
Cause and Effect in User Interface Development
Ebba Thóra Hvannberg

University of Iceland
Hjardarhaga 2-6
+354 525 4702

ebba@hi.is

ABSTRACT
There is a lack of means of translating or relating work products
from elicitation, such as work models, to design and using
results of evaluation as feedback to design. This paper suggests
that a richer model of evaluation be created that is built
concurrently with the design activity and that records the cause /
effect relationship between design and the problem domain and
the implications work models have on design. It also suggests
that the distinction between elicitation and evaluation be
diminished. The paper presents two case studies from air traffic
control and poses questions that are meant to motivate
researchers and practioners.

Categories and Subject Descriptors
H5.2 [User Interfaces]: prototyping, evaluation/methodology,
theory and methods.

General Terms
Design, Experimentation, Human Factors

Keywords
Prototype, Development Lifecycle, Air Traffic Control, Model,
Change

1. INTRODUCTION
Life cycles of user centred user interface development are well
known and consist of eliciting user needs and their environment,
specifying the user and organizational requirements, producing
design solutions followed by evaluation, usually in several
iterative cycles in an interdisciplinary team [8]. The four basic
activities have been researched and practiced by developers
often with good results.
How information flows between these four activities is not as
well known and we hypothesize that this is the reason for the
lack of interplay between evaluation and design. As in any
activity, the four activities have input and output. The input is
the basis for the activity and the output is the deliverable of the
activity and usually input into the next activity in the lifecycle.

The output of elicitation can be user, task or goal models (work
models) of various types, and description of actors and their
environment, i.e. context. The output of the design activity is
one or several design ideas for a feature realized in low to high
fidelity prototypes, a model or a final system. The output of the
evaluation activity can be failures detected, hindrances,
facilitators, and positive or negative consequences of a designed
feature. The lack of means of translating output, coming either
from elicitation or evaluation, to design ideas is an obstacle in
the lifecycle of development of user interface.
If a design for a feature is rejected, it can be difficult to decide
how it should be changed. Then we need to go back to the
drawing board to create new design ideas. In software
development, finding root causes has been widely used and the
CUP (Classification of Usability Problems) [7] method has been
suggested to further classify attributes of failures in user
interaction and to find their roots in processes of the user
interface development lifecycle. To find causes of problems
(e.g. undesirable effects), i.e. backwards at the time of
evaluation, we may record the cause and the desired effect at the
time of design. The causes may be miscellaneous and even
multiple; they can be within the design features or the
underlying work model. Hence, one should also note the
implications a work model is meant to have on design. (see
Figure 1). In this paper, we set forth research questions that have
emerged from our work in prototyping and evaluation of two
case studies in air traffic control. The aim of presenting the case
studies is to examine the activities and learn how they can be a
basis for discussion of a development lifecycle and in particular
its work products. The next section gives an overview of two
design experiments where low-fidelity prototypes have been
used. Examples in the remainder of the paper are taken from the
case studies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NordiCHI’04, October 24th, 2004, Tampere, Finland.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Work
Model

Design

Eval-
uation

Implications Cause

Effect

Problem
Domain

Solution
Space

Figure 1 Cause in Design and Effect in Evaluation

Table 1 Methods used

 Speech Agent Integrated
workstation

Elicitation Literature review
Observation
Interview

Observation
Interview
Existing systems
& requirements
studies
Class &
Collaboration
diagrams
Cognitive models
of user’s work
Heuristics
evaluation using
cognitive
principles

Design Architecture
Sequence diagrams
Prototype

Paper sketches
Three alternative
approaches
suggested

Evaluation Wizard of Oz with
air traffic
controllers
Post-test
questionnaire
Qualitative and
Quantitative data
gathered

Claims analysis
Walk-through of
drawings of user
interface with
participation of air
traffic controllers
post-task
questionnaire
Qualitative data
gathered

2. CASE STUDIES
The two case studies reported here are taken from the domain of
air traffic control. The duty of the air traffic controllers in the
studies is to service aircraft en route in oceanic environments,
i.e. cross the North-Atlantic. They monitor aircraft against
predetermined routes, but issue clearances for requests for
different routes provided it is safe, i.e. if aircraft adhere to
separation rules. In the following two subsections, we describe
how elicitation, design and evaluation were carried out in the
two projects. Table 1 provides an overview of the methods
used.

2.1 Using language technology to improve
communication in ATC
2.1.1 Elicitation
Previous literature on voice communication in Air Traffic
Control was analysed [10]. Oceanic Air Traffic Controllers were
observed while at work at a centre of air traffic control and
operators at a Centre of Radio Communication were observed.
The researcher interviewed expert controllers to learn about the
domain of Air Traffic Control and to understand the role of
voice communication. The challenge in this domain is that
fortunately errors in voice communication are relatively
infrequent so they are not easily observed.

2.1.2 Design
A prototype of a speech agent was developed with the goal of
recognizing errors in the communication between pilot and
controller. Several options to replace or add a speech agent to
existing voice communications were explored and their
architecture designed, but a prototype of only one was
implemented.
Sequence diagrams describing realistic scenarios, edited by
expert users, of dialogues were created for three characteristic
scenarios of the problem domain.

2.1.3 Evaluation
A Wizard of Oz evaluation was conducted with five controllers
of varying expertise. The evaluation was scripted, using the
dialogues described in the previous section, with the tester
playing the role of the pilot against each of the controllers.
Quantitative data was gathered on errors made by the speech
server during evaluation and quantitative and qualitative data on
controllers’ attitude towards trust and performance was gathered
in a post-test questionnaire. The evaluator asked questions about
the type of feedback a speech agent should give in case of error
in the voice communication between controller and pilot.
Since the prototype was of low fidelity, it was not feasible to
evaluate it in context, other than to create real life scenarios and
to have actual users. Evaluators were not conducted in Air
Traffic Controllers’ room or in a group with collaborators of the
work, such as controllers of the same centre, supervisors, or
controllers of adjacent centres. Although this is considered
important, and perhaps especially so when researching voice
communication, it would have been impossible to get
permission for evaluation on site and hence would have to be
staged.

2.1.4 Results
Since the tests had to be scheduled in advanced, and resources
were scarce, there was no time to pilot test the evaluation on
site. Hence, some of the evaluation instances were flawed
because of failures in the supporting technology. The script
worked very well, the performance of the speech agent was
measured and the controllers were able to understand and reflect
on the concepts. Controllers’ attitude towards expected
efficiency, safety and their trust on the speech agent has to be
viewed in context of the artefact evaluated, but were acceptable
to proceed to the next phase. Performance of the speech agent
gave the designer good ideas on how to improve its design and
implementation.

2.2 Integrating different user interfaces in a
controller’s workstation
2.2.1 Elicitation
As in the previous case study, observations were made, but a
wider range of controllers was interviewed [9]. The architecture
of different subsystems of a workstation was analysed including
their relationships.
An abstract model of the problem domain was created based on
manuals of operations, previous requirements studies,
observation of work and current systems. The model was
expressed with text and UML diagrams.
A user interface model was reengineered from two current
systems in order to find possible anomalies and basis for
integration of two user interfaces.
Cognitive models of user’s work were examined.
Heuristic evaluation, using cognitive principles, was carried out
on current ATC’s workstation to find deficiencies.

2.2.2 Design
Three alternative approaches to integration were described but
one of them designed in detail as drawings of user interfaces.
Snapshots of user interfaces of design ideas for several features
were created in a drawing tool. Snapshots were ordered into a
short storyboard explaining a scenario of work.
Except for the description of the integration of the three
alternatives, no models of designs were made, neither as
scenarios, interactions, navigations, dialogues nor structure of
user interfaces. The reason may was that the focus was on
limited design features illustrated at the presentation level.

2.2.3 Evaluation
Evaluation did not take place in context, except that
interviewees were air traffic controllers. Controllers were asked
to give a preference to one of three alternative approaches to
integration of the two user interfaces. A researcher conducted
claims analysis [11] of three alternative approaches to
integration.
Evaluations of snapshots were made with controllers of varying
expertise. No interaction took place but instead the researcher
described situations to users. For some features several
alternatives were presented and users asked to rate them and
discuss, but for others only one design was presented. The
method of evaluation was an interview with predetermined
questions about safety, performance, and invited design

suggestions from the controllers. Two iterations of evaluations
took place with feedback from the former affecting the latter.

2.2.4 Results
The snapshots of designs of user interfaces provided valuable
means for interviewing users about the new ideas. Researchers
received good ideas from users and the two iterations showed
that improvements were achieved. The triangulation of
evaluation methods, i.e. claims analysis and users’ preference
gave researchers additional confidence in the results.
The abstract models drawn and the cognitive models examined
during elicitation were both useful to understand the complex
problem domain and to explore new design ideas for specific
aspects. They were particularly helpful in moving away from
current context, which was necessary because the technological
and consequently other contextual layers are changing.

3. ELICITING NEEDS AND CONTEXT
In this and the following two sections, we describe the activities
of the user interface development lifecycle. We end each section
with questions or challenges that will help us link the activities.
Prior to the questions, we give examples from the two case
studies. The first activity in a human-centred design is to
understand and specify the context of use. Contextual inquiries
[3] and ethnographic approaches have been gaining popularity
in recent years. Less is known about how to produce work
products that are useful for software engineers or user interface
designers. Context, partnership, interpretation, and focus are
four principles that guide contextual inquiry. The first and most
basic requirement of Contextual Inquiry is to go to the
customer’s workplace and observe the work. The second is that
the analysts and the customer together in a partnership
understand this work. The third is to interpret work by deriving
facts, make hypothesis that can have implication for design. The
fourth principle is that the interviewer defines a point of view
while studying work. The output of this activity can be e.g. a
work model and Beyer and Holtzblatt [3] suggest several
models that comprise the work model, i.e. a model of
communication, a sequence model, an artefact, or cultural and
physical models. The lack of formalism in these models makes
them difficult for practioners like engineers to adopt. Semi-
formal models in UML could replace or complement these
informal models.
Vicente [12] argues that work analysis for systems should
identify and model intrinsic work constraints, and that the
models should have formative implications for design. The
motivation is that there is no systematic way to go from results
of testing to prototype attributes and therefore we are dependent
on the creativity of the designer to revise the prototype to
remove the problematic effect. The CWA (Cognitive Work
Analysis) is an example of such a formative approach to work
analysis and so is the Contextual Design proposed by Beyer and
Holtzblatt [12]. Above we listed the models of Contextual
designs that are created, but CWA presents other conceptual
distinctions [12, p. 120]: Work Domain, Control Tasks,
Strategies, Social-Organizational and Worker Competencies.
Through analysis of these distinctions, models of intrinsic work
constraints are created that again lead to system design
interventions. We give examples of interventions for Strategies,
Social-Organization and Worker Competencies. Dialogue

modes and process flow are based on constraints derived from
strategies. Role allocation and organizational structure are based
on Social-Organizational constraints. Training and interface
form are based on constraints derived from worker
competencies. Neither Vicente nor Beyer and Holtzblatt
express explicitly or maintain in a formal way the design
implications of the work analysis. Vicente gives informal
relationships in between the two activities by taking examples,
but work analysis and not design is the subject of [12]. More
often than not, motivations for system implementation are
changes. Those changes are e.g. due to changing technological
contexts of the problem domain, increased scale, increased
demand for quality or changing technological changes in the
solution space. Below, is an example that shows how proposed
changes in Social-Organizational conceptual distinction has an
implication to a design.

A simplified example from the speech agent
Social-Organizational: A speech agent replaces a radio operator.

How can the implications of work analysis to design be
modelled and maintained?

4. DESIGN
The data collected during elicitation and evaluation of previous
versions of the modified problem context will guide new design
ideas. Design can be abstract such as re-design of work or
structure of information, to detailed interactions between a
product and the context. The design of the user interface is of
this last type.
Before a user interface is programmed, we can create a model of
the design that we use to evaluate against our requirement and
assumptions. The model may range from being abstract, like
diagrams or wire frame, or detailed, such as sketches. Prototypes
of various types, i.e. low vs. high fidelity, experience prototypes
[5], vertical and horizontal, throwaway and incremental
prototypes, are popular since they give the user an idea about
the look and the feel of the interface. Other products can be used
to model certain aspects of a user interface such as navigation,
dialogue or architecture such as diagrammatic models e.g. in
UML or extensions thereof. Storyboards and textual scenarios
are often useful to present design ideas or concepts respectively
early on.
Designers should select the type of model that is most
appropriate for the design feature at hand. For example, when
designing complex navigations, a navigational diagram that
gives an overview of the traversals between contexts will be
more useful than many detailed sketches of designs. On the
other hand, when designing presentations for entities that
contain a rich collection of information, sketches are more
useful. A complex dialogue implementing a scenario may be
best presented with both sketches and diagrammatic models.

Speech agent: The Wizard of Oz prototype was supported by a
sequence diagram describing scenarios that were evaluated.

How can we guide designers to use a combination of different
design products, such as different fidelities of prototypes,
diagrammatic models, text scenarios, or text use cases?

4.1 Multiple Design Ideas
One of the fundamental principles of design is to create multiple
design ideas for a feature. This can be a result of a
brainstorming session with an interdisciplinary team including
users. When the design team has been a participant in the whole
lifecycle, design ideas are implicitly linked to user needs and
context of work.
The rationale for the design idea needs to be made explicit.
Otherwise it will be difficult during evaluation to validate
weather the design feature is coherent with the problem domain.
Evaluation of the design is prepared during the design phase. In
our experience, it is not adequate to ask whether a design meets
requirements of efficiency, effectiveness and satisfaction
especially for design ideas produced early in the life cycle, often
in low fidelity prototypes. Designers should associate evaluation
questions with the design ideas during design but not after it.
Thus, usability specialists should either work on the design
team, or in small organizations designers, should take on the
role of usability test designers.

Integration of ATC: Three alternative design ideas for
integration were presented. Claims analysis was applied to
elicit positive and negative consequences. Questionnaires were
posted to elicit views on usability of the alternatives.

How can we design and describe evaluations of user interfaces
that can answer specific questions about the effect of the
design?

4.2 Tradeoffs
Design ideas are created to change a problem domain. There
may be different motivation for the change, i.e. technical, social,
organizational, or economical. Common effect of the changes
that we are aiming for are increased effectiveness, efficiency or
satisfaction during operation. Other changes may result in
increased safety or less time for training. A design idea that
may cause a positive effect of one aspect of the problem domain
may at the same time cause a negative effect of another. We
take an example from combining two user interfaces, Flight
Data Processing (Flight strips) and Radar Data into one. The
merging of the two interfaces will eliminate the need to
integrate information in the user’s head but can increase clutter
on the display. More automation in the Flight Controller
workstation can lead to less workload in easy low traffic
situations but may blur the controller’s mental picture (leading
to less efficient or safe operations) during difficult high traffic or
critical situations. The above statements are similar to claims
analysis [11] where positive and negative consequences of a
single design feature are gathered. Bass and John [1] describe
how we can analyse tradeoffs of different software architecture
patterns and their effect on usability.

Integration of ATC: Controls for selecting altitude levels cause
the controller to focus on specific critical air traffic and reduces
the cognitive load, thereby making decisions easier.

 How can we express the expected effect in the problem domain,
resulting from changes brought on by the design ideas?

Integration of ATC: Controls for selecting altitude levels cause
the controller to miss information in deselected altitudes and
therefore deteriorating the mental model of the current state of
the system.

As we see above, when creating different design ideas, there can
be tradeoffs between them. Another example is taken again from
ATC. Either adaptable (i.e. adapted by the user) or adaptive
(adapted by the computer) user interfaces are meant to solve the
problem of display clutter that can occur during high traffic
situations.

Integration of ATC: An adaptive interface can be more
efficient than adaptable interface to the controller but less
satisfying.

How can we express tradeoffs of effects between design ideas?

5. EVALUATION IN CONTEXT
The goal of the evaluation is to see how the proposed changes
interact with the problem domain. Hence, by introducing the
new design, we have modified the problem domain.
Many methods of evaluation have been proposed, both
analytical and empirical, most are manual but some are also
automatic. The results are either qualitative but also
quantitative. Evaluations are done at different phases in the
development life cycle, but close interaction with users from an
early stage has been advocated. Evaluating finished products
may be easier but failures detected at such a late stage may be
costly to correct. Hence, designers have focused on early
evaluation with low-fidelity prototypes, experience prototypes
with users. The down side is that these evaluations may not be
as reliable e.g. in safety critical situations.
Although contextual inquiries have been advocated, there has
been less emphasis on evaluations of design in real contexts and,
in the case of early evaluation, this may prove to be unfeasible.
However, experience prototyping [5] has been proposed as a
tool to use for this purpose. Every effort should be made to
place the design in real contexts. Training facilities can be used
to accomplish this. Simulators may be another way.

Speech agent: Controllers were recruited to participate in the
evaluation, scenarios were carefully designed and verified to
emulate real contexts.

How can we build a context for evaluation of designs during
early phases?
The results of an evaluation can be twofold; either the design
ideas were not able to correctly fulfil the assumptions or the
model of needs or the underlying model of the problem domain
proved incorrect. This results in changing the model or changing
the design. In the former case we might have assumed
something about the work or its context, but found out during
subsequent evaluation that the assumption was not correct. An
example from the speech agent is that we assumed that
controllers spoke at a specific speed with no delays. This
assumptions lead to a certain configuration in the agent. This is
an example of a relationship between how some knowledge
about he problem domain leads to a design decision. During
evaluation, it became evident that the assumption was not
correct. If we have a model of the relationship between the

problem domain and the new design ideas, it will be easier to
trace back the causes of failures, correct the underlying model,
and adapt the design. Not all such relationships may be evident
beforehand and some are only realized during evaluation.
Although we may have specified the expected effect of a design
idea, it may be that it will lead to some actual unforeseen effect.
The evaluation in context is about finding out how the new
design ideas interact in the changed problem domain. Hence we
try to observe what changes the ideas bring about to the entire
problem domain, not only the immediate user, but other systems
and stakeholders.
How can we express the actual effect in the problem domain,
resulting from changes brought on by the design ideas?
If we fail to reach the desired effect, we may either trace
backward to the documented causes of the desired effect or else
we need to trace it to failed designs or wrong assumptions in the
problem domain.
How can failures (in reaching the desired effect) lead us to
failed designs (causes) or wrong assumptions in the work
model?

6. DISCUSSION
This paper has presented challenges that need to be addressed to
better integration evaluation and design. The approach proposed
involves specifying different work products. We have used two
case studies to illustrate our challenges with simple examples,
expressed above in boxes. They are by no means meant to be
examples of how to address these challenges, but rather give
some initial illustration of the concepts.
Although it is easier for developers to understand the lifecycle
consisting of separate activities and we understand that it is
important to have several iterations of the activities, the gap
between them may be unnecessary.

Figure 2 Development model

We propose (see Figure 2) to have two activities and that the
Design and Evaluation activities are run concurrently, with the
two artefacts Design (and/or a model thereof), the Model of the
Problem Domain, and The Evaluation Model as central
repositories. The distinction between elicitation and evaluation
may not always be clear since evaluation elicits new information
and gives us further data about user needs and their

Design
activity

Eval-
uation
Activity

Design
Model

Eval-
uation
Model

Prob-
lem
Domain

environment. The only difference between them is that at
elicitation usually (but not always) no design of features is
presented. This constitutes the first iteration, but in subsequent
iterations, we use the term evaluation because some product of
the design has entered the domain.
The Evaluation activity should not be conducted as a separate
activity after the Design, but instead planned for during Design
and then carried out. We have a practice in software
development where it is recommended to design the test before
the implementation. Extreme Programming [2], which is a type
of an agile development methodology, has this practice as one
of its main guidelines. Cockburn [6] offers two advantages of
automated regression tests: the developers can change the code
and retest it very easily and there is less stress if the developers
can run automated regression tests since they are then ensured
that no one else has altered the code. Unfortunately, it is
difficult to write such automated test for user interfaces, and
hence the more reason to attempt to make them formal and
easily repeatable. Briand et al. [4] have proposed a revision of
the Goal Quality Metric framework, called GQM/MEDEA that
adds empirical hypotheses and aims to make them quantitatively
verifiable.

7. ACKNOWLEDGMENTS
Margrét Dóra Ragnarsdóttir and Hlynur Jóhannsson have
designed and evaluated the prototypes of the speech agent and
integration of user interfaces respectively.

8. REFERENCES

[1] Bass, L., John, B. Linking Usability to Software

Architecture Patterns through General Scenarios, The
Journal of Systems and Software, 66 (2003) 187-197

[2] Beck, K., Test-driven development, Addison-Wesley, 2002
[3] Beyer, Hugh and Holtzblatt, Karen, Contextual Design,

Morgan Kaufman, 1998
[4] Briand, L. C., Morasca, S., Basili, V. An Operational

Process for Goal-Driven Definition of Measures, IEEE
Transactions on Software Engineering, vol. 28, no. 12,
December 2002

[5] Buchenau, M., Suri J. F., Experience prototyping, DIS’00,
ACM, 2000

[6] Cockburn, A., Agile Software Development, Addison-
Wesley, 2002

[7] Hvannberg, E.T, Law, L. C., Classification of Usability
Problems (CUP) Scheme, Interact’03, IFIP, Switzerland,
2003

[8] ISO/IEC 13407:1999 Human-centred design processes for
interactive systems

[9] Johannsson, H., Hvannberg, E.T., Integration of Air
Traffic Control User Interfaces, 23rd DASC, Digital
Avionics Systems Conference, IEEE, 2004

[10] Ragnarsdottir, M. D., Waage, H., Hvannberg, E.T.,
Language Technology in Air Traffic Control, 22nd DASC,
Digital Avionics Systems Conference, IEEE, 2004

[11] Rosson, M.B. and Carroll, J. Usability Engineering:
Scenario-Based Development of Human Computer
Interaction, Morgan Kaufmann, 2002

[12] Vicente, Kim J. Cognitive Work Analysis, Lawrence
Erlbaum associates, 1999

