
Support Vector Machines in Multisource
Classification

Gisli Hreinn Halldorsson, Jon Atli Benediktsson and Johannes R. Sveinsson
Engineering Research Institute, University of Iceland, Hjardarhaga 2-6, 107 Reykjavik, Iceland

e-mail: {ghh, benedikt, sveinsso}@hi.is

Abstract— The use of Support Vector Machines (SVMs) for
classification of multisource data is investigated. SVMs have been
shown to have difficulties in classifying multiclass data. To over-
come that, the multiclass classification problem considered here
was reduced to multiple margin-based binary problems. Several
possibilities of binary problems were investigated, including one-
against-all, all-pairs and nearly random decompositions of the
multiclass problem. To combine the outputs from the binary
problems three approaches were tested: a) voting schemes, b)
two loss functions, and c) decoding function based on condi-
tional probability estimation. An extension of the radial basis
function kernel for multisource data is also proposed. The kernel
concentrates on local distance between features from each data
source. The experimental results show the proposed approach to
be appropriate for multisource data classification.

I. INTRODUCTION

The combined use of multisource remote sensing and geo-
graphic data has been shown to offer improved accuracies
in land cover classification [1]. For such classification, the
conventional parametric statistical classifiers, which have been
applied successfully in remote sensing for the last three
decades, are not appropriate, since a convenient multivariate
statistical model does not exist in general for such data.
Several methods have been proposed to classify multisource
data. These methods include, e.g., statistical methods based
on consensus theory, neural networks and boosting methods
[1]. Here, we investigate the use of Support Vector Machines
(SVMs) for classification of multisource data. The paper is
organized as follows. First, Support Vector Machines are
discussed in Section 2. Then, output coding for multiclass
problems is reviewed in Section 3. Experimental results are
given in Section 4, and, finally, conclusions are drawn in
Section 5.

II. SUPPORT VECTOR MACHINES

Support Vector Machines (SVMs) are extensively used as
classification tools in a variety of areas [2]. They map an input
pattern x into a high dimensional feature space (z = ϕ(x)) and
construct an optimal hyperplane defined by g(z) = wT z+b =
0 where (w is a vector and b is a bias parameter) to separate
examples from the classes. For an SVM with L1 norm, soft-
margin formulation, the primal problem needs to be solved:

min
w,ξi

{
1
2 ||w||2 + C

∑N
i=1 ξi

}
,

yi(wT zi + b) ≥ 1 − ξi,
ξi ≥ 0 ∀ i ∈ {1, . . . , N, }

(1)

where xi is the i-th pattern, yi is the class label value that takes
the values {±1}, ξi is a slack variable, C is a regularization
parameter, and N is the number of patterns. The above
problem is solved computationally using the solution of its
dual form

max
αi,i∈{1,...,N}

{ ∑N
i=1 αi

1
2

∑N
i=1

∑N
j=1 αiαjyiyjk(xi, xj)

}
,∑N

i=1 yiαi = 0, 0 ≤ αi ≤ C i ∈ {1, . . . , N}
(2)

where k(xi, xj)ϕ(xi)ϕ(xj) is the kernel function, which per-
forms the nonlinear mapping. An example of a popular kernel
function is the radial basis function (RBF):

k(xi, xj) exp
(

− γ||xi − xj ||2
)
.

In some cases it could be useful to design a kernel that is
specified for the problem at hand. In this paper we con-
sider multisource classification where each data source has
different characteristics. Therefore, it could be reasonable to
handle each source separately. We propose a kernel that is
an extension of the RBF kernel, instead of trying to estimate
distance between vectors over all sources with ||xi − xj ||2 we
concentrate on the local distance between features from each
source. Finally, we sum over all the distances and weight each
distance by the number of features for the source. This kernel
can be expressed as

k(xi, xj) exp

{
− γ

∑
k

ωk ||xi[l] − xj [l]||2
l∈sourcek

}

where ωk is number of features from source k, and l ∈ sourcek

is feature l in source k.

III. OUTPUT CODING FOR MULTICLASS PROBLEMS

So far, we have discussed binary classification, where the class
labels y can only take two values, ±1. Suppose now that we
are faced with a multiclass learning problem in which each
label y is chosen from a set Y of cardinality M = |Y| > 2.
How can a binary margin-based learning algorithm (such as
SVMs) be modified to handle M-class problem?
Several solutions have been proposed for the above problem
[11]. Many involve reducing the multiclass problem, in one
way or another, to a set of binary problems. Perhaps the
simplest approach is to construct a set of binary classifiers
f1, . . . , fM , each trained to separate one class form the
rest, and combine them by doing the multiclass classification

0-7803-7930-6/$17.00 (C) 2003 IEEE

0-7803-7929-2/03/$17.00 (C) 2003 IEEE 2054

according to the maximal output before applying the sgn
function [3], i.e.,

ŷ = arg max gj(x)
j=1,...,M

=
∑N

i=1 yiα
j
i k(x, xi) + bi,

f j(x) = sgn(gj(x)).
(3)

The above approach is called the one-against-all approach.
Another approach, suggested by Hastie and Tibshirani [4],
is to use the binary learning algorithm to distinguish each
pair of classes. Thus, for each distinct pair, r1, r2 ∈ Y , we
run the learning algorithm on a binary problem in which
examples labeled y = r1 are considered positive, and those
labeled y = r2 are negative. All other examples are simply
ignored. When we try to classify a test pattern, we evaluate
all

(
M
2

)
binary classifiers, and classify according to which of

the classes gets the highest number of votes. A vote for a given
class is assigned when a classifier puts a pattern into the class.
We call this the all-pairs approach.
A more general method on handling multiclass problems was
given by Dietterich and Bakiri [5]: Generate S binary prob-
lems by splitting the original set of classes into two subsets
and train binary classifiers f1, . . . , fS for each problem. Each
class corresponds to a unique vector {±1}S and for M classes
we obtain a ”coding matrix” M ∈ {±1}M×S . Given a example
x, we then predict the label y for which row of matrix M is
”closest” to output vector f(x) = f1(x), . . . , fS(x) using the
Hamming distance to estimate which row is ”closest.” This is
the method of error correcting output codes (ECOC) based on
the Hamming distance.
The ECOC method has been shown to produce good results
in multiclass cases. However, it has been pointed out that it
does not make use of the margin, which is a crucial quantity
for classifiers. Recently [6], a version was developed that re-
places the Hamming-based decoding with a more sophisticated
scheme that takes margins into account. Coding matrix is
used but taken from a larger set {−1, 0,+1}M×S . That is,
some of the entries in M(r, s) may be zero, indicating that
we do not care how classifier fs categorizes examples with
label r. Consequently, we are training classifiers fs where
s ∈ [1, . . . , S] is provided with labeled data of the form
{xi, M(yi, s)} for all examples in the training set but omits all
examples for which M(yi, s) = 0. In order to choose a label r
or a row in the matrix M that is most consistent (closest) with
the magnitude of the predictions g(x) = g1(x), . . . , gS(x), a
distance is calculated with

dL(M(r), g(x))
S∑

s=1

L(M(r, s)gs(x)), (4)

where M(r) is row r in matrix M and L is a loss function.
The simplest loss function one can use is the linear loss for
which L(z) = −z but several other choices are possible like
L(z) = e−z [7]. Then the label ŷ is predicted with

ŷ = arg min
r=1,...,M

dL(M(r), g(x)). (5)

A loss function for the margin presents some advantage over

the standard Hamming distance because it can encode the
confidence of each classifier in the coding matrix. However,
the confidence is a relative quantity, i.e., the range of the values
of the margin may vary with the classifier. Thus, just using
a linear loss function may introduce some bias in the final
classification in the sense that classifiers with a large output
range will receive a higher weight [7]. Another approach is to
estimate the conditional probability of each output code bit Os

given the magnitude of the prediction gs(x), i.e., P (Os|gs(x)).
To do so, one can try to fit a parametric model on the output
produced by a n-fold cross validation procedure. Platt [8]
suggested to use a sigmod model:

P (Os|gs(x)) =
1

1 + exp{Asgs(x) + Bs} , (6)

motivated by the fact that the relationship between an SVM
scores and empirical probabilities P (Os|gs(x)) appears to be
sigmoidal for many data sets. Then, the conditional probability
of an, SVM score y given code bits O1, . . . , OS in class r is

P (y = r|g) = P (O1 = M(r, 1), . . . , OSM(r, S)|g) + α (7)

where α is a constant that collects the probability mass
dispersed on the 2S − M invalid codes. Assuming that Os

and O′
s (Os �= O′

s) are conditionally independent given x for
each s and s′, respectively, the likelihood that the resulting
output code word is r can be written as

P (y = r|g) =
S∏

s=1

P (Os = M(r, s)) + α. (8)

In the case, if α is small, the distance function will be

d(M(r), g) ≈ − log{P (y = r|g)}. (9)

IV. EXPERIMENTS

A. Colorado data set

Classification was performed on a data set consisting of the
following 4 data sources:

• Landsat MSS data (4 spectral channels).
• Elevation data (in 10 m contour intervals,1 data channel).
• Slope data (0-90 degrees in 1 degree increments, 1 data

channel).
• Aspect data (1-180 degrees in 1 degree increments, 1 data

channel).

The area used for classification is mountainous area in Col-
orado. Ground reference data are available with 10 ground-
cover classes. One is water; the others are forest types [1].

B. Implementation remarks

The two kernels introduced in Section II were used for
classification along with most of the the output coding methods
of Section III. The training accuracy was estimated with 4-
fold cross validation using different kernel parameters γ and
cost parameters C for each binary classifier. Therefore, for
each binary classifier we tried γ = [2−4, 2−3, 2−2, . . . , 25] and
C = [2−1, 20, 2−1, . . . , 25], and selected the parameters that

0-7803-7930-6/$17.00 (C) 2003 IEEE

0-7803-7929-2/03/$17.00 (C) 2003 IEEE 2055

gave the best training accuracy. The experiments were imple-
mented in Matlab, python and C++ using LIBSVM [9]. For
the output decoding, two loss function were tested: L(z)e−z

and L(z) = log(1 + e−2z). In the voting approach, if two
classes had identical votes, the one with the smaller index
was selected. For probability decoding, 5-fold cross validation
on the training set was used to fit the sigmoid model and
transform the SVM scores to probabilities. The problem of
designing an optimal binary code matrix M ∈ {±1}M×S

is NP-Complete [10]. For this reason we decided to select
our code matrix M ∈ {−1, 0, 1}10×50 from 10000 random
generated code matrices where the probabilities for −1 and 1
were 1

4 , respectively. The ”best” matrix has the greatest row
and column separations and does not have rows or columns
that contain only zeros. This approach of finding the code
matrix is called nearly random below.

TABLE I

CLASSIFICATION ACCURACIES IN PERCENTAGE FOR DIFFERENT

COMBINATIONS OF CODE MATRIX AND OUTPUT DECODING USING THE

ORIGINAL RBF KERNEL.

Code Matrix Output Decoding
Training

OA.
Test
OA.

One-Against-All Max. Output 86.11 74.98

All-Pairs

L(z) = e−z

L(z) = log(1 + e−2z)
Voting

Probability

85.22
86.01
85.12
85.71

74.68
74.98
74.68
74.78

Nearly Random
L(z) = e−z

L(z) = log(1 + e−2z)
Probability

88.00
88.00
87.50

74.28
74.58
75.07

TABLE II

CLASSIFICATION ACCURACIES IN PERCENTAGE FOR DIFFERENT

COMBINATIONS OF CODE MATRIX AND OUTPUT DECODING USING THE

EXTENDED RBF KERNEL.

Code Matrix Output Decoding
Training

OA.
Test
OA.

One-Against-All Max. Output 89.39 77.15

All-Pairs

L(z) = e−z

L(z) = log(1 + e−2z)
Voting

Probability

85.02
85.32
84.33
84.82

77.65
77.84
78.14
77.05

Nearly Random
L(z) = e−z

L(z) = log(1 + e−2z)
Probability

86.21
86.41
84.82

78.34
78.44
77.45

C. Results and Discussions

Tables I and II summarize the overall accuracies using the
original RBF and the extended kernels. As can be seen from
the tables, it is not clear which combination of code matrix
and output decoding is superior in terms of overall accuracy.
But as pointed out in [11], the total training time for all-pairs
is smaller than for one-against-all even though more classifiers
need to be trained in all-pairs because each SVM optimization
problem is smaller in that method. It is also noteworthy that
using the nearly random approach to find the code matrix is

not only computationally demanding but also does not take
into account the underlying affinities among the individual
classes (or meta-classes), e.g., their closeness or amount of
separation [12]. Comparing the classification results in Tables
I and II it is clear that the extended RBF kernel outperforms the
original RBF in all cases in terms of test accuracies. The main
drawback is that the extended RBF kernel is computationally
a bit more demanding than the original RBF kernel, and has
not been proven to fulfill the Mercer’s conditions [3].

V. CONCLUSION

In this paper, we have compared methods for SVM output
coding and proposed an extension of the RBF kernel for
multisource data, which concentrates on the local distance
between features from each source. According to our results,
using an SVM with an extended RBF kernel seems to be a
promising way to classify multisource data and is comparable
in terms of overall accuracies to other advanced methods,
which have been used to classify the data set [1].

ACKNOWLEDGMENT

The Colorado data set was originally acquired, preprocessed
and loaned to us by Dr. Roger Hoffer of Colorado State
University. Access to the data set is gratefully acknowledged.
The research was funded in part by the Assistantship fund of
the University of Iceland, The Research fund of the University
of Iceland and the Icelandic Research Council.

REFERENCES

[1] G.J. Briem, J.A. Benediktsson and J.R. Sveinsson, ”Multiple Classifiers
Applied to Multisource Remote Sensing Data,” IEEE Trans. Geoscience
and Remote Sensing,vol. 40, pp. 2291-2299, 2002.

[2] V. Vapnik, Statistical Learning Theory, Wiley, New York 1998.
[3] B. Schlkopf and A.J. Smola, ”Learning with Kernels, Support Vector

Machines, Regularization, Optimaization, and Beyond,” MIT Press,
Cambridge 2002.

[4] T. Hastie and R. Tibshirani, ”Classification by Pairwise Coupling,” The
Annals of Statistics, vol. 26(2), pp. 451-471, 1998.

[5] T.G. Dietterich and G. Bakiri, ”Solving Multi-Class Learning Problems
via Error-Correcting Output Codes,” Journal of Artifical Intelligence
Research, pp. 263-286, 1995.

[6] E.L. Allwein, R.E. Schapire, and Y. Singer, ”Reducing Multiclass
to Binary: A Unifying Approach for Margin Classifiers,” Journal of
Machine Learning Research, pp. 113-141, 2000.

[7] A. Passerini, M. Pontil and P. Frasconi, ”From Margins to Probabilities
in Multiclass Learning Problems,” Proc. 15th European Conf. on
Artificial Intelligence, 2002.

[8] J.C. Platt, ”Probabilistic Outputs for Support Vector Machines and
Comparisons to Regulaized Likelihood Methods,” Advances in Large
Margin Classifiers, A. Somola et al. (eds.) MIT Press, Cambridge 1998.

[9] C-C Chang and C-J Lin, LIBSVM: A li-
brary for support vector machines. Available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm, 2002.

[10] K. Crammer and Y. Singer, ”On the Learnability and Design of Output
Codes for Multiclass Problems,” Computational Learning Therory, pp.
35-42, 2000.

[11] C-W Hsu and C-J Lin, ”A Comparison of Methods for Multiclass
Support Vector Machines,” IEEE Trans. Neural Networks, vol. 13, pp.
415-425, 2002.

[12] J.T. Morgan, A. Henneguelle, M.M. Crawford, J. Ghosh, and A. Neuen-
schwander, ”Adaptive Feature Spaces for Land Cover Classification with
Limited Ground Truth Data,” Multiple Classifier Systems, MCS 2002,
LNCS 2364, Springer, Berlin 2002.

0-7803-7930-6/$17.00 (C) 2003 IEEE

0-7803-7929-2/03/$17.00 (C) 2003 IEEE 2056

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

