller parameters define the relation between the indoor 
temperature and the flow, so they will not be dependent on which set 
of the thermal parameters is used. 

The model performance parameters are: 

The controller parameters are: 

day) 
1972 day) 

The controller time constant is found from: 

The parameters that are dependent on are shown in Table 
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Table 1 Linear PI-controller model, parameters dependent of 

the dependent parameters were found to be linear functions of 
namely: 

= 

. 

The building time constant is found from: 

The model output for the PI-controller model for Breidholt 1 and 2 is 
shown on Figure 7. Predicted values for the water flow and indoor 
temperature are shown. 

I 

Flow 

eo 

40 

20 

1 0 0  

. . . . . . . 

Indoor 

Error o 

5. CONCLUSION 

Three assumptions on the type of flow controller have been tested 
against data from the geothermal district heating network in 
Reykjavik, Iceland, with the conclusion that the PI-controller 
assumption gives the best results, in addition to the most information 
on the physical parameters of the system. The steady state model 
based on the ideal controller was not found valid. Valdimarsson 
(1993) has shown that addition of the non-linear radiator cooling 
function does not improve the modelling, so it was not considered 
necessary to include non-linear buildings motel in the present study. 

The PI-controller model estimates an average building time 
constant of 1.311 days, and a very large controller integrating time 
constant of 6.102 days. 
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Figure 8 Validation of the PI-controller model for the year 1989. 
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